summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/removed/sysfs-bus-nfit17
-rw-r--r--Documentation/ABI/stable/sysfs-bus-vmbus40
-rw-r--r--Documentation/ABI/testing/evm13
-rw-r--r--Documentation/ABI/testing/ima_policy2
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio9
-rw-r--r--Documentation/ABI/testing/sysfs-bus-nfit19
-rw-r--r--Documentation/ABI/testing/sysfs-bus-rpmsg20
-rw-r--r--Documentation/ABI/testing/sysfs-bus-usb40
-rw-r--r--Documentation/ABI/testing/sysfs-class-cxl4
-rw-r--r--Documentation/ABI/testing/sysfs-class-mtd8
-rw-r--r--Documentation/ABI/testing/sysfs-class-power455
-rw-r--r--Documentation/ABI/testing/sysfs-class-rc16
-rw-r--r--Documentation/ABI/testing/sysfs-class-rc-nuvoton2
-rw-r--r--Documentation/ABI/testing/sysfs-devices-edac14
-rw-r--r--Documentation/ABI/testing/sysfs-fs-f2fs3
-rw-r--r--Documentation/PCI/pci-error-recovery.txt35
-rw-r--r--Documentation/accelerators/ocxl.rst11
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst72
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt25
-rw-r--r--Documentation/arm/OMAP/README4
-rw-r--r--Documentation/auxdisplay/lcd-panel-cgram.txt (renamed from Documentation/misc-devices/lcd-panel-cgram.txt)0
-rw-r--r--Documentation/blockdev/zram.txt25
-rw-r--r--Documentation/bpf/README.rst36
-rw-r--r--Documentation/bpf/bpf_design_QA.rst221
-rw-r--r--Documentation/bpf/bpf_design_QA.txt156
-rw-r--r--Documentation/bpf/bpf_devel_QA.rst640
-rw-r--r--Documentation/bpf/bpf_devel_QA.txt570
-rw-r--r--Documentation/core-api/printk-formats.rst3
-rw-r--r--Documentation/dell_rbu.txt5
-rw-r--r--Documentation/device-mapper/writecache.txt68
-rw-r--r--Documentation/devicetree/bindings/arm/amlogic.txt6
-rw-r--r--Documentation/devicetree/bindings/arm/bcm/brcm,bcm2835.txt4
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,g3dsys.txt30
-rw-r--r--Documentation/devicetree/bindings/arm/samsung/samsung-boards.txt2
-rw-r--r--Documentation/devicetree/bindings/arm/shmobile.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/stm32/stm32-syscon.txt14
-rw-r--r--Documentation/devicetree/bindings/arm/stm32/stm32.txt (renamed from Documentation/devicetree/bindings/arm/stm32.txt)0
-rw-r--r--Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-mc.txt18
-rw-r--r--Documentation/devicetree/bindings/arm/ux500/boards.txt2
-rw-r--r--Documentation/devicetree/bindings/bus/ti-sysc.txt6
-rw-r--r--Documentation/devicetree/bindings/clock/actions,s900-cmu.txt47
-rw-r--r--Documentation/devicetree/bindings/clock/amlogic,gxbb-aoclkc.txt1
-rw-r--r--Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt16
-rw-r--r--Documentation/devicetree/bindings/clock/brcm,iproc-clocks.txt26
-rw-r--r--Documentation/devicetree/bindings/clock/nuvoton,npcm750-clk.txt100
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,gcc.txt2
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt22
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,videocc.txt19
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,cpg-mssr.txt10
-rw-r--r--Documentation/devicetree/bindings/clock/rockchip.txt77
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi-ccu.txt3
-rw-r--r--Documentation/devicetree/bindings/display/bridge/adi,adv7511.txt18
-rw-r--r--Documentation/devicetree/bindings/display/bridge/cdns,dsi.txt133
-rw-r--r--Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt1
-rw-r--r--Documentation/devicetree/bindings/display/bridge/tda998x.txt3
-rw-r--r--Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt60
-rw-r--r--Documentation/devicetree/bindings/display/exynos/exynos5433-decon.txt9
-rw-r--r--Documentation/devicetree/bindings/display/renesas,du.txt28
-rw-r--r--Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt93
-rw-r--r--Documentation/devicetree/bindings/dma/k3dma.txt1
-rw-r--r--Documentation/devicetree/bindings/dma/renesas,rcar-dmac.txt1
-rw-r--r--Documentation/devicetree/bindings/dma/renesas,usb-dmac.txt2
-rw-r--r--Documentation/devicetree/bindings/dma/ti-edma.txt1
-rw-r--r--Documentation/devicetree/bindings/edac/socfpga-eccmgr.txt (renamed from Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt)35
-rw-r--r--Documentation/devicetree/bindings/firmware/qcom,scm.txt3
-rw-r--r--Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt29
-rw-r--r--Documentation/devicetree/bindings/fsi/fsi-master-gpio.txt4
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-pca953x.txt34
-rw-r--r--Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt3
-rw-r--r--Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt9
-rw-r--r--Documentation/devicetree/bindings/gpu/brcm,bcm-v3d.txt28
-rw-r--r--Documentation/devicetree/bindings/gpu/samsung-scaler.txt27
-rw-r--r--Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt1
-rw-r--r--Documentation/devicetree/bindings/iio/adc/mcp320x.txt2
-rw-r--r--Documentation/devicetree/bindings/iio/adc/samsung,exynos-adc.txt (renamed from Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt)0
-rw-r--r--Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt6
-rw-r--r--Documentation/devicetree/bindings/iio/adc/st,stm32-dfsdm-adc.txt7
-rw-r--r--Documentation/devicetree/bindings/iio/afe/current-sense-amplifier.txt26
-rw-r--r--Documentation/devicetree/bindings/iio/afe/current-sense-shunt.txt41
-rw-r--r--Documentation/devicetree/bindings/iio/afe/voltage-divider.txt53
-rw-r--r--Documentation/devicetree/bindings/iio/dac/ltc2632.txt14
-rw-r--r--Documentation/devicetree/bindings/iio/dac/ti,dac5571.txt24
-rw-r--r--Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt12
-rw-r--r--Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt1
-rw-r--r--Documentation/devicetree/bindings/iio/potentiostat/lmp91000.txt9
-rw-r--r--Documentation/devicetree/bindings/input/elan_i2c.txt1
-rw-r--r--Documentation/devicetree/bindings/input/mtk-pmic-keys.txt43
-rw-r--r--Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt39
-rw-r--r--Documentation/devicetree/bindings/leds/backlight/pwm-backlight.txt6
-rw-r--r--Documentation/devicetree/bindings/leds/backlight/zii,rave-sp-backlight.txt23
-rw-r--r--Documentation/devicetree/bindings/leds/leds-cr0014114.txt54
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm3601x.txt45
-rw-r--r--Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt41
-rw-r--r--Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt2
-rw-r--r--Documentation/devicetree/bindings/mailbox/stm32-ipcc.txt47
-rw-r--r--Documentation/devicetree/bindings/marvell.txt516
-rw-r--r--Documentation/devicetree/bindings/media/cdns,csi2rx.txt100
-rw-r--r--Documentation/devicetree/bindings/media/cdns,csi2tx.txt98
-rw-r--r--Documentation/devicetree/bindings/media/i2c/ov7251.txt52
-rw-r--r--Documentation/devicetree/bindings/media/i2c/ov772x.txt40
-rw-r--r--Documentation/devicetree/bindings/media/i2c/panasonic,amg88xx.txt19
-rw-r--r--Documentation/devicetree/bindings/media/rcar_vin.txt138
-rw-r--r--Documentation/devicetree/bindings/media/renesas,ceu.txt7
-rw-r--r--Documentation/devicetree/bindings/media/renesas,rcar-csi2.txt101
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/nvidia,tegra20-mc.txt (renamed from Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-mc.txt)12
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/nvidia,tegra30-mc.txt5
-rw-r--r--Documentation/devicetree/bindings/mfd/arizona.txt6
-rw-r--r--Documentation/devicetree/bindings/mfd/axp20x.txt3
-rw-r--r--Documentation/devicetree/bindings/mfd/bd9571mwv.txt21
-rw-r--r--Documentation/devicetree/bindings/mfd/da9063.txt32
-rw-r--r--Documentation/devicetree/bindings/mfd/motorola-cpcap.txt42
-rw-r--r--Documentation/devicetree/bindings/mfd/mt6397.txt6
-rw-r--r--Documentation/devicetree/bindings/mfd/qcom,spmi-pmic.txt3
-rw-r--r--Documentation/devicetree/bindings/mips/lantiq/rcu.txt2
-rw-r--r--Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt3
-rw-r--r--Documentation/devicetree/bindings/mmc/bluefield-dw-mshc.txt29
-rw-r--r--Documentation/devicetree/bindings/mmc/jz4740.txt38
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc.txt6
-rw-r--r--Documentation/devicetree/bindings/mmc/sdhci-omap.txt7
-rw-r--r--Documentation/devicetree/bindings/mmc/tmio_mmc.txt6
-rw-r--r--Documentation/devicetree/bindings/mtd/gpmi-nand.txt5
-rw-r--r--Documentation/devicetree/bindings/mtd/ibm,ndfc.txt (renamed from Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt)0
-rw-r--r--Documentation/devicetree/bindings/mtd/mtk-nand.txt28
-rw-r--r--Documentation/devicetree/bindings/mtd/partition.txt2
-rw-r--r--Documentation/devicetree/bindings/mtd/partitions/brcm,bcm947xx-cfe-partitions.txt42
-rw-r--r--Documentation/devicetree/bindings/mtd/sunxi-nand.txt2
-rw-r--r--Documentation/devicetree/bindings/net/dsa/dsa.txt6
-rw-r--r--Documentation/devicetree/bindings/net/dsa/qca8k.txt23
-rw-r--r--Documentation/devicetree/bindings/net/dwmac-sun8i.txt21
-rw-r--r--Documentation/devicetree/bindings/net/fsl-tsec-phy.txt68
-rw-r--r--Documentation/devicetree/bindings/net/ibm,emac.txt (renamed from Documentation/devicetree/bindings/powerpc/4xx/emac.txt)0
-rw-r--r--Documentation/devicetree/bindings/net/meson-dwmac.txt1
-rw-r--r--Documentation/devicetree/bindings/net/microchip,lan78xx.txt54
-rw-r--r--Documentation/devicetree/bindings/net/mscc-miim.txt26
-rw-r--r--Documentation/devicetree/bindings/net/mscc-ocelot.txt82
-rw-r--r--Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt30
-rw-r--r--Documentation/devicetree/bindings/net/renesas,ravb.txt1
-rw-r--r--Documentation/devicetree/bindings/net/sff,sfp.txt4
-rw-r--r--Documentation/devicetree/bindings/net/sh_eth.txt1
-rw-r--r--Documentation/devicetree/bindings/net/socionext,uniphier-ave4.txt19
-rw-r--r--Documentation/devicetree/bindings/net/stm32-dwmac.txt18
-rw-r--r--Documentation/devicetree/bindings/net/wireless/qcom,ath10k.txt31
-rw-r--r--Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt1
-rw-r--r--Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt40
-rw-r--r--Documentation/devicetree/bindings/pci/designware-pcie.txt24
-rw-r--r--Documentation/devicetree/bindings/pci/mobiveil-pcie.txt73
-rw-r--r--Documentation/devicetree/bindings/pci/pci-armada8k.txt5
-rw-r--r--Documentation/devicetree/bindings/pci/rcar-pci.txt6
-rw-r--r--Documentation/devicetree/bindings/pci/rockchip-pcie-ep.txt62
-rw-r--r--Documentation/devicetree/bindings/pci/rockchip-pcie-host.txt (renamed from Documentation/devicetree/bindings/pci/rockchip-pcie.txt)0
-rw-r--r--Documentation/devicetree/bindings/pci/xgene-pci.txt7
-rw-r--r--Documentation/devicetree/bindings/phy/phy-mtk-xsphy.txt109
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt3
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt23
-rw-r--r--Documentation/devicetree/bindings/pinctrl/actions,s900-pinctrl.txt16
-rw-r--r--Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt1
-rw-r--r--Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt18
-rw-r--r--Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt4
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-mt7622.txt10
-rw-r--r--Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt1
-rw-r--r--Documentation/devicetree/bindings/power/pd-samsung.txt20
-rw-r--r--Documentation/devicetree/bindings/power/power_domain.txt19
-rw-r--r--Documentation/devicetree/bindings/power/renesas,rcar-sysc.txt2
-rw-r--r--Documentation/devicetree/bindings/power/supply/bq27xxx.txt1
-rw-r--r--Documentation/devicetree/bindings/pps/pps-gpio.txt1
-rw-r--r--Documentation/devicetree/bindings/ptp/ptp-qoriq.txt69
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-omap-dmtimer.txt2
-rw-r--r--Documentation/devicetree/bindings/regulator/pfuze100.txt6
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt45
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.txt10
-rw-r--r--Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt126
-rw-r--r--Documentation/devicetree/bindings/regulator/sy8106a-regulator.txt23
-rw-r--r--Documentation/devicetree/bindings/remoteproc/qcom,q6v5.txt1
-rw-r--r--Documentation/devicetree/bindings/reserved-memory/qcom,cmd-db.txt37
-rw-r--r--Documentation/devicetree/bindings/reset/renesas,rst.txt2
-rw-r--r--Documentation/devicetree/bindings/rng/brcm,bcm2835.txt9
-rw-r--r--Documentation/devicetree/bindings/rng/samsung,exynos4-rng.txt (renamed from Documentation/devicetree/bindings/crypto/samsung,exynos-rng4.txt)0
-rw-r--r--Documentation/devicetree/bindings/rng/sparc_sun_oracle_rng.txt (renamed from Documentation/devicetree/bindings/sparc_sun_oracle_rng.txt)0
-rw-r--r--Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt2
-rw-r--r--Documentation/devicetree/bindings/rtc/st,stm32-rtc.txt37
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt84
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,geni-se.txt119
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,smd-rpm.txt1
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,smd.txt8
-rw-r--r--Documentation/devicetree/bindings/soc/rockchip/power_domain.txt12
-rw-r--r--Documentation/devicetree/bindings/soc/ti/keystone-navigator-qmss.txt9
-rw-r--r--Documentation/devicetree/bindings/sound/adi,ssm2305.txt14
-rw-r--r--Documentation/devicetree/bindings/sound/atmel-i2s.txt47
-rw-r--r--Documentation/devicetree/bindings/sound/cs42xx8.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/fsl,asrc.txt10
-rw-r--r--Documentation/devicetree/bindings/sound/fsl,esai.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/fsl,spdif.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/fsl-sai.txt8
-rw-r--r--Documentation/devicetree/bindings/sound/mt2701-afe-pcm.txt4
-rw-r--r--Documentation/devicetree/bindings/sound/mt6351.txt16
-rw-r--r--Documentation/devicetree/bindings/sound/mt6797-afe-pcm.txt42
-rw-r--r--Documentation/devicetree/bindings/sound/mt6797-mt6351.txt14
-rw-r--r--Documentation/devicetree/bindings/sound/qcom,apq8096.txt109
-rw-r--r--Documentation/devicetree/bindings/sound/qcom,q6adm.txt33
-rw-r--r--Documentation/devicetree/bindings/sound/qcom,q6afe.txt172
-rw-r--r--Documentation/devicetree/bindings/sound/qcom,q6asm.txt33
-rw-r--r--Documentation/devicetree/bindings/sound/qcom,q6core.txt21
-rw-r--r--Documentation/devicetree/bindings/sound/rt274.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/rt5514.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/rt5616.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/rt5640.txt35
-rw-r--r--Documentation/devicetree/bindings/sound/rt5645.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/rt5651.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/rt5663.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/rt5668.txt50
-rw-r--r--Documentation/devicetree/bindings/sound/sgtl5000.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/simple-card.txt5
-rw-r--r--Documentation/devicetree/bindings/sound/ti,tas6424.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/tscs42xx.txt6
-rw-r--r--Documentation/devicetree/bindings/sound/tscs454.txt23
-rw-r--r--Documentation/devicetree/bindings/sound/wm8510.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8523.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8524.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8580.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8711.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8728.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8731.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8737.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8741.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8750.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8753.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8770.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8776.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8804.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8903.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8960.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8962.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/wm8994.txt2
-rw-r--r--Documentation/devicetree/bindings/submitting-patches.txt9
-rw-r--r--Documentation/devicetree/bindings/thermal/exynos-thermal.txt14
-rw-r--r--Documentation/devicetree/bindings/thermal/imx-thermal.txt9
-rw-r--r--Documentation/devicetree/bindings/thermal/mediatek-thermal.txt1
-rw-r--r--Documentation/devicetree/bindings/thermal/qcom-tsens.txt1
-rw-r--r--Documentation/devicetree/bindings/thermal/rcar-gen3-thermal.txt9
-rw-r--r--Documentation/devicetree/bindings/thermal/rcar-thermal.txt7
-rw-r--r--Documentation/devicetree/bindings/thermal/uniphier-thermal.txt1
-rw-r--r--Documentation/devicetree/bindings/timer/altr,timer-1.0.txt (renamed from Documentation/devicetree/bindings/nios2/timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/arm,arch_timer.txt (renamed from Documentation/devicetree/bindings/arm/arch_timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/arm,armv7m-systick.txt (renamed from Documentation/devicetree/bindings/arm/armv7m_systick.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/arm,global_timer.txt (renamed from Documentation/devicetree/bindings/arm/global_timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/arm,twd.txt (renamed from Documentation/devicetree/bindings/arm/twd.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/fsl,gtm.txt (renamed from Documentation/devicetree/bindings/powerpc/fsl/gtm.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/mrvl,mmp-timer.txt (renamed from Documentation/devicetree/bindings/arm/mrvl/timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/qcom,msm-timer.txt (renamed from Documentation/devicetree/bindings/arm/msm/timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/renesas,cmt.txt14
-rw-r--r--Documentation/devicetree/bindings/timer/st,spear-timer.txt (renamed from Documentation/devicetree/bindings/arm/spear-timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/ti,c64x+timer64.txt (renamed from Documentation/devicetree/bindings/c6x/timer64.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/ti,timer.txt (renamed from Documentation/devicetree/bindings/arm/omap/timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/timer/via,vt8500-timer.txt (renamed from Documentation/devicetree/bindings/arm/vt8500/via,vt8500-timer.txt)0
-rw-r--r--Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt6
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3.txt21
-rw-r--r--Documentation/devicetree/bindings/usb/fcs,fusb302.txt6
-rw-r--r--Documentation/devicetree/bindings/usb/hisilicon,histb-xhci.txt45
-rw-r--r--Documentation/devicetree/bindings/usb/qcom,dwc3.txt85
-rw-r--r--Documentation/devicetree/bindings/usb/richtek,rt1711h.txt17
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.txt10
-rw-r--r--Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt7
-rw-r--r--Documentation/devicetree/bindings/watchdog/renesas-wdt.txt23
-rw-r--r--Documentation/driver-api/clk.rst2
-rw-r--r--Documentation/driver-api/firmware/fallback-mechanisms.rst14
-rw-r--r--Documentation/driver-api/firmware/firmware_cache.rst4
-rw-r--r--Documentation/driver-api/firmware/request_firmware.rst5
-rw-r--r--Documentation/driver-api/fpga/fpga-bridge.rst49
-rw-r--r--Documentation/driver-api/fpga/fpga-mgr.rst220
-rw-r--r--Documentation/driver-api/fpga/fpga-region.rst102
-rw-r--r--Documentation/driver-api/fpga/index.rst13
-rw-r--r--Documentation/driver-api/fpga/intro.rst54
-rw-r--r--Documentation/driver-api/gpio/board.rst16
-rw-r--r--Documentation/driver-api/gpio/drivers-on-gpio.rst4
-rw-r--r--Documentation/driver-api/index.rst2
-rw-r--r--Documentation/driver-api/scsi.rst2
-rw-r--r--Documentation/driver-api/soundwire/error_handling.rst65
-rw-r--r--Documentation/driver-api/soundwire/index.rst3
-rw-r--r--Documentation/driver-api/soundwire/locking.rst106
-rw-r--r--Documentation/driver-api/soundwire/stream.rst372
-rw-r--r--Documentation/driver-api/target.rst64
-rw-r--r--Documentation/driver-api/usb/dwc3.rst3
-rw-r--r--Documentation/features/vm/pte_special/arch-support.txt2
-rw-r--r--Documentation/filesystems/00-INDEX6
-rw-r--r--Documentation/filesystems/autofs-mount-control.txt (renamed from Documentation/filesystems/autofs4-mount-control.txt)9
-rw-r--r--Documentation/filesystems/autofs.txt (renamed from Documentation/filesystems/autofs4.txt)10
-rw-r--r--Documentation/filesystems/automount-support.txt2
-rw-r--r--Documentation/filesystems/f2fs.txt16
-rw-r--r--Documentation/filesystems/fscrypt.rst10
-rw-r--r--Documentation/filesystems/fuse-io.txt38
-rw-r--r--Documentation/filesystems/ncpfs.txt12
-rw-r--r--Documentation/filesystems/nfs/nfsroot.txt70
-rw-r--r--Documentation/filesystems/overlayfs.txt7
-rw-r--r--Documentation/filesystems/path-lookup.md2
-rw-r--r--Documentation/fpga/fpga-mgr.txt199
-rw-r--r--Documentation/fpga/fpga-region.txt95
-rw-r--r--Documentation/fpga/overview.txt23
-rw-r--r--Documentation/gpu/drivers.rst2
-rw-r--r--Documentation/gpu/i915.rst141
-rw-r--r--Documentation/gpu/kms-properties.csv1
-rw-r--r--Documentation/gpu/todo.rst18
-rw-r--r--Documentation/gpu/xen-front.rst31
-rw-r--r--Documentation/ioctl/ioctl-number.txt6
-rw-r--r--Documentation/kbuild/kconfig-language.txt8
-rw-r--r--Documentation/kbuild/kconfig-macro-language.txt242
-rw-r--r--Documentation/livepatch/livepatch.txt24
-rw-r--r--Documentation/media/kapi/cec-core.rst5
-rw-r--r--Documentation/media/uapi/cec/cec-ioc-receive.rst24
-rw-r--r--Documentation/media/uapi/dvb/dvbapi.rst2
-rw-r--r--Documentation/media/uapi/rc/lirc-dev-intro.rst2
-rw-r--r--Documentation/media/uapi/rc/lirc-set-rec-timeout.rst14
-rw-r--r--Documentation/media/uapi/v4l/common.rst2
-rw-r--r--Documentation/media/uapi/v4l/crop.rst22
-rw-r--r--Documentation/media/uapi/v4l/selection-api-005.rst34
-rw-r--r--Documentation/media/uapi/v4l/selection-api-configuration.rst (renamed from Documentation/media/uapi/v4l/selection-api-004.rst)2
-rw-r--r--Documentation/media/uapi/v4l/selection-api-examples.rst (renamed from Documentation/media/uapi/v4l/selection-api-006.rst)0
-rw-r--r--Documentation/media/uapi/v4l/selection-api-intro.rst (renamed from Documentation/media/uapi/v4l/selection-api-002.rst)0
-rw-r--r--Documentation/media/uapi/v4l/selection-api-targets.rst (renamed from Documentation/media/uapi/v4l/selection-api-003.rst)0
-rw-r--r--Documentation/media/uapi/v4l/selection-api-vs-crop-api.rst39
-rw-r--r--Documentation/media/uapi/v4l/selection-api.rst14
-rw-r--r--Documentation/media/uapi/v4l/selection.svg4
-rw-r--r--Documentation/media/uapi/v4l/v4l2.rst2
-rw-r--r--Documentation/media/v4l-drivers/cx23885-cardlist.rst18
-rw-r--r--Documentation/media/v4l-drivers/em28xx-cardlist.rst10
-rw-r--r--Documentation/misc-devices/ibmvmc.rst226
-rw-r--r--Documentation/networking/6lowpan.txt4
-rw-r--r--Documentation/networking/af_xdp.rst312
-rw-r--r--Documentation/networking/bonding.txt2
-rw-r--r--Documentation/networking/e100.rst (renamed from Documentation/networking/e100.txt)60
-rw-r--r--Documentation/networking/e1000.rst (renamed from Documentation/networking/e1000.txt)59
-rw-r--r--Documentation/networking/failover.rst18
-rw-r--r--Documentation/networking/filter.txt21
-rw-r--r--Documentation/networking/gtp.txt4
-rw-r--r--Documentation/networking/ila.txt2
-rw-r--r--Documentation/networking/index.rst3
-rw-r--r--Documentation/networking/ip-sysctl.txt42
-rw-r--r--Documentation/networking/ipsec.txt4
-rw-r--r--Documentation/networking/ipvlan.txt4
-rw-r--r--Documentation/networking/kcm.txt10
-rw-r--r--Documentation/networking/net_failover.rst116
-rw-r--r--Documentation/networking/netdev-FAQ.txt9
-rw-r--r--Documentation/networking/netdev-features.txt7
-rw-r--r--Documentation/networking/nf_conntrack-sysctl.txt2
-rw-r--r--Documentation/sound/alsa-configuration.rst7
-rw-r--r--Documentation/sound/hd-audio/models.rst2
-rw-r--r--Documentation/sound/soc/codec.rst8
-rw-r--r--Documentation/sound/soc/platform.rst30
-rw-r--r--Documentation/sysctl/net.txt1
-rw-r--r--Documentation/trace/coresight-cpu-debug.txt4
-rw-r--r--Documentation/trace/events.rst6
-rw-r--r--Documentation/trace/ftrace.rst5
-rw-r--r--Documentation/trace/histogram.txt545
-rw-r--r--Documentation/userspace-api/seccomp_filter.rst7
-rw-r--r--Documentation/vfio-mediated-device.txt5
-rw-r--r--Documentation/virtual/kvm/api.txt27
-rw-r--r--Documentation/virtual/kvm/devices/arm-vgic-v3.txt30
-rw-r--r--Documentation/virtual/kvm/mmu.txt6
-rw-r--r--Documentation/virtual/kvm/nested-vmx.txt11
360 files changed, 9171 insertions, 2458 deletions
diff --git a/Documentation/ABI/removed/sysfs-bus-nfit b/Documentation/ABI/removed/sysfs-bus-nfit
new file mode 100644
index 0000000..ae8c1ca
--- /dev/null
+++ b/Documentation/ABI/removed/sysfs-bus-nfit
@@ -0,0 +1,17 @@
+What: /sys/bus/nd/devices/regionX/nfit/ecc_unit_size
+Date: Aug, 2017
+KernelVersion: v4.14 (Removed v4.18)
+Contact: linux-nvdimm@lists.01.org
+Description:
+ (RO) Size of a write request to a DIMM that will not incur a
+ read-modify-write cycle at the memory controller.
+
+ When the nfit driver initializes it runs an ARS (Address Range
+ Scrub) operation across every pmem range. Part of that process
+ involves determining the ARS capabilities of a given address
+ range. One of the capabilities that is reported is the 'Clear
+ Uncorrectable Error Range Length Unit Size' (see: ACPI 6.2
+ section 9.20.7.4 Function Index 1 - Query ARS Capabilities).
+ This property indicates the boundary at which the NVDIMM may
+ need to perform read-modify-write cycles to maintain ECC (Error
+ Correcting Code) blocks.
diff --git a/Documentation/ABI/stable/sysfs-bus-vmbus b/Documentation/ABI/stable/sysfs-bus-vmbus
index 0c9d9dc..3eaffbb 100644
--- a/Documentation/ABI/stable/sysfs-bus-vmbus
+++ b/Documentation/ABI/stable/sysfs-bus-vmbus
@@ -1,25 +1,25 @@
-What: /sys/bus/vmbus/devices/vmbus_*/id
+What: /sys/bus/vmbus/devices/<UUID>/id
Date: Jul 2009
KernelVersion: 2.6.31
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The VMBus child_relid of the device's primary channel
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/class_id
+What: /sys/bus/vmbus/devices/<UUID>/class_id
Date: Jul 2009
KernelVersion: 2.6.31
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The VMBus interface type GUID of the device
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/device_id
+What: /sys/bus/vmbus/devices/<UUID>/device_id
Date: Jul 2009
KernelVersion: 2.6.31
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The VMBus interface instance GUID of the device
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/channel_vp_mapping
+What: /sys/bus/vmbus/devices/<UUID>/channel_vp_mapping
Date: Jul 2015
KernelVersion: 4.2.0
Contact: K. Y. Srinivasan <kys@microsoft.com>
@@ -28,112 +28,112 @@ Description: The mapping of which primary/sub channels are bound to which
Format: <channel's child_relid:the bound cpu's number>
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/device
+What: /sys/bus/vmbus/devices/<UUID>/device
Date: Dec. 2015
KernelVersion: 4.5
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The 16 bit device ID of the device
Users: tools/hv/lsvmbus and user level RDMA libraries
-What: /sys/bus/vmbus/devices/vmbus_*/vendor
+What: /sys/bus/vmbus/devices/<UUID>/vendor
Date: Dec. 2015
KernelVersion: 4.5
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The 16 bit vendor ID of the device
Users: tools/hv/lsvmbus and user level RDMA libraries
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Directory for per-channel information
NN is the VMBUS relid associtated with the channel.
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/cpu
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/cpu
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: VCPU (sub)channel is affinitized to
Users: tools/hv/lsvmbus and other debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/cpu
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/cpu
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: VCPU (sub)channel is affinitized to
Users: tools/hv/lsvmbus and other debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/in_mask
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/in_mask
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Host to guest channel interrupt mask
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/latency
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/latency
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Channel signaling latency
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/out_mask
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/out_mask
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Guest to host channel interrupt mask
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/pending
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/pending
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Channel interrupt pending state
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/read_avail
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/read_avail
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Bytes available to read
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/write_avail
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/write_avail
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Bytes available to write
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/events
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/events
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Number of times we have signaled the host
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/interrupts
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/interrupts
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Number of times we have taken an interrupt (incoming)
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/subchannel_id
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/subchannel_id
Date: January. 2018
KernelVersion: 4.16
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Subchannel ID associated with VMBUS channel
Users: Debugging tools and userspace drivers
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/monitor_id
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/monitor_id
Date: January. 2018
KernelVersion: 4.16
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Monitor bit associated with channel
Users: Debugging tools and userspace drivers
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/ring
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/ring
Date: January. 2018
KernelVersion: 4.16
Contact: Stephen Hemminger <sthemmin@microsoft.com>
diff --git a/Documentation/ABI/testing/evm b/Documentation/ABI/testing/evm
index d12cb2e..201d103 100644
--- a/Documentation/ABI/testing/evm
+++ b/Documentation/ABI/testing/evm
@@ -57,3 +57,16 @@ Description:
dracut (via 97masterkey and 98integrity) and systemd (via
core/ima-setup) have support for loading keys at boot
time.
+
+What: security/integrity/evm/evm_xattrs
+Date: April 2018
+Contact: Matthew Garrett <mjg59@google.com>
+Description:
+ Shows the set of extended attributes used to calculate or
+ validate the EVM signature, and allows additional attributes
+ to be added at runtime. Any signatures generated after
+ additional attributes are added (and on files posessing those
+ additional attributes) will only be valid if the same
+ additional attributes are configured on system boot. Writing
+ a single period (.) will lock the xattr list from any further
+ modification.
diff --git a/Documentation/ABI/testing/ima_policy b/Documentation/ABI/testing/ima_policy
index b8465e0..74c6702 100644
--- a/Documentation/ABI/testing/ima_policy
+++ b/Documentation/ABI/testing/ima_policy
@@ -21,7 +21,7 @@ Description:
audit | hash | dont_hash
condition:= base | lsm [option]
base: [[func=] [mask=] [fsmagic=] [fsuuid=] [uid=]
- [euid=] [fowner=]]
+ [euid=] [fowner=] [fsname=]]
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
option: [[appraise_type=]] [permit_directio]
diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio
index 6a5f34b..731146c 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio
+++ b/Documentation/ABI/testing/sysfs-bus-iio
@@ -190,6 +190,13 @@ Description:
but should match other such assignments on device).
Units after application of scale and offset are m/s^2.
+What: /sys/bus/iio/devices/iio:deviceX/in_angl_raw
+KernelVersion: 4.17
+Contact: linux-iio@vger.kernel.org
+Description:
+ Angle of rotation. Units after application of scale and offset
+ are radians.
+
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_x_raw
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_y_raw
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_z_raw
@@ -297,6 +304,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_pressure_offset
What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_offset
What: /sys/bus/iio/devices/iio:deviceX/in_magn_offset
What: /sys/bus/iio/devices/iio:deviceX/in_rot_offset
+What: /sys/bus/iio/devices/iio:deviceX/in_angl_offset
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
@@ -350,6 +358,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_scale
What: /sys/bus/iio/devices/iio:deviceX/in_velocity_sqrt(x^2+y^2+z^2)_scale
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance_scale
What: /sys/bus/iio/devices/iio:deviceX/in_countY_scale
+What: /sys/bus/iio/devices/iio:deviceX/in_angl_scale
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
diff --git a/Documentation/ABI/testing/sysfs-bus-nfit b/Documentation/ABI/testing/sysfs-bus-nfit
index 619eb8c..a1cb44d 100644
--- a/Documentation/ABI/testing/sysfs-bus-nfit
+++ b/Documentation/ABI/testing/sysfs-bus-nfit
@@ -212,22 +212,3 @@ Description:
range. Used by NVDIMM Region Mapping Structure to uniquely refer
to this structure. Value of 0 is reserved and not used as an
index.
-
-
-What: /sys/bus/nd/devices/regionX/nfit/ecc_unit_size
-Date: Aug, 2017
-KernelVersion: v4.14
-Contact: linux-nvdimm@lists.01.org
-Description:
- (RO) Size of a write request to a DIMM that will not incur a
- read-modify-write cycle at the memory controller.
-
- When the nfit driver initializes it runs an ARS (Address Range
- Scrub) operation across every pmem range. Part of that process
- involves determining the ARS capabilities of a given address
- range. One of the capabilities that is reported is the 'Clear
- Uncorrectable Error Range Length Unit Size' (see: ACPI 6.2
- section 9.20.7.4 Function Index 1 - Query ARS Capabilities).
- This property indicates the boundary at which the NVDIMM may
- need to perform read-modify-write cycles to maintain ECC (Error
- Correcting Code) blocks.
diff --git a/Documentation/ABI/testing/sysfs-bus-rpmsg b/Documentation/ABI/testing/sysfs-bus-rpmsg
index 189e419..990fcc4 100644
--- a/Documentation/ABI/testing/sysfs-bus-rpmsg
+++ b/Documentation/ABI/testing/sysfs-bus-rpmsg
@@ -73,3 +73,23 @@ Description:
This sysfs entry tells us whether the channel is a local
server channel that is announced (values are either
true or false).
+
+What: /sys/bus/rpmsg/devices/.../driver_override
+Date: April 2018
+KernelVersion: 4.18
+Contact: Bjorn Andersson <bjorn.andersson@linaro.org>
+Description:
+ Every rpmsg device is a communication channel with a remote
+ processor. Channels are identified by a textual name (see
+ /sys/bus/rpmsg/devices/.../name above) and have a local
+ ("source") rpmsg address, and remote ("destination") rpmsg
+ address.
+
+ The listening entity (or client) which communicates with a
+ remote processor is referred as rpmsg driver. The rpmsg device
+ and rpmsg driver are matched based on rpmsg device name and
+ rpmsg driver ID table.
+
+ This sysfs entry allows the rpmsg driver for a rpmsg device
+ to be specified which will override standard OF, ID table
+ and name matching.
diff --git a/Documentation/ABI/testing/sysfs-bus-usb b/Documentation/ABI/testing/sysfs-bus-usb
index c702c78..08d456e 100644
--- a/Documentation/ABI/testing/sysfs-bus-usb
+++ b/Documentation/ABI/testing/sysfs-bus-usb
@@ -189,6 +189,28 @@ Description:
The file will read "hotplug", "wired" and "not used" if the
information is available, and "unknown" otherwise.
+What: /sys/bus/usb/devices/.../(hub interface)/portX/quirks
+Date: May 2018
+Contact: Nicolas Boichat <drinkcat@chromium.org>
+Description:
+ In some cases, we care about time-to-active for devices
+ connected on a specific port (e.g. non-standard USB port like
+ pogo pins), where the device to be connected is known in
+ advance, and behaves well according to the specification.
+ This attribute is a bit-field that controls the behavior of
+ a specific port:
+ - Bit 0 of this field selects the "old" enumeration scheme,
+ as it is considerably faster (it only causes one USB reset
+ instead of 2).
+ The old enumeration scheme can also be selected globally
+ using /sys/module/usbcore/parameters/old_scheme_first, but
+ it is often not desirable as the new scheme was introduced to
+ increase compatibility with more devices.
+ - Bit 1 reduces TRSTRCY to the 10 ms that are required by the
+ USB 2.0 specification, instead of the 50 ms that are normally
+ used to help make enumeration work better on some high speed
+ devices.
+
What: /sys/bus/usb/devices/.../(hub interface)/portX/over_current_count
Date: February 2018
Contact: Richard Leitner <richard.leitner@skidata.com>
@@ -236,3 +258,21 @@ Description:
Supported values are 0 - 15.
More information on how besl values map to microseconds can be found in
USB 2.0 ECN Errata for Link Power Management, section 4.10)
+
+What: /sys/bus/usb/devices/.../rx_lanes
+Date: March 2018
+Contact: Mathias Nyman <mathias.nyman@linux.intel.com>
+Description:
+ Number of rx lanes the device is using.
+ USB 3.2 adds Dual-lane support, 2 rx and 2 tx lanes over Type-C.
+ Inter-Chip SSIC devices support asymmetric lanes up to 4 lanes per
+ direction. Devices before USB 3.2 are single lane (rx_lanes = 1)
+
+What: /sys/bus/usb/devices/.../tx_lanes
+Date: March 2018
+Contact: Mathias Nyman <mathias.nyman@linux.intel.com>
+Description:
+ Number of tx lanes the device is using.
+ USB 3.2 adds Dual-lane support, 2 rx and 2 tx -lanes over Type-C.
+ Inter-Chip SSIC devices support asymmetric lanes up to 4 lanes per
+ direction. Devices before USB 3.2 are single lane (tx_lanes = 1)
diff --git a/Documentation/ABI/testing/sysfs-class-cxl b/Documentation/ABI/testing/sysfs-class-cxl
index 8e69345..bbbabff 100644
--- a/Documentation/ABI/testing/sysfs-class-cxl
+++ b/Documentation/ABI/testing/sysfs-class-cxl
@@ -69,7 +69,9 @@ Date: September 2014
Contact: linuxppc-dev@lists.ozlabs.org
Description: read/write
Set the mode for prefaulting in segments into the segment table
- when performing the START_WORK ioctl. Possible values:
+ when performing the START_WORK ioctl. Only applicable when
+ running under hashed page table mmu.
+ Possible values:
none: No prefaulting (default)
work_element_descriptor: Treat the work element
descriptor as an effective address and
diff --git a/Documentation/ABI/testing/sysfs-class-mtd b/Documentation/ABI/testing/sysfs-class-mtd
index f34e5923..3bc7c0a 100644
--- a/Documentation/ABI/testing/sysfs-class-mtd
+++ b/Documentation/ABI/testing/sysfs-class-mtd
@@ -232,3 +232,11 @@ Description:
of the parent (another partition or a flash device) in bytes.
This attribute is absent on flash devices, so it can be used
to distinguish them from partitions.
+
+What: /sys/class/mtd/mtdX/oobavail
+Date: April 2018
+KernelVersion: 4.16
+Contact: linux-mtd@lists.infradead.org
+Description:
+ Number of bytes available for a client to place data into
+ the out of band area.
diff --git a/Documentation/ABI/testing/sysfs-class-power b/Documentation/ABI/testing/sysfs-class-power
index f85ce9e..5e23e22 100644
--- a/Documentation/ABI/testing/sysfs-class-power
+++ b/Documentation/ABI/testing/sysfs-class-power
@@ -1,3 +1,458 @@
+===== General Properties =====
+
+What: /sys/class/power_supply/<supply_name>/manufacturer
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the name of the device manufacturer.
+
+ Access: Read
+ Valid values: Represented as string
+
+What: /sys/class/power_supply/<supply_name>/model_name
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the name of the device model.
+
+ Access: Read
+ Valid values: Represented as string
+
+What: /sys/class/power_supply/<supply_name>/serial_number
+Date: January 2008
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the serial number of the device.
+
+ Access: Read
+ Valid values: Represented as string
+
+What: /sys/class/power_supply/<supply_name>/type
+Date: May 2010
+Contact: linux-pm@vger.kernel.org
+Description:
+ Describes the main type of the supply.
+
+ Access: Read
+ Valid values: "Battery", "UPS", "Mains", "USB"
+
+===== Battery Properties =====
+
+What: /sys/class/power_supply/<supply_name>/capacity
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Fine grain representation of battery capacity.
+ Access: Read
+ Valid values: 0 - 100 (percent)
+
+What: /sys/class/power_supply/<supply_name>/capacity_alert_max
+Date: July 2012
+Contact: linux-pm@vger.kernel.org
+Description:
+ Maximum battery capacity trip-wire value where the supply will
+ notify user-space of the event. This is normally used for the
+ battery discharging scenario where user-space needs to know the
+ battery has dropped to an upper level so it can take
+ appropriate action (e.g. warning user that battery level is
+ low).
+
+ Access: Read, Write
+ Valid values: 0 - 100 (percent)
+
+What: /sys/class/power_supply/<supply_name>/capacity_alert_min
+Date: July 2012
+Contact: linux-pm@vger.kernel.org
+Description:
+ Minimum battery capacity trip-wire value where the supply will
+ notify user-space of the event. This is normally used for the
+ battery discharging scenario where user-space needs to know the
+ battery has dropped to a lower level so it can take
+ appropriate action (e.g. warning user that battery level is
+ critically low).
+
+ Access: Read, Write
+ Valid values: 0 - 100 (percent)
+
+What: /sys/class/power_supply/<supply_name>/capacity_level
+Date: June 2009
+Contact: linux-pm@vger.kernel.org
+Description:
+ Coarse representation of battery capacity.
+
+ Access: Read
+ Valid values: "Unknown", "Critical", "Low", "Normal", "High",
+ "Full"
+
+What: /sys/class/power_supply/<supply_name>/current_avg
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports an average IBAT current reading for the battery, over a
+ fixed period. Normally devices will provide a fixed interval in
+ which they average readings to smooth out the reported value.
+
+ Access: Read
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/current_max
+Date: October 2010
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the maximum IBAT current allowed into the battery.
+
+ Access: Read
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/current_now
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports an instant, single IBAT current reading for the battery.
+ This value is not averaged/smoothed.
+
+ Access: Read
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/charge_type
+Date: July 2009
+Contact: linux-pm@vger.kernel.org
+Description:
+ Represents the type of charging currently being applied to the
+ battery.
+
+ Access: Read
+ Valid values: "Unknown", "N/A", "Trickle", "Fast"
+
+What: /sys/class/power_supply/<supply_name>/charge_term_current
+Date: July 2014
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the charging current value which is used to determine
+ when the battery is considered full and charging should end.
+
+ Access: Read
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/health
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the health of the battery or battery side of charger
+ functionality.
+
+ Access: Read
+ Valid values: "Unknown", "Good", "Overheat", "Dead",
+ "Over voltage", "Unspecified failure", "Cold",
+ "Watchdog timer expire", "Safety timer expire"
+
+What: /sys/class/power_supply/<supply_name>/precharge_current
+Date: June 2017
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the charging current applied during pre-charging phase
+ for a battery charge cycle.
+
+ Access: Read
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/present
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports whether a battery is present or not in the system.
+
+ Access: Read
+ Valid values:
+ 0: Absent
+ 1: Present
+
+What: /sys/class/power_supply/<supply_name>/status
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Represents the charging status of the battery. Normally this
+ is read-only reporting although for some supplies this can be
+ used to enable/disable charging to the battery.
+
+ Access: Read, Write
+ Valid values: "Unknown", "Charging", "Discharging",
+ "Not charging", "Full"
+
+What: /sys/class/power_supply/<supply_name>/technology
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Describes the battery technology supported by the supply.
+
+ Access: Read
+ Valid values: "Unknown", "NiMH", "Li-ion", "Li-poly", "LiFe",
+ "NiCd", "LiMn"
+
+What: /sys/class/power_supply/<supply_name>/temp
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the current TBAT battery temperature reading.
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_alert_max
+Date: July 2012
+Contact: linux-pm@vger.kernel.org
+Description:
+ Maximum TBAT temperature trip-wire value where the supply will
+ notify user-space of the event. This is normally used for the
+ battery charging scenario where user-space needs to know the
+ battery temperature has crossed an upper threshold so it can
+ take appropriate action (e.g. warning user that battery level is
+ critically high, and charging has stopped).
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_alert_min
+Date: July 2012
+Contact: linux-pm@vger.kernel.org
+Description:
+ Minimum TBAT temperature trip-wire value where the supply will
+ notify user-space of the event. This is normally used for the
+ battery charging scenario where user-space needs to know the
+ battery temperature has crossed a lower threshold so it can take
+ appropriate action (e.g. warning user that battery level is
+ high, and charging current has been reduced accordingly to
+ remedy the situation).
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_max
+Date: July 2014
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the maximum allowed TBAT battery temperature for
+ charging.
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_min
+Date: July 2014
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the minimum allowed TBAT battery temperature for
+ charging.
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/voltage_avg,
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports an average VBAT voltage reading for the battery, over a
+ fixed period. Normally devices will provide a fixed interval in
+ which they average readings to smooth out the reported value.
+
+ Access: Read
+ Valid values: Represented in microvolts
+
+What: /sys/class/power_supply/<supply_name>/voltage_max,
+Date: January 2008
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the maximum safe VBAT voltage permitted for the battery,
+ during charging.
+
+ Access: Read
+ Valid values: Represented in microvolts
+
+What: /sys/class/power_supply/<supply_name>/voltage_min,
+Date: January 2008
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the minimum safe VBAT voltage permitted for the battery,
+ during discharging.
+
+ Access: Read
+ Valid values: Represented in microvolts
+
+What: /sys/class/power_supply/<supply_name>/voltage_now,
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports an instant, single VBAT voltage reading for the battery.
+ This value is not averaged/smoothed.
+
+ Access: Read
+ Valid values: Represented in microvolts
+
+===== USB Properties =====
+
+What: /sys/class/power_supply/<supply_name>/current_avg
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports an average IBUS current reading over a fixed period.
+ Normally devices will provide a fixed interval in which they
+ average readings to smooth out the reported value.
+
+ Access: Read
+ Valid values: Represented in microamps
+
+
+What: /sys/class/power_supply/<supply_name>/current_max
+Date: October 2010
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the maximum IBUS current the supply can support.
+
+ Access: Read
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/current_now
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the IBUS current supplied now. This value is generally
+ read-only reporting, unless the 'online' state of the supply
+ is set to be programmable, in which case this value can be set
+ within the reported min/max range.
+
+ Access: Read, Write
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/input_current_limit
+Date: July 2014
+Contact: linux-pm@vger.kernel.org
+Description:
+ Details the incoming IBUS current limit currently set in the
+ supply. Normally this is configured based on the type of
+ connection made (e.g. A configured SDP should output a maximum
+ of 500mA so the input current limit is set to the same value).
+
+ Access: Read, Write
+ Valid values: Represented in microamps
+
+What: /sys/class/power_supply/<supply_name>/online,
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Indicates if VBUS is present for the supply. When the supply is
+ online, and the supply allows it, then it's possible to switch
+ between online states (e.g. Fixed -> Programmable for a PD_PPS
+ USB supply so voltage and current can be controlled).
+
+ Access: Read, Write
+ Valid values:
+ 0: Offline
+ 1: Online Fixed - Fixed Voltage Supply
+ 2: Online Programmable - Programmable Voltage Supply
+
+What: /sys/class/power_supply/<supply_name>/temp
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the current supply temperature reading. This would
+ normally be the internal temperature of the device itself (e.g
+ TJUNC temperature of an IC)
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_alert_max
+Date: July 2012
+Contact: linux-pm@vger.kernel.org
+Description:
+ Maximum supply temperature trip-wire value where the supply will
+ notify user-space of the event. This is normally used for the
+ charging scenario where user-space needs to know the supply
+ temperature has crossed an upper threshold so it can take
+ appropriate action (e.g. warning user that the supply
+ temperature is critically high, and charging has stopped to
+ remedy the situation).
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_alert_min
+Date: July 2012
+Contact: linux-pm@vger.kernel.org
+Description:
+ Minimum supply temperature trip-wire value where the supply will
+ notify user-space of the event. This is normally used for the
+ charging scenario where user-space needs to know the supply
+ temperature has crossed a lower threshold so it can take
+ appropriate action (e.g. warning user that the supply
+ temperature is high, and charging current has been reduced
+ accordingly to remedy the situation).
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_max
+Date: July 2014
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the maximum allowed supply temperature for operation.
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/temp_min
+Date: July 2014
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the mainimum allowed supply temperature for operation.
+
+ Access: Read
+ Valid values: Represented in 1/10 Degrees Celsius
+
+What: /sys/class/power_supply/<supply_name>/usb_type
+Date: March 2018
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports what type of USB connection is currently active for
+ the supply, for example it can show if USB-PD capable source
+ is attached.
+
+ Access: Read-Only
+ Valid values: "Unknown", "SDP", "DCP", "CDP", "ACA", "C", "PD",
+ "PD_DRP", "PD_PPS", "BrickID"
+
+What: /sys/class/power_supply/<supply_name>/voltage_max
+Date: January 2008
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the maximum VBUS voltage the supply can support.
+
+ Access: Read
+ Valid values: Represented in microvolts
+
+What: /sys/class/power_supply/<supply_name>/voltage_min
+Date: January 2008
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the minimum VBUS voltage the supply can support.
+
+ Access: Read
+ Valid values: Represented in microvolts
+
+What: /sys/class/power_supply/<supply_name>/voltage_now
+Date: May 2007
+Contact: linux-pm@vger.kernel.org
+Description:
+ Reports the VBUS voltage supplied now. This value is generally
+ read-only reporting, unless the 'online' state of the supply
+ is set to be programmable, in which case this value can be set
+ within the reported min/max range.
+
+ Access: Read, Write
+ Valid values: Represented in microvolts
+
+===== Device Specific Properties =====
+
What: /sys/class/power/ds2760-battery.*/charge_now
Date: May 2010
KernelVersion: 2.6.35
diff --git a/Documentation/ABI/testing/sysfs-class-rc b/Documentation/ABI/testing/sysfs-class-rc
index 8be1fd3..6c0d6c8 100644
--- a/Documentation/ABI/testing/sysfs-class-rc
+++ b/Documentation/ABI/testing/sysfs-class-rc
@@ -1,7 +1,7 @@
What: /sys/class/rc/
Date: Apr 2010
KernelVersion: 2.6.35
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
The rc/ class sub-directory belongs to the Remote Controller
core and provides a sysfs interface for configuring infrared
@@ -10,7 +10,7 @@ Description:
What: /sys/class/rc/rcN/
Date: Apr 2010
KernelVersion: 2.6.35
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
A /sys/class/rc/rcN directory is created for each remote
control receiver device where N is the number of the receiver.
@@ -18,7 +18,7 @@ Description:
What: /sys/class/rc/rcN/protocols
Date: Jun 2010
KernelVersion: 2.6.36
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
Reading this file returns a list of available protocols,
something like:
@@ -36,7 +36,7 @@ Description:
What: /sys/class/rc/rcN/filter
Date: Jan 2014
KernelVersion: 3.15
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
Sets the scancode filter expected value.
Use in combination with /sys/class/rc/rcN/filter_mask to set the
@@ -49,7 +49,7 @@ Description:
What: /sys/class/rc/rcN/filter_mask
Date: Jan 2014
KernelVersion: 3.15
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
Sets the scancode filter mask of bits to compare.
Use in combination with /sys/class/rc/rcN/filter to set the bits
@@ -64,7 +64,7 @@ Description:
What: /sys/class/rc/rcN/wakeup_protocols
Date: Feb 2017
KernelVersion: 4.11
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
Reading this file returns a list of available protocols to use
for the wakeup filter, something like:
@@ -83,7 +83,7 @@ Description:
What: /sys/class/rc/rcN/wakeup_filter
Date: Jan 2014
KernelVersion: 3.15
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
Sets the scancode wakeup filter expected value.
Use in combination with /sys/class/rc/rcN/wakeup_filter_mask to
@@ -98,7 +98,7 @@ Description:
What: /sys/class/rc/rcN/wakeup_filter_mask
Date: Jan 2014
KernelVersion: 3.15
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
Sets the scancode wakeup filter mask of bits to compare.
Use in combination with /sys/class/rc/rcN/wakeup_filter to set
diff --git a/Documentation/ABI/testing/sysfs-class-rc-nuvoton b/Documentation/ABI/testing/sysfs-class-rc-nuvoton
index 905bcde..d3abe45 100644
--- a/Documentation/ABI/testing/sysfs-class-rc-nuvoton
+++ b/Documentation/ABI/testing/sysfs-class-rc-nuvoton
@@ -1,7 +1,7 @@
What: /sys/class/rc/rcN/wakeup_data
Date: Mar 2016
KernelVersion: 4.6
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Description:
Reading this file returns the stored CIR wakeup sequence.
It starts with a pulse, followed by a space, pulse etc.
diff --git a/Documentation/ABI/testing/sysfs-devices-edac b/Documentation/ABI/testing/sysfs-devices-edac
index 46ff929..256a9e9 100644
--- a/Documentation/ABI/testing/sysfs-devices-edac
+++ b/Documentation/ABI/testing/sysfs-devices-edac
@@ -77,7 +77,7 @@ Description: Read/Write attribute file that controls memory scrubbing.
What: /sys/devices/system/edac/mc/mc*/max_location
Date: April 2012
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
linux-edac@vger.kernel.org
Description: This attribute file displays the information about the last
available memory slot in this memory controller. It is used by
@@ -85,7 +85,7 @@ Description: This attribute file displays the information about the last
What: /sys/devices/system/edac/mc/mc*/(dimm|rank)*/size
Date: April 2012
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
linux-edac@vger.kernel.org
Description: This attribute file will display the size of dimm or rank.
For dimm*/size, this is the size, in MB of the DIMM memory
@@ -96,14 +96,14 @@ Description: This attribute file will display the size of dimm or rank.
What: /sys/devices/system/edac/mc/mc*/(dimm|rank)*/dimm_dev_type
Date: April 2012
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
linux-edac@vger.kernel.org
Description: This attribute file will display what type of DRAM device is
being utilized on this DIMM (x1, x2, x4, x8, ...).
What: /sys/devices/system/edac/mc/mc*/(dimm|rank)*/dimm_edac_mode
Date: April 2012
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
linux-edac@vger.kernel.org
Description: This attribute file will display what type of Error detection
and correction is being utilized. For example: S4ECD4ED would
@@ -111,7 +111,7 @@ Description: This attribute file will display what type of Error detection
What: /sys/devices/system/edac/mc/mc*/(dimm|rank)*/dimm_label
Date: April 2012
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
linux-edac@vger.kernel.org
Description: This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
@@ -126,14 +126,14 @@ Description: This control file allows this DIMM to have a label assigned
What: /sys/devices/system/edac/mc/mc*/(dimm|rank)*/dimm_location
Date: April 2012
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
linux-edac@vger.kernel.org
Description: This attribute file will display the location (csrow/channel,
branch/channel/slot or channel/slot) of the dimm or rank.
What: /sys/devices/system/edac/mc/mc*/(dimm|rank)*/dimm_mem_type
Date: April 2012
-Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Contact: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
linux-edac@vger.kernel.org
Description: This attribute file will display what type of memory is
currently on this csrow. Normally, either buffered or
diff --git a/Documentation/ABI/testing/sysfs-fs-f2fs b/Documentation/ABI/testing/sysfs-fs-f2fs
index 540553c..9b01233 100644
--- a/Documentation/ABI/testing/sysfs-fs-f2fs
+++ b/Documentation/ABI/testing/sysfs-fs-f2fs
@@ -101,6 +101,7 @@ Date: February 2015
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description:
Controls the trimming rate in batch mode.
+ <deprecated>
What: /sys/fs/f2fs/<disk>/cp_interval
Date: October 2015
@@ -140,7 +141,7 @@ Contact: "Shuoran Liu" <liushuoran@huawei.com>
Description:
Shows total written kbytes issued to disk.
-What: /sys/fs/f2fs/<disk>/feature
+What: /sys/fs/f2fs/<disk>/features
Date: July 2017
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description:
diff --git a/Documentation/PCI/pci-error-recovery.txt b/Documentation/PCI/pci-error-recovery.txt
index 0b6bb3e..688b691 100644
--- a/Documentation/PCI/pci-error-recovery.txt
+++ b/Documentation/PCI/pci-error-recovery.txt
@@ -110,7 +110,7 @@ The actual steps taken by a platform to recover from a PCI error
event will be platform-dependent, but will follow the general
sequence described below.
-STEP 0: Error Event
+STEP 0: Error Event: ERR_NONFATAL
-------------------
A PCI bus error is detected by the PCI hardware. On powerpc, the slot
is isolated, in that all I/O is blocked: all reads return 0xffffffff,
@@ -228,13 +228,7 @@ proceeds to either STEP3 (Link Reset) or to STEP 5 (Resume Operations).
If any driver returned PCI_ERS_RESULT_NEED_RESET, then the platform
proceeds to STEP 4 (Slot Reset)
-STEP 3: Link Reset
-------------------
-The platform resets the link. This is a PCI-Express specific step
-and is done whenever a fatal error has been detected that can be
-"solved" by resetting the link.
-
-STEP 4: Slot Reset
+STEP 3: Slot Reset
------------------
In response to a return value of PCI_ERS_RESULT_NEED_RESET, the
@@ -320,7 +314,7 @@ Failure).
>>> However, it probably should.
-STEP 5: Resume Operations
+STEP 4: Resume Operations
-------------------------
The platform will call the resume() callback on all affected device
drivers if all drivers on the segment have returned
@@ -332,7 +326,7 @@ a result code.
At this point, if a new error happens, the platform will restart
a new error recovery sequence.
-STEP 6: Permanent Failure
+STEP 5: Permanent Failure
-------------------------
A "permanent failure" has occurred, and the platform cannot recover
the device. The platform will call error_detected() with a
@@ -355,6 +349,27 @@ errors. See the discussion in powerpc/eeh-pci-error-recovery.txt
for additional detail on real-life experience of the causes of
software errors.
+STEP 0: Error Event: ERR_FATAL
+-------------------
+PCI bus error is detected by the PCI hardware. On powerpc, the slot is
+isolated, in that all I/O is blocked: all reads return 0xffffffff, all
+writes are ignored.
+
+STEP 1: Remove devices
+--------------------
+Platform removes the devices depending on the error agent, it could be
+this port for all subordinates or upstream component (likely downstream
+port)
+
+STEP 2: Reset link
+--------------------
+The platform resets the link. This is a PCI-Express specific step and is
+done whenever a fatal error has been detected that can be "solved" by
+resetting the link.
+
+STEP 3: Re-enumerate the devices
+--------------------
+Initiates the re-enumeration.
Conclusion; General Remarks
---------------------------
diff --git a/Documentation/accelerators/ocxl.rst b/Documentation/accelerators/ocxl.rst
index ddcc58d..14cefc0 100644
--- a/Documentation/accelerators/ocxl.rst
+++ b/Documentation/accelerators/ocxl.rst
@@ -157,6 +157,17 @@ OCXL_IOCTL_GET_METADATA:
Obtains configuration information from the card, such at the size of
MMIO areas, the AFU version, and the PASID for the current context.
+OCXL_IOCTL_ENABLE_P9_WAIT:
+
+ Allows the AFU to wake a userspace thread executing 'wait'. Returns
+ information to userspace to allow it to configure the AFU. Note that
+ this is only available on POWER9.
+
+OCXL_IOCTL_GET_FEATURES:
+
+ Reports on which CPU features that affect OpenCAPI are usable from
+ userspace.
+
mmap
----
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 74cdeae..8a2c52d 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -1001,14 +1001,44 @@ PAGE_SIZE multiple when read back.
The total amount of memory currently being used by the cgroup
and its descendants.
+ memory.min
+ A read-write single value file which exists on non-root
+ cgroups. The default is "0".
+
+ Hard memory protection. If the memory usage of a cgroup
+ is within its effective min boundary, the cgroup's memory
+ won't be reclaimed under any conditions. If there is no
+ unprotected reclaimable memory available, OOM killer
+ is invoked.
+
+ Effective min boundary is limited by memory.min values of
+ all ancestor cgroups. If there is memory.min overcommitment
+ (child cgroup or cgroups are requiring more protected memory
+ than parent will allow), then each child cgroup will get
+ the part of parent's protection proportional to its
+ actual memory usage below memory.min.
+
+ Putting more memory than generally available under this
+ protection is discouraged and may lead to constant OOMs.
+
+ If a memory cgroup is not populated with processes,
+ its memory.min is ignored.
+
memory.low
A read-write single value file which exists on non-root
cgroups. The default is "0".
- Best-effort memory protection. If the memory usages of a
- cgroup and all its ancestors are below their low boundaries,
- the cgroup's memory won't be reclaimed unless memory can be
- reclaimed from unprotected cgroups.
+ Best-effort memory protection. If the memory usage of a
+ cgroup is within its effective low boundary, the cgroup's
+ memory won't be reclaimed unless memory can be reclaimed
+ from unprotected cgroups.
+
+ Effective low boundary is limited by memory.low values of
+ all ancestor cgroups. If there is memory.low overcommitment
+ (child cgroup or cgroups are requiring more protected memory
+ than parent will allow), then each child cgroup will get
+ the part of parent's protection proportional to its
+ actual memory usage below memory.low.
Putting more memory than generally available under this
protection is discouraged.
@@ -1199,6 +1229,27 @@ PAGE_SIZE multiple when read back.
Swap usage hard limit. If a cgroup's swap usage reaches this
limit, anonymous memory of the cgroup will not be swapped out.
+ memory.swap.events
+ A read-only flat-keyed file which exists on non-root cgroups.
+ The following entries are defined. Unless specified
+ otherwise, a value change in this file generates a file
+ modified event.
+
+ max
+ The number of times the cgroup's swap usage was about
+ to go over the max boundary and swap allocation
+ failed.
+
+ fail
+ The number of times swap allocation failed either
+ because of running out of swap system-wide or max
+ limit.
+
+ When reduced under the current usage, the existing swap
+ entries are reclaimed gradually and the swap usage may stay
+ higher than the limit for an extended period of time. This
+ reduces the impact on the workload and memory management.
+
Usage Guidelines
~~~~~~~~~~~~~~~~
@@ -1934,17 +1985,8 @@ system performance due to overreclaim, to the point where the feature
becomes self-defeating.
The memory.low boundary on the other hand is a top-down allocated
-reserve. A cgroup enjoys reclaim protection when it and all its
-ancestors are below their low boundaries, which makes delegation of
-subtrees possible. Secondly, new cgroups have no reserve per default
-and in the common case most cgroups are eligible for the preferred
-reclaim pass. This allows the new low boundary to be efficiently
-implemented with just a minor addition to the generic reclaim code,
-without the need for out-of-band data structures and reclaim passes.
-Because the generic reclaim code considers all cgroups except for the
-ones running low in the preferred first reclaim pass, overreclaim of
-individual groups is eliminated as well, resulting in much better
-overall workload performance.
+reserve. A cgroup enjoys reclaim protection when it's within its low,
+which makes delegation of subtrees possible.
The original high boundary, the hard limit, is defined as a strict
limit that can not budge, even if the OOM killer has to be called.
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 9d699c8..638342d 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -1020,6 +1020,12 @@
address. The serial port must already be setup
and configured. Options are not yet supported.
+ qcom_geni,<addr>
+ Start an early, polled-mode console on a Qualcomm
+ Generic Interface (GENI) based serial port at the
+ specified address. The serial port must already be
+ setup and configured. Options are not yet supported.
+
earlyprintk= [X86,SH,ARM,M68k,S390]
earlyprintk=vga
earlyprintk=efi
@@ -3156,6 +3162,8 @@
on: Turn realloc on
realloc same as realloc=on
noari do not use PCIe ARI.
+ noats [PCIE, Intel-IOMMU, AMD-IOMMU]
+ do not use PCIe ATS (and IOMMU device IOTLB).
pcie_scan_all Scan all possible PCIe devices. Otherwise we
only look for one device below a PCIe downstream
port.
@@ -4098,6 +4106,23 @@
expediting. Set to zero to disable automatic
expediting.
+ ssbd= [ARM64,HW]
+ Speculative Store Bypass Disable control
+
+ On CPUs that are vulnerable to the Speculative
+ Store Bypass vulnerability and offer a
+ firmware based mitigation, this parameter
+ indicates how the mitigation should be used:
+
+ force-on: Unconditionally enable mitigation for
+ for both kernel and userspace
+ force-off: Unconditionally disable mitigation for
+ for both kernel and userspace
+ kernel: Always enable mitigation in the
+ kernel, and offer a prctl interface
+ to allow userspace to register its
+ interest in being mitigated too.
+
stack_guard_gap= [MM]
override the default stack gap protection. The value
is in page units and it defines how many pages prior
diff --git a/Documentation/arm/OMAP/README b/Documentation/arm/OMAP/README
index 75645c4..90c6c57 100644
--- a/Documentation/arm/OMAP/README
+++ b/Documentation/arm/OMAP/README
@@ -5,3 +5,7 @@ KERNEL NEW DEPENDENCIES
v4.3+ Update is needed for custom .config files to make sure
CONFIG_REGULATOR_PBIAS is enabled for MMC1 to work
properly.
+
+v4.18+ Update is needed for custom .config files to make sure
+ CONFIG_MMC_SDHCI_OMAP is enabled for all MMC instances
+ to work in DRA7 and K2G based boards.
diff --git a/Documentation/misc-devices/lcd-panel-cgram.txt b/Documentation/auxdisplay/lcd-panel-cgram.txt
index 7f82c90..7f82c90 100644
--- a/Documentation/misc-devices/lcd-panel-cgram.txt
+++ b/Documentation/auxdisplay/lcd-panel-cgram.txt
diff --git a/Documentation/blockdev/zram.txt b/Documentation/blockdev/zram.txt
index 257e657..875b2b5 100644
--- a/Documentation/blockdev/zram.txt
+++ b/Documentation/blockdev/zram.txt
@@ -218,6 +218,7 @@ line of text and contains the following stats separated by whitespace:
same_pages the number of same element filled pages written to this disk.
No memory is allocated for such pages.
pages_compacted the number of pages freed during compaction
+ huge_pages the number of incompressible pages
9) Deactivate:
swapoff /dev/zram0
@@ -242,5 +243,29 @@ to backing storage rather than keeping it in memory.
User should set up backing device via /sys/block/zramX/backing_dev
before disksize setting.
+= memory tracking
+
+With CONFIG_ZRAM_MEMORY_TRACKING, user can know information of the
+zram block. It could be useful to catch cold or incompressible
+pages of the process with*pagemap.
+If you enable the feature, you could see block state via
+/sys/kernel/debug/zram/zram0/block_state". The output is as follows,
+
+ 300 75.033841 .wh
+ 301 63.806904 s..
+ 302 63.806919 ..h
+
+First column is zram's block index.
+Second column is access time since the system was booted
+Third column is state of the block.
+(s: same page
+w: written page to backing store
+h: huge page)
+
+First line of above example says 300th block is accessed at 75.033841sec
+and the block's state is huge so it is written back to the backing
+storage. It's a debugging feature so anyone shouldn't rely on it to work
+properly.
+
Nitin Gupta
ngupta@vflare.org
diff --git a/Documentation/bpf/README.rst b/Documentation/bpf/README.rst
new file mode 100644
index 0000000..b9a80c9
--- /dev/null
+++ b/Documentation/bpf/README.rst
@@ -0,0 +1,36 @@
+=================
+BPF documentation
+=================
+
+This directory contains documentation for the BPF (Berkeley Packet
+Filter) facility, with a focus on the extended BPF version (eBPF).
+
+This kernel side documentation is still work in progress. The main
+textual documentation is (for historical reasons) described in
+`Documentation/networking/filter.txt`_, which describe both classical
+and extended BPF instruction-set.
+The Cilium project also maintains a `BPF and XDP Reference Guide`_
+that goes into great technical depth about the BPF Architecture.
+
+The primary info for the bpf syscall is available in the `man-pages`_
+for `bpf(2)`_.
+
+
+
+Frequently asked questions (FAQ)
+================================
+
+Two sets of Questions and Answers (Q&A) are maintained.
+
+* QA for common questions about BPF see: bpf_design_QA_
+
+* QA for developers interacting with BPF subsystem: bpf_devel_QA_
+
+
+.. Links:
+.. _bpf_design_QA: bpf_design_QA.rst
+.. _bpf_devel_QA: bpf_devel_QA.rst
+.. _Documentation/networking/filter.txt: ../networking/filter.txt
+.. _man-pages: https://www.kernel.org/doc/man-pages/
+.. _bpf(2): http://man7.org/linux/man-pages/man2/bpf.2.html
+.. _BPF and XDP Reference Guide: http://cilium.readthedocs.io/en/latest/bpf/
diff --git a/Documentation/bpf/bpf_design_QA.rst b/Documentation/bpf/bpf_design_QA.rst
new file mode 100644
index 0000000..6780a6d
--- /dev/null
+++ b/Documentation/bpf/bpf_design_QA.rst
@@ -0,0 +1,221 @@
+==============
+BPF Design Q&A
+==============
+
+BPF extensibility and applicability to networking, tracing, security
+in the linux kernel and several user space implementations of BPF
+virtual machine led to a number of misunderstanding on what BPF actually is.
+This short QA is an attempt to address that and outline a direction
+of where BPF is heading long term.
+
+.. contents::
+ :local:
+ :depth: 3
+
+Questions and Answers
+=====================
+
+Q: Is BPF a generic instruction set similar to x64 and arm64?
+-------------------------------------------------------------
+A: NO.
+
+Q: Is BPF a generic virtual machine ?
+-------------------------------------
+A: NO.
+
+BPF is generic instruction set *with* C calling convention.
+-----------------------------------------------------------
+
+Q: Why C calling convention was chosen?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A: Because BPF programs are designed to run in the linux kernel
+which is written in C, hence BPF defines instruction set compatible
+with two most used architectures x64 and arm64 (and takes into
+consideration important quirks of other architectures) and
+defines calling convention that is compatible with C calling
+convention of the linux kernel on those architectures.
+
+Q: can multiple return values be supported in the future?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+A: NO. BPF allows only register R0 to be used as return value.
+
+Q: can more than 5 function arguments be supported in the future?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+A: NO. BPF calling convention only allows registers R1-R5 to be used
+as arguments. BPF is not a standalone instruction set.
+(unlike x64 ISA that allows msft, cdecl and other conventions)
+
+Q: can BPF programs access instruction pointer or return address?
+-----------------------------------------------------------------
+A: NO.
+
+Q: can BPF programs access stack pointer ?
+------------------------------------------
+A: NO.
+
+Only frame pointer (register R10) is accessible.
+From compiler point of view it's necessary to have stack pointer.
+For example LLVM defines register R11 as stack pointer in its
+BPF backend, but it makes sure that generated code never uses it.
+
+Q: Does C-calling convention diminishes possible use cases?
+-----------------------------------------------------------
+A: YES.
+
+BPF design forces addition of major functionality in the form
+of kernel helper functions and kernel objects like BPF maps with
+seamless interoperability between them. It lets kernel call into
+BPF programs and programs call kernel helpers with zero overhead.
+As all of them were native C code. That is particularly the case
+for JITed BPF programs that are indistinguishable from
+native kernel C code.
+
+Q: Does it mean that 'innovative' extensions to BPF code are disallowed?
+------------------------------------------------------------------------
+A: Soft yes.
+
+At least for now until BPF core has support for
+bpf-to-bpf calls, indirect calls, loops, global variables,
+jump tables, read only sections and all other normal constructs
+that C code can produce.
+
+Q: Can loops be supported in a safe way?
+----------------------------------------
+A: It's not clear yet.
+
+BPF developers are trying to find a way to
+support bounded loops where the verifier can guarantee that
+the program terminates in less than 4096 instructions.
+
+Instruction level questions
+---------------------------
+
+Q: LD_ABS and LD_IND instructions vs C code
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Q: How come LD_ABS and LD_IND instruction are present in BPF whereas
+C code cannot express them and has to use builtin intrinsics?
+
+A: This is artifact of compatibility with classic BPF. Modern
+networking code in BPF performs better without them.
+See 'direct packet access'.
+
+Q: BPF instructions mapping not one-to-one to native CPU
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Q: It seems not all BPF instructions are one-to-one to native CPU.
+For example why BPF_JNE and other compare and jumps are not cpu-like?
+
+A: This was necessary to avoid introducing flags into ISA which are
+impossible to make generic and efficient across CPU architectures.
+
+Q: why BPF_DIV instruction doesn't map to x64 div?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+A: Because if we picked one-to-one relationship to x64 it would have made
+it more complicated to support on arm64 and other archs. Also it
+needs div-by-zero runtime check.
+
+Q: why there is no BPF_SDIV for signed divide operation?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+A: Because it would be rarely used. llvm errors in such case and
+prints a suggestion to use unsigned divide instead
+
+Q: Why BPF has implicit prologue and epilogue?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+A: Because architectures like sparc have register windows and in general
+there are enough subtle differences between architectures, so naive
+store return address into stack won't work. Another reason is BPF has
+to be safe from division by zero (and legacy exception path
+of LD_ABS insn). Those instructions need to invoke epilogue and
+return implicitly.
+
+Q: Why BPF_JLT and BPF_JLE instructions were not introduced in the beginning?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+A: Because classic BPF didn't have them and BPF authors felt that compiler
+workaround would be acceptable. Turned out that programs lose performance
+due to lack of these compare instructions and they were added.
+These two instructions is a perfect example what kind of new BPF
+instructions are acceptable and can be added in the future.
+These two already had equivalent instructions in native CPUs.
+New instructions that don't have one-to-one mapping to HW instructions
+will not be accepted.
+
+Q: BPF 32-bit subregister requirements
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Q: BPF 32-bit subregisters have a requirement to zero upper 32-bits of BPF
+registers which makes BPF inefficient virtual machine for 32-bit
+CPU architectures and 32-bit HW accelerators. Can true 32-bit registers
+be added to BPF in the future?
+
+A: NO. The first thing to improve performance on 32-bit archs is to teach
+LLVM to generate code that uses 32-bit subregisters. Then second step
+is to teach verifier to mark operations where zero-ing upper bits
+is unnecessary. Then JITs can take advantage of those markings and
+drastically reduce size of generated code and improve performance.
+
+Q: Does BPF have a stable ABI?
+------------------------------
+A: YES. BPF instructions, arguments to BPF programs, set of helper
+functions and their arguments, recognized return codes are all part
+of ABI. However when tracing programs are using bpf_probe_read() helper
+to walk kernel internal datastructures and compile with kernel
+internal headers these accesses can and will break with newer
+kernels. The union bpf_attr -> kern_version is checked at load time
+to prevent accidentally loading kprobe-based bpf programs written
+for a different kernel. Networking programs don't do kern_version check.
+
+Q: How much stack space a BPF program uses?
+-------------------------------------------
+A: Currently all program types are limited to 512 bytes of stack
+space, but the verifier computes the actual amount of stack used
+and both interpreter and most JITed code consume necessary amount.
+
+Q: Can BPF be offloaded to HW?
+------------------------------
+A: YES. BPF HW offload is supported by NFP driver.
+
+Q: Does classic BPF interpreter still exist?
+--------------------------------------------
+A: NO. Classic BPF programs are converted into extend BPF instructions.
+
+Q: Can BPF call arbitrary kernel functions?
+-------------------------------------------
+A: NO. BPF programs can only call a set of helper functions which
+is defined for every program type.
+
+Q: Can BPF overwrite arbitrary kernel memory?
+---------------------------------------------
+A: NO.
+
+Tracing bpf programs can *read* arbitrary memory with bpf_probe_read()
+and bpf_probe_read_str() helpers. Networking programs cannot read
+arbitrary memory, since they don't have access to these helpers.
+Programs can never read or write arbitrary memory directly.
+
+Q: Can BPF overwrite arbitrary user memory?
+-------------------------------------------
+A: Sort-of.
+
+Tracing BPF programs can overwrite the user memory
+of the current task with bpf_probe_write_user(). Every time such
+program is loaded the kernel will print warning message, so
+this helper is only useful for experiments and prototypes.
+Tracing BPF programs are root only.
+
+Q: bpf_trace_printk() helper warning
+------------------------------------
+Q: When bpf_trace_printk() helper is used the kernel prints nasty
+warning message. Why is that?
+
+A: This is done to nudge program authors into better interfaces when
+programs need to pass data to user space. Like bpf_perf_event_output()
+can be used to efficiently stream data via perf ring buffer.
+BPF maps can be used for asynchronous data sharing between kernel
+and user space. bpf_trace_printk() should only be used for debugging.
+
+Q: New functionality via kernel modules?
+----------------------------------------
+Q: Can BPF functionality such as new program or map types, new
+helpers, etc be added out of kernel module code?
+
+A: NO.
diff --git a/Documentation/bpf/bpf_design_QA.txt b/Documentation/bpf/bpf_design_QA.txt
deleted file mode 100644
index f3e458a..0000000
--- a/Documentation/bpf/bpf_design_QA.txt
+++ /dev/null
@@ -1,156 +0,0 @@
-BPF extensibility and applicability to networking, tracing, security
-in the linux kernel and several user space implementations of BPF
-virtual machine led to a number of misunderstanding on what BPF actually is.
-This short QA is an attempt to address that and outline a direction
-of where BPF is heading long term.
-
-Q: Is BPF a generic instruction set similar to x64 and arm64?
-A: NO.
-
-Q: Is BPF a generic virtual machine ?
-A: NO.
-
-BPF is generic instruction set _with_ C calling convention.
-
-Q: Why C calling convention was chosen?
-A: Because BPF programs are designed to run in the linux kernel
- which is written in C, hence BPF defines instruction set compatible
- with two most used architectures x64 and arm64 (and takes into
- consideration important quirks of other architectures) and
- defines calling convention that is compatible with C calling
- convention of the linux kernel on those architectures.
-
-Q: can multiple return values be supported in the future?
-A: NO. BPF allows only register R0 to be used as return value.
-
-Q: can more than 5 function arguments be supported in the future?
-A: NO. BPF calling convention only allows registers R1-R5 to be used
- as arguments. BPF is not a standalone instruction set.
- (unlike x64 ISA that allows msft, cdecl and other conventions)
-
-Q: can BPF programs access instruction pointer or return address?
-A: NO.
-
-Q: can BPF programs access stack pointer ?
-A: NO. Only frame pointer (register R10) is accessible.
- From compiler point of view it's necessary to have stack pointer.
- For example LLVM defines register R11 as stack pointer in its
- BPF backend, but it makes sure that generated code never uses it.
-
-Q: Does C-calling convention diminishes possible use cases?
-A: YES. BPF design forces addition of major functionality in the form
- of kernel helper functions and kernel objects like BPF maps with
- seamless interoperability between them. It lets kernel call into
- BPF programs and programs call kernel helpers with zero overhead.
- As all of them were native C code. That is particularly the case
- for JITed BPF programs that are indistinguishable from
- native kernel C code.
-
-Q: Does it mean that 'innovative' extensions to BPF code are disallowed?
-A: Soft yes. At least for now until BPF core has support for
- bpf-to-bpf calls, indirect calls, loops, global variables,
- jump tables, read only sections and all other normal constructs
- that C code can produce.
-
-Q: Can loops be supported in a safe way?
-A: It's not clear yet. BPF developers are trying to find a way to
- support bounded loops where the verifier can guarantee that
- the program terminates in less than 4096 instructions.
-
-Q: How come LD_ABS and LD_IND instruction are present in BPF whereas
- C code cannot express them and has to use builtin intrinsics?
-A: This is artifact of compatibility with classic BPF. Modern
- networking code in BPF performs better without them.
- See 'direct packet access'.
-
-Q: It seems not all BPF instructions are one-to-one to native CPU.
- For example why BPF_JNE and other compare and jumps are not cpu-like?
-A: This was necessary to avoid introducing flags into ISA which are
- impossible to make generic and efficient across CPU architectures.
-
-Q: why BPF_DIV instruction doesn't map to x64 div?
-A: Because if we picked one-to-one relationship to x64 it would have made
- it more complicated to support on arm64 and other archs. Also it
- needs div-by-zero runtime check.
-
-Q: why there is no BPF_SDIV for signed divide operation?
-A: Because it would be rarely used. llvm errors in such case and
- prints a suggestion to use unsigned divide instead
-
-Q: Why BPF has implicit prologue and epilogue?
-A: Because architectures like sparc have register windows and in general
- there are enough subtle differences between architectures, so naive
- store return address into stack won't work. Another reason is BPF has
- to be safe from division by zero (and legacy exception path
- of LD_ABS insn). Those instructions need to invoke epilogue and
- return implicitly.
-
-Q: Why BPF_JLT and BPF_JLE instructions were not introduced in the beginning?
-A: Because classic BPF didn't have them and BPF authors felt that compiler
- workaround would be acceptable. Turned out that programs lose performance
- due to lack of these compare instructions and they were added.
- These two instructions is a perfect example what kind of new BPF
- instructions are acceptable and can be added in the future.
- These two already had equivalent instructions in native CPUs.
- New instructions that don't have one-to-one mapping to HW instructions
- will not be accepted.
-
-Q: BPF 32-bit subregisters have a requirement to zero upper 32-bits of BPF
- registers which makes BPF inefficient virtual machine for 32-bit
- CPU architectures and 32-bit HW accelerators. Can true 32-bit registers
- be added to BPF in the future?
-A: NO. The first thing to improve performance on 32-bit archs is to teach
- LLVM to generate code that uses 32-bit subregisters. Then second step
- is to teach verifier to mark operations where zero-ing upper bits
- is unnecessary. Then JITs can take advantage of those markings and
- drastically reduce size of generated code and improve performance.
-
-Q: Does BPF have a stable ABI?
-A: YES. BPF instructions, arguments to BPF programs, set of helper
- functions and their arguments, recognized return codes are all part
- of ABI. However when tracing programs are using bpf_probe_read() helper
- to walk kernel internal datastructures and compile with kernel
- internal headers these accesses can and will break with newer
- kernels. The union bpf_attr -> kern_version is checked at load time
- to prevent accidentally loading kprobe-based bpf programs written
- for a different kernel. Networking programs don't do kern_version check.
-
-Q: How much stack space a BPF program uses?
-A: Currently all program types are limited to 512 bytes of stack
- space, but the verifier computes the actual amount of stack used
- and both interpreter and most JITed code consume necessary amount.
-
-Q: Can BPF be offloaded to HW?
-A: YES. BPF HW offload is supported by NFP driver.
-
-Q: Does classic BPF interpreter still exist?
-A: NO. Classic BPF programs are converted into extend BPF instructions.
-
-Q: Can BPF call arbitrary kernel functions?
-A: NO. BPF programs can only call a set of helper functions which
- is defined for every program type.
-
-Q: Can BPF overwrite arbitrary kernel memory?
-A: NO. Tracing bpf programs can _read_ arbitrary memory with bpf_probe_read()
- and bpf_probe_read_str() helpers. Networking programs cannot read
- arbitrary memory, since they don't have access to these helpers.
- Programs can never read or write arbitrary memory directly.
-
-Q: Can BPF overwrite arbitrary user memory?
-A: Sort-of. Tracing BPF programs can overwrite the user memory
- of the current task with bpf_probe_write_user(). Every time such
- program is loaded the kernel will print warning message, so
- this helper is only useful for experiments and prototypes.
- Tracing BPF programs are root only.
-
-Q: When bpf_trace_printk() helper is used the kernel prints nasty
- warning message. Why is that?
-A: This is done to nudge program authors into better interfaces when
- programs need to pass data to user space. Like bpf_perf_event_output()
- can be used to efficiently stream data via perf ring buffer.
- BPF maps can be used for asynchronous data sharing between kernel
- and user space. bpf_trace_printk() should only be used for debugging.
-
-Q: Can BPF functionality such as new program or map types, new
- helpers, etc be added out of kernel module code?
-A: NO.
diff --git a/Documentation/bpf/bpf_devel_QA.rst b/Documentation/bpf/bpf_devel_QA.rst
new file mode 100644
index 0000000..0e7c1d9
--- /dev/null
+++ b/Documentation/bpf/bpf_devel_QA.rst
@@ -0,0 +1,640 @@
+=================================
+HOWTO interact with BPF subsystem
+=================================
+
+This document provides information for the BPF subsystem about various
+workflows related to reporting bugs, submitting patches, and queueing
+patches for stable kernels.
+
+For general information about submitting patches, please refer to
+`Documentation/process/`_. This document only describes additional specifics
+related to BPF.
+
+.. contents::
+ :local:
+ :depth: 2
+
+Reporting bugs
+==============
+
+Q: How do I report bugs for BPF kernel code?
+--------------------------------------------
+A: Since all BPF kernel development as well as bpftool and iproute2 BPF
+loader development happens through the netdev kernel mailing list,
+please report any found issues around BPF to the following mailing
+list:
+
+ netdev@vger.kernel.org
+
+This may also include issues related to XDP, BPF tracing, etc.
+
+Given netdev has a high volume of traffic, please also add the BPF
+maintainers to Cc (from kernel MAINTAINERS_ file):
+
+* Alexei Starovoitov <ast@kernel.org>
+* Daniel Borkmann <daniel@iogearbox.net>
+
+In case a buggy commit has already been identified, make sure to keep
+the actual commit authors in Cc as well for the report. They can
+typically be identified through the kernel's git tree.
+
+**Please do NOT report BPF issues to bugzilla.kernel.org since it
+is a guarantee that the reported issue will be overlooked.**
+
+Submitting patches
+==================
+
+Q: To which mailing list do I need to submit my BPF patches?
+------------------------------------------------------------
+A: Please submit your BPF patches to the netdev kernel mailing list:
+
+ netdev@vger.kernel.org
+
+Historically, BPF came out of networking and has always been maintained
+by the kernel networking community. Although these days BPF touches
+many other subsystems as well, the patches are still routed mainly
+through the networking community.
+
+In case your patch has changes in various different subsystems (e.g.
+tracing, security, etc), make sure to Cc the related kernel mailing
+lists and maintainers from there as well, so they are able to review
+the changes and provide their Acked-by's to the patches.
+
+Q: Where can I find patches currently under discussion for BPF subsystem?
+-------------------------------------------------------------------------
+A: All patches that are Cc'ed to netdev are queued for review under netdev
+patchwork project:
+
+ http://patchwork.ozlabs.org/project/netdev/list/
+
+Those patches which target BPF, are assigned to a 'bpf' delegate for
+further processing from BPF maintainers. The current queue with
+patches under review can be found at:
+
+ https://patchwork.ozlabs.org/project/netdev/list/?delegate=77147
+
+Once the patches have been reviewed by the BPF community as a whole
+and approved by the BPF maintainers, their status in patchwork will be
+changed to 'Accepted' and the submitter will be notified by mail. This
+means that the patches look good from a BPF perspective and have been
+applied to one of the two BPF kernel trees.
+
+In case feedback from the community requires a respin of the patches,
+their status in patchwork will be set to 'Changes Requested', and purged
+from the current review queue. Likewise for cases where patches would
+get rejected or are not applicable to the BPF trees (but assigned to
+the 'bpf' delegate).
+
+Q: How do the changes make their way into Linux?
+------------------------------------------------
+A: There are two BPF kernel trees (git repositories). Once patches have
+been accepted by the BPF maintainers, they will be applied to one
+of the two BPF trees:
+
+ * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/
+ * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/
+
+The bpf tree itself is for fixes only, whereas bpf-next for features,
+cleanups or other kind of improvements ("next-like" content). This is
+analogous to net and net-next trees for networking. Both bpf and
+bpf-next will only have a master branch in order to simplify against
+which branch patches should get rebased to.
+
+Accumulated BPF patches in the bpf tree will regularly get pulled
+into the net kernel tree. Likewise, accumulated BPF patches accepted
+into the bpf-next tree will make their way into net-next tree. net and
+net-next are both run by David S. Miller. From there, they will go
+into the kernel mainline tree run by Linus Torvalds. To read up on the
+process of net and net-next being merged into the mainline tree, see
+the `netdev FAQ`_ under:
+
+ `Documentation/networking/netdev-FAQ.txt`_
+
+Occasionally, to prevent merge conflicts, we might send pull requests
+to other trees (e.g. tracing) with a small subset of the patches, but
+net and net-next are always the main trees targeted for integration.
+
+The pull requests will contain a high-level summary of the accumulated
+patches and can be searched on netdev kernel mailing list through the
+following subject lines (``yyyy-mm-dd`` is the date of the pull
+request)::
+
+ pull-request: bpf yyyy-mm-dd
+ pull-request: bpf-next yyyy-mm-dd
+
+Q: How do I indicate which tree (bpf vs. bpf-next) my patch should be applied to?
+---------------------------------------------------------------------------------
+
+A: The process is the very same as described in the `netdev FAQ`_, so
+please read up on it. The subject line must indicate whether the
+patch is a fix or rather "next-like" content in order to let the
+maintainers know whether it is targeted at bpf or bpf-next.
+
+For fixes eventually landing in bpf -> net tree, the subject must
+look like::
+
+ git format-patch --subject-prefix='PATCH bpf' start..finish
+
+For features/improvements/etc that should eventually land in
+bpf-next -> net-next, the subject must look like::
+
+ git format-patch --subject-prefix='PATCH bpf-next' start..finish
+
+If unsure whether the patch or patch series should go into bpf
+or net directly, or bpf-next or net-next directly, it is not a
+problem either if the subject line says net or net-next as target.
+It is eventually up to the maintainers to do the delegation of
+the patches.
+
+If it is clear that patches should go into bpf or bpf-next tree,
+please make sure to rebase the patches against those trees in
+order to reduce potential conflicts.
+
+In case the patch or patch series has to be reworked and sent out
+again in a second or later revision, it is also required to add a
+version number (``v2``, ``v3``, ...) into the subject prefix::
+
+ git format-patch --subject-prefix='PATCH net-next v2' start..finish
+
+When changes have been requested to the patch series, always send the
+whole patch series again with the feedback incorporated (never send
+individual diffs on top of the old series).
+
+Q: What does it mean when a patch gets applied to bpf or bpf-next tree?
+-----------------------------------------------------------------------
+A: It means that the patch looks good for mainline inclusion from
+a BPF point of view.
+
+Be aware that this is not a final verdict that the patch will
+automatically get accepted into net or net-next trees eventually:
+
+On the netdev kernel mailing list reviews can come in at any point
+in time. If discussions around a patch conclude that they cannot
+get included as-is, we will either apply a follow-up fix or drop
+them from the trees entirely. Therefore, we also reserve to rebase
+the trees when deemed necessary. After all, the purpose of the tree
+is to:
+
+i) accumulate and stage BPF patches for integration into trees
+ like net and net-next, and
+
+ii) run extensive BPF test suite and
+ workloads on the patches before they make their way any further.
+
+Once the BPF pull request was accepted by David S. Miller, then
+the patches end up in net or net-next tree, respectively, and
+make their way from there further into mainline. Again, see the
+`netdev FAQ`_ for additional information e.g. on how often they are
+merged to mainline.
+
+Q: How long do I need to wait for feedback on my BPF patches?
+-------------------------------------------------------------
+A: We try to keep the latency low. The usual time to feedback will
+be around 2 or 3 business days. It may vary depending on the
+complexity of changes and current patch load.
+
+Q: How often do you send pull requests to major kernel trees like net or net-next?
+----------------------------------------------------------------------------------
+
+A: Pull requests will be sent out rather often in order to not
+accumulate too many patches in bpf or bpf-next.
+
+As a rule of thumb, expect pull requests for each tree regularly
+at the end of the week. In some cases pull requests could additionally
+come also in the middle of the week depending on the current patch
+load or urgency.
+
+Q: Are patches applied to bpf-next when the merge window is open?
+-----------------------------------------------------------------
+A: For the time when the merge window is open, bpf-next will not be
+processed. This is roughly analogous to net-next patch processing,
+so feel free to read up on the `netdev FAQ`_ about further details.
+
+During those two weeks of merge window, we might ask you to resend
+your patch series once bpf-next is open again. Once Linus released
+a ``v*-rc1`` after the merge window, we continue processing of bpf-next.
+
+For non-subscribers to kernel mailing lists, there is also a status
+page run by David S. Miller on net-next that provides guidance:
+
+ http://vger.kernel.org/~davem/net-next.html
+
+Q: Verifier changes and test cases
+----------------------------------
+Q: I made a BPF verifier change, do I need to add test cases for
+BPF kernel selftests_?
+
+A: If the patch has changes to the behavior of the verifier, then yes,
+it is absolutely necessary to add test cases to the BPF kernel
+selftests_ suite. If they are not present and we think they are
+needed, then we might ask for them before accepting any changes.
+
+In particular, test_verifier.c is tracking a high number of BPF test
+cases, including a lot of corner cases that LLVM BPF back end may
+generate out of the restricted C code. Thus, adding test cases is
+absolutely crucial to make sure future changes do not accidentally
+affect prior use-cases. Thus, treat those test cases as: verifier
+behavior that is not tracked in test_verifier.c could potentially
+be subject to change.
+
+Q: samples/bpf preference vs selftests?
+---------------------------------------
+Q: When should I add code to `samples/bpf/`_ and when to BPF kernel
+selftests_ ?
+
+A: In general, we prefer additions to BPF kernel selftests_ rather than
+`samples/bpf/`_. The rationale is very simple: kernel selftests are
+regularly run by various bots to test for kernel regressions.
+
+The more test cases we add to BPF selftests, the better the coverage
+and the less likely it is that those could accidentally break. It is
+not that BPF kernel selftests cannot demo how a specific feature can
+be used.
+
+That said, `samples/bpf/`_ may be a good place for people to get started,
+so it might be advisable that simple demos of features could go into
+`samples/bpf/`_, but advanced functional and corner-case testing rather
+into kernel selftests.
+
+If your sample looks like a test case, then go for BPF kernel selftests
+instead!
+
+Q: When should I add code to the bpftool?
+-----------------------------------------
+A: The main purpose of bpftool (under tools/bpf/bpftool/) is to provide
+a central user space tool for debugging and introspection of BPF programs
+and maps that are active in the kernel. If UAPI changes related to BPF
+enable for dumping additional information of programs or maps, then
+bpftool should be extended as well to support dumping them.
+
+Q: When should I add code to iproute2's BPF loader?
+---------------------------------------------------
+A: For UAPI changes related to the XDP or tc layer (e.g. ``cls_bpf``),
+the convention is that those control-path related changes are added to
+iproute2's BPF loader as well from user space side. This is not only
+useful to have UAPI changes properly designed to be usable, but also
+to make those changes available to a wider user base of major
+downstream distributions.
+
+Q: Do you accept patches as well for iproute2's BPF loader?
+-----------------------------------------------------------
+A: Patches for the iproute2's BPF loader have to be sent to:
+
+ netdev@vger.kernel.org
+
+While those patches are not processed by the BPF kernel maintainers,
+please keep them in Cc as well, so they can be reviewed.
+
+The official git repository for iproute2 is run by Stephen Hemminger
+and can be found at:
+
+ https://git.kernel.org/pub/scm/linux/kernel/git/shemminger/iproute2.git/
+
+The patches need to have a subject prefix of '``[PATCH iproute2
+master]``' or '``[PATCH iproute2 net-next]``'. '``master``' or
+'``net-next``' describes the target branch where the patch should be
+applied to. Meaning, if kernel changes went into the net-next kernel
+tree, then the related iproute2 changes need to go into the iproute2
+net-next branch, otherwise they can be targeted at master branch. The
+iproute2 net-next branch will get merged into the master branch after
+the current iproute2 version from master has been released.
+
+Like BPF, the patches end up in patchwork under the netdev project and
+are delegated to 'shemminger' for further processing:
+
+ http://patchwork.ozlabs.org/project/netdev/list/?delegate=389
+
+Q: What is the minimum requirement before I submit my BPF patches?
+------------------------------------------------------------------
+A: When submitting patches, always take the time and properly test your
+patches *prior* to submission. Never rush them! If maintainers find
+that your patches have not been properly tested, it is a good way to
+get them grumpy. Testing patch submissions is a hard requirement!
+
+Note, fixes that go to bpf tree *must* have a ``Fixes:`` tag included.
+The same applies to fixes that target bpf-next, where the affected
+commit is in net-next (or in some cases bpf-next). The ``Fixes:`` tag is
+crucial in order to identify follow-up commits and tremendously helps
+for people having to do backporting, so it is a must have!
+
+We also don't accept patches with an empty commit message. Take your
+time and properly write up a high quality commit message, it is
+essential!
+
+Think about it this way: other developers looking at your code a month
+from now need to understand *why* a certain change has been done that
+way, and whether there have been flaws in the analysis or assumptions
+that the original author did. Thus providing a proper rationale and
+describing the use-case for the changes is a must.
+
+Patch submissions with >1 patch must have a cover letter which includes
+a high level description of the series. This high level summary will
+then be placed into the merge commit by the BPF maintainers such that
+it is also accessible from the git log for future reference.
+
+Q: Features changing BPF JIT and/or LLVM
+----------------------------------------
+Q: What do I need to consider when adding a new instruction or feature
+that would require BPF JIT and/or LLVM integration as well?
+
+A: We try hard to keep all BPF JITs up to date such that the same user
+experience can be guaranteed when running BPF programs on different
+architectures without having the program punt to the less efficient
+interpreter in case the in-kernel BPF JIT is enabled.
+
+If you are unable to implement or test the required JIT changes for
+certain architectures, please work together with the related BPF JIT
+developers in order to get the feature implemented in a timely manner.
+Please refer to the git log (``arch/*/net/``) to locate the necessary
+people for helping out.
+
+Also always make sure to add BPF test cases (e.g. test_bpf.c and
+test_verifier.c) for new instructions, so that they can receive
+broad test coverage and help run-time testing the various BPF JITs.
+
+In case of new BPF instructions, once the changes have been accepted
+into the Linux kernel, please implement support into LLVM's BPF back
+end. See LLVM_ section below for further information.
+
+Stable submission
+=================
+
+Q: I need a specific BPF commit in stable kernels. What should I do?
+--------------------------------------------------------------------
+A: In case you need a specific fix in stable kernels, first check whether
+the commit has already been applied in the related ``linux-*.y`` branches:
+
+ https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/
+
+If not the case, then drop an email to the BPF maintainers with the
+netdev kernel mailing list in Cc and ask for the fix to be queued up:
+
+ netdev@vger.kernel.org
+
+The process in general is the same as on netdev itself, see also the
+`netdev FAQ`_ document.
+
+Q: Do you also backport to kernels not currently maintained as stable?
+----------------------------------------------------------------------
+A: No. If you need a specific BPF commit in kernels that are currently not
+maintained by the stable maintainers, then you are on your own.
+
+The current stable and longterm stable kernels are all listed here:
+
+ https://www.kernel.org/
+
+Q: The BPF patch I am about to submit needs to go to stable as well
+-------------------------------------------------------------------
+What should I do?
+
+A: The same rules apply as with netdev patch submissions in general, see
+`netdev FAQ`_ under:
+
+ `Documentation/networking/netdev-FAQ.txt`_
+
+Never add "``Cc: stable@vger.kernel.org``" to the patch description, but
+ask the BPF maintainers to queue the patches instead. This can be done
+with a note, for example, under the ``---`` part of the patch which does
+not go into the git log. Alternatively, this can be done as a simple
+request by mail instead.
+
+Q: Queue stable patches
+-----------------------
+Q: Where do I find currently queued BPF patches that will be submitted
+to stable?
+
+A: Once patches that fix critical bugs got applied into the bpf tree, they
+are queued up for stable submission under:
+
+ http://patchwork.ozlabs.org/bundle/bpf/stable/?state=*
+
+They will be on hold there at minimum until the related commit made its
+way into the mainline kernel tree.
+
+After having been under broader exposure, the queued patches will be
+submitted by the BPF maintainers to the stable maintainers.
+
+Testing patches
+===============
+
+Q: How to run BPF selftests
+---------------------------
+A: After you have booted into the newly compiled kernel, navigate to
+the BPF selftests_ suite in order to test BPF functionality (current
+working directory points to the root of the cloned git tree)::
+
+ $ cd tools/testing/selftests/bpf/
+ $ make
+
+To run the verifier tests::
+
+ $ sudo ./test_verifier
+
+The verifier tests print out all the current checks being
+performed. The summary at the end of running all tests will dump
+information of test successes and failures::
+
+ Summary: 418 PASSED, 0 FAILED
+
+In order to run through all BPF selftests, the following command is
+needed::
+
+ $ sudo make run_tests
+
+See the kernels selftest `Documentation/dev-tools/kselftest.rst`_
+document for further documentation.
+
+Q: Which BPF kernel selftests version should I run my kernel against?
+---------------------------------------------------------------------
+A: If you run a kernel ``xyz``, then always run the BPF kernel selftests
+from that kernel ``xyz`` as well. Do not expect that the BPF selftest
+from the latest mainline tree will pass all the time.
+
+In particular, test_bpf.c and test_verifier.c have a large number of
+test cases and are constantly updated with new BPF test sequences, or
+existing ones are adapted to verifier changes e.g. due to verifier
+becoming smarter and being able to better track certain things.
+
+LLVM
+====
+
+Q: Where do I find LLVM with BPF support?
+-----------------------------------------
+A: The BPF back end for LLVM is upstream in LLVM since version 3.7.1.
+
+All major distributions these days ship LLVM with BPF back end enabled,
+so for the majority of use-cases it is not required to compile LLVM by
+hand anymore, just install the distribution provided package.
+
+LLVM's static compiler lists the supported targets through
+``llc --version``, make sure BPF targets are listed. Example::
+
+ $ llc --version
+ LLVM (http://llvm.org/):
+ LLVM version 6.0.0svn
+ Optimized build.
+ Default target: x86_64-unknown-linux-gnu
+ Host CPU: skylake
+
+ Registered Targets:
+ bpf - BPF (host endian)
+ bpfeb - BPF (big endian)
+ bpfel - BPF (little endian)
+ x86 - 32-bit X86: Pentium-Pro and above
+ x86-64 - 64-bit X86: EM64T and AMD64
+
+For developers in order to utilize the latest features added to LLVM's
+BPF back end, it is advisable to run the latest LLVM releases. Support
+for new BPF kernel features such as additions to the BPF instruction
+set are often developed together.
+
+All LLVM releases can be found at: http://releases.llvm.org/
+
+Q: Got it, so how do I build LLVM manually anyway?
+--------------------------------------------------
+A: You need cmake and gcc-c++ as build requisites for LLVM. Once you have
+that set up, proceed with building the latest LLVM and clang version
+from the git repositories::
+
+ $ git clone http://llvm.org/git/llvm.git
+ $ cd llvm/tools
+ $ git clone --depth 1 http://llvm.org/git/clang.git
+ $ cd ..; mkdir build; cd build
+ $ cmake .. -DLLVM_TARGETS_TO_BUILD="BPF;X86" \
+ -DBUILD_SHARED_LIBS=OFF \
+ -DCMAKE_BUILD_TYPE=Release \
+ -DLLVM_BUILD_RUNTIME=OFF
+ $ make -j $(getconf _NPROCESSORS_ONLN)
+
+The built binaries can then be found in the build/bin/ directory, where
+you can point the PATH variable to.
+
+Q: Reporting LLVM BPF issues
+----------------------------
+Q: Should I notify BPF kernel maintainers about issues in LLVM's BPF code
+generation back end or about LLVM generated code that the verifier
+refuses to accept?
+
+A: Yes, please do!
+
+LLVM's BPF back end is a key piece of the whole BPF
+infrastructure and it ties deeply into verification of programs from the
+kernel side. Therefore, any issues on either side need to be investigated
+and fixed whenever necessary.
+
+Therefore, please make sure to bring them up at netdev kernel mailing
+list and Cc BPF maintainers for LLVM and kernel bits:
+
+* Yonghong Song <yhs@fb.com>
+* Alexei Starovoitov <ast@kernel.org>
+* Daniel Borkmann <daniel@iogearbox.net>
+
+LLVM also has an issue tracker where BPF related bugs can be found:
+
+ https://bugs.llvm.org/buglist.cgi?quicksearch=bpf
+
+However, it is better to reach out through mailing lists with having
+maintainers in Cc.
+
+Q: New BPF instruction for kernel and LLVM
+------------------------------------------
+Q: I have added a new BPF instruction to the kernel, how can I integrate
+it into LLVM?
+
+A: LLVM has a ``-mcpu`` selector for the BPF back end in order to allow
+the selection of BPF instruction set extensions. By default the
+``generic`` processor target is used, which is the base instruction set
+(v1) of BPF.
+
+LLVM has an option to select ``-mcpu=probe`` where it will probe the host
+kernel for supported BPF instruction set extensions and selects the
+optimal set automatically.
+
+For cross-compilation, a specific version can be select manually as well ::
+
+ $ llc -march bpf -mcpu=help
+ Available CPUs for this target:
+
+ generic - Select the generic processor.
+ probe - Select the probe processor.
+ v1 - Select the v1 processor.
+ v2 - Select the v2 processor.
+ [...]
+
+Newly added BPF instructions to the Linux kernel need to follow the same
+scheme, bump the instruction set version and implement probing for the
+extensions such that ``-mcpu=probe`` users can benefit from the
+optimization transparently when upgrading their kernels.
+
+If you are unable to implement support for the newly added BPF instruction
+please reach out to BPF developers for help.
+
+By the way, the BPF kernel selftests run with ``-mcpu=probe`` for better
+test coverage.
+
+Q: clang flag for target bpf?
+-----------------------------
+Q: In some cases clang flag ``-target bpf`` is used but in other cases the
+default clang target, which matches the underlying architecture, is used.
+What is the difference and when I should use which?
+
+A: Although LLVM IR generation and optimization try to stay architecture
+independent, ``-target <arch>`` still has some impact on generated code:
+
+- BPF program may recursively include header file(s) with file scope
+ inline assembly codes. The default target can handle this well,
+ while ``bpf`` target may fail if bpf backend assembler does not
+ understand these assembly codes, which is true in most cases.
+
+- When compiled without ``-g``, additional elf sections, e.g.,
+ .eh_frame and .rela.eh_frame, may be present in the object file
+ with default target, but not with ``bpf`` target.
+
+- The default target may turn a C switch statement into a switch table
+ lookup and jump operation. Since the switch table is placed
+ in the global readonly section, the bpf program will fail to load.
+ The bpf target does not support switch table optimization.
+ The clang option ``-fno-jump-tables`` can be used to disable
+ switch table generation.
+
+- For clang ``-target bpf``, it is guaranteed that pointer or long /
+ unsigned long types will always have a width of 64 bit, no matter
+ whether underlying clang binary or default target (or kernel) is
+ 32 bit. However, when native clang target is used, then it will
+ compile these types based on the underlying architecture's conventions,
+ meaning in case of 32 bit architecture, pointer or long / unsigned
+ long types e.g. in BPF context structure will have width of 32 bit
+ while the BPF LLVM back end still operates in 64 bit. The native
+ target is mostly needed in tracing for the case of walking ``pt_regs``
+ or other kernel structures where CPU's register width matters.
+ Otherwise, ``clang -target bpf`` is generally recommended.
+
+You should use default target when:
+
+- Your program includes a header file, e.g., ptrace.h, which eventually
+ pulls in some header files containing file scope host assembly codes.
+
+- You can add ``-fno-jump-tables`` to work around the switch table issue.
+
+Otherwise, you can use ``bpf`` target. Additionally, you *must* use bpf target
+when:
+
+- Your program uses data structures with pointer or long / unsigned long
+ types that interface with BPF helpers or context data structures. Access
+ into these structures is verified by the BPF verifier and may result
+ in verification failures if the native architecture is not aligned with
+ the BPF architecture, e.g. 64-bit. An example of this is
+ BPF_PROG_TYPE_SK_MSG require ``-target bpf``
+
+
+.. Links
+.. _Documentation/process/: https://www.kernel.org/doc/html/latest/process/
+.. _MAINTAINERS: ../../MAINTAINERS
+.. _Documentation/networking/netdev-FAQ.txt: ../networking/netdev-FAQ.txt
+.. _netdev FAQ: ../networking/netdev-FAQ.txt
+.. _samples/bpf/: ../../samples/bpf/
+.. _selftests: ../../tools/testing/selftests/bpf/
+.. _Documentation/dev-tools/kselftest.rst:
+ https://www.kernel.org/doc/html/latest/dev-tools/kselftest.html
+
+Happy BPF hacking!
diff --git a/Documentation/bpf/bpf_devel_QA.txt b/Documentation/bpf/bpf_devel_QA.txt
deleted file mode 100644
index da57601..0000000
--- a/Documentation/bpf/bpf_devel_QA.txt
+++ /dev/null
@@ -1,570 +0,0 @@
-This document provides information for the BPF subsystem about various
-workflows related to reporting bugs, submitting patches, and queueing
-patches for stable kernels.
-
-For general information about submitting patches, please refer to
-Documentation/process/. This document only describes additional specifics
-related to BPF.
-
-Reporting bugs:
----------------
-
-Q: How do I report bugs for BPF kernel code?
-
-A: Since all BPF kernel development as well as bpftool and iproute2 BPF
- loader development happens through the netdev kernel mailing list,
- please report any found issues around BPF to the following mailing
- list:
-
- netdev@vger.kernel.org
-
- This may also include issues related to XDP, BPF tracing, etc.
-
- Given netdev has a high volume of traffic, please also add the BPF
- maintainers to Cc (from kernel MAINTAINERS file):
-
- Alexei Starovoitov <ast@kernel.org>
- Daniel Borkmann <daniel@iogearbox.net>
-
- In case a buggy commit has already been identified, make sure to keep
- the actual commit authors in Cc as well for the report. They can
- typically be identified through the kernel's git tree.
-
- Please do *not* report BPF issues to bugzilla.kernel.org since it
- is a guarantee that the reported issue will be overlooked.
-
-Submitting patches:
--------------------
-
-Q: To which mailing list do I need to submit my BPF patches?
-
-A: Please submit your BPF patches to the netdev kernel mailing list:
-
- netdev@vger.kernel.org
-
- Historically, BPF came out of networking and has always been maintained
- by the kernel networking community. Although these days BPF touches
- many other subsystems as well, the patches are still routed mainly
- through the networking community.
-
- In case your patch has changes in various different subsystems (e.g.
- tracing, security, etc), make sure to Cc the related kernel mailing
- lists and maintainers from there as well, so they are able to review
- the changes and provide their Acked-by's to the patches.
-
-Q: Where can I find patches currently under discussion for BPF subsystem?
-
-A: All patches that are Cc'ed to netdev are queued for review under netdev
- patchwork project:
-
- http://patchwork.ozlabs.org/project/netdev/list/
-
- Those patches which target BPF, are assigned to a 'bpf' delegate for
- further processing from BPF maintainers. The current queue with
- patches under review can be found at:
-
- https://patchwork.ozlabs.org/project/netdev/list/?delegate=77147
-
- Once the patches have been reviewed by the BPF community as a whole
- and approved by the BPF maintainers, their status in patchwork will be
- changed to 'Accepted' and the submitter will be notified by mail. This
- means that the patches look good from a BPF perspective and have been
- applied to one of the two BPF kernel trees.
-
- In case feedback from the community requires a respin of the patches,
- their status in patchwork will be set to 'Changes Requested', and purged
- from the current review queue. Likewise for cases where patches would
- get rejected or are not applicable to the BPF trees (but assigned to
- the 'bpf' delegate).
-
-Q: How do the changes make their way into Linux?
-
-A: There are two BPF kernel trees (git repositories). Once patches have
- been accepted by the BPF maintainers, they will be applied to one
- of the two BPF trees:
-
- https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/
- https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/
-
- The bpf tree itself is for fixes only, whereas bpf-next for features,
- cleanups or other kind of improvements ("next-like" content). This is
- analogous to net and net-next trees for networking. Both bpf and
- bpf-next will only have a master branch in order to simplify against
- which branch patches should get rebased to.
-
- Accumulated BPF patches in the bpf tree will regularly get pulled
- into the net kernel tree. Likewise, accumulated BPF patches accepted
- into the bpf-next tree will make their way into net-next tree. net and
- net-next are both run by David S. Miller. From there, they will go
- into the kernel mainline tree run by Linus Torvalds. To read up on the
- process of net and net-next being merged into the mainline tree, see
- the netdev FAQ under:
-
- Documentation/networking/netdev-FAQ.txt
-
- Occasionally, to prevent merge conflicts, we might send pull requests
- to other trees (e.g. tracing) with a small subset of the patches, but
- net and net-next are always the main trees targeted for integration.
-
- The pull requests will contain a high-level summary of the accumulated
- patches and can be searched on netdev kernel mailing list through the
- following subject lines (yyyy-mm-dd is the date of the pull request):
-
- pull-request: bpf yyyy-mm-dd
- pull-request: bpf-next yyyy-mm-dd
-
-Q: How do I indicate which tree (bpf vs. bpf-next) my patch should be
- applied to?
-
-A: The process is the very same as described in the netdev FAQ, so
- please read up on it. The subject line must indicate whether the
- patch is a fix or rather "next-like" content in order to let the
- maintainers know whether it is targeted at bpf or bpf-next.
-
- For fixes eventually landing in bpf -> net tree, the subject must
- look like:
-
- git format-patch --subject-prefix='PATCH bpf' start..finish
-
- For features/improvements/etc that should eventually land in
- bpf-next -> net-next, the subject must look like:
-
- git format-patch --subject-prefix='PATCH bpf-next' start..finish
-
- If unsure whether the patch or patch series should go into bpf
- or net directly, or bpf-next or net-next directly, it is not a
- problem either if the subject line says net or net-next as target.
- It is eventually up to the maintainers to do the delegation of
- the patches.
-
- If it is clear that patches should go into bpf or bpf-next tree,
- please make sure to rebase the patches against those trees in
- order to reduce potential conflicts.
-
- In case the patch or patch series has to be reworked and sent out
- again in a second or later revision, it is also required to add a
- version number (v2, v3, ...) into the subject prefix:
-
- git format-patch --subject-prefix='PATCH net-next v2' start..finish
-
- When changes have been requested to the patch series, always send the
- whole patch series again with the feedback incorporated (never send
- individual diffs on top of the old series).
-
-Q: What does it mean when a patch gets applied to bpf or bpf-next tree?
-
-A: It means that the patch looks good for mainline inclusion from
- a BPF point of view.
-
- Be aware that this is not a final verdict that the patch will
- automatically get accepted into net or net-next trees eventually:
-
- On the netdev kernel mailing list reviews can come in at any point
- in time. If discussions around a patch conclude that they cannot
- get included as-is, we will either apply a follow-up fix or drop
- them from the trees entirely. Therefore, we also reserve to rebase
- the trees when deemed necessary. After all, the purpose of the tree
- is to i) accumulate and stage BPF patches for integration into trees
- like net and net-next, and ii) run extensive BPF test suite and
- workloads on the patches before they make their way any further.
-
- Once the BPF pull request was accepted by David S. Miller, then
- the patches end up in net or net-next tree, respectively, and
- make their way from there further into mainline. Again, see the
- netdev FAQ for additional information e.g. on how often they are
- merged to mainline.
-
-Q: How long do I need to wait for feedback on my BPF patches?
-
-A: We try to keep the latency low. The usual time to feedback will
- be around 2 or 3 business days. It may vary depending on the
- complexity of changes and current patch load.
-
-Q: How often do you send pull requests to major kernel trees like
- net or net-next?
-
-A: Pull requests will be sent out rather often in order to not
- accumulate too many patches in bpf or bpf-next.
-
- As a rule of thumb, expect pull requests for each tree regularly
- at the end of the week. In some cases pull requests could additionally
- come also in the middle of the week depending on the current patch
- load or urgency.
-
-Q: Are patches applied to bpf-next when the merge window is open?
-
-A: For the time when the merge window is open, bpf-next will not be
- processed. This is roughly analogous to net-next patch processing,
- so feel free to read up on the netdev FAQ about further details.
-
- During those two weeks of merge window, we might ask you to resend
- your patch series once bpf-next is open again. Once Linus released
- a v*-rc1 after the merge window, we continue processing of bpf-next.
-
- For non-subscribers to kernel mailing lists, there is also a status
- page run by David S. Miller on net-next that provides guidance:
-
- http://vger.kernel.org/~davem/net-next.html
-
-Q: I made a BPF verifier change, do I need to add test cases for
- BPF kernel selftests?
-
-A: If the patch has changes to the behavior of the verifier, then yes,
- it is absolutely necessary to add test cases to the BPF kernel
- selftests suite. If they are not present and we think they are
- needed, then we might ask for them before accepting any changes.
-
- In particular, test_verifier.c is tracking a high number of BPF test
- cases, including a lot of corner cases that LLVM BPF back end may
- generate out of the restricted C code. Thus, adding test cases is
- absolutely crucial to make sure future changes do not accidentally
- affect prior use-cases. Thus, treat those test cases as: verifier
- behavior that is not tracked in test_verifier.c could potentially
- be subject to change.
-
-Q: When should I add code to samples/bpf/ and when to BPF kernel
- selftests?
-
-A: In general, we prefer additions to BPF kernel selftests rather than
- samples/bpf/. The rationale is very simple: kernel selftests are
- regularly run by various bots to test for kernel regressions.
-
- The more test cases we add to BPF selftests, the better the coverage
- and the less likely it is that those could accidentally break. It is
- not that BPF kernel selftests cannot demo how a specific feature can
- be used.
-
- That said, samples/bpf/ may be a good place for people to get started,
- so it might be advisable that simple demos of features could go into
- samples/bpf/, but advanced functional and corner-case testing rather
- into kernel selftests.
-
- If your sample looks like a test case, then go for BPF kernel selftests
- instead!
-
-Q: When should I add code to the bpftool?
-
-A: The main purpose of bpftool (under tools/bpf/bpftool/) is to provide
- a central user space tool for debugging and introspection of BPF programs
- and maps that are active in the kernel. If UAPI changes related to BPF
- enable for dumping additional information of programs or maps, then
- bpftool should be extended as well to support dumping them.
-
-Q: When should I add code to iproute2's BPF loader?
-
-A: For UAPI changes related to the XDP or tc layer (e.g. cls_bpf), the
- convention is that those control-path related changes are added to
- iproute2's BPF loader as well from user space side. This is not only
- useful to have UAPI changes properly designed to be usable, but also
- to make those changes available to a wider user base of major
- downstream distributions.
-
-Q: Do you accept patches as well for iproute2's BPF loader?
-
-A: Patches for the iproute2's BPF loader have to be sent to:
-
- netdev@vger.kernel.org
-
- While those patches are not processed by the BPF kernel maintainers,
- please keep them in Cc as well, so they can be reviewed.
-
- The official git repository for iproute2 is run by Stephen Hemminger
- and can be found at:
-
- https://git.kernel.org/pub/scm/linux/kernel/git/shemminger/iproute2.git/
-
- The patches need to have a subject prefix of '[PATCH iproute2 master]'
- or '[PATCH iproute2 net-next]'. 'master' or 'net-next' describes the
- target branch where the patch should be applied to. Meaning, if kernel
- changes went into the net-next kernel tree, then the related iproute2
- changes need to go into the iproute2 net-next branch, otherwise they
- can be targeted at master branch. The iproute2 net-next branch will get
- merged into the master branch after the current iproute2 version from
- master has been released.
-
- Like BPF, the patches end up in patchwork under the netdev project and
- are delegated to 'shemminger' for further processing:
-
- http://patchwork.ozlabs.org/project/netdev/list/?delegate=389
-
-Q: What is the minimum requirement before I submit my BPF patches?
-
-A: When submitting patches, always take the time and properly test your
- patches *prior* to submission. Never rush them! If maintainers find
- that your patches have not been properly tested, it is a good way to
- get them grumpy. Testing patch submissions is a hard requirement!
-
- Note, fixes that go to bpf tree *must* have a Fixes: tag included. The
- same applies to fixes that target bpf-next, where the affected commit
- is in net-next (or in some cases bpf-next). The Fixes: tag is crucial
- in order to identify follow-up commits and tremendously helps for people
- having to do backporting, so it is a must have!
-
- We also don't accept patches with an empty commit message. Take your
- time and properly write up a high quality commit message, it is
- essential!
-
- Think about it this way: other developers looking at your code a month
- from now need to understand *why* a certain change has been done that
- way, and whether there have been flaws in the analysis or assumptions
- that the original author did. Thus providing a proper rationale and
- describing the use-case for the changes is a must.
-
- Patch submissions with >1 patch must have a cover letter which includes
- a high level description of the series. This high level summary will
- then be placed into the merge commit by the BPF maintainers such that
- it is also accessible from the git log for future reference.
-
-Q: What do I need to consider when adding a new instruction or feature
- that would require BPF JIT and/or LLVM integration as well?
-
-A: We try hard to keep all BPF JITs up to date such that the same user
- experience can be guaranteed when running BPF programs on different
- architectures without having the program punt to the less efficient
- interpreter in case the in-kernel BPF JIT is enabled.
-
- If you are unable to implement or test the required JIT changes for
- certain architectures, please work together with the related BPF JIT
- developers in order to get the feature implemented in a timely manner.
- Please refer to the git log (arch/*/net/) to locate the necessary
- people for helping out.
-
- Also always make sure to add BPF test cases (e.g. test_bpf.c and
- test_verifier.c) for new instructions, so that they can receive
- broad test coverage and help run-time testing the various BPF JITs.
-
- In case of new BPF instructions, once the changes have been accepted
- into the Linux kernel, please implement support into LLVM's BPF back
- end. See LLVM section below for further information.
-
-Stable submission:
-------------------
-
-Q: I need a specific BPF commit in stable kernels. What should I do?
-
-A: In case you need a specific fix in stable kernels, first check whether
- the commit has already been applied in the related linux-*.y branches:
-
- https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/
-
- If not the case, then drop an email to the BPF maintainers with the
- netdev kernel mailing list in Cc and ask for the fix to be queued up:
-
- netdev@vger.kernel.org
-
- The process in general is the same as on netdev itself, see also the
- netdev FAQ document.
-
-Q: Do you also backport to kernels not currently maintained as stable?
-
-A: No. If you need a specific BPF commit in kernels that are currently not
- maintained by the stable maintainers, then you are on your own.
-
- The current stable and longterm stable kernels are all listed here:
-
- https://www.kernel.org/
-
-Q: The BPF patch I am about to submit needs to go to stable as well. What
- should I do?
-
-A: The same rules apply as with netdev patch submissions in general, see
- netdev FAQ under:
-
- Documentation/networking/netdev-FAQ.txt
-
- Never add "Cc: stable@vger.kernel.org" to the patch description, but
- ask the BPF maintainers to queue the patches instead. This can be done
- with a note, for example, under the "---" part of the patch which does
- not go into the git log. Alternatively, this can be done as a simple
- request by mail instead.
-
-Q: Where do I find currently queued BPF patches that will be submitted
- to stable?
-
-A: Once patches that fix critical bugs got applied into the bpf tree, they
- are queued up for stable submission under:
-
- http://patchwork.ozlabs.org/bundle/bpf/stable/?state=*
-
- They will be on hold there at minimum until the related commit made its
- way into the mainline kernel tree.
-
- After having been under broader exposure, the queued patches will be
- submitted by the BPF maintainers to the stable maintainers.
-
-Testing patches:
-----------------
-
-Q: Which BPF kernel selftests version should I run my kernel against?
-
-A: If you run a kernel xyz, then always run the BPF kernel selftests from
- that kernel xyz as well. Do not expect that the BPF selftest from the
- latest mainline tree will pass all the time.
-
- In particular, test_bpf.c and test_verifier.c have a large number of
- test cases and are constantly updated with new BPF test sequences, or
- existing ones are adapted to verifier changes e.g. due to verifier
- becoming smarter and being able to better track certain things.
-
-LLVM:
------
-
-Q: Where do I find LLVM with BPF support?
-
-A: The BPF back end for LLVM is upstream in LLVM since version 3.7.1.
-
- All major distributions these days ship LLVM with BPF back end enabled,
- so for the majority of use-cases it is not required to compile LLVM by
- hand anymore, just install the distribution provided package.
-
- LLVM's static compiler lists the supported targets through 'llc --version',
- make sure BPF targets are listed. Example:
-
- $ llc --version
- LLVM (http://llvm.org/):
- LLVM version 6.0.0svn
- Optimized build.
- Default target: x86_64-unknown-linux-gnu
- Host CPU: skylake
-
- Registered Targets:
- bpf - BPF (host endian)
- bpfeb - BPF (big endian)
- bpfel - BPF (little endian)
- x86 - 32-bit X86: Pentium-Pro and above
- x86-64 - 64-bit X86: EM64T and AMD64
-
- For developers in order to utilize the latest features added to LLVM's
- BPF back end, it is advisable to run the latest LLVM releases. Support
- for new BPF kernel features such as additions to the BPF instruction
- set are often developed together.
-
- All LLVM releases can be found at: http://releases.llvm.org/
-
-Q: Got it, so how do I build LLVM manually anyway?
-
-A: You need cmake and gcc-c++ as build requisites for LLVM. Once you have
- that set up, proceed with building the latest LLVM and clang version
- from the git repositories:
-
- $ git clone http://llvm.org/git/llvm.git
- $ cd llvm/tools
- $ git clone --depth 1 http://llvm.org/git/clang.git
- $ cd ..; mkdir build; cd build
- $ cmake .. -DLLVM_TARGETS_TO_BUILD="BPF;X86" \
- -DBUILD_SHARED_LIBS=OFF \
- -DCMAKE_BUILD_TYPE=Release \
- -DLLVM_BUILD_RUNTIME=OFF
- $ make -j $(getconf _NPROCESSORS_ONLN)
-
- The built binaries can then be found in the build/bin/ directory, where
- you can point the PATH variable to.
-
-Q: Should I notify BPF kernel maintainers about issues in LLVM's BPF code
- generation back end or about LLVM generated code that the verifier
- refuses to accept?
-
-A: Yes, please do! LLVM's BPF back end is a key piece of the whole BPF
- infrastructure and it ties deeply into verification of programs from the
- kernel side. Therefore, any issues on either side need to be investigated
- and fixed whenever necessary.
-
- Therefore, please make sure to bring them up at netdev kernel mailing
- list and Cc BPF maintainers for LLVM and kernel bits:
-
- Yonghong Song <yhs@fb.com>
- Alexei Starovoitov <ast@kernel.org>
- Daniel Borkmann <daniel@iogearbox.net>
-
- LLVM also has an issue tracker where BPF related bugs can be found:
-
- https://bugs.llvm.org/buglist.cgi?quicksearch=bpf
-
- However, it is better to reach out through mailing lists with having
- maintainers in Cc.
-
-Q: I have added a new BPF instruction to the kernel, how can I integrate
- it into LLVM?
-
-A: LLVM has a -mcpu selector for the BPF back end in order to allow the
- selection of BPF instruction set extensions. By default the 'generic'
- processor target is used, which is the base instruction set (v1) of BPF.
-
- LLVM has an option to select -mcpu=probe where it will probe the host
- kernel for supported BPF instruction set extensions and selects the
- optimal set automatically.
-
- For cross-compilation, a specific version can be select manually as well.
-
- $ llc -march bpf -mcpu=help
- Available CPUs for this target:
-
- generic - Select the generic processor.
- probe - Select the probe processor.
- v1 - Select the v1 processor.
- v2 - Select the v2 processor.
- [...]
-
- Newly added BPF instructions to the Linux kernel need to follow the same
- scheme, bump the instruction set version and implement probing for the
- extensions such that -mcpu=probe users can benefit from the optimization
- transparently when upgrading their kernels.
-
- If you are unable to implement support for the newly added BPF instruction
- please reach out to BPF developers for help.
-
- By the way, the BPF kernel selftests run with -mcpu=probe for better
- test coverage.
-
-Q: In some cases clang flag "-target bpf" is used but in other cases the
- default clang target, which matches the underlying architecture, is used.
- What is the difference and when I should use which?
-
-A: Although LLVM IR generation and optimization try to stay architecture
- independent, "-target <arch>" still has some impact on generated code:
-
- - BPF program may recursively include header file(s) with file scope
- inline assembly codes. The default target can handle this well,
- while bpf target may fail if bpf backend assembler does not
- understand these assembly codes, which is true in most cases.
-
- - When compiled without -g, additional elf sections, e.g.,
- .eh_frame and .rela.eh_frame, may be present in the object file
- with default target, but not with bpf target.
-
- - The default target may turn a C switch statement into a switch table
- lookup and jump operation. Since the switch table is placed
- in the global readonly section, the bpf program will fail to load.
- The bpf target does not support switch table optimization.
- The clang option "-fno-jump-tables" can be used to disable
- switch table generation.
-
- - For clang -target bpf, it is guaranteed that pointer or long /
- unsigned long types will always have a width of 64 bit, no matter
- whether underlying clang binary or default target (or kernel) is
- 32 bit. However, when native clang target is used, then it will
- compile these types based on the underlying architecture's conventions,
- meaning in case of 32 bit architecture, pointer or long / unsigned
- long types e.g. in BPF context structure will have width of 32 bit
- while the BPF LLVM back end still operates in 64 bit. The native
- target is mostly needed in tracing for the case of walking pt_regs
- or other kernel structures where CPU's register width matters.
- Otherwise, clang -target bpf is generally recommended.
-
- You should use default target when:
-
- - Your program includes a header file, e.g., ptrace.h, which eventually
- pulls in some header files containing file scope host assembly codes.
- - You can add "-fno-jump-tables" to work around the switch table issue.
-
- Otherwise, you can use bpf target. Additionally, you _must_ use bpf target
- when:
-
- - Your program uses data structures with pointer or long / unsigned long
- types that interface with BPF helpers or context data structures. Access
- into these structures is verified by the BPF verifier and may result
- in verification failures if the native architecture is not aligned with
- the BPF architecture, e.g. 64-bit. An example of this is
- BPF_PROG_TYPE_SK_MSG require '-target bpf'
-
-Happy BPF hacking!
diff --git a/Documentation/core-api/printk-formats.rst b/Documentation/core-api/printk-formats.rst
index eb30efd..25dc591 100644
--- a/Documentation/core-api/printk-formats.rst
+++ b/Documentation/core-api/printk-formats.rst
@@ -419,11 +419,10 @@ struct clk
%pC pll1
%pCn pll1
- %pCr 1560000000
For printing struct clk structures. %pC and %pCn print the name
(Common Clock Framework) or address (legacy clock framework) of the
-structure; %pCr prints the current clock rate.
+structure.
Passed by reference.
diff --git a/Documentation/dell_rbu.txt b/Documentation/dell_rbu.txt
index 0fdb6aa..5d1ce7b 100644
--- a/Documentation/dell_rbu.txt
+++ b/Documentation/dell_rbu.txt
@@ -121,10 +121,7 @@ read back the image downloaded.
.. note::
- This driver requires a patch for firmware_class.c which has the modified
- request_firmware_nowait function.
-
- Also after updating the BIOS image a user mode application needs to execute
+ After updating the BIOS image a user mode application needs to execute
code which sends the BIOS update request to the BIOS. So on the next reboot
the BIOS knows about the new image downloaded and it updates itself.
Also don't unload the rbu driver if the image has to be updated.
diff --git a/Documentation/device-mapper/writecache.txt b/Documentation/device-mapper/writecache.txt
new file mode 100644
index 0000000..4424fa2
--- /dev/null
+++ b/Documentation/device-mapper/writecache.txt
@@ -0,0 +1,68 @@
+The writecache target caches writes on persistent memory or on SSD. It
+doesn't cache reads because reads are supposed to be cached in page cache
+in normal RAM.
+
+When the device is constructed, the first sector should be zeroed or the
+first sector should contain valid superblock from previous invocation.
+
+Constructor parameters:
+1. type of the cache device - "p" or "s"
+ p - persistent memory
+ s - SSD
+2. the underlying device that will be cached
+3. the cache device
+4. block size (4096 is recommended; the maximum block size is the page
+ size)
+5. the number of optional parameters (the parameters with an argument
+ count as two)
+ high_watermark n (default: 50)
+ start writeback when the number of used blocks reach this
+ watermark
+ low_watermark x (default: 45)
+ stop writeback when the number of used blocks drops below
+ this watermark
+ writeback_jobs n (default: unlimited)
+ limit the number of blocks that are in flight during
+ writeback. Setting this value reduces writeback
+ throughput, but it may improve latency of read requests
+ autocommit_blocks n (default: 64 for pmem, 65536 for ssd)
+ when the application writes this amount of blocks without
+ issuing the FLUSH request, the blocks are automatically
+ commited
+ autocommit_time ms (default: 1000)
+ autocommit time in milliseconds. The data is automatically
+ commited if this time passes and no FLUSH request is
+ received
+ fua (by default on)
+ applicable only to persistent memory - use the FUA flag
+ when writing data from persistent memory back to the
+ underlying device
+ nofua
+ applicable only to persistent memory - don't use the FUA
+ flag when writing back data and send the FLUSH request
+ afterwards
+ - some underlying devices perform better with fua, some
+ with nofua. The user should test it
+
+Status:
+1. error indicator - 0 if there was no error, otherwise error number
+2. the number of blocks
+3. the number of free blocks
+4. the number of blocks under writeback
+
+Messages:
+ flush
+ flush the cache device. The message returns successfully
+ if the cache device was flushed without an error
+ flush_on_suspend
+ flush the cache device on next suspend. Use this message
+ when you are going to remove the cache device. The proper
+ sequence for removing the cache device is:
+ 1. send the "flush_on_suspend" message
+ 2. load an inactive table with a linear target that maps
+ to the underlying device
+ 3. suspend the device
+ 4. ask for status and verify that there are no errors
+ 5. resume the device, so that it will use the linear
+ target
+ 6. the cache device is now inactive and it can be deleted
diff --git a/Documentation/devicetree/bindings/arm/amlogic.txt b/Documentation/devicetree/bindings/arm/amlogic.txt
index f747f47..6988056 100644
--- a/Documentation/devicetree/bindings/arm/amlogic.txt
+++ b/Documentation/devicetree/bindings/arm/amlogic.txt
@@ -25,6 +25,10 @@ Boards with the Amlogic Meson8b SoC shall have the following properties:
Required root node property:
compatible: "amlogic,meson8b";
+Boards with the Amlogic Meson8m2 SoC shall have the following properties:
+ Required root node property:
+ compatible: "amlogic,meson8m2";
+
Boards with the Amlogic Meson GXBaby SoC shall have the following properties:
Required root node property:
compatible: "amlogic,meson-gxbb";
@@ -54,6 +58,8 @@ Board compatible values (alphabetically, grouped by SoC):
- "hardkernel,odroid-c1" (Meson8b)
- "tronfy,mxq" (Meson8b)
+ - "tronsmart,mxiii-plus" (Meson8m2)
+
- "amlogic,p200" (Meson gxbb)
- "amlogic,p201" (Meson gxbb)
- "friendlyarm,nanopi-k2" (Meson gxbb)
diff --git a/Documentation/devicetree/bindings/arm/bcm/brcm,bcm2835.txt b/Documentation/devicetree/bindings/arm/bcm/brcm,bcm2835.txt
index 3e3efa0..1e3e29a 100644
--- a/Documentation/devicetree/bindings/arm/bcm/brcm,bcm2835.txt
+++ b/Documentation/devicetree/bindings/arm/bcm/brcm,bcm2835.txt
@@ -34,6 +34,10 @@ Raspberry Pi 3 Model B
Required root node properties:
compatible = "raspberrypi,3-model-b", "brcm,bcm2837";
+Raspberry Pi 3 Model B+
+Required root node properties:
+compatible = "raspberrypi,3-model-b-plus", "brcm,bcm2837";
+
Raspberry Pi Compute Module
Required root node properties:
compatible = "raspberrypi,compute-module", "brcm,bcm2835";
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,g3dsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,g3dsys.txt
new file mode 100644
index 0000000..7de43bf
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,g3dsys.txt
@@ -0,0 +1,30 @@
+MediaTek g3dsys controller
+============================
+
+The MediaTek g3dsys controller provides various clocks and reset controller to
+the GPU.
+
+Required Properties:
+
+- compatible: Should be:
+ - "mediatek,mt2701-g3dsys", "syscon":
+ for MT2701 SoC
+ - "mediatek,mt7623-g3dsys", "mediatek,mt2701-g3dsys", "syscon":
+ for MT7623 SoC
+- #clock-cells: Must be 1
+- #reset-cells: Must be 1
+
+The g3dsys controller uses the common clk binding from
+Documentation/devicetree/bindings/clock/clock-bindings.txt
+The available clocks are defined in dt-bindings/clock/mt*-clk.h.
+
+Example:
+
+g3dsys: clock-controller@13000000 {
+ compatible = "mediatek,mt7623-g3dsys",
+ "mediatek,mt2701-g3dsys",
+ "syscon";
+ reg = <0 0x13000000 0 0x200>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+};
diff --git a/Documentation/devicetree/bindings/arm/samsung/samsung-boards.txt b/Documentation/devicetree/bindings/arm/samsung/samsung-boards.txt
index 14510b2..bdadc3d 100644
--- a/Documentation/devicetree/bindings/arm/samsung/samsung-boards.txt
+++ b/Documentation/devicetree/bindings/arm/samsung/samsung-boards.txt
@@ -21,8 +21,6 @@ Required root node properties:
- "samsung,smdk5420" - for Exynos5420-based Samsung SMDK5420 eval board.
- "samsung,tm2" - for Exynos5433-based Samsung TM2 board.
- "samsung,tm2e" - for Exynos5433-based Samsung TM2E board.
- - "samsung,sd5v1" - for Exynos5440-based Samsung board.
- - "samsung,ssdk5440" - for Exynos5440-based Samsung board.
* Other companies Exynos SoC based
* FriendlyARM
diff --git a/Documentation/devicetree/bindings/arm/shmobile.txt b/Documentation/devicetree/bindings/arm/shmobile.txt
index d3d1df9..d8cf740 100644
--- a/Documentation/devicetree/bindings/arm/shmobile.txt
+++ b/Documentation/devicetree/bindings/arm/shmobile.txt
@@ -21,6 +21,8 @@ SoCs:
compatible = "renesas,r8a7744"
- RZ/G1E (R8A77450)
compatible = "renesas,r8a7745"
+ - RZ/G1C (R8A77470)
+ compatible = "renesas,r8a77470"
- R-Car M1A (R8A77781)
compatible = "renesas,r8a7778"
- R-Car H1 (R8A77790)
@@ -45,6 +47,8 @@ SoCs:
compatible = "renesas,r8a77970"
- R-Car V3H (R8A77980)
compatible = "renesas,r8a77980"
+ - R-Car E3 (R8A77990)
+ compatible = "renesas,r8a77990"
- R-Car D3 (R8A77995)
compatible = "renesas,r8a77995"
@@ -67,6 +71,8 @@ Boards:
compatible = "renesas,draak", "renesas,r8a77995"
- Eagle (RTP0RC77970SEB0010S)
compatible = "renesas,eagle", "renesas,r8a77970"
+ - Ebisu (RTP0RC77990SEB0010S)
+ compatible = "renesas,ebisu", "renesas,r8a77990"
- Genmai (RTK772100BC00000BR)
compatible = "renesas,genmai", "renesas,r7s72100"
- GR-Peach (X28A-M01-E/F)
@@ -78,6 +84,8 @@ Boards:
compatible = "renesas,h3ulcb", "renesas,r8a7795"
- Henninger
compatible = "renesas,henninger", "renesas,r8a7791"
+ - iWave Systems RZ/G1C Single Board Computer (iW-RainboW-G23S)
+ compatible = "iwave,g23s", "renesas,r8a77470"
- iWave Systems RZ/G1E SODIMM SOM Development Platform (iW-RainboW-G22D)
compatible = "iwave,g22d", "iwave,g22m", "renesas,r8a7745"
- iWave Systems RZ/G1E SODIMM System On Module (iW-RainboW-G22M-SM)
@@ -108,7 +116,7 @@ Boards:
compatible = "renesas,salvator-x", "renesas,r8a7795"
- Salvator-X (RTP0RC7796SIPB0011S)
compatible = "renesas,salvator-x", "renesas,r8a7796"
- - Salvator-X (RTP0RC7796SIPB0011S (M3N))
+ - Salvator-X (RTP0RC7796SIPB0011S (M3-N))
compatible = "renesas,salvator-x", "renesas,r8a77965"
- Salvator-XS (Salvator-X 2nd version, RTP0RC7795SIPB0012S)
compatible = "renesas,salvator-xs", "renesas,r8a7795"
@@ -124,6 +132,8 @@ Boards:
compatible = "renesas,sk-rzg1m", "renesas,r8a7743"
- Stout (ADAS Starterkit, Y-R-CAR-ADAS-SKH2-BOARD)
compatible = "renesas,stout", "renesas,r8a7790"
+ - V3HSK (Y-ASK-RCAR-V3H-WS10)
+ compatible = "renesas,v3hsk", "renesas,r8a77980"
- V3MSK (Y-ASK-RCAR-V3M-WS10)
compatible = "renesas,v3msk", "renesas,r8a77970"
- Wheat (RTP0RC7792ASKB0000JE)
diff --git a/Documentation/devicetree/bindings/arm/stm32/stm32-syscon.txt b/Documentation/devicetree/bindings/arm/stm32/stm32-syscon.txt
new file mode 100644
index 0000000..99980ae
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/stm32/stm32-syscon.txt
@@ -0,0 +1,14 @@
+STMicroelectronics STM32 Platforms System Controller
+
+Properties:
+ - compatible : should contain two values. First value must be :
+ - " st,stm32mp157-syscfg " - for stm32mp157 based SoCs,
+ second value must be always "syscon".
+ - reg : offset and length of the register set.
+
+ Example:
+ syscfg: syscon@50020000 {
+ compatible = "st,stm32mp157-syscfg", "syscon";
+ reg = <0x50020000 0x400>;
+ };
+
diff --git a/Documentation/devicetree/bindings/arm/stm32.txt b/Documentation/devicetree/bindings/arm/stm32/stm32.txt
index 6808ed9..6808ed9 100644
--- a/Documentation/devicetree/bindings/arm/stm32.txt
+++ b/Documentation/devicetree/bindings/arm/stm32/stm32.txt
diff --git a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-mc.txt b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-mc.txt
deleted file mode 100644
index bdf1a61..0000000
--- a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-mc.txt
+++ /dev/null
@@ -1,18 +0,0 @@
-NVIDIA Tegra30 MC(Memory Controller)
-
-Required properties:
-- compatible : "nvidia,tegra30-mc"
-- reg : Should contain 4 register ranges(address and length); see the
- example below. Note that the MC registers are interleaved with the
- SMMU registers, and hence must be represented as multiple ranges.
-- interrupts : Should contain MC General interrupt.
-
-Example:
- memory-controller {
- compatible = "nvidia,tegra30-mc";
- reg = <0x7000f000 0x010
- 0x7000f03c 0x1b4
- 0x7000f200 0x028
- 0x7000f284 0x17c>;
- interrupts = <0 77 0x04>;
- };
diff --git a/Documentation/devicetree/bindings/arm/ux500/boards.txt b/Documentation/devicetree/bindings/arm/ux500/boards.txt
index 7334c24..0fa4295 100644
--- a/Documentation/devicetree/bindings/arm/ux500/boards.txt
+++ b/Documentation/devicetree/bindings/arm/ux500/boards.txt
@@ -26,7 +26,7 @@ interrupt-controller:
see binding for interrupt-controller/arm,gic.txt
timer:
- see binding for arm/twd.txt
+ see binding for timer/arm,twd.txt
clocks:
see binding for clocks/ux500.txt
diff --git a/Documentation/devicetree/bindings/bus/ti-sysc.txt b/Documentation/devicetree/bindings/bus/ti-sysc.txt
index 2957a9a..d8ed5b7 100644
--- a/Documentation/devicetree/bindings/bus/ti-sysc.txt
+++ b/Documentation/devicetree/bindings/bus/ti-sysc.txt
@@ -79,7 +79,11 @@ Optional properties:
mode as for example omap4 L4_CFG_CLKCTRL
- clock-names should contain at least "fck", and optionally also "ick"
- depending on the SoC and the interconnect target module
+ depending on the SoC and the interconnect target module,
+ some interconnect target modules also need additional
+ optional clocks that can be specified as listed in TRM
+ for the related CLKCTRL register bits 8 to 15 such as
+ "dbclk" or "clk32k" depending on their role
- ti,hwmods optional TI interconnect module name to use legacy
hwmod platform data
diff --git a/Documentation/devicetree/bindings/clock/actions,s900-cmu.txt b/Documentation/devicetree/bindings/clock/actions,s900-cmu.txt
new file mode 100644
index 0000000..93e4fb8
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/actions,s900-cmu.txt
@@ -0,0 +1,47 @@
+* Actions S900 Clock Management Unit (CMU)
+
+The Actions S900 clock management unit generates and supplies clock to various
+controllers within the SoC. The clock binding described here is applicable to
+S900 SoC.
+
+Required Properties:
+
+- compatible: should be "actions,s900-cmu"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- clocks: Reference to the parent clocks ("hosc", "losc")
+- #clock-cells: should be 1.
+
+Each clock is assigned an identifier, and client nodes can use this identifier
+to specify the clock which they consume.
+
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/actions,s900-cmu.h header and can be used in device
+tree sources.
+
+External clocks:
+
+The hosc clock used as input for the plls is generated outside the SoC. It is
+expected that it is defined using standard clock bindings as "hosc".
+
+Actions S900 CMU also requires one more clock:
+ - "losc" - internal low frequency oscillator
+
+Example: Clock Management Unit node:
+
+ cmu: clock-controller@e0160000 {
+ compatible = "actions,s900-cmu";
+ reg = <0x0 0xe0160000 0x0 0x1000>;
+ clocks = <&hosc>, <&losc>;
+ #clock-cells = <1>;
+ };
+
+Example: UART controller node that consumes clock generated by the clock
+management unit:
+
+ uart: serial@e012a000 {
+ compatible = "actions,s900-uart", "actions,owl-uart";
+ reg = <0x0 0xe012a000 0x0 0x2000>;
+ interrupts = <GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cmu CLK_UART5>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/amlogic,gxbb-aoclkc.txt b/Documentation/devicetree/bindings/clock/amlogic,gxbb-aoclkc.txt
index 786dc39..3a88052 100644
--- a/Documentation/devicetree/bindings/clock/amlogic,gxbb-aoclkc.txt
+++ b/Documentation/devicetree/bindings/clock/amlogic,gxbb-aoclkc.txt
@@ -9,6 +9,7 @@ Required Properties:
- GXBB (S905) : "amlogic,meson-gxbb-aoclkc"
- GXL (S905X, S905D) : "amlogic,meson-gxl-aoclkc"
- GXM (S912) : "amlogic,meson-gxm-aoclkc"
+ - AXG (A113D, A113X) : "amlogic,meson-axg-aoclkc"
followed by the common "amlogic,meson-gx-aoclkc"
- #clock-cells: should be 1.
diff --git a/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt b/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt
index e2b377e..e950599 100644
--- a/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt
+++ b/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt
@@ -10,9 +10,6 @@ Required Properties:
"amlogic,gxl-clkc" for GXL and GXM SoC,
"amlogic,axg-clkc" for AXG SoC.
-- reg: physical base address of the clock controller and length of memory
- mapped region.
-
- #clock-cells: should be 1.
Each clock is assigned an identifier and client nodes can use this identifier
@@ -20,13 +17,22 @@ to specify the clock which they consume. All available clocks are defined as
preprocessor macros in the dt-bindings/clock/gxbb-clkc.h header and can be
used in device tree sources.
+Parent node should have the following properties :
+- compatible: "syscon", "simple-mfd, and "amlogic,meson-gx-hhi-sysctrl" or
+ "amlogic,meson-axg-hhi-sysctrl"
+- reg: base address and size of the HHI system control register space.
+
Example: Clock controller node:
- clkc: clock-controller@c883c000 {
+sysctrl: system-controller@0 {
+ compatible = "amlogic,meson-gx-hhi-sysctrl", "syscon", "simple-mfd";
+ reg = <0 0 0 0x400>;
+
+ clkc: clock-controller {
#clock-cells = <1>;
compatible = "amlogic,gxbb-clkc";
- reg = <0x0 0xc883c000 0x0 0x3db>;
};
+};
Example: UART controller node that consumes the clock generated by the clock
controller:
diff --git a/Documentation/devicetree/bindings/clock/brcm,iproc-clocks.txt b/Documentation/devicetree/bindings/clock/brcm,iproc-clocks.txt
index f8e4a93..ab730ea 100644
--- a/Documentation/devicetree/bindings/clock/brcm,iproc-clocks.txt
+++ b/Documentation/devicetree/bindings/clock/brcm,iproc-clocks.txt
@@ -276,36 +276,38 @@ These clock IDs are defined in:
clk_ts_500_ref genpll2 2 BCM_SR_GENPLL2_TS_500_REF_CLK
clk_125_nitro genpll2 3 BCM_SR_GENPLL2_125_NITRO_CLK
clk_chimp genpll2 4 BCM_SR_GENPLL2_CHIMP_CLK
- clk_nic_flash genpll2 5 BCM_SR_GENPLL2_NIC_FLASH
+ clk_nic_flash genpll2 5 BCM_SR_GENPLL2_NIC_FLASH_CLK
+ clk_fs genpll2 6 BCM_SR_GENPLL2_FS_CLK
genpll3 crystal 0 BCM_SR_GENPLL3
clk_hsls genpll3 1 BCM_SR_GENPLL3_HSLS_CLK
clk_sdio genpll3 2 BCM_SR_GENPLL3_SDIO_CLK
genpll4 crystal 0 BCM_SR_GENPLL4
- ccn genpll4 1 BCM_SR_GENPLL4_CCN_CLK
+ clk_ccn genpll4 1 BCM_SR_GENPLL4_CCN_CLK
clk_tpiu_pll genpll4 2 BCM_SR_GENPLL4_TPIU_PLL_CLK
- noc_clk genpll4 3 BCM_SR_GENPLL4_NOC_CLK
+ clk_noc genpll4 3 BCM_SR_GENPLL4_NOC_CLK
clk_chclk_fs4 genpll4 4 BCM_SR_GENPLL4_CHCLK_FS4_CLK
clk_bridge_fscpu genpll4 5 BCM_SR_GENPLL4_BRIDGE_FSCPU_CLK
-
genpll5 crystal 0 BCM_SR_GENPLL5
- fs4_hf_clk genpll5 1 BCM_SR_GENPLL5_FS4_HF_CLK
- crypto_ae_clk genpll5 2 BCM_SR_GENPLL5_CRYPTO_AE_CLK
- raid_ae_clk genpll5 3 BCM_SR_GENPLL5_RAID_AE_CLK
+ clk_fs4_hf genpll5 1 BCM_SR_GENPLL5_FS4_HF_CLK
+ clk_crypto_ae genpll5 2 BCM_SR_GENPLL5_CRYPTO_AE_CLK
+ clk_raid_ae genpll5 3 BCM_SR_GENPLL5_RAID_AE_CLK
genpll6 crystal 0 BCM_SR_GENPLL6
- 48_usb genpll6 1 BCM_SR_GENPLL6_48_USB_CLK
+ clk_48_usb genpll6 1 BCM_SR_GENPLL6_48_USB_CLK
lcpll0 crystal 0 BCM_SR_LCPLL0
clk_sata_refp lcpll0 1 BCM_SR_LCPLL0_SATA_REFP_CLK
clk_sata_refn lcpll0 2 BCM_SR_LCPLL0_SATA_REFN_CLK
- clk_usb_ref lcpll0 3 BCM_SR_LCPLL0_USB_REF_CLK
- sata_refpn lcpll0 3 BCM_SR_LCPLL0_SATA_REFPN_CLK
+ clk_sata_350 lcpll0 3 BCM_SR_LCPLL0_SATA_350_CLK
+ clk_sata_500 lcpll0 4 BCM_SR_LCPLL0_SATA_500_CLK
lcpll1 crystal 0 BCM_SR_LCPLL1
- wan lcpll1 1 BCM_SR_LCPLL0_WAN_CLK
+ clk_wan lcpll1 1 BCM_SR_LCPLL1_WAN_CLK
+ clk_usb_ref lcpll1 2 BCM_SR_LCPLL1_USB_REF_CLK
+ clk_crmu_ts lcpll1 3 BCM_SR_LCPLL1_CRMU_TS_CLK
lcpll_pcie crystal 0 BCM_SR_LCPLL_PCIE
- pcie_phy_ref lcpll1 1 BCM_SR_LCPLL_PCIE_PHY_REF_CLK
+ clk_pcie_phy_ref lcpll1 1 BCM_SR_LCPLL_PCIE_PHY_REF_CLK
diff --git a/Documentation/devicetree/bindings/clock/nuvoton,npcm750-clk.txt b/Documentation/devicetree/bindings/clock/nuvoton,npcm750-clk.txt
new file mode 100644
index 0000000..f820645
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/nuvoton,npcm750-clk.txt
@@ -0,0 +1,100 @@
+* Nuvoton NPCM7XX Clock Controller
+
+Nuvoton Poleg BMC NPCM7XX contains an integrated clock controller, which
+generates and supplies clocks to all modules within the BMC.
+
+External clocks:
+
+There are six fixed clocks that are generated outside the BMC. All clocks are of
+a known fixed value that cannot be changed. clk_refclk, clk_mcbypck and
+clk_sysbypck are inputs to the clock controller.
+clk_rg1refck, clk_rg2refck and clk_xin are external clocks suppling the
+network. They are set on the device tree, but not used by the clock module. The
+network devices use them directly.
+Example can be found below.
+
+All available clocks are defined as preprocessor macros in:
+dt-bindings/clock/nuvoton,npcm7xx-clock.h
+and can be reused as DT sources.
+
+Required Properties of clock controller:
+
+ - compatible: "nuvoton,npcm750-clk" : for clock controller of Nuvoton
+ Poleg BMC NPCM750
+
+ - reg: physical base address of the clock controller and length of
+ memory mapped region.
+
+ - #clock-cells: should be 1.
+
+Example: Clock controller node:
+
+ clk: clock-controller@f0801000 {
+ compatible = "nuvoton,npcm750-clk";
+ #clock-cells = <1>;
+ reg = <0xf0801000 0x1000>;
+ clock-names = "refclk", "sysbypck", "mcbypck";
+ clocks = <&clk_refclk>, <&clk_sysbypck>, <&clk_mcbypck>;
+ };
+
+Example: Required external clocks for network:
+
+ /* external reference clock */
+ clk_refclk: clk-refclk {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <25000000>;
+ clock-output-names = "refclk";
+ };
+
+ /* external reference clock for cpu. float in normal operation */
+ clk_sysbypck: clk-sysbypck {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <800000000>;
+ clock-output-names = "sysbypck";
+ };
+
+ /* external reference clock for MC. float in normal operation */
+ clk_mcbypck: clk-mcbypck {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <800000000>;
+ clock-output-names = "mcbypck";
+ };
+
+ /* external clock signal rg1refck, supplied by the phy */
+ clk_rg1refck: clk-rg1refck {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <125000000>;
+ clock-output-names = "clk_rg1refck";
+ };
+
+ /* external clock signal rg2refck, supplied by the phy */
+ clk_rg2refck: clk-rg2refck {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <125000000>;
+ clock-output-names = "clk_rg2refck";
+ };
+
+ clk_xin: clk-xin {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <50000000>;
+ clock-output-names = "clk_xin";
+ };
+
+
+Example: GMAC controller node that consumes two clocks: a generated clk by the
+clock controller and a fixed clock from DT (clk_rg1refck).
+
+ ethernet0: ethernet@f0802000 {
+ compatible = "snps,dwmac";
+ reg = <0xf0802000 0x2000>;
+ interrupts = <0 14 4>;
+ interrupt-names = "macirq";
+ clocks = <&clk_rg1refck>, <&clk NPCM7XX_CLK_AHB>;
+ clock-names = "stmmaceth", "clk_gmac";
+ };
diff --git a/Documentation/devicetree/bindings/clock/qcom,gcc.txt b/Documentation/devicetree/bindings/clock/qcom,gcc.txt
index 551d03b..664ea1f 100644
--- a/Documentation/devicetree/bindings/clock/qcom,gcc.txt
+++ b/Documentation/devicetree/bindings/clock/qcom,gcc.txt
@@ -17,7 +17,9 @@ Required properties :
"qcom,gcc-msm8974pro-ac"
"qcom,gcc-msm8994"
"qcom,gcc-msm8996"
+ "qcom,gcc-msm8998"
"qcom,gcc-mdm9615"
+ "qcom,gcc-sdm845"
- reg : shall contain base register location and length
- #clock-cells : shall contain 1
diff --git a/Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt b/Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt
new file mode 100644
index 0000000..3c00765
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt
@@ -0,0 +1,22 @@
+Qualcomm Technologies, Inc. RPMh Clocks
+-------------------------------------------------------
+
+Resource Power Manager Hardened (RPMh) manages shared resources on
+some Qualcomm Technologies Inc. SoCs. It accepts clock requests from
+other hardware subsystems via RSC to control clocks.
+
+Required properties :
+- compatible : shall contain "qcom,sdm845-rpmh-clk"
+
+- #clock-cells : must contain 1
+
+Example :
+
+#include <dt-bindings/clock/qcom,rpmh.h>
+
+ &apps_rsc {
+ rpmhcc: clock-controller {
+ compatible = "qcom,sdm845-rpmh-clk";
+ #clock-cells = <1>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/clock/qcom,videocc.txt b/Documentation/devicetree/bindings/clock/qcom,videocc.txt
new file mode 100644
index 0000000..e7c035a
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/qcom,videocc.txt
@@ -0,0 +1,19 @@
+Qualcomm Video Clock & Reset Controller Binding
+-----------------------------------------------
+
+Required properties :
+- compatible : shall contain "qcom,sdm845-videocc"
+- reg : shall contain base register location and length
+- #clock-cells : from common clock binding, shall contain 1.
+- #power-domain-cells : from generic power domain binding, shall contain 1.
+
+Optional properties :
+- #reset-cells : from common reset binding, shall contain 1.
+
+Example:
+ videocc: clock-controller@ab00000 {
+ compatible = "qcom,sdm845-videocc";
+ reg = <0xab00000 0x10000>;
+ #clock-cells = <1>;
+ #power-domain-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/renesas,cpg-mssr.txt b/Documentation/devicetree/bindings/clock/renesas,cpg-mssr.txt
index 773a522..db542ab 100644
--- a/Documentation/devicetree/bindings/clock/renesas,cpg-mssr.txt
+++ b/Documentation/devicetree/bindings/clock/renesas,cpg-mssr.txt
@@ -15,6 +15,7 @@ Required Properties:
- compatible: Must be one of:
- "renesas,r8a7743-cpg-mssr" for the r8a7743 SoC (RZ/G1M)
- "renesas,r8a7745-cpg-mssr" for the r8a7745 SoC (RZ/G1E)
+ - "renesas,r8a77470-cpg-mssr" for the r8a77470 SoC (RZ/G1C)
- "renesas,r8a7790-cpg-mssr" for the r8a7790 SoC (R-Car H2)
- "renesas,r8a7791-cpg-mssr" for the r8a7791 SoC (R-Car M2-W)
- "renesas,r8a7792-cpg-mssr" for the r8a7792 SoC (R-Car V2H)
@@ -25,6 +26,7 @@ Required Properties:
- "renesas,r8a77965-cpg-mssr" for the r8a77965 SoC (R-Car M3-N)
- "renesas,r8a77970-cpg-mssr" for the r8a77970 SoC (R-Car V3M)
- "renesas,r8a77980-cpg-mssr" for the r8a77980 SoC (R-Car V3H)
+ - "renesas,r8a77990-cpg-mssr" for the r8a77990 SoC (R-Car E3)
- "renesas,r8a77995-cpg-mssr" for the r8a77995 SoC (R-Car D3)
- reg: Base address and length of the memory resource used by the CPG/MSSR
@@ -33,10 +35,12 @@ Required Properties:
- clocks: References to external parent clocks, one entry for each entry in
clock-names
- clock-names: List of external parent clock names. Valid names are:
- - "extal" (r8a7743, r8a7745, r8a7790, r8a7791, r8a7792, r8a7793, r8a7794,
- r8a7795, r8a7796, r8a77965, r8a77970, r8a77980, r8a77995)
+ - "extal" (r8a7743, r8a7745, r8a77470, r8a7790, r8a7791, r8a7792,
+ r8a7793, r8a7794, r8a7795, r8a7796, r8a77965, r8a77970,
+ r8a77980, r8a77990, r8a77995)
- "extalr" (r8a7795, r8a7796, r8a77965, r8a77970, r8a77980)
- - "usb_extal" (r8a7743, r8a7745, r8a7790, r8a7791, r8a7793, r8a7794)
+ - "usb_extal" (r8a7743, r8a7745, r8a77470, r8a7790, r8a7791, r8a7793,
+ r8a7794)
- #clock-cells: Must be 2
- For CPG core clocks, the two clock specifier cells must be "CPG_CORE"
diff --git a/Documentation/devicetree/bindings/clock/rockchip.txt b/Documentation/devicetree/bindings/clock/rockchip.txt
deleted file mode 100644
index 22f6769..0000000
--- a/Documentation/devicetree/bindings/clock/rockchip.txt
+++ /dev/null
@@ -1,77 +0,0 @@
-Device Tree Clock bindings for arch-rockchip
-
-This binding uses the common clock binding[1].
-
-[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
-
-== Gate clocks ==
-
-These bindings are deprecated!
-Please use the soc specific CRU bindings instead.
-
-The gate registers form a continuos block which makes the dt node
-structure a matter of taste, as either all gates can be put into
-one gate clock spanning all registers or they can be divided into
-the 10 individual gates containing 16 clocks each.
-The code supports both approaches.
-
-Required properties:
-- compatible : "rockchip,rk2928-gate-clk"
-- reg : shall be the control register address(es) for the clock.
-- #clock-cells : from common clock binding; shall be set to 1
-- clock-output-names : the corresponding gate names that the clock controls
-- clocks : should contain the parent clock for each individual gate,
- therefore the number of clocks elements should match the number of
- clock-output-names
-
-Example using multiple gate clocks:
-
- clk_gates0: gate-clk@200000d0 {
- compatible = "rockchip,rk2928-gate-clk";
- reg = <0x200000d0 0x4>;
- clocks = <&dummy>, <&dummy>,
- <&dummy>, <&dummy>,
- <&dummy>, <&dummy>,
- <&dummy>, <&dummy>,
- <&dummy>, <&dummy>,
- <&dummy>, <&dummy>,
- <&dummy>, <&dummy>,
- <&dummy>, <&dummy>;
-
- clock-output-names =
- "gate_core_periph", "gate_cpu_gpll",
- "gate_ddrphy", "gate_aclk_cpu",
- "gate_hclk_cpu", "gate_pclk_cpu",
- "gate_atclk_cpu", "gate_i2s0",
- "gate_i2s0_frac", "gate_i2s1",
- "gate_i2s1_frac", "gate_i2s2",
- "gate_i2s2_frac", "gate_spdif",
- "gate_spdif_frac", "gate_testclk";
-
- #clock-cells = <1>;
- };
-
- clk_gates1: gate-clk@200000d4 {
- compatible = "rockchip,rk2928-gate-clk";
- reg = <0x200000d4 0x4>;
- clocks = <&xin24m>, <&xin24m>,
- <&xin24m>, <&dummy>,
- <&dummy>, <&xin24m>,
- <&xin24m>, <&dummy>,
- <&xin24m>, <&dummy>,
- <&xin24m>, <&dummy>,
- <&xin24m>, <&dummy>,
- <&xin24m>, <&dummy>;
-
- clock-output-names =
- "gate_timer0", "gate_timer1",
- "gate_timer2", "gate_jtag",
- "gate_aclk_lcdc1_src", "gate_otgphy0",
- "gate_otgphy1", "gate_ddr_gpll",
- "gate_uart0", "gate_frac_uart0",
- "gate_uart1", "gate_frac_uart1",
- "gate_uart2", "gate_frac_uart2",
- "gate_uart3", "gate_frac_uart3";
-
- #clock-cells = <1>;
- };
diff --git a/Documentation/devicetree/bindings/clock/sunxi-ccu.txt b/Documentation/devicetree/bindings/clock/sunxi-ccu.txt
index 460ef27..47d2e90 100644
--- a/Documentation/devicetree/bindings/clock/sunxi-ccu.txt
+++ b/Documentation/devicetree/bindings/clock/sunxi-ccu.txt
@@ -21,6 +21,7 @@ Required properties :
- "allwinner,sun50i-a64-r-ccu"
- "allwinner,sun50i-h5-ccu"
- "allwinner,sun50i-h6-ccu"
+ - "allwinner,sun50i-h6-r-ccu"
- "nextthing,gr8-ccu"
- reg: Must contain the registers base address and length
@@ -35,7 +36,7 @@ Required properties :
For the main CCU on H6, one more clock is needed:
- "iosc": the SoC's internal frequency oscillator
-For the PRCM CCUs on A83T/H3/A64, two more clocks are needed:
+For the PRCM CCUs on A83T/H3/A64/H6, two more clocks are needed:
- "pll-periph": the SoC's peripheral PLL from the main CCU
- "iosc": the SoC's internal frequency oscillator
diff --git a/Documentation/devicetree/bindings/display/bridge/adi,adv7511.txt b/Documentation/devicetree/bindings/display/bridge/adi,adv7511.txt
index 0047b13..2c88753 100644
--- a/Documentation/devicetree/bindings/display/bridge/adi,adv7511.txt
+++ b/Documentation/devicetree/bindings/display/bridge/adi,adv7511.txt
@@ -14,7 +14,13 @@ Required properties:
"adi,adv7513"
"adi,adv7533"
-- reg: I2C slave address
+- reg: I2C slave addresses
+ The ADV7511 internal registers are split into four pages exposed through
+ different I2C addresses, creating four register maps. Each map has it own
+ I2C address and acts as a standard slave device on the I2C bus. The main
+ address is mandatory, others are optional and revert to defaults if not
+ specified.
+
The ADV7511 supports a large number of input data formats that differ by their
color depth, color format, clock mode, bit justification and random
@@ -70,6 +76,9 @@ Optional properties:
rather than generate its own timings for HDMI output.
- clocks: from common clock binding: reference to the CEC clock.
- clock-names: from common clock binding: must be "cec".
+- reg-names : Names of maps with programmable addresses.
+ It can contain any map needing a non-default address.
+ Possible maps names are : "main", "edid", "cec", "packet"
Required nodes:
@@ -88,7 +97,12 @@ Example
adv7511w: hdmi@39 {
compatible = "adi,adv7511w";
- reg = <39>;
+ /*
+ * The EDID page will be accessible on address 0x66 on the I2C
+ * bus. All other maps continue to use their default addresses.
+ */
+ reg = <0x39>, <0x66>;
+ reg-names = "main", "edid";
interrupt-parent = <&gpio3>;
interrupts = <29 IRQ_TYPE_EDGE_FALLING>;
clocks = <&cec_clock>;
diff --git a/Documentation/devicetree/bindings/display/bridge/cdns,dsi.txt b/Documentation/devicetree/bindings/display/bridge/cdns,dsi.txt
new file mode 100644
index 0000000..f5725bb
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/bridge/cdns,dsi.txt
@@ -0,0 +1,133 @@
+Cadence DSI bridge
+==================
+
+The Cadence DSI bridge is a DPI to DSI bridge supporting up to 4 DSI lanes.
+
+Required properties:
+- compatible: should be set to "cdns,dsi".
+- reg: physical base address and length of the controller's registers.
+- interrupts: interrupt line connected to the DSI bridge.
+- clocks: DSI bridge clocks.
+- clock-names: must contain "dsi_p_clk" and "dsi_sys_clk".
+- phys: phandle link to the MIPI D-PHY controller.
+- phy-names: must contain "dphy".
+- #address-cells: must be set to 1.
+- #size-cells: must be set to 0.
+
+Optional properties:
+- resets: DSI reset lines.
+- reset-names: can contain "dsi_p_rst".
+
+Required subnodes:
+- ports: Ports as described in Documentation/devicetree/bindings/graph.txt.
+ 2 ports are available:
+ * port 0: this port is only needed if some of your DSI devices are
+ controlled through an external bus like I2C or SPI. Can have at
+ most 4 endpoints. The endpoint number is directly encoding the
+ DSI virtual channel used by this device.
+ * port 1: represents the DPI input.
+ Other ports will be added later to support the new kind of inputs.
+
+- one subnode per DSI device connected on the DSI bus. Each DSI device should
+ contain a reg property encoding its virtual channel.
+
+Cadence DPHY
+============
+
+Cadence DPHY block.
+
+Required properties:
+- compatible: should be set to "cdns,dphy".
+- reg: physical base address and length of the DPHY registers.
+- clocks: DPHY reference clocks.
+- clock-names: must contain "psm" and "pll_ref".
+- #phy-cells: must be set to 0.
+
+
+Example:
+ dphy0: dphy@fd0e0000{
+ compatible = "cdns,dphy";
+ reg = <0x0 0xfd0e0000 0x0 0x1000>;
+ clocks = <&psm_clk>, <&pll_ref_clk>;
+ clock-names = "psm", "pll_ref";
+ #phy-cells = <0>;
+ };
+
+ dsi0: dsi@fd0c0000 {
+ compatible = "cdns,dsi";
+ reg = <0x0 0xfd0c0000 0x0 0x1000>;
+ clocks = <&pclk>, <&sysclk>;
+ clock-names = "dsi_p_clk", "dsi_sys_clk";
+ interrupts = <1>;
+ phys = <&dphy0>;
+ phy-names = "dphy";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@1 {
+ reg = <1>;
+ dsi0_dpi_input: endpoint {
+ remote-endpoint = <&xxx_dpi_output>;
+ };
+ };
+ };
+
+ panel: dsi-dev@0 {
+ compatible = "<vendor,panel>";
+ reg = <0>;
+ };
+ };
+
+or
+
+ dsi0: dsi@fd0c0000 {
+ compatible = "cdns,dsi";
+ reg = <0x0 0xfd0c0000 0x0 0x1000>;
+ clocks = <&pclk>, <&sysclk>;
+ clock-names = "dsi_p_clk", "dsi_sys_clk";
+ interrupts = <1>;
+ phys = <&dphy1>;
+ phy-names = "dphy";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ dsi0_output: endpoint@0 {
+ reg = <0>;
+ remote-endpoint = <&dsi_panel_input>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+ dsi0_dpi_input: endpoint {
+ remote-endpoint = <&xxx_dpi_output>;
+ };
+ };
+ };
+ };
+
+ i2c@xxx {
+ panel: panel@59 {
+ compatible = "<vendor,panel>";
+ reg = <0x59>;
+
+ port {
+ dsi_panel_input: endpoint {
+ remote-endpoint = <&dsi0_output>;
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt b/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt
index 3a72a10..a41d280 100644
--- a/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt
+++ b/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt
@@ -14,6 +14,7 @@ Required properties:
- compatible : Shall contain one or more of
- "renesas,r8a7795-hdmi" for R8A7795 (R-Car H3) compatible HDMI TX
- "renesas,r8a7796-hdmi" for R8A7796 (R-Car M3-W) compatible HDMI TX
+ - "renesas,r8a77965-hdmi" for R8A77965 (R-Car M3-N) compatible HDMI TX
- "renesas,rcar-gen3-hdmi" for the generic R-Car Gen3 compatible HDMI TX
When compatible with generic versions, nodes must list the SoC-specific
diff --git a/Documentation/devicetree/bindings/display/bridge/tda998x.txt b/Documentation/devicetree/bindings/display/bridge/tda998x.txt
index 24cc246..1a4eaca 100644
--- a/Documentation/devicetree/bindings/display/bridge/tda998x.txt
+++ b/Documentation/devicetree/bindings/display/bridge/tda998x.txt
@@ -27,6 +27,9 @@ Optional properties:
in question is used. The implementation allows one or two DAIs. If two
DAIs are defined, they must be of different type.
+ - nxp,calib-gpios: calibration GPIO, which must correspond with the
+ gpio used for the TDA998x interrupt pin.
+
[1] Documentation/sound/alsa/soc/DAI.txt
[2] include/dt-bindings/display/tda998x.h
diff --git a/Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt b/Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt
new file mode 100644
index 0000000..37f0c04
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt
@@ -0,0 +1,60 @@
+Thine Electronics THC63LVD1024 LVDS decoder
+-------------------------------------------
+
+The THC63LVD1024 is a dual link LVDS receiver designed to convert LVDS streams
+to parallel data outputs. The chip supports single/dual input/output modes,
+handling up to two LVDS input streams and up to two digital CMOS/TTL outputs.
+
+Single or dual operation mode, output data mapping and DDR output modes are
+configured through input signals and the chip does not expose any control bus.
+
+Required properties:
+- compatible: Shall be "thine,thc63lvd1024"
+- vcc-supply: Power supply for TTL output, TTL CLOCKOUT signal, LVDS input,
+ PPL and digital circuitry
+
+Optional properties:
+- powerdown-gpios: Power down GPIO signal, pin name "/PDWN". Active low
+- oe-gpios: Output enable GPIO signal, pin name "OE". Active high
+
+The THC63LVD1024 video port connections are modeled according
+to OF graph bindings specified by Documentation/devicetree/bindings/graph.txt
+
+Required video port nodes:
+- port@0: First LVDS input port
+- port@2: First digital CMOS/TTL parallel output
+
+Optional video port nodes:
+- port@1: Second LVDS input port
+- port@3: Second digital CMOS/TTL parallel output
+
+Example:
+--------
+
+ thc63lvd1024: lvds-decoder {
+ compatible = "thine,thc63lvd1024";
+
+ vcc-supply = <&reg_lvds_vcc>;
+ powerdown-gpios = <&gpio4 15 GPIO_ACTIVE_LOW>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
+ lvds_dec_in_0: endpoint {
+ remote-endpoint = <&lvds_out>;
+ };
+ };
+
+ port@2{
+ reg = <2>;
+
+ lvds_dec_out_2: endpoint {
+ remote-endpoint = <&adv7511_in>;
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/exynos/exynos5433-decon.txt b/Documentation/devicetree/bindings/display/exynos/exynos5433-decon.txt
index fc25882..775193e 100644
--- a/Documentation/devicetree/bindings/display/exynos/exynos5433-decon.txt
+++ b/Documentation/devicetree/bindings/display/exynos/exynos5433-decon.txt
@@ -19,7 +19,8 @@ Required properties:
clock-names property.
- clock-names: list of clock names sorted in the same order as the clocks
property. Must contain "pclk", "aclk_decon", "aclk_smmu_decon0x",
- "aclk_xiu_decon0x", "pclk_smmu_decon0x", clk_decon_vclk",
+ "aclk_xiu_decon0x", "pclk_smmu_decon0x", "aclk_smmu_decon1x",
+ "aclk_xiu_decon1x", "pclk_smmu_decon1x", clk_decon_vclk",
"sclk_decon_eclk"
- ports: contains a port which is connected to mic node. address-cells and
size-cells must 1 and 0, respectively.
@@ -34,10 +35,14 @@ decon: decon@13800000 {
clocks = <&cmu_disp CLK_ACLK_DECON>, <&cmu_disp CLK_ACLK_SMMU_DECON0X>,
<&cmu_disp CLK_ACLK_XIU_DECON0X>,
<&cmu_disp CLK_PCLK_SMMU_DECON0X>,
+ <&cmu_disp CLK_ACLK_SMMU_DECON1X>,
+ <&cmu_disp CLK_ACLK_XIU_DECON1X>,
+ <&cmu_disp CLK_PCLK_SMMU_DECON1X>,
<&cmu_disp CLK_SCLK_DECON_VCLK>,
<&cmu_disp CLK_SCLK_DECON_ECLK>;
clock-names = "aclk_decon", "aclk_smmu_decon0x", "aclk_xiu_decon0x",
- "pclk_smmu_decon0x", "sclk_decon_vclk", "sclk_decon_eclk";
+ "pclk_smmu_decon0x", "aclk_smmu_decon1x", "aclk_xiu_decon1x",
+ "pclk_smmu_decon1x", "sclk_decon_vclk", "sclk_decon_eclk";
interrupt-names = "vsync", "lcd_sys";
interrupts = <0 202 0>, <0 203 0>;
diff --git a/Documentation/devicetree/bindings/display/renesas,du.txt b/Documentation/devicetree/bindings/display/renesas,du.txt
index c9cd17f..7c6854b 100644
--- a/Documentation/devicetree/bindings/display/renesas,du.txt
+++ b/Documentation/devicetree/bindings/display/renesas,du.txt
@@ -13,6 +13,7 @@ Required Properties:
- "renesas,du-r8a7794" for R8A7794 (R-Car E2) compatible DU
- "renesas,du-r8a7795" for R8A7795 (R-Car H3) compatible DU
- "renesas,du-r8a7796" for R8A7796 (R-Car M3-W) compatible DU
+ - "renesas,du-r8a77965" for R8A77965 (R-Car M3-N) compatible DU
- "renesas,du-r8a77970" for R8A77970 (R-Car V3M) compatible DU
- "renesas,du-r8a77995" for R8A77995 (R-Car D3) compatible DU
@@ -47,20 +48,21 @@ bindings specified in Documentation/devicetree/bindings/graph.txt.
The following table lists for each supported model the port number
corresponding to each DU output.
- Port0 Port1 Port2 Port3
+ Port0 Port1 Port2 Port3
-----------------------------------------------------------------------------
- R8A7743 (RZ/G1M) DPAD 0 LVDS 0 - -
- R8A7745 (RZ/G1E) DPAD 0 DPAD 1 - -
- R8A7779 (R-Car H1) DPAD 0 DPAD 1 - -
- R8A7790 (R-Car H2) DPAD 0 LVDS 0 LVDS 1 -
- R8A7791 (R-Car M2-W) DPAD 0 LVDS 0 - -
- R8A7792 (R-Car V2H) DPAD 0 DPAD 1 - -
- R8A7793 (R-Car M2-N) DPAD 0 LVDS 0 - -
- R8A7794 (R-Car E2) DPAD 0 DPAD 1 - -
- R8A7795 (R-Car H3) DPAD 0 HDMI 0 HDMI 1 LVDS 0
- R8A7796 (R-Car M3-W) DPAD 0 HDMI 0 LVDS 0 -
- R8A77970 (R-Car V3M) DPAD 0 LVDS 0 - -
- R8A77995 (R-Car D3) DPAD 0 LVDS 0 LVDS 1 -
+ R8A7743 (RZ/G1M) DPAD 0 LVDS 0 - -
+ R8A7745 (RZ/G1E) DPAD 0 DPAD 1 - -
+ R8A7779 (R-Car H1) DPAD 0 DPAD 1 - -
+ R8A7790 (R-Car H2) DPAD 0 LVDS 0 LVDS 1 -
+ R8A7791 (R-Car M2-W) DPAD 0 LVDS 0 - -
+ R8A7792 (R-Car V2H) DPAD 0 DPAD 1 - -
+ R8A7793 (R-Car M2-N) DPAD 0 LVDS 0 - -
+ R8A7794 (R-Car E2) DPAD 0 DPAD 1 - -
+ R8A7795 (R-Car H3) DPAD 0 HDMI 0 HDMI 1 LVDS 0
+ R8A7796 (R-Car M3-W) DPAD 0 HDMI 0 LVDS 0 -
+ R8A77965 (R-Car M3-N) DPAD 0 HDMI 0 LVDS 0 -
+ R8A77970 (R-Car V3M) DPAD 0 LVDS 0 - -
+ R8A77995 (R-Car D3) DPAD 0 LVDS 0 LVDS 1 -
Example: R8A7795 (R-Car H3) ES2.0 DU
diff --git a/Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt b/Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt
new file mode 100644
index 0000000..6a6cf5d
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt
@@ -0,0 +1,93 @@
+Allwinner A31 DSI Encoder
+=========================
+
+The DSI pipeline consists of two separate blocks: the DSI controller
+itself, and its associated D-PHY.
+
+DSI Encoder
+-----------
+
+The DSI Encoder generates the DSI signal from the TCON's.
+
+Required properties:
+ - compatible: value must be one of:
+ * allwinner,sun6i-a31-mipi-dsi
+ - reg: base address and size of memory-mapped region
+ - interrupts: interrupt associated to this IP
+ - clocks: phandles to the clocks feeding the DSI encoder
+ * bus: the DSI interface clock
+ * mod: the DSI module clock
+ - clock-names: the clock names mentioned above
+ - phys: phandle to the D-PHY
+ - phy-names: must be "dphy"
+ - resets: phandle to the reset controller driving the encoder
+
+ - ports: A ports node with endpoint definitions as defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt. The
+ first port should be the input endpoint, usually coming from the
+ associated TCON.
+
+Any MIPI-DSI device attached to this should be described according to
+the bindings defined in ../mipi-dsi-bus.txt
+
+D-PHY
+-----
+
+Required properties:
+ - compatible: value must be one of:
+ * allwinner,sun6i-a31-mipi-dphy
+ - reg: base address and size of memory-mapped region
+ - clocks: phandles to the clocks feeding the DSI encoder
+ * bus: the DSI interface clock
+ * mod: the DSI module clock
+ - clock-names: the clock names mentioned above
+ - resets: phandle to the reset controller driving the encoder
+
+Example:
+
+dsi0: dsi@1ca0000 {
+ compatible = "allwinner,sun6i-a31-mipi-dsi";
+ reg = <0x01ca0000 0x1000>;
+ interrupts = <GIC_SPI 89 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&ccu CLK_BUS_MIPI_DSI>,
+ <&ccu CLK_DSI_SCLK>;
+ clock-names = "bus", "mod";
+ resets = <&ccu RST_BUS_MIPI_DSI>;
+ phys = <&dphy0>;
+ phy-names = "dphy";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ panel@0 {
+ compatible = "bananapi,lhr050h41", "ilitek,ili9881c";
+ reg = <0>;
+ power-gpios = <&pio 1 7 GPIO_ACTIVE_HIGH>; /* PB07 */
+ reset-gpios = <&r_pio 0 5 GPIO_ACTIVE_LOW>; /* PL05 */
+ backlight = <&pwm_bl>;
+ };
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0>;
+
+ dsi0_in_tcon0: endpoint {
+ remote-endpoint = <&tcon0_out_dsi0>;
+ };
+ };
+ };
+};
+
+dphy0: d-phy@1ca1000 {
+ compatible = "allwinner,sun6i-a31-mipi-dphy";
+ reg = <0x01ca1000 0x1000>;
+ clocks = <&ccu CLK_BUS_MIPI_DSI>,
+ <&ccu CLK_DSI_DPHY>;
+ clock-names = "bus", "mod";
+ resets = <&ccu RST_BUS_MIPI_DSI>;
+ #phy-cells = <0>;
+};
diff --git a/Documentation/devicetree/bindings/dma/k3dma.txt b/Documentation/devicetree/bindings/dma/k3dma.txt
index 23f8d71..4945aea 100644
--- a/Documentation/devicetree/bindings/dma/k3dma.txt
+++ b/Documentation/devicetree/bindings/dma/k3dma.txt
@@ -23,7 +23,6 @@ Controller:
dma-requests = <27>;
interrupts = <0 12 4>;
clocks = <&pclk>;
- status = "disable";
};
Client:
diff --git a/Documentation/devicetree/bindings/dma/renesas,rcar-dmac.txt b/Documentation/devicetree/bindings/dma/renesas,rcar-dmac.txt
index 61315ea..b1ba6395 100644
--- a/Documentation/devicetree/bindings/dma/renesas,rcar-dmac.txt
+++ b/Documentation/devicetree/bindings/dma/renesas,rcar-dmac.txt
@@ -29,6 +29,7 @@ Required Properties:
- "renesas,dmac-r8a77965" (R-Car M3-N)
- "renesas,dmac-r8a77970" (R-Car V3M)
- "renesas,dmac-r8a77980" (R-Car V3H)
+ - "renesas,dmac-r8a77995" (R-Car D3)
- reg: base address and length of the registers block for the DMAC
diff --git a/Documentation/devicetree/bindings/dma/renesas,usb-dmac.txt b/Documentation/devicetree/bindings/dma/renesas,usb-dmac.txt
index 9dc935e..482e543 100644
--- a/Documentation/devicetree/bindings/dma/renesas,usb-dmac.txt
+++ b/Documentation/devicetree/bindings/dma/renesas,usb-dmac.txt
@@ -12,6 +12,8 @@ Required Properties:
- "renesas,r8a7795-usb-dmac" (R-Car H3)
- "renesas,r8a7796-usb-dmac" (R-Car M3-W)
- "renesas,r8a77965-usb-dmac" (R-Car M3-N)
+ - "renesas,r8a77990-usb-dmac" (R-Car E3)
+ - "renesas,r8a77995-usb-dmac" (R-Car D3)
- reg: base address and length of the registers block for the DMAC
- interrupts: interrupt specifiers for the DMAC, one for each entry in
interrupt-names.
diff --git a/Documentation/devicetree/bindings/dma/ti-edma.txt b/Documentation/devicetree/bindings/dma/ti-edma.txt
index 66026dc..3f15f66 100644
--- a/Documentation/devicetree/bindings/dma/ti-edma.txt
+++ b/Documentation/devicetree/bindings/dma/ti-edma.txt
@@ -190,7 +190,6 @@ mmc0: mmc@23000000 {
power-domains = <&k2g_pds 0xb>;
clocks = <&k2g_clks 0xb 1>, <&k2g_clks 0xb 2>;
clock-names = "fck", "mmchsdb_fck";
- status = "disabled";
};
------------------------------------------------------------------------------
diff --git a/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt b/Documentation/devicetree/bindings/edac/socfpga-eccmgr.txt
index 4a1714f..5626560 100644
--- a/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt
+++ b/Documentation/devicetree/bindings/edac/socfpga-eccmgr.txt
@@ -231,3 +231,38 @@ Example:
<48 IRQ_TYPE_LEVEL_HIGH>;
};
};
+
+Stratix10 SoCFPGA ECC Manager
+The Stratix10 SoC ECC Manager handles the IRQs for each peripheral
+in a shared register similar to the Arria10. However, ECC requires
+access to registers that can only be read from Secure Monitor with
+SMC calls. Therefore the device tree is slightly different.
+
+Required Properties:
+- compatible : Should be "altr,socfpga-s10-ecc-manager"
+- interrupts : Should be single bit error interrupt, then double bit error
+ interrupt.
+- interrupt-controller : boolean indicator that ECC Manager is an interrupt controller
+- #interrupt-cells : must be set to 2.
+
+Subcomponents:
+
+SDRAM ECC
+Required Properties:
+- compatible : Should be "altr,sdram-edac-s10"
+- interrupts : Should be single bit error interrupt, then double bit error
+ interrupt, in this order.
+
+Example:
+
+ eccmgr {
+ compatible = "altr,socfpga-s10-ecc-manager";
+ interrupts = <0 15 4>, <0 95 4>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+
+ sdramedac {
+ compatible = "altr,sdram-edac-s10";
+ interrupts = <16 4>, <48 4>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/firmware/qcom,scm.txt b/Documentation/devicetree/bindings/firmware/qcom,scm.txt
index 7b40054..fcf6979 100644
--- a/Documentation/devicetree/bindings/firmware/qcom,scm.txt
+++ b/Documentation/devicetree/bindings/firmware/qcom,scm.txt
@@ -11,9 +11,10 @@ Required properties:
* "qcom,scm-msm8660" for MSM8660 platforms
* "qcom,scm-msm8690" for MSM8690 platforms
* "qcom,scm-msm8996" for MSM8996 platforms
+ * "qcom,scm-ipq4019" for IPQ4019 platforms
* "qcom,scm" for later processors (MSM8916, APQ8084, MSM8974, etc)
- clocks: One to three clocks may be required based on compatible.
- * No clock required for "qcom,scm-msm8996"
+ * No clock required for "qcom,scm-msm8996", "qcom,scm-ipq4019"
* Only core clock required for "qcom,scm-apq8064", "qcom,scm-msm8660", and "qcom,scm-msm8960"
* Core, iface, and bus clocks required for "qcom,scm"
- clock-names: Must contain "core" for the core clock, "iface" for the interface
diff --git a/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt
new file mode 100644
index 0000000..a8c362e
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt
@@ -0,0 +1,29 @@
+Lattice MachXO2 Slave SPI FPGA Manager
+
+Lattice MachXO2 FPGAs support a method of loading the bitstream over
+'slave SPI' interface.
+
+See 'MachXO2ProgrammingandConfigurationUsageGuide.pdf' on www.latticesemi.com
+
+Required properties:
+- compatible: should contain "lattice,machxo2-slave-spi"
+- reg: spi chip select of the FPGA
+
+Example for full FPGA configuration:
+
+ fpga-region0 {
+ compatible = "fpga-region";
+ fpga-mgr = <&fpga_mgr_spi>;
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ };
+
+ spi1: spi@2000 {
+ ...
+
+ fpga_mgr_spi: fpga-mgr@0 {
+ compatible = "lattice,machxo2-slave-spi";
+ spi-max-frequency = <8000000>;
+ reg = <0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/fsi/fsi-master-gpio.txt b/Documentation/devicetree/bindings/fsi/fsi-master-gpio.txt
index a767259..1e44245 100644
--- a/Documentation/devicetree/bindings/fsi/fsi-master-gpio.txt
+++ b/Documentation/devicetree/bindings/fsi/fsi-master-gpio.txt
@@ -11,6 +11,10 @@ Optional properties:
- trans-gpios = <gpio-descriptor>; : GPIO for voltage translator enable
- mux-gpios = <gpio-descriptor>; : GPIO for pin multiplexing with other
functions (eg, external FSI masters)
+ - no-gpio-delays; : Don't add extra delays between GPIO
+ accesses. This is useful when the HW
+ GPIO block is running at a low enough
+ frequency.
Examples:
diff --git a/Documentation/devicetree/bindings/gpio/gpio-pca953x.txt b/Documentation/devicetree/bindings/gpio/gpio-pca953x.txt
index d2a9376..88f2286 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-pca953x.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-pca953x.txt
@@ -31,10 +31,15 @@ Required properties:
ti,tca9554
onnn,pca9654
exar,xra1202
+ - gpio-controller: if used as gpio expander.
+ - #gpio-cells: if used as gpio expander.
+ - interrupt-controller: if to be used as interrupt expander.
+ - #interrupt-cells: if to be used as interrupt expander.
Optional properties:
- reset-gpios: GPIO specification for the RESET input. This is an
active low signal to the PCA953x.
+ - vcc-supply: power supply regulator.
Example:
@@ -47,3 +52,32 @@ Example:
interrupt-parent = <&gpio3>;
interrupts = <23 IRQ_TYPE_LEVEL_LOW>;
};
+
+
+Example with Interrupts:
+
+
+ gpio99: gpio@22 {
+ compatible = "nxp,pcal6524";
+ reg = <0x22>;
+ interrupt-parent = <&gpio6>;
+ interrupts = <1 IRQ_TYPE_EDGE_FALLING>; /* gpio6_161 */
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ vcc-supply = <&vdds_1v8_main>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ gpio-line-names =
+ "hdmi-ct-hpd", "hdmi.ls-oe", "p02", "p03", "vibra", "fault2", "p06", "p07",
+ "en-usb", "en-host1", "en-host2", "chg-int", "p14", "p15", "mic-int", "en-modem",
+ "shdn-hs-amp", "chg-status+red", "green", "blue", "en-esata", "fault1", "p26", "p27";
+ };
+
+ ts3a227@3b {
+ compatible = "ti,ts3a227e";
+ reg = <0x3b>;
+ interrupt-parent = <&gpio99>;
+ interrupts = <14 IRQ_TYPE_EDGE_RISING>;
+ ti,micbias = <0>; /* 2.1V */
+ };
+
diff --git a/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt b/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt
index 9474138..378f132 100644
--- a/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt
+++ b/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt
@@ -5,6 +5,7 @@ Required Properties:
- compatible: should contain one or more of the following:
- "renesas,gpio-r8a7743": for R8A7743 (RZ/G1M) compatible GPIO controller.
- "renesas,gpio-r8a7745": for R8A7745 (RZ/G1E) compatible GPIO controller.
+ - "renesas,gpio-r8a77470": for R8A77470 (RZ/G1C) compatible GPIO controller.
- "renesas,gpio-r8a7778": for R8A7778 (R-Car M1) compatible GPIO controller.
- "renesas,gpio-r8a7779": for R8A7779 (R-Car H1) compatible GPIO controller.
- "renesas,gpio-r8a7790": for R8A7790 (R-Car H2) compatible GPIO controller.
@@ -14,7 +15,9 @@ Required Properties:
- "renesas,gpio-r8a7794": for R8A7794 (R-Car E2) compatible GPIO controller.
- "renesas,gpio-r8a7795": for R8A7795 (R-Car H3) compatible GPIO controller.
- "renesas,gpio-r8a7796": for R8A7796 (R-Car M3-W) compatible GPIO controller.
+ - "renesas,gpio-r8a77965": for R8A77965 (R-Car M3-N) compatible GPIO controller.
- "renesas,gpio-r8a77970": for R8A77970 (R-Car V3M) compatible GPIO controller.
+ - "renesas,gpio-r8a77990": for R8A77990 (R-Car E3) compatible GPIO controller.
- "renesas,gpio-r8a77995": for R8A77995 (R-Car D3) compatible GPIO controller.
- "renesas,rcar-gen1-gpio": for a generic R-Car Gen1 GPIO controller.
- "renesas,rcar-gen2-gpio": for a generic R-Car Gen2 or RZ/G1 GPIO controller.
diff --git a/Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt b/Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt
index 4a75da7..3c1118b 100644
--- a/Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt
+++ b/Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt
@@ -26,8 +26,13 @@ controller.
the second encodes the triger flags encoded as described in
Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
- interrupt-parent : The parent interrupt controller.
-- interrupts : The interrupt to the parent controller raised when GPIOs
- generate the interrupts.
+- interrupts : The interrupts to the parent controller raised when GPIOs
+ generate the interrupts. If the controller provides one combined interrupt
+ for all GPIOs, specify a single interrupt. If the controller provides one
+ interrupt for each GPIO, provide a list of interrupts that correspond to each
+ of the GPIO pins. When specifying multiple interrupts, if any are unconnected,
+ use the interrupts-extended property to specify the interrupts and set the
+ interrupt controller handle for unused interrupts to 0.
- snps,nr-gpios : The number of pins in the port, a single cell.
- resets : Reset line for the controller.
diff --git a/Documentation/devicetree/bindings/gpu/brcm,bcm-v3d.txt b/Documentation/devicetree/bindings/gpu/brcm,bcm-v3d.txt
new file mode 100644
index 0000000..c907aa8
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpu/brcm,bcm-v3d.txt
@@ -0,0 +1,28 @@
+Broadcom V3D GPU
+
+Only the Broadcom V3D 3.x and newer GPUs are covered by this binding.
+For V3D 2.x, see brcm,bcm-vc4.txt.
+
+Required properties:
+- compatible: Should be "brcm,7268-v3d" or "brcm,7278-v3d"
+- reg: Physical base addresses and lengths of the register areas
+- reg-names: Names for the register areas. The "hub", "bridge", and "core0"
+ register areas are always required. The "gca" register area
+ is required if the GCA cache controller is present.
+- interrupts: The interrupt numbers. The first interrupt is for the hub,
+ while the following interrupts are for the cores.
+ See bindings/interrupt-controller/interrupts.txt
+
+Optional properties:
+- clocks: The core clock the unit runs on
+
+v3d {
+ compatible = "brcm,7268-v3d";
+ reg = <0xf1204000 0x100>,
+ <0xf1200000 0x4000>,
+ <0xf1208000 0x4000>,
+ <0xf1204100 0x100>;
+ reg-names = "bridge", "hub", "core0", "gca";
+ interrupts = <0 78 4>,
+ <0 77 4>;
+};
diff --git a/Documentation/devicetree/bindings/gpu/samsung-scaler.txt b/Documentation/devicetree/bindings/gpu/samsung-scaler.txt
new file mode 100644
index 0000000..9c3d981
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpu/samsung-scaler.txt
@@ -0,0 +1,27 @@
+* Samsung Exynos Image Scaler
+
+Required properties:
+ - compatible : value should be one of the following:
+ (a) "samsung,exynos5420-scaler" for Scaler IP in Exynos5420
+ (b) "samsung,exynos5433-scaler" for Scaler IP in Exynos5433
+
+ - reg : Physical base address of the IP registers and length of memory
+ mapped region.
+
+ - interrupts : Interrupt specifier for scaler interrupt, according to format
+ specific to interrupt parent.
+
+ - clocks : Clock specifier for scaler clock, according to generic clock
+ bindings. (See Documentation/devicetree/bindings/clock/exynos*.txt)
+
+ - clock-names : Names of clocks. For exynos scaler, it should be "mscl"
+ on 5420 and "pclk", "aclk" and "aclk_xiu" on 5433.
+
+Example:
+ scaler@12800000 {
+ compatible = "samsung,exynos5420-scaler";
+ reg = <0x12800000 0x1294>;
+ interrupts = <0 220 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clock CLK_MSCL0>;
+ clock-names = "mscl";
+ };
diff --git a/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt b/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt
index 1e6ee3d..d1acd5e 100644
--- a/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt
@@ -7,6 +7,7 @@ Required properties:
- "amlogic,meson-gxbb-saradc" for GXBB
- "amlogic,meson-gxl-saradc" for GXL
- "amlogic,meson-gxm-saradc" for GXM
+ - "amlogic,meson-axg-saradc" for AXG
along with the generic "amlogic,meson-saradc"
- reg: the physical base address and length of the registers
- interrupts: the interrupt indicating end of sampling
diff --git a/Documentation/devicetree/bindings/iio/adc/mcp320x.txt b/Documentation/devicetree/bindings/iio/adc/mcp320x.txt
index 7d64753..56373d6 100644
--- a/Documentation/devicetree/bindings/iio/adc/mcp320x.txt
+++ b/Documentation/devicetree/bindings/iio/adc/mcp320x.txt
@@ -49,7 +49,7 @@ Required properties:
Examples:
spi_controller {
mcp3x0x@0 {
- compatible = "mcp3002";
+ compatible = "microchip,mcp3002";
reg = <0>;
spi-max-frequency = <1000000>;
vref-supply = <&vref_reg>;
diff --git a/Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt b/Documentation/devicetree/bindings/iio/adc/samsung,exynos-adc.txt
index 6c49db7..6c49db7 100644
--- a/Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/samsung,exynos-adc.txt
diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
index e8bb824..f1ead43 100644
--- a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
@@ -24,8 +24,11 @@ Required properties:
- compatible: Should be one of:
"st,stm32f4-adc-core"
"st,stm32h7-adc-core"
+ "st,stm32mp1-adc-core"
- reg: Offset and length of the ADC block register set.
-- interrupts: Must contain the interrupt for ADC block.
+- interrupts: One or more interrupts for ADC block. Some parts like stm32f4
+ and stm32h7 share a common ADC interrupt line. stm32mp1 has two separate
+ interrupt lines, one for each ADC within ADC block.
- clocks: Core can use up to two clocks, depending on part used:
- "adc" clock: for the analog circuitry, common to all ADCs.
It's required on stm32f4.
@@ -53,6 +56,7 @@ Required properties:
- compatible: Should be one of:
"st,stm32f4-adc"
"st,stm32h7-adc"
+ "st,stm32mp1-adc"
- reg: Offset of ADC instance in ADC block (e.g. may be 0x0, 0x100, 0x200).
- clocks: Input clock private to this ADC instance. It's required only on
stm32f4, that has per instance clock input for registers access.
diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-dfsdm-adc.txt b/Documentation/devicetree/bindings/iio/adc/st,stm32-dfsdm-adc.txt
index ed7520d..75ba25d 100644
--- a/Documentation/devicetree/bindings/iio/adc/st,stm32-dfsdm-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/st,stm32-dfsdm-adc.txt
@@ -8,14 +8,16 @@ It is mainly targeted for:
- PDM microphones (audio digital microphone)
It features up to 8 serial digital interfaces (SPI or Manchester) and
-up to 4 filters on stm32h7.
+up to 4 filters on stm32h7 or 6 filters on stm32mp1.
Each child node match with a filter instance.
Contents of a STM32 DFSDM root node:
------------------------------------
Required properties:
-- compatible: Should be "st,stm32h7-dfsdm".
+- compatible: Should be one of:
+ "st,stm32h7-dfsdm"
+ "st,stm32mp1-dfsdm"
- reg: Offset and length of the DFSDM block register set.
- clocks: IP and serial interfaces clocking. Should be set according
to rcc clock ID and "clock-names".
@@ -45,6 +47,7 @@ Required properties:
"st,stm32-dfsdm-adc" for sigma delta ADCs
"st,stm32-dfsdm-dmic" for audio digital microphone.
- reg: Specifies the DFSDM filter instance used.
+ Valid values are from 0 to 3 on stm32h7, 0 to 5 on stm32mp1.
- interrupts: IRQ lines connected to each DFSDM filter instance.
- st,adc-channels: List of single-ended channels muxed for this ADC.
valid values:
diff --git a/Documentation/devicetree/bindings/iio/afe/current-sense-amplifier.txt b/Documentation/devicetree/bindings/iio/afe/current-sense-amplifier.txt
new file mode 100644
index 0000000..821b61b
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/afe/current-sense-amplifier.txt
@@ -0,0 +1,26 @@
+Current Sense Amplifier
+=======================
+
+When an io-channel measures the output voltage from a current sense
+amplifier, the interesting measurement is almost always the current
+through the sense resistor, not the voltage output. This binding
+describes such a current sense circuit.
+
+Required properties:
+- compatible : "current-sense-amplifier"
+- io-channels : Channel node of a voltage io-channel.
+- sense-resistor-micro-ohms : The sense resistance in microohms.
+
+Optional properties:
+- sense-gain-mult: Amplifier gain multiplier. The default is <1>.
+- sense-gain-div: Amplifier gain divider. The default is <1>.
+
+Example:
+
+sysi {
+ compatible = "current-sense-amplifier";
+ io-channels = <&tiadc 0>;
+
+ sense-resistor-micro-ohms = <20000>;
+ sense-gain-mul = <50>;
+};
diff --git a/Documentation/devicetree/bindings/iio/afe/current-sense-shunt.txt b/Documentation/devicetree/bindings/iio/afe/current-sense-shunt.txt
new file mode 100644
index 0000000..0f67108
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/afe/current-sense-shunt.txt
@@ -0,0 +1,41 @@
+Current Sense Shunt
+===================
+
+When an io-channel measures the voltage over a current sense shunt,
+the interesting measurement is almost always the current through the
+shunt, not the voltage over it. This binding describes such a current
+sense circuit.
+
+Required properties:
+- compatible : "current-sense-shunt"
+- io-channels : Channel node of a voltage io-channel.
+- shunt-resistor-micro-ohms : The shunt resistance in microohms.
+
+Example:
+The system current is measured by measuring the voltage over a
+3.3 ohms shunt resistor.
+
+sysi {
+ compatible = "current-sense-shunt";
+ io-channels = <&tiadc 0>;
+
+ /* Divide the voltage by 3300000/1000000 (or 3.3) for the current. */
+ shunt-resistor-micro-ohms = <3300000>;
+};
+
+&i2c {
+ tiadc: adc@48 {
+ compatible = "ti,ads1015";
+ reg = <0x48>;
+ #io-channel-cells = <1>;
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ channel@0 { /* IN0,IN1 differential */
+ reg = <0>;
+ ti,gain = <1>;
+ ti,datarate = <4>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/iio/afe/voltage-divider.txt b/Documentation/devicetree/bindings/iio/afe/voltage-divider.txt
new file mode 100644
index 0000000..b452a84
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/afe/voltage-divider.txt
@@ -0,0 +1,53 @@
+Voltage divider
+===============
+
+When an io-channel measures the midpoint of a voltage divider, the
+interesting voltage is often the voltage over the full resistance
+of the divider. This binding describes the voltage divider in such
+a curcuit.
+
+ Vin ----.
+ |
+ .-----.
+ | R |
+ '-----'
+ |
+ +---- Vout
+ |
+ .-----.
+ | Rout|
+ '-----'
+ |
+ GND
+
+Required properties:
+- compatible : "voltage-divider"
+- io-channels : Channel node of a voltage io-channel measuring Vout.
+- output-ohms : Resistance Rout over which the output voltage is measured.
+ See full-ohms.
+- full-ohms : Resistance R + Rout for the full divider. The io-channel
+ is scaled by the Rout / (R + Rout) quotient.
+
+Example:
+The system voltage is circa 12V, but divided down with a 22/222
+voltage divider (R = 200 Ohms, Rout = 22 Ohms) and fed to an ADC.
+
+sysv {
+ compatible = "voltage-divider";
+ io-channels = <&maxadc 1>;
+
+ /* Scale the system voltage by 22/222 to fit the ADC range. */
+ output-ohms = <22>;
+ full-ohms = <222>; /* 200 + 22 */
+};
+
+&spi {
+ maxadc: adc@0 {
+ compatible = "maxim,max1027";
+ reg = <0>;
+ #io-channel-cells = <1>;
+ interrupt-parent = <&gpio5>;
+ interrupts = <15 IRQ_TYPE_EDGE_RISING>;
+ spi-max-frequency = <1000000>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/iio/dac/ltc2632.txt b/Documentation/devicetree/bindings/iio/dac/ltc2632.txt
index eb911e5..e0d5fea 100644
--- a/Documentation/devicetree/bindings/iio/dac/ltc2632.txt
+++ b/Documentation/devicetree/bindings/iio/dac/ltc2632.txt
@@ -12,12 +12,26 @@ Required properties:
Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
apply. In particular, "reg" and "spi-max-frequency" properties must be given.
+Optional properties:
+ - vref-supply: Phandle to the external reference voltage supply. This should
+ only be set if there is an external reference voltage connected to the VREF
+ pin. If the property is not set the internal reference is used.
+
Example:
+ vref: regulator-vref {
+ compatible = "regulator-fixed";
+ regulator-name = "vref-ltc2632";
+ regulator-min-microvolt = <1250000>;
+ regulator-max-microvolt = <1250000>;
+ regulator-always-on;
+ };
+
spi_master {
dac: ltc2632@0 {
compatible = "lltc,ltc2632-l12";
reg = <0>; /* CS0 */
spi-max-frequency = <1000000>;
+ vref-supply = <&vref>; /* optional */
};
};
diff --git a/Documentation/devicetree/bindings/iio/dac/ti,dac5571.txt b/Documentation/devicetree/bindings/iio/dac/ti,dac5571.txt
new file mode 100644
index 0000000..03af6b9
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/dac/ti,dac5571.txt
@@ -0,0 +1,24 @@
+* Texas Instruments DAC5571 Family
+
+Required properties:
+ - compatible: Should contain
+ "ti,dac5571"
+ "ti,dac6571"
+ "ti,dac7571"
+ "ti,dac5574"
+ "ti,dac6574"
+ "ti,dac7574"
+ "ti,dac5573"
+ "ti,dac6573"
+ "ti,dac7573"
+ - reg: Should contain the DAC I2C address
+
+Optional properties:
+ - vref-supply: The regulator supply for DAC reference voltage
+
+Example:
+dac@0 {
+ compatible = "ti,dac5571";
+ reg = <0x4C>;
+ vref-supply = <&vdd_supply>;
+};
diff --git a/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt b/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
index 2b45145..5f4777e 100644
--- a/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
+++ b/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
@@ -8,10 +8,16 @@ Required properties:
"invensense,mpu6500"
"invensense,mpu9150"
"invensense,mpu9250"
+ "invensense,mpu9255"
"invensense,icm20608"
- reg : the I2C address of the sensor
- interrupt-parent : should be the phandle for the interrupt controller
- - interrupts : interrupt mapping for GPIO IRQ
+ - interrupts: interrupt mapping for IRQ. It should be configured with flags
+ IRQ_TYPE_LEVEL_HIGH, IRQ_TYPE_EDGE_RISING, IRQ_TYPE_LEVEL_LOW or
+ IRQ_TYPE_EDGE_FALLING.
+
+ Refer to interrupt-controller/interrupts.txt for generic interrupt client node
+ bindings.
Optional properties:
- mount-matrix: an optional 3x3 mounting rotation matrix
@@ -24,7 +30,7 @@ Example:
compatible = "invensense,mpu6050";
reg = <0x68>;
interrupt-parent = <&gpio1>;
- interrupts = <18 1>;
+ interrupts = <18 IRQ_TYPE_EDGE_RISING>;
mount-matrix = "-0.984807753012208", /* x0 */
"0", /* y0 */
"-0.173648177666930", /* z0 */
@@ -41,7 +47,7 @@ Example:
compatible = "invensense,mpu9250";
reg = <0x68>;
interrupt-parent = <&gpio3>;
- interrupts = <21 1>;
+ interrupts = <21 IRQ_TYPE_LEVEL_HIGH>;
i2c-gate {
#address-cells = <1>;
#size-cells = <0>;
diff --git a/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt b/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt
index 1ff1af7..ef8a856 100644
--- a/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt
+++ b/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt
@@ -6,6 +6,7 @@ Required properties:
"st,lsm6ds3h"
"st,lsm6dsl"
"st,lsm6dsm"
+ "st,ism330dlc"
- reg: i2c address of the sensor / spi cs line
Optional properties:
diff --git a/Documentation/devicetree/bindings/iio/potentiostat/lmp91000.txt b/Documentation/devicetree/bindings/iio/potentiostat/lmp91000.txt
index b9b621e..e6d0c2e 100644
--- a/Documentation/devicetree/bindings/iio/potentiostat/lmp91000.txt
+++ b/Documentation/devicetree/bindings/iio/potentiostat/lmp91000.txt
@@ -1,10 +1,13 @@
-* Texas Instruments LMP91000 potentiostat
+* Texas Instruments LMP91000 series of potentiostats
-http://www.ti.com/lit/ds/symlink/lmp91000.pdf
+LMP91000: http://www.ti.com/lit/ds/symlink/lmp91000.pdf
+LMP91002: http://www.ti.com/lit/ds/symlink/lmp91002.pdf
Required properties:
- - compatible: should be "ti,lmp91000"
+ - compatible: should be one of the following:
+ "ti,lmp91000"
+ "ti,lmp91002"
- reg: the I2C address of the device
- io-channels: the phandle of the iio provider
diff --git a/Documentation/devicetree/bindings/input/elan_i2c.txt b/Documentation/devicetree/bindings/input/elan_i2c.txt
index ee3242c..d80a835 100644
--- a/Documentation/devicetree/bindings/input/elan_i2c.txt
+++ b/Documentation/devicetree/bindings/input/elan_i2c.txt
@@ -14,6 +14,7 @@ Optional properties:
- pinctrl-0: a phandle pointing to the pin settings for the device (see
pinctrl binding [1]).
- vcc-supply: a phandle for the regulator supplying 3.3V power.
+- elan,trackpoint: touchpad can support a trackpoint (boolean)
[0]: Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
[1]: Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
diff --git a/Documentation/devicetree/bindings/input/mtk-pmic-keys.txt b/Documentation/devicetree/bindings/input/mtk-pmic-keys.txt
new file mode 100644
index 0000000..2888d07
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/mtk-pmic-keys.txt
@@ -0,0 +1,43 @@
+MediaTek MT6397/MT6323 PMIC Keys Device Driver
+
+There are two key functions provided by MT6397/MT6323 PMIC, pwrkey
+and homekey. The key functions are defined as the subnode of the function
+node provided by MT6397/MT6323 PMIC that is being defined as one kind
+of Muti-Function Device (MFD)
+
+For MT6397/MT6323 MFD bindings see:
+Documentation/devicetree/bindings/mfd/mt6397.txt
+
+Required properties:
+- compatible: "mediatek,mt6397-keys" or "mediatek,mt6323-keys"
+- linux,keycodes: See Documentation/devicetree/bindings/input/keys.txt
+
+Optional Properties:
+- wakeup-source: See Documentation/devicetree/bindings/power/wakeup-source.txt
+- mediatek,long-press-mode: Long press key shutdown setting, 1 for
+ pwrkey only, 2 for pwrkey/homekey together, others for disabled.
+- power-off-time-sec: See Documentation/devicetree/bindings/input/keys.txt
+
+Example:
+
+ pmic: mt6397 {
+ compatible = "mediatek,mt6397";
+
+ ...
+
+ mt6397keys: mt6397keys {
+ compatible = "mediatek,mt6397-keys";
+ mediatek,long-press-mode = <1>;
+ power-off-time-sec = <0>;
+
+ power {
+ linux,keycodes = <116>;
+ wakeup-source;
+ };
+
+ home {
+ linux,keycodes = <114>;
+ };
+ };
+
+ };
diff --git a/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt b/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
new file mode 100644
index 0000000..3538a21
--- /dev/null
+++ b/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
@@ -0,0 +1,39 @@
+* Nuvoton NPCM7xx KCS (Keyboard Controller Style) IPMI interface
+
+The Nuvoton SOCs (NPCM7xx) are commonly used as BMCs
+(Baseboard Management Controllers) and the KCS interface can be
+used to perform in-band IPMI communication with their host.
+
+Required properties:
+- compatible : should be one of
+ "nuvoton,npcm750-kcs-bmc"
+- interrupts : interrupt generated by the controller
+- kcs_chan : The KCS channel number in the controller
+
+Example:
+
+ lpc_kcs: lpc_kcs@f0007000 {
+ compatible = "nuvoton,npcm750-lpc-kcs", "simple-mfd", "syscon";
+ reg = <0xf0007000 0x40>;
+ reg-io-width = <1>;
+
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0x0 0xf0007000 0x40>;
+
+ kcs1: kcs1@0 {
+ compatible = "nuvoton,npcm750-kcs-bmc";
+ reg = <0x0 0x40>;
+ interrupts = <0 9 4>;
+ kcs_chan = <1>;
+ status = "disabled";
+ };
+
+ kcs2: kcs2@0 {
+ compatible = "nuvoton,npcm750-kcs-bmc";
+ reg = <0x0 0x40>;
+ interrupts = <0 9 4>;
+ kcs_chan = <2>;
+ status = "disabled";
+ };
+ }; \ No newline at end of file
diff --git a/Documentation/devicetree/bindings/leds/backlight/pwm-backlight.txt b/Documentation/devicetree/bindings/leds/backlight/pwm-backlight.txt
index 764db86..3108109 100644
--- a/Documentation/devicetree/bindings/leds/backlight/pwm-backlight.txt
+++ b/Documentation/devicetree/bindings/leds/backlight/pwm-backlight.txt
@@ -17,6 +17,10 @@ Optional properties:
"pwms" property (see PWM binding[0])
- enable-gpios: contains a single GPIO specifier for the GPIO which enables
and disables the backlight (see GPIO binding[1])
+ - post-pwm-on-delay-ms: Delay in ms between setting an initial (non-zero) PWM
+ and enabling the backlight using GPIO.
+ - pwm-off-delay-ms: Delay in ms between disabling the backlight using GPIO
+ and setting PWM value to 0.
[0]: Documentation/devicetree/bindings/pwm/pwm.txt
[1]: Documentation/devicetree/bindings/gpio/gpio.txt
@@ -32,4 +36,6 @@ Example:
power-supply = <&vdd_bl_reg>;
enable-gpios = <&gpio 58 0>;
+ post-pwm-on-delay-ms = <10>;
+ pwm-off-delay-ms = <10>;
};
diff --git a/Documentation/devicetree/bindings/leds/backlight/zii,rave-sp-backlight.txt b/Documentation/devicetree/bindings/leds/backlight/zii,rave-sp-backlight.txt
new file mode 100644
index 0000000..ff5c921
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/backlight/zii,rave-sp-backlight.txt
@@ -0,0 +1,23 @@
+Zodiac Inflight Innovations RAVE Supervisory Processor Backlight Bindings
+
+RAVE SP backlight device is a "MFD cell" device corresponding to
+backlight functionality of RAVE Supervisory Processor. It is expected
+that its Device Tree node is specified as a child of the node
+corresponding to the parent RAVE SP device (as documented in
+Documentation/devicetree/bindings/mfd/zii,rave-sp.txt)
+
+Required properties:
+
+- compatible: Should be "zii,rave-sp-backlight"
+
+Example:
+
+ rave-sp {
+ compatible = "zii,rave-sp-rdu1";
+ current-speed = <38400>;
+
+ backlight {
+ compatible = "zii,rave-sp-backlight";
+ };
+ }
+
diff --git a/Documentation/devicetree/bindings/leds/leds-cr0014114.txt b/Documentation/devicetree/bindings/leds/leds-cr0014114.txt
new file mode 100644
index 0000000..4255b19
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-cr0014114.txt
@@ -0,0 +1,54 @@
+Crane Merchandising System - cr0014114 LED driver
+-------------------------------------------------
+
+This LED Board is widely used in vending machines produced
+by Crane Merchandising Systems.
+
+Required properties:
+- compatible: "crane,cr0014114"
+
+Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
+apply. In particular, "reg" and "spi-max-frequency" properties must be given.
+
+LED sub-node properties:
+- label :
+ see Documentation/devicetree/bindings/leds/common.txt
+- linux,default-trigger : (optional)
+ see Documentation/devicetree/bindings/leds/common.txt
+
+Example
+-------
+
+led-controller@0 {
+ compatible = "crane,cr0014114";
+ reg = <0>;
+ spi-max-frequency = <50000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ led@0 {
+ reg = <0>;
+ label = "red:coin";
+ };
+ led@1 {
+ reg = <1>;
+ label = "green:coin";
+ };
+ led@2 {
+ reg = <2>;
+ label = "blue:coin";
+ };
+ led@3 {
+ reg = <3>;
+ label = "red:bill";
+ };
+ led@4 {
+ reg = <4>;
+ label = "green:bill";
+ };
+ led@5 {
+ reg = <5>;
+ label = "blue:bill";
+ };
+ ...
+};
diff --git a/Documentation/devicetree/bindings/leds/leds-lm3601x.txt b/Documentation/devicetree/bindings/leds/leds-lm3601x.txt
new file mode 100644
index 0000000..a88b2c4
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-lm3601x.txt
@@ -0,0 +1,45 @@
+* Texas Instruments - lm3601x Single-LED Flash Driver
+
+The LM3601X are ultra-small LED flash drivers that
+provide a high level of adjustability.
+
+Required properties:
+ - compatible : Can be one of the following
+ "ti,lm36010"
+ "ti,lm36011"
+ - reg : I2C slave address
+ - #address-cells : 1
+ - #size-cells : 0
+
+Required child properties:
+ - reg : 0 - Indicates a IR mode
+ 1 - Indicates a Torch (white LED) mode
+
+Required properties for flash LED child nodes:
+ See Documentation/devicetree/bindings/leds/common.txt
+ - flash-max-microamp : Range from 11mA - 1.5A
+ - flash-max-timeout-us : Range from 40ms - 1600ms
+ - led-max-microamp : Range from 2.4mA - 376mA
+
+Optional child properties:
+ - label : see Documentation/devicetree/bindings/leds/common.txt
+
+Example:
+led-controller@64 {
+ compatible = "ti,lm36010";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x64>;
+
+ led@0 {
+ reg = <1>;
+ label = "white:torch";
+ led-max-microamp = <376000>;
+ flash-max-microamp = <1500000>;
+ flash-max-timeout-us = <1600000>;
+ };
+}
+
+For more product information please see the links below:
+http://www.ti.com/product/LM36010
+http://www.ti.com/product/LM36011
diff --git a/Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt b/Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt
new file mode 100644
index 0000000..dddf84f
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt
@@ -0,0 +1,41 @@
+LEDs connected to Spreadtrum SC27XX PMIC breathing light controller
+
+The SC27xx breathing light controller supports to 3 outputs:
+red LED, green LED and blue LED. Each LED can work at normal
+PWM mode or breath light mode.
+
+Required properties:
+- compatible: Should be "sprd,sc2731-bltc".
+- #address-cells: Must be 1.
+- #size-cells: Must be 0.
+- reg: Specify the controller address.
+
+Required child properties:
+- reg: Port this LED is connected to.
+
+Optional child properties:
+- label: See Documentation/devicetree/bindings/leds/common.txt.
+
+Examples:
+
+led-controller@200 {
+ compatible = "sprd,sc2731-bltc";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x200>;
+
+ led@0 {
+ label = "red";
+ reg = <0x0>;
+ };
+
+ led@1 {
+ label = "green";
+ reg = <0x1>;
+ };
+
+ led@2 {
+ label = "blue";
+ reg = <0x2>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt b/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt
index 16964f0..6e8a9ab 100644
--- a/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt
+++ b/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt
@@ -10,6 +10,8 @@ platforms.
Definition: must be one of:
"qcom,msm8916-apcs-kpss-global",
"qcom,msm8996-apcs-hmss-global"
+ "qcom,msm8998-apcs-hmss-global"
+ "qcom,sdm845-apss-shared"
- reg:
Usage: required
diff --git a/Documentation/devicetree/bindings/mailbox/stm32-ipcc.txt b/Documentation/devicetree/bindings/mailbox/stm32-ipcc.txt
new file mode 100644
index 0000000..1d2b7fe
--- /dev/null
+++ b/Documentation/devicetree/bindings/mailbox/stm32-ipcc.txt
@@ -0,0 +1,47 @@
+* STMicroelectronics STM32 IPCC (Inter-Processor Communication Controller)
+
+The IPCC block provides a non blocking signaling mechanism to post and
+retrieve messages in an atomic way between two processors.
+It provides the signaling for N bidirectionnal channels. The number of channels
+(N) can be read from a dedicated register.
+
+Required properties:
+- compatible: Must be "st,stm32mp1-ipcc"
+- reg: Register address range (base address and length)
+- st,proc-id: Processor id using the mailbox (0 or 1)
+- clocks: Input clock
+- interrupt-names: List of names for the interrupts described by the interrupt
+ property. Must contain the following entries:
+ - "rx"
+ - "tx"
+ - "wakeup"
+- interrupts: Interrupt specifiers for "rx channel occupied", "tx channel
+ free" and "system wakeup".
+- #mbox-cells: Number of cells required for the mailbox specifier. Must be 1.
+ The data contained in the mbox specifier of the "mboxes"
+ property in the client node is the mailbox channel index.
+
+Optional properties:
+- wakeup-source: Flag to indicate whether this device can wake up the system
+
+
+
+Example:
+ ipcc: mailbox@4c001000 {
+ compatible = "st,stm32mp1-ipcc";
+ #mbox-cells = <1>;
+ reg = <0x4c001000 0x400>;
+ st,proc-id = <0>;
+ interrupts-extended = <&intc GIC_SPI 100 IRQ_TYPE_NONE>,
+ <&intc GIC_SPI 101 IRQ_TYPE_NONE>,
+ <&aiec 62 1>;
+ interrupt-names = "rx", "tx", "wakeup";
+ clocks = <&rcc_clk IPCC>;
+ wakeup-source;
+ }
+
+Client:
+ mbox_test {
+ ...
+ mboxes = <&ipcc 0>, <&ipcc 1>;
+ };
diff --git a/Documentation/devicetree/bindings/marvell.txt b/Documentation/devicetree/bindings/marvell.txt
deleted file mode 100644
index 7f72231..0000000
--- a/Documentation/devicetree/bindings/marvell.txt
+++ /dev/null
@@ -1,516 +0,0 @@
-Marvell Discovery mv64[345]6x System Controller chips
-===========================================================
-
-The Marvell mv64[345]60 series of system controller chips contain
-many of the peripherals needed to implement a complete computer
-system. In this section, we define device tree nodes to describe
-the system controller chip itself and each of the peripherals
-which it contains. Compatible string values for each node are
-prefixed with the string "marvell,", for Marvell Technology Group Ltd.
-
-1) The /system-controller node
-
- This node is used to represent the system-controller and must be
- present when the system uses a system controller chip. The top-level
- system-controller node contains information that is global to all
- devices within the system controller chip. The node name begins
- with "system-controller" followed by the unit address, which is
- the base address of the memory-mapped register set for the system
- controller chip.
-
- Required properties:
-
- - ranges : Describes the translation of system controller addresses
- for memory mapped registers.
- - clock-frequency: Contains the main clock frequency for the system
- controller chip.
- - reg : This property defines the address and size of the
- memory-mapped registers contained within the system controller
- chip. The address specified in the "reg" property should match
- the unit address of the system-controller node.
- - #address-cells : Address representation for system controller
- devices. This field represents the number of cells needed to
- represent the address of the memory-mapped registers of devices
- within the system controller chip.
- - #size-cells : Size representation for the memory-mapped
- registers within the system controller chip.
- - #interrupt-cells : Defines the width of cells used to represent
- interrupts.
-
- Optional properties:
-
- - model : The specific model of the system controller chip. Such
- as, "mv64360", "mv64460", or "mv64560".
- - compatible : A string identifying the compatibility identifiers
- of the system controller chip.
-
- The system-controller node contains child nodes for each system
- controller device that the platform uses. Nodes should not be created
- for devices which exist on the system controller chip but are not used
-
- Example Marvell Discovery mv64360 system-controller node:
-
- system-controller@f1000000 { /* Marvell Discovery mv64360 */
- #address-cells = <1>;
- #size-cells = <1>;
- model = "mv64360"; /* Default */
- compatible = "marvell,mv64360";
- clock-frequency = <133333333>;
- reg = <0xf1000000 0x10000>;
- virtual-reg = <0xf1000000>;
- ranges = <0x88000000 0x88000000 0x1000000 /* PCI 0 I/O Space */
- 0x80000000 0x80000000 0x8000000 /* PCI 0 MEM Space */
- 0xa0000000 0xa0000000 0x4000000 /* User FLASH */
- 0x00000000 0xf1000000 0x0010000 /* Bridge's regs */
- 0xf2000000 0xf2000000 0x0040000>;/* Integrated SRAM */
-
- [ child node definitions... ]
- }
-
-2) Child nodes of /system-controller
-
- a) Marvell Discovery MDIO bus
-
- The MDIO is a bus to which the PHY devices are connected. For each
- device that exists on this bus, a child node should be created. See
- the definition of the PHY node below for an example of how to define
- a PHY.
-
- Required properties:
- - #address-cells : Should be <1>
- - #size-cells : Should be <0>
- - compatible : Should be "marvell,mv64360-mdio"
-
- Example:
-
- mdio {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "marvell,mv64360-mdio";
-
- ethernet-phy@0 {
- ......
- };
- };
-
-
- b) Marvell Discovery ethernet controller
-
- The Discover ethernet controller is described with two levels
- of nodes. The first level describes an ethernet silicon block
- and the second level describes up to 3 ethernet nodes within
- that block. The reason for the multiple levels is that the
- registers for the node are interleaved within a single set
- of registers. The "ethernet-block" level describes the
- shared register set, and the "ethernet" nodes describe ethernet
- port-specific properties.
-
- Ethernet block node
-
- Required properties:
- - #address-cells : <1>
- - #size-cells : <0>
- - compatible : "marvell,mv64360-eth-block"
- - reg : Offset and length of the register set for this block
-
- Optional properties:
- - clocks : Phandle to the clock control device and gate bit
-
- Example Discovery Ethernet block node:
- ethernet-block@2000 {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "marvell,mv64360-eth-block";
- reg = <0x2000 0x2000>;
- ethernet@0 {
- .......
- };
- };
-
- Ethernet port node
-
- Required properties:
- - compatible : Should be "marvell,mv64360-eth".
- - reg : Should be <0>, <1>, or <2>, according to which registers
- within the silicon block the device uses.
- - interrupts : <a> where a is the interrupt number for the port.
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
- - phy : the phandle for the PHY connected to this ethernet
- controller.
- - local-mac-address : 6 bytes, MAC address
-
- Example Discovery Ethernet port node:
- ethernet@0 {
- compatible = "marvell,mv64360-eth";
- reg = <0>;
- interrupts = <32>;
- interrupt-parent = <&PIC>;
- phy = <&PHY0>;
- local-mac-address = [ 00 00 00 00 00 00 ];
- };
-
-
-
- c) Marvell Discovery PHY nodes
-
- Required properties:
- - interrupts : <a> where a is the interrupt number for this phy.
- - interrupt-parent : the phandle for the interrupt controller that
- services interrupts for this device.
- - reg : The ID number for the phy, usually a small integer
-
- Example Discovery PHY node:
- ethernet-phy@1 {
- compatible = "broadcom,bcm5421";
- interrupts = <76>; /* GPP 12 */
- interrupt-parent = <&PIC>;
- reg = <1>;
- };
-
-
- d) Marvell Discovery SDMA nodes
-
- Represent DMA hardware associated with the MPSC (multiprotocol
- serial controllers).
-
- Required properties:
- - compatible : "marvell,mv64360-sdma"
- - reg : Offset and length of the register set for this device
- - interrupts : <a> where a is the interrupt number for the DMA
- device.
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
-
- Example Discovery SDMA node:
- sdma@4000 {
- compatible = "marvell,mv64360-sdma";
- reg = <0x4000 0xc18>;
- virtual-reg = <0xf1004000>;
- interrupts = <36>;
- interrupt-parent = <&PIC>;
- };
-
-
- e) Marvell Discovery BRG nodes
-
- Represent baud rate generator hardware associated with the MPSC
- (multiprotocol serial controllers).
-
- Required properties:
- - compatible : "marvell,mv64360-brg"
- - reg : Offset and length of the register set for this device
- - clock-src : A value from 0 to 15 which selects the clock
- source for the baud rate generator. This value corresponds
- to the CLKS value in the BRGx configuration register. See
- the mv64x60 User's Manual.
- - clock-frequence : The frequency (in Hz) of the baud rate
- generator's input clock.
- - current-speed : The current speed setting (presumably by
- firmware) of the baud rate generator.
-
- Example Discovery BRG node:
- brg@b200 {
- compatible = "marvell,mv64360-brg";
- reg = <0xb200 0x8>;
- clock-src = <8>;
- clock-frequency = <133333333>;
- current-speed = <9600>;
- };
-
-
- f) Marvell Discovery CUNIT nodes
-
- Represent the Serial Communications Unit device hardware.
-
- Required properties:
- - reg : Offset and length of the register set for this device
-
- Example Discovery CUNIT node:
- cunit@f200 {
- reg = <0xf200 0x200>;
- };
-
-
- g) Marvell Discovery MPSCROUTING nodes
-
- Represent the Discovery's MPSC routing hardware
-
- Required properties:
- - reg : Offset and length of the register set for this device
-
- Example Discovery CUNIT node:
- mpscrouting@b500 {
- reg = <0xb400 0xc>;
- };
-
-
- h) Marvell Discovery MPSCINTR nodes
-
- Represent the Discovery's MPSC DMA interrupt hardware registers
- (SDMA cause and mask registers).
-
- Required properties:
- - reg : Offset and length of the register set for this device
-
- Example Discovery MPSCINTR node:
- mpsintr@b800 {
- reg = <0xb800 0x100>;
- };
-
-
- i) Marvell Discovery MPSC nodes
-
- Represent the Discovery's MPSC (Multiprotocol Serial Controller)
- serial port.
-
- Required properties:
- - compatible : "marvell,mv64360-mpsc"
- - reg : Offset and length of the register set for this device
- - sdma : the phandle for the SDMA node used by this port
- - brg : the phandle for the BRG node used by this port
- - cunit : the phandle for the CUNIT node used by this port
- - mpscrouting : the phandle for the MPSCROUTING node used by this port
- - mpscintr : the phandle for the MPSCINTR node used by this port
- - cell-index : the hardware index of this cell in the MPSC core
- - max_idle : value needed for MPSC CHR3 (Maximum Frame Length)
- register
- - interrupts : <a> where a is the interrupt number for the MPSC.
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
-
- Example Discovery MPSCINTR node:
- mpsc@8000 {
- compatible = "marvell,mv64360-mpsc";
- reg = <0x8000 0x38>;
- virtual-reg = <0xf1008000>;
- sdma = <&SDMA0>;
- brg = <&BRG0>;
- cunit = <&CUNIT>;
- mpscrouting = <&MPSCROUTING>;
- mpscintr = <&MPSCINTR>;
- cell-index = <0>;
- max_idle = <40>;
- interrupts = <40>;
- interrupt-parent = <&PIC>;
- };
-
-
- j) Marvell Discovery Watch Dog Timer nodes
-
- Represent the Discovery's watchdog timer hardware
-
- Required properties:
- - compatible : "marvell,mv64360-wdt"
- - reg : Offset and length of the register set for this device
-
- Example Discovery Watch Dog Timer node:
- wdt@b410 {
- compatible = "marvell,mv64360-wdt";
- reg = <0xb410 0x8>;
- };
-
-
- k) Marvell Discovery I2C nodes
-
- Represent the Discovery's I2C hardware
-
- Required properties:
- - device_type : "i2c"
- - compatible : "marvell,mv64360-i2c"
- - reg : Offset and length of the register set for this device
- - interrupts : <a> where a is the interrupt number for the I2C.
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
-
- Example Discovery I2C node:
- compatible = "marvell,mv64360-i2c";
- reg = <0xc000 0x20>;
- virtual-reg = <0xf100c000>;
- interrupts = <37>;
- interrupt-parent = <&PIC>;
- };
-
-
- l) Marvell Discovery PIC (Programmable Interrupt Controller) nodes
-
- Represent the Discovery's PIC hardware
-
- Required properties:
- - #interrupt-cells : <1>
- - #address-cells : <0>
- - compatible : "marvell,mv64360-pic"
- - reg : Offset and length of the register set for this device
- - interrupt-controller
-
- Example Discovery PIC node:
- pic {
- #interrupt-cells = <1>;
- #address-cells = <0>;
- compatible = "marvell,mv64360-pic";
- reg = <0x0 0x88>;
- interrupt-controller;
- };
-
-
- m) Marvell Discovery MPP (Multipurpose Pins) multiplexing nodes
-
- Represent the Discovery's MPP hardware
-
- Required properties:
- - compatible : "marvell,mv64360-mpp"
- - reg : Offset and length of the register set for this device
-
- Example Discovery MPP node:
- mpp@f000 {
- compatible = "marvell,mv64360-mpp";
- reg = <0xf000 0x10>;
- };
-
-
- n) Marvell Discovery GPP (General Purpose Pins) nodes
-
- Represent the Discovery's GPP hardware
-
- Required properties:
- - compatible : "marvell,mv64360-gpp"
- - reg : Offset and length of the register set for this device
-
- Example Discovery GPP node:
- gpp@f000 {
- compatible = "marvell,mv64360-gpp";
- reg = <0xf100 0x20>;
- };
-
-
- o) Marvell Discovery PCI host bridge node
-
- Represents the Discovery's PCI host bridge device. The properties
- for this node conform to Rev 2.1 of the PCI Bus Binding to IEEE
- 1275-1994. A typical value for the compatible property is
- "marvell,mv64360-pci".
-
- Example Discovery PCI host bridge node
- pci@80000000 {
- #address-cells = <3>;
- #size-cells = <2>;
- #interrupt-cells = <1>;
- device_type = "pci";
- compatible = "marvell,mv64360-pci";
- reg = <0xcf8 0x8>;
- ranges = <0x01000000 0x0 0x0
- 0x88000000 0x0 0x01000000
- 0x02000000 0x0 0x80000000
- 0x80000000 0x0 0x08000000>;
- bus-range = <0 255>;
- clock-frequency = <66000000>;
- interrupt-parent = <&PIC>;
- interrupt-map-mask = <0xf800 0x0 0x0 0x7>;
- interrupt-map = <
- /* IDSEL 0x0a */
- 0x5000 0 0 1 &PIC 80
- 0x5000 0 0 2 &PIC 81
- 0x5000 0 0 3 &PIC 91
- 0x5000 0 0 4 &PIC 93
-
- /* IDSEL 0x0b */
- 0x5800 0 0 1 &PIC 91
- 0x5800 0 0 2 &PIC 93
- 0x5800 0 0 3 &PIC 80
- 0x5800 0 0 4 &PIC 81
-
- /* IDSEL 0x0c */
- 0x6000 0 0 1 &PIC 91
- 0x6000 0 0 2 &PIC 93
- 0x6000 0 0 3 &PIC 80
- 0x6000 0 0 4 &PIC 81
-
- /* IDSEL 0x0d */
- 0x6800 0 0 1 &PIC 93
- 0x6800 0 0 2 &PIC 80
- 0x6800 0 0 3 &PIC 81
- 0x6800 0 0 4 &PIC 91
- >;
- };
-
-
- p) Marvell Discovery CPU Error nodes
-
- Represent the Discovery's CPU error handler device.
-
- Required properties:
- - compatible : "marvell,mv64360-cpu-error"
- - reg : Offset and length of the register set for this device
- - interrupts : the interrupt number for this device
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
-
- Example Discovery CPU Error node:
- cpu-error@70 {
- compatible = "marvell,mv64360-cpu-error";
- reg = <0x70 0x10 0x128 0x28>;
- interrupts = <3>;
- interrupt-parent = <&PIC>;
- };
-
-
- q) Marvell Discovery SRAM Controller nodes
-
- Represent the Discovery's SRAM controller device.
-
- Required properties:
- - compatible : "marvell,mv64360-sram-ctrl"
- - reg : Offset and length of the register set for this device
- - interrupts : the interrupt number for this device
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
-
- Example Discovery SRAM Controller node:
- sram-ctrl@380 {
- compatible = "marvell,mv64360-sram-ctrl";
- reg = <0x380 0x80>;
- interrupts = <13>;
- interrupt-parent = <&PIC>;
- };
-
-
- r) Marvell Discovery PCI Error Handler nodes
-
- Represent the Discovery's PCI error handler device.
-
- Required properties:
- - compatible : "marvell,mv64360-pci-error"
- - reg : Offset and length of the register set for this device
- - interrupts : the interrupt number for this device
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
-
- Example Discovery PCI Error Handler node:
- pci-error@1d40 {
- compatible = "marvell,mv64360-pci-error";
- reg = <0x1d40 0x40 0xc28 0x4>;
- interrupts = <12>;
- interrupt-parent = <&PIC>;
- };
-
-
- s) Marvell Discovery Memory Controller nodes
-
- Represent the Discovery's memory controller device.
-
- Required properties:
- - compatible : "marvell,mv64360-mem-ctrl"
- - reg : Offset and length of the register set for this device
- - interrupts : the interrupt number for this device
- - interrupt-parent : the phandle for the interrupt controller
- that services interrupts for this device.
-
- Example Discovery Memory Controller node:
- mem-ctrl@1400 {
- compatible = "marvell,mv64360-mem-ctrl";
- reg = <0x1400 0x60>;
- interrupts = <17>;
- interrupt-parent = <&PIC>;
- };
-
-
diff --git a/Documentation/devicetree/bindings/media/cdns,csi2rx.txt b/Documentation/devicetree/bindings/media/cdns,csi2rx.txt
new file mode 100644
index 0000000..6b02a06
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/cdns,csi2rx.txt
@@ -0,0 +1,100 @@
+Cadence MIPI-CSI2 RX controller
+===============================
+
+The Cadence MIPI-CSI2 RX controller is a CSI-2 bridge supporting up to 4 CSI
+lanes in input, and 4 different pixel streams in output.
+
+Required properties:
+ - compatible: must be set to "cdns,csi2rx" and an SoC-specific compatible
+ - reg: base address and size of the memory mapped region
+ - clocks: phandles to the clocks driving the controller
+ - clock-names: must contain:
+ * sys_clk: main clock
+ * p_clk: register bank clock
+ * pixel_if[0-3]_clk: pixel stream output clock, one for each stream
+ implemented in hardware, between 0 and 3
+
+Optional properties:
+ - phys: phandle to the external D-PHY, phy-names must be provided
+ - phy-names: must contain "dphy", if the implementation uses an
+ external D-PHY
+
+Required subnodes:
+ - ports: A ports node with one port child node per device input and output
+ port, in accordance with the video interface bindings defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt. The
+ port nodes are numbered as follows:
+
+ Port Description
+ -----------------------------
+ 0 CSI-2 input
+ 1 Stream 0 output
+ 2 Stream 1 output
+ 3 Stream 2 output
+ 4 Stream 3 output
+
+ The stream output port nodes are optional if they are not
+ connected to anything at the hardware level or implemented
+ in the design.Since there is only one endpoint per port,
+ the endpoints are not numbered.
+
+
+Example:
+
+csi2rx: csi-bridge@0d060000 {
+ compatible = "cdns,csi2rx";
+ reg = <0x0d060000 0x1000>;
+ clocks = <&byteclock>, <&byteclock>
+ <&coreclock>, <&coreclock>,
+ <&coreclock>, <&coreclock>;
+ clock-names = "sys_clk", "p_clk",
+ "pixel_if0_clk", "pixel_if1_clk",
+ "pixel_if2_clk", "pixel_if3_clk";
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
+ csi2rx_in_sensor: endpoint {
+ remote-endpoint = <&sensor_out_csi2rx>;
+ clock-lanes = <0>;
+ data-lanes = <1 2>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ csi2rx_out_grabber0: endpoint {
+ remote-endpoint = <&grabber0_in_csi2rx>;
+ };
+ };
+
+ port@2 {
+ reg = <2>;
+
+ csi2rx_out_grabber1: endpoint {
+ remote-endpoint = <&grabber1_in_csi2rx>;
+ };
+ };
+
+ port@3 {
+ reg = <3>;
+
+ csi2rx_out_grabber2: endpoint {
+ remote-endpoint = <&grabber2_in_csi2rx>;
+ };
+ };
+
+ port@4 {
+ reg = <4>;
+
+ csi2rx_out_grabber3: endpoint {
+ remote-endpoint = <&grabber3_in_csi2rx>;
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/media/cdns,csi2tx.txt b/Documentation/devicetree/bindings/media/cdns,csi2tx.txt
new file mode 100644
index 0000000..459c6e3
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/cdns,csi2tx.txt
@@ -0,0 +1,98 @@
+Cadence MIPI-CSI2 TX controller
+===============================
+
+The Cadence MIPI-CSI2 TX controller is a CSI-2 bridge supporting up to
+4 CSI lanes in output, and up to 4 different pixel streams in input.
+
+Required properties:
+ - compatible: must be set to "cdns,csi2tx"
+ - reg: base address and size of the memory mapped region
+ - clocks: phandles to the clocks driving the controller
+ - clock-names: must contain:
+ * esc_clk: escape mode clock
+ * p_clk: register bank clock
+ * pixel_if[0-3]_clk: pixel stream output clock, one for each stream
+ implemented in hardware, between 0 and 3
+
+Optional properties
+ - phys: phandle to the D-PHY. If it is set, phy-names need to be set
+ - phy-names: must contain "dphy"
+
+Required subnodes:
+ - ports: A ports node with one port child node per device input and output
+ port, in accordance with the video interface bindings defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt. The
+ port nodes are numbered as follows.
+
+ Port Description
+ -----------------------------
+ 0 CSI-2 output
+ 1 Stream 0 input
+ 2 Stream 1 input
+ 3 Stream 2 input
+ 4 Stream 3 input
+
+ The stream input port nodes are optional if they are not
+ connected to anything at the hardware level or implemented
+ in the design. Since there is only one endpoint per port,
+ the endpoints are not numbered.
+
+Example:
+
+csi2tx: csi-bridge@0d0e1000 {
+ compatible = "cdns,csi2tx";
+ reg = <0x0d0e1000 0x1000>;
+ clocks = <&byteclock>, <&byteclock>,
+ <&coreclock>, <&coreclock>,
+ <&coreclock>, <&coreclock>;
+ clock-names = "p_clk", "esc_clk",
+ "pixel_if0_clk", "pixel_if1_clk",
+ "pixel_if2_clk", "pixel_if3_clk";
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
+ csi2tx_out: endpoint {
+ remote-endpoint = <&remote_in>;
+ clock-lanes = <0>;
+ data-lanes = <1 2>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ csi2tx_in_stream0: endpoint {
+ remote-endpoint = <&stream0_out>;
+ };
+ };
+
+ port@2 {
+ reg = <2>;
+
+ csi2tx_in_stream1: endpoint {
+ remote-endpoint = <&stream1_out>;
+ };
+ };
+
+ port@3 {
+ reg = <3>;
+
+ csi2tx_in_stream2: endpoint {
+ remote-endpoint = <&stream2_out>;
+ };
+ };
+
+ port@4 {
+ reg = <4>;
+
+ csi2tx_in_stream3: endpoint {
+ remote-endpoint = <&stream3_out>;
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/media/i2c/ov7251.txt b/Documentation/devicetree/bindings/media/i2c/ov7251.txt
new file mode 100644
index 0000000..8281151
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/i2c/ov7251.txt
@@ -0,0 +1,52 @@
+* Omnivision 1/7.5-Inch B&W VGA CMOS Digital Image Sensor
+
+The Omnivision OV7251 is a 1/7.5-Inch CMOS active pixel digital image sensor
+with an active array size of 640H x 480V. It is programmable through a serial
+I2C interface.
+
+Required Properties:
+- compatible: Value should be "ovti,ov7251".
+- clocks: Reference to the xclk clock.
+- clock-names: Should be "xclk".
+- clock-frequency: Frequency of the xclk clock.
+- enable-gpios: Chip enable GPIO. Polarity is GPIO_ACTIVE_HIGH. This corresponds
+ to the hardware pin XSHUTDOWN which is physically active low.
+- vdddo-supply: Chip digital IO regulator.
+- vdda-supply: Chip analog regulator.
+- vddd-supply: Chip digital core regulator.
+
+The device node shall contain one 'port' child node with a single 'endpoint'
+subnode for its digital output video port, in accordance with the video
+interface bindings defined in
+Documentation/devicetree/bindings/media/video-interfaces.txt.
+
+Example:
+
+ &i2c1 {
+ ...
+
+ ov7251: camera-sensor@60 {
+ compatible = "ovti,ov7251";
+ reg = <0x60>;
+
+ enable-gpios = <&gpio1 6 GPIO_ACTIVE_HIGH>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&camera_bw_default>;
+
+ clocks = <&clks 200>;
+ clock-names = "xclk";
+ clock-frequency = <24000000>;
+
+ vdddo-supply = <&camera_dovdd_1v8>;
+ vdda-supply = <&camera_avdd_2v8>;
+ vddd-supply = <&camera_dvdd_1v2>;
+
+ port {
+ ov7251_ep: endpoint {
+ clock-lanes = <1>;
+ data-lanes = <0>;
+ remote-endpoint = <&csi0_ep>;
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/i2c/ov772x.txt b/Documentation/devicetree/bindings/media/i2c/ov772x.txt
new file mode 100644
index 0000000..0b3ede5
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/i2c/ov772x.txt
@@ -0,0 +1,40 @@
+* Omnivision OV7720/OV7725 CMOS sensor
+
+The Omnivision OV7720/OV7725 sensor supports multiple resolutions output,
+such as VGA, QVGA, and any size scaling down from CIF to 40x30. It also can
+support the YUV422, RGB565/555/444, GRB422 or raw RGB output formats.
+
+Required Properties:
+- compatible: shall be one of
+ "ovti,ov7720"
+ "ovti,ov7725"
+- clocks: reference to the xclk input clock.
+
+Optional Properties:
+- reset-gpios: reference to the GPIO connected to the RSTB pin which is
+ active low, if any.
+- powerdown-gpios: reference to the GPIO connected to the PWDN pin which is
+ active high, if any.
+
+The device node shall contain one 'port' child node with one child 'endpoint'
+subnode for its digital output video port, in accordance with the video
+interface bindings defined in Documentation/devicetree/bindings/media/
+video-interfaces.txt.
+
+Example:
+
+&i2c0 {
+ ov772x: camera@21 {
+ compatible = "ovti,ov7725";
+ reg = <0x21>;
+ reset-gpios = <&axi_gpio_0 0 GPIO_ACTIVE_LOW>;
+ powerdown-gpios = <&axi_gpio_0 1 GPIO_ACTIVE_LOW>;
+ clocks = <&xclk>;
+
+ port {
+ ov772x_0: endpoint {
+ remote-endpoint = <&vcap1_in0>;
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/media/i2c/panasonic,amg88xx.txt b/Documentation/devicetree/bindings/media/i2c/panasonic,amg88xx.txt
new file mode 100644
index 0000000..4a3181a
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/i2c/panasonic,amg88xx.txt
@@ -0,0 +1,19 @@
+* Panasonic AMG88xx
+
+The Panasonic family of AMG88xx Grid-Eye sensors allow recording
+8x8 10Hz video which consists of thermal datapoints
+
+Required Properties:
+ - compatible : Must be "panasonic,amg88xx"
+ - reg : i2c address of the device
+
+Example:
+
+ i2c0@1c22000 {
+ ...
+ amg88xx@69 {
+ compatible = "panasonic,amg88xx";
+ reg = <0x69>;
+ };
+ ...
+ };
diff --git a/Documentation/devicetree/bindings/media/rcar_vin.txt b/Documentation/devicetree/bindings/media/rcar_vin.txt
index 1ce7ff9..a19517e1 100644
--- a/Documentation/devicetree/bindings/media/rcar_vin.txt
+++ b/Documentation/devicetree/bindings/media/rcar_vin.txt
@@ -2,20 +2,28 @@ Renesas R-Car Video Input driver (rcar_vin)
-------------------------------------------
The rcar_vin device provides video input capabilities for the Renesas R-Car
-family of devices. The current blocks are always slaves and suppot one input
-channel which can be either RGB, YUYV or BT656.
+family of devices.
+
+Each VIN instance has a single parallel input that supports RGB and YUV video,
+with both external synchronization and BT.656 synchronization for the latter.
+Depending on the instance the VIN input is connected to external SoC pins, or
+on Gen3 platforms to a CSI-2 receiver.
- compatible: Must be one or more of the following
- - "renesas,vin-r8a7795" for the R8A7795 device
- - "renesas,vin-r8a7794" for the R8A7794 device
- - "renesas,vin-r8a7793" for the R8A7793 device
- - "renesas,vin-r8a7792" for the R8A7792 device
- - "renesas,vin-r8a7791" for the R8A7791 device
- - "renesas,vin-r8a7790" for the R8A7790 device
- - "renesas,vin-r8a7779" for the R8A7779 device
+ - "renesas,vin-r8a7743" for the R8A7743 device
+ - "renesas,vin-r8a7745" for the R8A7745 device
- "renesas,vin-r8a7778" for the R8A7778 device
- - "renesas,rcar-gen2-vin" for a generic R-Car Gen2 compatible device.
- - "renesas,rcar-gen3-vin" for a generic R-Car Gen3 compatible device.
+ - "renesas,vin-r8a7779" for the R8A7779 device
+ - "renesas,vin-r8a7790" for the R8A7790 device
+ - "renesas,vin-r8a7791" for the R8A7791 device
+ - "renesas,vin-r8a7792" for the R8A7792 device
+ - "renesas,vin-r8a7793" for the R8A7793 device
+ - "renesas,vin-r8a7794" for the R8A7794 device
+ - "renesas,vin-r8a7795" for the R8A7795 device
+ - "renesas,vin-r8a7796" for the R8A7796 device
+ - "renesas,vin-r8a77970" for the R8A77970 device
+ - "renesas,rcar-gen2-vin" for a generic R-Car Gen2 or RZ/G1 compatible
+ device.
When compatible with the generic version nodes must list the
SoC-specific version corresponding to the platform first
@@ -28,21 +36,38 @@ channel which can be either RGB, YUYV or BT656.
Additionally, an alias named vinX will need to be created to specify
which video input device this is.
-The per-board settings:
+The per-board settings Gen2 platforms:
- port sub-node describing a single endpoint connected to the vin
as described in video-interfaces.txt[1]. Only the first one will
be considered as each vin interface has one input port.
- These settings are used to work out video input format and widths
- into the system.
+The per-board settings Gen3 platforms:
+Gen3 platforms can support both a single connected parallel input source
+from external SoC pins (port0) and/or multiple parallel input sources
+from local SoC CSI-2 receivers (port1) depending on SoC.
-Device node example
--------------------
+- renesas,id - ID number of the VIN, VINx in the documentation.
+- ports
+ - port 0 - sub-node describing a single endpoint connected to the VIN
+ from external SoC pins described in video-interfaces.txt[1].
+ Describing more then one endpoint in port 0 is invalid. Only VIN
+ instances that are connected to external pins should have port 0.
+ - port 1 - sub-nodes describing one or more endpoints connected to
+ the VIN from local SoC CSI-2 receivers. The endpoint numbers must
+ use the following schema.
- aliases {
- vin0 = &vin0;
- };
+ - Endpoint 0 - sub-node describing the endpoint connected to CSI20
+ - Endpoint 1 - sub-node describing the endpoint connected to CSI21
+ - Endpoint 2 - sub-node describing the endpoint connected to CSI40
+ - Endpoint 3 - sub-node describing the endpoint connected to CSI41
+
+Device node example for Gen2 platforms
+--------------------------------------
+
+ aliases {
+ vin0 = &vin0;
+ };
vin0: vin@e6ef0000 {
compatible = "renesas,vin-r8a7790", "renesas,rcar-gen2-vin";
@@ -52,8 +77,8 @@ Device node example
status = "disabled";
};
-Board setup example (vin1 composite video input)
-------------------------------------------------
+Board setup example for Gen2 platforms (vin1 composite video input)
+-------------------------------------------------------------------
&i2c2 {
status = "okay";
@@ -92,6 +117,77 @@ Board setup example (vin1 composite video input)
};
};
+Device node example for Gen3 platforms
+--------------------------------------
+
+ vin0: video@e6ef0000 {
+ compatible = "renesas,vin-r8a7795";
+ reg = <0 0xe6ef0000 0 0x1000>;
+ interrupts = <GIC_SPI 188 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cpg CPG_MOD 811>;
+ power-domains = <&sysc R8A7795_PD_ALWAYS_ON>;
+ resets = <&cpg 811>;
+ renesas,id = <0>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@1 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ reg = <1>;
+
+ vin0csi20: endpoint@0 {
+ reg = <0>;
+ remote-endpoint= <&csi20vin0>;
+ };
+ vin0csi21: endpoint@1 {
+ reg = <1>;
+ remote-endpoint= <&csi21vin0>;
+ };
+ vin0csi40: endpoint@2 {
+ reg = <2>;
+ remote-endpoint= <&csi40vin0>;
+ };
+ };
+ };
+ };
+ csi20: csi2@fea80000 {
+ compatible = "renesas,r8a7795-csi2";
+ reg = <0 0xfea80000 0 0x10000>;
+ interrupts = <GIC_SPI 184 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cpg CPG_MOD 714>;
+ power-domains = <&sysc R8A7795_PD_ALWAYS_ON>;
+ resets = <&cpg 714>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+ csi20_in: endpoint {
+ clock-lanes = <0>;
+ data-lanes = <1>;
+ remote-endpoint = <&adv7482_txb>;
+ };
+ };
+
+ port@1 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ reg = <1>;
+
+ csi20vin0: endpoint@0 {
+ reg = <0>;
+ remote-endpoint = <&vin0csi20>;
+ };
+ };
+ };
+ };
[1] video-interfaces.txt common video media interface
diff --git a/Documentation/devicetree/bindings/media/renesas,ceu.txt b/Documentation/devicetree/bindings/media/renesas,ceu.txt
index 3fc66df..8a7a616 100644
--- a/Documentation/devicetree/bindings/media/renesas,ceu.txt
+++ b/Documentation/devicetree/bindings/media/renesas,ceu.txt
@@ -2,14 +2,15 @@ Renesas Capture Engine Unit (CEU)
----------------------------------------------
The Capture Engine Unit is the image capture interface found in the Renesas
-SH Mobile and RZ SoCs.
+SH Mobile, R-Mobile and RZ SoCs.
The interface supports a single parallel input with data bus width of 8 or 16
bits.
Required properties:
-- compatible: Shall be "renesas,r7s72100-ceu" for CEU units found in RZ/A1H
- and RZ/A1M SoCs.
+- compatible: Shall be one of the following values:
+ "renesas,r7s72100-ceu" for CEU units found in RZ/A1H and RZ/A1M SoCs
+ "renesas,r8a7740-ceu" for CEU units found in R-Mobile A1 R8A7740 SoCs
- reg: Registers address base and size.
- interrupts: The interrupt specifier.
diff --git a/Documentation/devicetree/bindings/media/renesas,rcar-csi2.txt b/Documentation/devicetree/bindings/media/renesas,rcar-csi2.txt
new file mode 100644
index 0000000..2d385b6
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/renesas,rcar-csi2.txt
@@ -0,0 +1,101 @@
+Renesas R-Car MIPI CSI-2
+------------------------
+
+The R-Car CSI-2 receiver device provides MIPI CSI-2 capabilities for the
+Renesas R-Car family of devices. It is used in conjunction with the
+R-Car VIN module, which provides the video capture capabilities.
+
+Mandatory properties
+--------------------
+ - compatible: Must be one or more of the following
+ - "renesas,r8a7795-csi2" for the R8A7795 device.
+ - "renesas,r8a7796-csi2" for the R8A7796 device.
+ - "renesas,r8a77965-csi2" for the R8A77965 device.
+ - "renesas,r8a77970-csi2" for the R8A77970 device.
+
+ - reg: the register base and size for the device registers
+ - interrupts: the interrupt for the device
+ - clocks: reference to the parent clock
+
+The device node shall contain two 'port' child nodes according to the
+bindings defined in Documentation/devicetree/bindings/media/
+video-interfaces.txt. port@0 shall connect to the CSI-2 source. port@1
+shall connect to all the R-Car VIN modules that have a hardware
+connection to the CSI-2 receiver.
+
+- port@0- Video source (mandatory)
+ - endpoint@0 - sub-node describing the endpoint that is the video source
+
+- port@1 - VIN instances (optional)
+ - One endpoint sub-node for every R-Car VIN instance which is connected
+ to the R-Car CSI-2 receiver.
+
+Example:
+
+ csi20: csi2@fea80000 {
+ compatible = "renesas,r8a7796-csi2";
+ reg = <0 0xfea80000 0 0x10000>;
+ interrupts = <0 184 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cpg CPG_MOD 714>;
+ power-domains = <&sysc R8A7796_PD_ALWAYS_ON>;
+ resets = <&cpg 714>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ reg = <0>;
+
+ csi20_in: endpoint@0 {
+ reg = <0>;
+ clock-lanes = <0>;
+ data-lanes = <1>;
+ remote-endpoint = <&adv7482_txb>;
+ };
+ };
+
+ port@1 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ reg = <1>;
+
+ csi20vin0: endpoint@0 {
+ reg = <0>;
+ remote-endpoint = <&vin0csi20>;
+ };
+ csi20vin1: endpoint@1 {
+ reg = <1>;
+ remote-endpoint = <&vin1csi20>;
+ };
+ csi20vin2: endpoint@2 {
+ reg = <2>;
+ remote-endpoint = <&vin2csi20>;
+ };
+ csi20vin3: endpoint@3 {
+ reg = <3>;
+ remote-endpoint = <&vin3csi20>;
+ };
+ csi20vin4: endpoint@4 {
+ reg = <4>;
+ remote-endpoint = <&vin4csi20>;
+ };
+ csi20vin5: endpoint@5 {
+ reg = <5>;
+ remote-endpoint = <&vin5csi20>;
+ };
+ csi20vin6: endpoint@6 {
+ reg = <6>;
+ remote-endpoint = <&vin6csi20>;
+ };
+ csi20vin7: endpoint@7 {
+ reg = <7>;
+ remote-endpoint = <&vin7csi20>;
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-mc.txt b/Documentation/devicetree/bindings/memory-controllers/nvidia,tegra20-mc.txt
index f9632ba..7d60a50 100644
--- a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-mc.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/nvidia,tegra20-mc.txt
@@ -6,11 +6,21 @@ Required properties:
example below. Note that the MC registers are interleaved with the
GART registers, and hence must be represented as multiple ranges.
- interrupts : Should contain MC General interrupt.
+- #reset-cells : Should be 1. This cell represents memory client module ID.
+ The assignments may be found in header file <dt-bindings/memory/tegra20-mc.h>
+ or in the TRM documentation.
Example:
- memory-controller@7000f000 {
+ mc: memory-controller@7000f000 {
compatible = "nvidia,tegra20-mc";
reg = <0x7000f000 0x024
0x7000f03c 0x3c4>;
interrupts = <0 77 0x04>;
+ #reset-cells = <1>;
+ };
+
+ video-codec@6001a000 {
+ compatible = "nvidia,tegra20-vde";
+ ...
+ resets = <&mc TEGRA20_MC_RESET_VDE>;
};
diff --git a/Documentation/devicetree/bindings/memory-controllers/nvidia,tegra30-mc.txt b/Documentation/devicetree/bindings/memory-controllers/nvidia,tegra30-mc.txt
index 14968b0..a878b59 100644
--- a/Documentation/devicetree/bindings/memory-controllers/nvidia,tegra30-mc.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/nvidia,tegra30-mc.txt
@@ -12,6 +12,9 @@ Required properties:
- clock-names: Must include the following entries:
- mc: the module's clock input
- interrupts: The interrupt outputs from the controller.
+- #reset-cells : Should be 1. This cell represents memory client module ID.
+ The assignments may be found in header file <dt-bindings/memory/tegra30-mc.h>
+ or in the TRM documentation.
Required properties for Tegra30, Tegra114, Tegra124, Tegra132 and Tegra210:
- #iommu-cells: Should be 1. The single cell of the IOMMU specifier defines
@@ -72,12 +75,14 @@ Example SoC include file:
interrupts = <GIC_SPI 77 IRQ_TYPE_LEVEL_HIGH>;
#iommu-cells = <1>;
+ #reset-cells = <1>;
};
sdhci@700b0000 {
compatible = "nvidia,tegra124-sdhci";
...
iommus = <&mc TEGRA_SWGROUP_SDMMC1A>;
+ resets = <&mc TEGRA124_MC_RESET_SDMMC1>;
};
};
diff --git a/Documentation/devicetree/bindings/mfd/arizona.txt b/Documentation/devicetree/bindings/mfd/arizona.txt
index bdd0176..a014afb 100644
--- a/Documentation/devicetree/bindings/mfd/arizona.txt
+++ b/Documentation/devicetree/bindings/mfd/arizona.txt
@@ -50,7 +50,7 @@ Required properties:
Optional properties:
- - wlf,reset : GPIO specifier for the GPIO controlling /RESET
+ - reset-gpios : GPIO specifier for the GPIO controlling /RESET
- clocks: Should reference the clocks supplied on MCLK1 and MCLK2
- clock-names: Should contains two strings:
@@ -70,6 +70,10 @@ Optional properties:
Documentation/devicetree/bindings/regulator/regulator.txt
(wm5102, wm5110, wm8280, wm8997, wm8998, wm1814)
+Deprecated properties:
+
+ - wlf,reset : GPIO specifier for the GPIO controlling /RESET
+
Also see child specific device properties:
Regulator - ../regulator/arizona-regulator.txt
Extcon - ../extcon/extcon-arizona.txt
diff --git a/Documentation/devicetree/bindings/mfd/axp20x.txt b/Documentation/devicetree/bindings/mfd/axp20x.txt
index 9455503..d1762f3 100644
--- a/Documentation/devicetree/bindings/mfd/axp20x.txt
+++ b/Documentation/devicetree/bindings/mfd/axp20x.txt
@@ -43,7 +43,7 @@ Optional properties:
regulator to drive the OTG VBus, rather then
as an input pin which signals whether the
board is driving OTG VBus or not.
- (axp221 / axp223 / axp813 only)
+ (axp221 / axp223 / axp803/ axp813 only)
- x-powers,master-mode: Boolean (axp806 only). Set this when the PMIC is
wired for master mode. The default is slave mode.
@@ -132,6 +132,7 @@ FLDO2 : LDO : fldoin-supply : shared supply
LDO_IO0 : LDO : ips-supply : GPIO 0
LDO_IO1 : LDO : ips-supply : GPIO 1
RTC_LDO : LDO : ips-supply : always on
+DRIVEVBUS : Enable output : drivevbus-supply : external regulator
AXP806 regulators, type, and corresponding input supply names:
diff --git a/Documentation/devicetree/bindings/mfd/bd9571mwv.txt b/Documentation/devicetree/bindings/mfd/bd9571mwv.txt
index 9ab216a..25d1f69 100644
--- a/Documentation/devicetree/bindings/mfd/bd9571mwv.txt
+++ b/Documentation/devicetree/bindings/mfd/bd9571mwv.txt
@@ -25,6 +25,25 @@ Required properties:
Each child node is defined using the standard
binding for regulators.
+Optional properties:
+ - rohm,ddr-backup-power : Value to use for DDR-Backup Power (default 0).
+ This is a bitmask that specifies which DDR power
+ rails need to be kept powered when backup mode is
+ entered, for system suspend:
+ - bit 0: DDR0
+ - bit 1: DDR1
+ - bit 2: DDR0C
+ - bit 3: DDR1C
+ These bits match the KEEPON_DDR* bits in the
+ documentation for the "BKUP Mode Cnt" register.
+ - rohm,rstbmode-level: The RSTB signal is configured for level mode, to
+ accommodate a toggle power switch (the RSTBMODE pin is
+ strapped low).
+ - rohm,rstbmode-pulse: The RSTB signal is configured for pulse mode, to
+ accommodate a momentary power switch (the RSTBMODE pin
+ is strapped high).
+ The two properties above are mutually exclusive.
+
Example:
pmic: pmic@30 {
@@ -36,6 +55,8 @@ Example:
#interrupt-cells = <2>;
gpio-controller;
#gpio-cells = <2>;
+ rohm,ddr-backup-power = <0xf>;
+ rohm,rstbmode-pulse;
regulators {
dvfs: dvfs {
diff --git a/Documentation/devicetree/bindings/mfd/da9063.txt b/Documentation/devicetree/bindings/mfd/da9063.txt
index 05b21bc..443e682 100644
--- a/Documentation/devicetree/bindings/mfd/da9063.txt
+++ b/Documentation/devicetree/bindings/mfd/da9063.txt
@@ -1,4 +1,4 @@
-* Dialog DA9063 Power Management Integrated Circuit (PMIC)
+* Dialog DA9063/DA9063L Power Management Integrated Circuit (PMIC)
DA9093 consists of a large and varied group of sub-devices (I2C Only):
@@ -6,14 +6,14 @@ Device Supply Names Description
------ ------------ -----------
da9063-regulator : : LDOs & BUCKs
da9063-onkey : : On Key
-da9063-rtc : : Real-Time Clock
+da9063-rtc : : Real-Time Clock (DA9063 only)
da9063-watchdog : : Watchdog
======
Required properties:
-- compatible : Should be "dlg,da9063"
+- compatible : Should be "dlg,da9063" or "dlg,da9063l"
- reg : Specifies the I2C slave address (this defaults to 0x58 but it can be
modified to match the chip's OTP settings).
- interrupt-parent : Specifies the reference to the interrupt controller for
@@ -23,8 +23,8 @@ Required properties:
Sub-nodes:
-- regulators : This node defines the settings for the LDOs and BUCKs. The
- DA9063 regulators are bound using their names listed below:
+- regulators : This node defines the settings for the LDOs and BUCKs.
+ The DA9063(L) regulators are bound using their names listed below:
bcore1 : BUCK CORE1
bcore2 : BUCK CORE2
@@ -32,16 +32,16 @@ Sub-nodes:
bmem : BUCK MEM
bio : BUCK IO
bperi : BUCK PERI
- ldo1 : LDO_1
- ldo2 : LDO_2
+ ldo1 : LDO_1 (DA9063 only)
+ ldo2 : LDO_2 (DA9063 only)
ldo3 : LDO_3
- ldo4 : LDO_4
- ldo5 : LDO_5
- ldo6 : LDO_6
+ ldo4 : LDO_4 (DA9063 only)
+ ldo5 : LDO_5 (DA9063 only)
+ ldo6 : LDO_6 (DA9063 only)
ldo7 : LDO_7
ldo8 : LDO_8
ldo9 : LDO_9
- ldo10 : LDO_10
+ ldo10 : LDO_10 (DA9063 only)
ldo11 : LDO_11
The component follows the standard regulator framework and the bindings
@@ -49,8 +49,9 @@ Sub-nodes:
Documentation/devicetree/bindings/regulator/regulator.txt
- rtc : This node defines settings for the Real-Time Clock associated with
- the DA9063. There are currently no entries in this binding, however
- compatible = "dlg,da9063-rtc" should be added if a node is created.
+ the DA9063 only. The RTC is not present in DA9063L. There are currently
+ no entries in this binding, however compatible = "dlg,da9063-rtc" should
+ be added if a node is created.
- onkey : This node defines the OnKey settings for controlling the key
functionality of the device. The node should contain the compatible property
@@ -65,8 +66,9 @@ Sub-nodes:
and KEY_SLEEP.
- watchdog : This node defines settings for the Watchdog timer associated
- with the DA9063. There are currently no entries in this binding, however
- compatible = "dlg,da9063-watchdog" should be added if a node is created.
+ with the DA9063 and DA9063L. There are currently no entries in this
+ binding, however compatible = "dlg,da9063-watchdog" should be added
+ if a node is created.
Example:
diff --git a/Documentation/devicetree/bindings/mfd/motorola-cpcap.txt b/Documentation/devicetree/bindings/mfd/motorola-cpcap.txt
index 15bc885..c639705 100644
--- a/Documentation/devicetree/bindings/mfd/motorola-cpcap.txt
+++ b/Documentation/devicetree/bindings/mfd/motorola-cpcap.txt
@@ -12,6 +12,30 @@ Required properties:
- spi-max-frequency : Typically set to 3000000
- spi-cs-high : SPI chip select direction
+Optional subnodes:
+
+The sub-functions of CPCAP get their own node with their own compatible values,
+which are described in the following files:
+
+- ../power/supply/cpcap-battery.txt
+- ../power/supply/cpcap-charger.txt
+- ../regulator/cpcap-regulator.txt
+- ../phy/phy-cpcap-usb.txt
+- ../input/cpcap-pwrbutton.txt
+- ../rtc/cpcap-rtc.txt
+- ../leds/leds-cpcap.txt
+- ../iio/adc/cpcap-adc.txt
+
+The only exception is the audio codec. Instead of a compatible value its
+node must be named "audio-codec".
+
+Required properties for the audio-codec subnode:
+
+- #sound-dai-cells = <1>;
+
+The audio-codec provides two DAIs. The first one is connected to the
+Stereo HiFi DAC and the second one is connected to the Voice DAC.
+
Example:
&mcspi1 {
@@ -26,6 +50,24 @@ Example:
#size-cells = <0>;
spi-max-frequency = <3000000>;
spi-cs-high;
+
+ audio-codec {
+ #sound-dai-cells = <1>;
+
+ /* HiFi */
+ port@0 {
+ endpoint {
+ remote-endpoint = <&cpu_dai1>;
+ };
+ };
+
+ /* Voice */
+ port@1 {
+ endpoint {
+ remote-endpoint = <&cpu_dai2>;
+ };
+ };
+ };
};
};
diff --git a/Documentation/devicetree/bindings/mfd/mt6397.txt b/Documentation/devicetree/bindings/mfd/mt6397.txt
index 522a3bb..d1df77f 100644
--- a/Documentation/devicetree/bindings/mfd/mt6397.txt
+++ b/Documentation/devicetree/bindings/mfd/mt6397.txt
@@ -7,6 +7,7 @@ MT6397/MT6323 is a multifunction device with the following sub modules:
- GPIO
- Clock
- LED
+- Keys
It is interfaced to host controller using SPI interface by a proprietary hardware
called PMIC wrapper or pwrap. MT6397/MT6323 MFD is a child device of pwrap.
@@ -40,6 +41,11 @@ Optional subnodes:
- compatible: "mediatek,mt6323-led"
see Documentation/devicetree/bindings/leds/leds-mt6323.txt
+- keys
+ Required properties:
+ - compatible: "mediatek,mt6397-keys" or "mediatek,mt6323-keys"
+ see Documentation/devicetree/bindings/input/mtk-pmic-keys.txt
+
Example:
pwrap: pwrap@1000f000 {
compatible = "mediatek,mt8135-pwrap";
diff --git a/Documentation/devicetree/bindings/mfd/qcom,spmi-pmic.txt b/Documentation/devicetree/bindings/mfd/qcom,spmi-pmic.txt
index 6ac06c1..1437062 100644
--- a/Documentation/devicetree/bindings/mfd/qcom,spmi-pmic.txt
+++ b/Documentation/devicetree/bindings/mfd/qcom,spmi-pmic.txt
@@ -29,6 +29,9 @@ Required properties:
"qcom,pm8916",
"qcom,pm8004",
"qcom,pm8909",
+ "qcom,pm8998",
+ "qcom,pmi8998",
+ "qcom,pm8005",
or generalized "qcom,spmi-pmic".
- reg: Specifies the SPMI USID slave address for this device.
For more information see:
diff --git a/Documentation/devicetree/bindings/mips/lantiq/rcu.txt b/Documentation/devicetree/bindings/mips/lantiq/rcu.txt
index a086f1e..7f0822b 100644
--- a/Documentation/devicetree/bindings/mips/lantiq/rcu.txt
+++ b/Documentation/devicetree/bindings/mips/lantiq/rcu.txt
@@ -61,7 +61,6 @@ Example of the RCU bindings on a xRX200 SoC:
usb_phy0: usb2-phy@18 {
compatible = "lantiq,xrx200-usb2-phy";
reg = <0x18 4>, <0x38 4>;
- status = "disabled";
resets = <&reset1 4 4>, <&reset0 4 4>;
reset-names = "phy", "ctrl";
@@ -71,7 +70,6 @@ Example of the RCU bindings on a xRX200 SoC:
usb_phy1: usb2-phy@34 {
compatible = "lantiq,xrx200-usb2-phy";
reg = <0x34 4>, <0x3C 4>;
- status = "disabled";
resets = <&reset1 5 4>, <&reset0 4 4>;
reset-names = "phy", "ctrl";
diff --git a/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt b/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
index 50bf611..13e7040 100644
--- a/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
+++ b/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
@@ -12,6 +12,7 @@ Required properties:
- "amlogic,meson-gxbb-mmc"
- "amlogic,meson-gxl-mmc"
- "amlogic,meson-gxm-mmc"
+ - "amlogic,meson-axg-mmc"
- clocks : A list of phandle + clock-specifier pairs for the clocks listed in clock-names.
- clock-names: Should contain the following:
"core" - Main peripheral bus clock
@@ -19,6 +20,7 @@ Required properties:
"clkin1" - Other parent clock of internal mux
The driver has an internal mux clock which switches between clkin0 and clkin1 depending on the
clock rate requested by the MMC core.
+- resets : phandle of the internal reset line
Example:
@@ -29,4 +31,5 @@ Example:
clocks = <&clkc CLKID_SD_EMMC_A>, <&xtal>, <&clkc CLKID_FCLK_DIV2>;
clock-names = "core", "clkin0", "clkin1";
pinctrl-0 = <&emmc_pins>;
+ resets = <&reset RESET_SD_EMMC_A>;
};
diff --git a/Documentation/devicetree/bindings/mmc/bluefield-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/bluefield-dw-mshc.txt
new file mode 100644
index 0000000..b0f0999
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/bluefield-dw-mshc.txt
@@ -0,0 +1,29 @@
+* Mellanox Bluefield SoC specific extensions to the Synopsys Designware
+ Mobile Storage Host Controller
+
+Read synopsys-dw-mshc.txt for more details
+
+The Synopsys designware mobile storage host controller is used to interface
+a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
+differences between the core Synopsys dw mshc controller properties described
+by synopsys-dw-mshc.txt and the properties used by the Mellanox Bluefield SoC
+specific extensions to the Synopsys Designware Mobile Storage Host Controller.
+
+Required Properties:
+
+* compatible: should be one of the following.
+ - "mellanox,bluefield-dw-mshc": for controllers with Mellanox Bluefield SoC
+ specific extensions.
+
+Example:
+
+ /* Mellanox Bluefield SoC MMC */
+ mmc@6008000 {
+ compatible = "mellanox,bluefield-dw-mshc";
+ reg = <0x6008000 0x400>;
+ interrupts = <32>;
+ fifo-depth = <0x100>;
+ clock-frequency = <24000000>;
+ bus-width = <8>;
+ cap-mmc-highspeed;
+ };
diff --git a/Documentation/devicetree/bindings/mmc/jz4740.txt b/Documentation/devicetree/bindings/mmc/jz4740.txt
new file mode 100644
index 0000000..7cd8c43
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/jz4740.txt
@@ -0,0 +1,38 @@
+* Ingenic JZ47xx MMC controllers
+
+This file documents the device tree properties used for the MMC controller in
+Ingenic JZ4740/JZ4780 SoCs. These are in addition to the core MMC properties
+described in mmc.txt.
+
+Required properties:
+- compatible: Should be one of the following:
+ - "ingenic,jz4740-mmc" for the JZ4740
+ - "ingenic,jz4780-mmc" for the JZ4780
+- reg: Should contain the MMC controller registers location and length.
+- interrupts: Should contain the interrupt specifier of the MMC controller.
+- clocks: Clock for the MMC controller.
+
+Optional properties:
+- dmas: List of DMA specifiers with the controller specific format
+ as described in the generic DMA client binding. A tx and rx
+ specifier is required.
+- dma-names: RX and TX DMA request names.
+ Should be "rx" and "tx", in that order.
+
+For additional details on DMA client bindings see ../dma/dma.txt.
+
+Example:
+
+mmc0: mmc@13450000 {
+ compatible = "ingenic,jz4780-mmc";
+ reg = <0x13450000 0x1000>;
+
+ interrupt-parent = <&intc>;
+ interrupts = <37>;
+
+ clocks = <&cgu JZ4780_CLK_MSC0>;
+ clock-names = "mmc";
+
+ dmas = <&dma JZ4780_DMA_MSC0_RX 0xffffffff>, <&dma JZ4780_DMA_MSC0_TX 0xffffffff>;
+ dma-names = "rx", "tx";
+};
diff --git a/Documentation/devicetree/bindings/mmc/mmc.txt b/Documentation/devicetree/bindings/mmc/mmc.txt
index 467cd7b..f5a0923 100644
--- a/Documentation/devicetree/bindings/mmc/mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/mmc.txt
@@ -19,6 +19,8 @@ Optional properties:
- wp-gpios: Specify GPIOs for write protection, see gpio binding
- cd-inverted: when present, polarity on the CD line is inverted. See the note
below for the case, when a GPIO is used for the CD line
+- cd-debounce-delay-ms: Set delay time before detecting card after card insert interrupt.
+ It's only valid when cd-gpios is present.
- wp-inverted: when present, polarity on the WP line is inverted. See the note
below for the case, when a GPIO is used for the WP line
- disable-wp: When set no physical WP line is present. This property should
@@ -56,6 +58,10 @@ Optional properties:
- fixed-emmc-driver-type: for non-removable eMMC, enforce this driver type.
The value <n> is the driver type as specified in the eMMC specification
(table 206 in spec version 5.1).
+- post-power-on-delay-ms : It was invented for MMC pwrseq-simple which could
+ be referred to mmc-pwrseq-simple.txt. But now it's reused as a tunable delay
+ waiting for I/O signalling and card power supply to be stable, regardless of
+ whether pwrseq-simple is used. Default to 10ms if no available.
*NOTE* on CD and WP polarity. To use common for all SD/MMC host controllers line
polarity properties, we have to fix the meaning of the "normal" and "inverted"
diff --git a/Documentation/devicetree/bindings/mmc/sdhci-omap.txt b/Documentation/devicetree/bindings/mmc/sdhci-omap.txt
index 51775a3..393848c 100644
--- a/Documentation/devicetree/bindings/mmc/sdhci-omap.txt
+++ b/Documentation/devicetree/bindings/mmc/sdhci-omap.txt
@@ -4,7 +4,14 @@ Refer to mmc.txt for standard MMC bindings.
Required properties:
- compatible: Should be "ti,dra7-sdhci" for DRA7 and DRA72 controllers
+ Should be "ti,k2g-sdhci" for K2G
- ti,hwmods: Must be "mmc<n>", <n> is controller instance starting 1
+ (Not required for K2G).
+- pinctrl-names: Should be subset of "default", "hs", "sdr12", "sdr25", "sdr50",
+ "ddr50-rev11", "sdr104-rev11", "ddr50", "sdr104",
+ "ddr_1_8v-rev11", "ddr_1_8v" or "ddr_3_3v", "hs200_1_8v-rev11",
+ "hs200_1_8v",
+- pinctrl-<n> : Pinctrl states as described in bindings/pinctrl/pinctrl-bindings.txt
Example:
mmc1: mmc@4809c000 {
diff --git a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
index 2d5287e..839f469 100644
--- a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
@@ -26,6 +26,8 @@ Required properties:
"renesas,sdhi-r8a7794" - SDHI IP on R8A7794 SoC
"renesas,sdhi-r8a7795" - SDHI IP on R8A7795 SoC
"renesas,sdhi-r8a7796" - SDHI IP on R8A7796 SoC
+ "renesas,sdhi-r8a77965" - SDHI IP on R8A77965 SoC
+ "renesas,sdhi-r8a77980" - SDHI IP on R8A77980 SoC
"renesas,sdhi-r8a77995" - SDHI IP on R8A77995 SoC
"renesas,sdhi-shmobile" - a generic sh-mobile SDHI controller
"renesas,rcar-gen1-sdhi" - a generic R-Car Gen1 SDHI controller
@@ -67,7 +69,6 @@ Example: R8A7790 (R-Car H2) SDHI controller nodes
max-frequency = <195000000>;
power-domains = <&sysc R8A7790_PD_ALWAYS_ON>;
resets = <&cpg 314>;
- status = "disabled";
};
sdhi1: sd@ee120000 {
@@ -81,7 +82,6 @@ Example: R8A7790 (R-Car H2) SDHI controller nodes
max-frequency = <195000000>;
power-domains = <&sysc R8A7790_PD_ALWAYS_ON>;
resets = <&cpg 313>;
- status = "disabled";
};
sdhi2: sd@ee140000 {
@@ -95,7 +95,6 @@ Example: R8A7790 (R-Car H2) SDHI controller nodes
max-frequency = <97500000>;
power-domains = <&sysc R8A7790_PD_ALWAYS_ON>;
resets = <&cpg 312>;
- status = "disabled";
};
sdhi3: sd@ee160000 {
@@ -109,5 +108,4 @@ Example: R8A7790 (R-Car H2) SDHI controller nodes
max-frequency = <97500000>;
power-domains = <&sysc R8A7790_PD_ALWAYS_ON>;
resets = <&cpg 311>;
- status = "disabled";
};
diff --git a/Documentation/devicetree/bindings/mtd/gpmi-nand.txt b/Documentation/devicetree/bindings/mtd/gpmi-nand.txt
index b289ef3..3935883 100644
--- a/Documentation/devicetree/bindings/mtd/gpmi-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/gpmi-nand.txt
@@ -47,6 +47,11 @@ Optional properties:
partitions written from Linux with this feature
turned on may not be accessible by the BootROM
code.
+ - nand-ecc-strength: integer representing the number of bits to correct
+ per ECC step. Needs to be a multiple of 2.
+ - nand-ecc-step-size: integer representing the number of data bytes
+ that are covered by a single ECC step. The driver
+ supports 512 and 1024.
The device tree may optionally contain sub-nodes describing partitions of the
address space. See partition.txt for more detail.
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt b/Documentation/devicetree/bindings/mtd/ibm,ndfc.txt
index 869f0b5..869f0b5 100644
--- a/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt
+++ b/Documentation/devicetree/bindings/mtd/ibm,ndfc.txt
diff --git a/Documentation/devicetree/bindings/mtd/mtk-nand.txt b/Documentation/devicetree/bindings/mtd/mtk-nand.txt
index 1c88526..4d3ec5e 100644
--- a/Documentation/devicetree/bindings/mtd/mtk-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/mtk-nand.txt
@@ -20,7 +20,6 @@ Required NFI properties:
- interrupts: Interrupts of NFI.
- clocks: NFI required clocks.
- clock-names: NFI clocks internal name.
-- status: Disabled default. Then set "okay" by platform.
- ecc-engine: Required ECC Engine node.
- #address-cells: NAND chip index, should be 1.
- #size-cells: Should be 0.
@@ -34,7 +33,6 @@ Example:
clocks = <&pericfg CLK_PERI_NFI>,
<&pericfg CLK_PERI_NFI_PAD>;
clock-names = "nfi_clk", "pad_clk";
- status = "disabled";
ecc-engine = <&bch>;
#address-cells = <1>;
#size-cells = <0>;
@@ -50,14 +48,19 @@ Optional:
- nand-on-flash-bbt: Store BBT on NAND Flash.
- nand-ecc-mode: the NAND ecc mode (check driver for supported modes)
- nand-ecc-step-size: Number of data bytes covered by a single ECC step.
- valid values: 512 and 1024.
+ valid values:
+ 512 and 1024 on mt2701 and mt2712.
+ 512 only on mt7622.
1024 is recommended for large page NANDs.
- nand-ecc-strength: Number of bits to correct per ECC step.
- The valid values that the controller supports are: 4, 6,
- 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44,
- 48, 52, 56, 60.
+ The valid values that each controller supports:
+ mt2701: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28,
+ 32, 36, 40, 44, 48, 52, 56, 60.
+ mt2712: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28,
+ 32, 36, 40, 44, 48, 52, 56, 60, 68, 72, 80.
+ mt7622: 4, 6, 8, 10, 12, 14, 16.
The strength should be calculated as follows:
- E = (S - F) * 8 / 14
+ E = (S - F) * 8 / B
S = O / (P / Q)
E : nand-ecc-strength.
S : spare size per sector.
@@ -66,6 +69,15 @@ Optional:
O : oob size.
P : page size.
Q : nand-ecc-step-size.
+ B : number of parity bits needed to correct
+ 1 bitflip.
+ According to MTK NAND controller design,
+ this number depends on max ecc step size
+ that MTK NAND controller supports.
+ If max ecc step size supported is 1024,
+ then it should be always 14. And if max
+ ecc step size is 512, then it should be
+ always 13.
If the result does not match any one of the listed
choices above, please select the smaller valid value from
the list.
@@ -152,7 +164,6 @@ Required BCH properties:
- interrupts: Interrupts of ECC.
- clocks: ECC required clocks.
- clock-names: ECC clocks internal name.
-- status: Disabled default. Then set "okay" by platform.
Example:
@@ -162,5 +173,4 @@ Example:
interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_LOW>;
clocks = <&pericfg CLK_PERI_NFI_ECC>;
clock-names = "nfiecc_clk";
- status = "disabled";
};
diff --git a/Documentation/devicetree/bindings/mtd/partition.txt b/Documentation/devicetree/bindings/mtd/partition.txt
index 36f3b76..a8f3826 100644
--- a/Documentation/devicetree/bindings/mtd/partition.txt
+++ b/Documentation/devicetree/bindings/mtd/partition.txt
@@ -14,7 +14,7 @@ method is used for a given flash device. To describe the method there should be
a subnode of the flash device that is named 'partitions'. It must have a
'compatible' property, which is used to identify the method to use.
-We currently only document a binding for fixed layouts.
+Available bindings are listed in the "partitions" subdirectory.
Fixed Partitions
diff --git a/Documentation/devicetree/bindings/mtd/partitions/brcm,bcm947xx-cfe-partitions.txt b/Documentation/devicetree/bindings/mtd/partitions/brcm,bcm947xx-cfe-partitions.txt
new file mode 100644
index 0000000..1d61a02
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/partitions/brcm,bcm947xx-cfe-partitions.txt
@@ -0,0 +1,42 @@
+Broadcom BCM47xx Partitions
+===========================
+
+Broadcom is one of hardware manufacturers providing SoCs (BCM47xx) used in
+home routers. Their BCM947xx boards using CFE bootloader have several partitions
+without any on-flash partition table. On some devices their sizes and/or
+meanings can also vary so fixed partitioning can't be used.
+
+Discovering partitions on these devices is possible thanks to having a special
+header and/or magic signature at the beginning of each of them. They are also
+block aligned which is important for determinig a size.
+
+Most of partitions use ASCII text based magic for determining a type. More
+complex partitions (like TRX with its HDR0 magic) may include extra header
+containing some details, including a length.
+
+A list of supported partitions includes:
+1) Bootloader with Broadcom's CFE (Common Firmware Environment)
+2) NVRAM with configuration/calibration data
+3) Device manufacturer's data with some default values (e.g. SSIDs)
+4) TRX firmware container which can hold up to 4 subpartitions
+5) Backup TRX firmware used after failed upgrade
+
+As mentioned earlier, role of some partitions may depend on extra configuration.
+For example both: main firmware and backup firmware use the same TRX format with
+the same header. To distinguish currently used firmware a CFE's environment
+variable "bootpartition" is used.
+
+
+Devices using Broadcom partitions described above should should have flash node
+with a subnode named "partitions" using following properties:
+
+Required properties:
+- compatible : (required) must be "brcm,bcm947xx-cfe-partitions"
+
+Example:
+
+flash@0 {
+ partitions {
+ compatible = "brcm,bcm947xx-cfe-partitions";
+ };
+};
diff --git a/Documentation/devicetree/bindings/mtd/sunxi-nand.txt b/Documentation/devicetree/bindings/mtd/sunxi-nand.txt
index 0734f03..dcd5a5d 100644
--- a/Documentation/devicetree/bindings/mtd/sunxi-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/sunxi-nand.txt
@@ -22,8 +22,6 @@ Optional properties:
- reset : phandle + reset specifier pair
- reset-names : must contain "ahb"
- allwinner,rb : shall contain the native Ready/Busy ids.
- or
-- rb-gpios : shall contain the gpios used as R/B pins.
- nand-ecc-mode : one of the supported ECC modes ("hw", "soft", "soft_bch" or
"none")
diff --git a/Documentation/devicetree/bindings/net/dsa/dsa.txt b/Documentation/devicetree/bindings/net/dsa/dsa.txt
index cfe8f64..3ceeb8d 100644
--- a/Documentation/devicetree/bindings/net/dsa/dsa.txt
+++ b/Documentation/devicetree/bindings/net/dsa/dsa.txt
@@ -82,8 +82,6 @@ linked into one DSA cluster.
switch0: switch0@0 {
compatible = "marvell,mv88e6085";
- #address-cells = <1>;
- #size-cells = <0>;
reg = <0>;
dsa,member = <0 0>;
@@ -135,8 +133,6 @@ linked into one DSA cluster.
switch1: switch1@0 {
compatible = "marvell,mv88e6085";
- #address-cells = <1>;
- #size-cells = <0>;
reg = <0>;
dsa,member = <0 1>;
@@ -204,8 +200,6 @@ linked into one DSA cluster.
switch2: switch2@0 {
compatible = "marvell,mv88e6085";
- #address-cells = <1>;
- #size-cells = <0>;
reg = <0>;
dsa,member = <0 2>;
diff --git a/Documentation/devicetree/bindings/net/dsa/qca8k.txt b/Documentation/devicetree/bindings/net/dsa/qca8k.txt
index 9c67ee4..bbcb255 100644
--- a/Documentation/devicetree/bindings/net/dsa/qca8k.txt
+++ b/Documentation/devicetree/bindings/net/dsa/qca8k.txt
@@ -2,7 +2,10 @@
Required properties:
-- compatible: should be "qca,qca8337"
+- compatible: should be one of:
+ "qca,qca8334"
+ "qca,qca8337"
+
- #size-cells: must be 0
- #address-cells: must be 1
@@ -14,6 +17,20 @@ port and PHY id, each subnode describing a port needs to have a valid phandle
referencing the internal PHY connected to it. The CPU port of this switch is
always port 0.
+A CPU port node has the following optional node:
+
+- fixed-link : Fixed-link subnode describing a link to a non-MDIO
+ managed entity. See
+ Documentation/devicetree/bindings/net/fixed-link.txt
+ for details.
+
+For QCA8K the 'fixed-link' sub-node supports only the following properties:
+
+- 'speed' (integer, mandatory), to indicate the link speed. Accepted
+ values are 10, 100 and 1000
+- 'full-duplex' (boolean, optional), to indicate that full duplex is
+ used. When absent, half duplex is assumed.
+
Example:
@@ -53,6 +70,10 @@ Example:
label = "cpu";
ethernet = <&gmac1>;
phy-mode = "rgmii";
+ fixed-link {
+ speed = 1000;
+ full-duplex;
+ };
};
port@1 {
diff --git a/Documentation/devicetree/bindings/net/dwmac-sun8i.txt b/Documentation/devicetree/bindings/net/dwmac-sun8i.txt
index 3d6d5fa..cfe7243 100644
--- a/Documentation/devicetree/bindings/net/dwmac-sun8i.txt
+++ b/Documentation/devicetree/bindings/net/dwmac-sun8i.txt
@@ -7,6 +7,7 @@ Required properties:
- compatible: must be one of the following string:
"allwinner,sun8i-a83t-emac"
"allwinner,sun8i-h3-emac"
+ "allwinner,sun8i-r40-gmac"
"allwinner,sun8i-v3s-emac"
"allwinner,sun50i-a64-emac"
- reg: address and length of the register for the device.
@@ -20,18 +21,18 @@ Required properties:
- phy-handle: See ethernet.txt
- #address-cells: shall be 1
- #size-cells: shall be 0
-- syscon: A phandle to the syscon of the SoC with one of the following
- compatible string:
- - allwinner,sun8i-h3-system-controller
- - allwinner,sun8i-v3s-system-controller
- - allwinner,sun50i-a64-system-controller
- - allwinner,sun8i-a83t-system-controller
+- syscon: A phandle to the device containing the EMAC or GMAC clock register
Optional properties:
-- allwinner,tx-delay-ps: TX clock delay chain value in ps. Range value is 0-700. Default is 0)
-- allwinner,rx-delay-ps: RX clock delay chain value in ps. Range value is 0-3100. Default is 0)
-Both delay properties need to be a multiple of 100. They control the delay for
-external PHY.
+- allwinner,tx-delay-ps: TX clock delay chain value in ps.
+ Range is 0-700. Default is 0.
+ Unavailable for allwinner,sun8i-r40-gmac
+- allwinner,rx-delay-ps: RX clock delay chain value in ps.
+ Range is 0-3100. Default is 0.
+ Range is 0-700 for allwinner,sun8i-r40-gmac
+Both delay properties need to be a multiple of 100. They control the
+clock delay for external RGMII PHY. They do not apply to the internal
+PHY or external non-RGMII PHYs.
Optional properties for the following compatibles:
- "allwinner,sun8i-h3-emac",
diff --git a/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
index 79bf352..047bdf7 100644
--- a/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
+++ b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
@@ -86,70 +86,4 @@ Example:
* Gianfar PTP clock nodes
-General Properties:
-
- - compatible Should be "fsl,etsec-ptp"
- - reg Offset and length of the register set for the device
- - interrupts There should be at least two interrupts. Some devices
- have as many as four PTP related interrupts.
-
-Clock Properties:
-
- - fsl,cksel Timer reference clock source.
- - fsl,tclk-period Timer reference clock period in nanoseconds.
- - fsl,tmr-prsc Prescaler, divides the output clock.
- - fsl,tmr-add Frequency compensation value.
- - fsl,tmr-fiper1 Fixed interval period pulse generator.
- - fsl,tmr-fiper2 Fixed interval period pulse generator.
- - fsl,max-adj Maximum frequency adjustment in parts per billion.
-
- These properties set the operational parameters for the PTP
- clock. You must choose these carefully for the clock to work right.
- Here is how to figure good values:
-
- TimerOsc = selected reference clock MHz
- tclk_period = desired clock period nanoseconds
- NominalFreq = 1000 / tclk_period MHz
- FreqDivRatio = TimerOsc / NominalFreq (must be greater that 1.0)
- tmr_add = ceil(2^32 / FreqDivRatio)
- OutputClock = NominalFreq / tmr_prsc MHz
- PulseWidth = 1 / OutputClock microseconds
- FiperFreq1 = desired frequency in Hz
- FiperDiv1 = 1000000 * OutputClock / FiperFreq1
- tmr_fiper1 = tmr_prsc * tclk_period * FiperDiv1 - tclk_period
- max_adj = 1000000000 * (FreqDivRatio - 1.0) - 1
-
- The calculation for tmr_fiper2 is the same as for tmr_fiper1. The
- driver expects that tmr_fiper1 will be correctly set to produce a 1
- Pulse Per Second (PPS) signal, since this will be offered to the PPS
- subsystem to synchronize the Linux clock.
-
- Reference clock source is determined by the value, which is holded
- in CKSEL bits in TMR_CTRL register. "fsl,cksel" property keeps the
- value, which will be directly written in those bits, that is why,
- according to reference manual, the next clock sources can be used:
-
- <0> - external high precision timer reference clock (TSEC_TMR_CLK
- input is used for this purpose);
- <1> - eTSEC system clock;
- <2> - eTSEC1 transmit clock;
- <3> - RTC clock input.
-
- When this attribute is not used, eTSEC system clock will serve as
- IEEE 1588 timer reference clock.
-
-Example:
-
- ptp_clock@24e00 {
- compatible = "fsl,etsec-ptp";
- reg = <0x24E00 0xB0>;
- interrupts = <12 0x8 13 0x8>;
- interrupt-parent = < &ipic >;
- fsl,cksel = <1>;
- fsl,tclk-period = <10>;
- fsl,tmr-prsc = <100>;
- fsl,tmr-add = <0x999999A4>;
- fsl,tmr-fiper1 = <0x3B9AC9F6>;
- fsl,tmr-fiper2 = <0x00018696>;
- fsl,max-adj = <659999998>;
- };
+Refer to Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/emac.txt b/Documentation/devicetree/bindings/net/ibm,emac.txt
index 44b842b..44b842b 100644
--- a/Documentation/devicetree/bindings/powerpc/4xx/emac.txt
+++ b/Documentation/devicetree/bindings/net/ibm,emac.txt
diff --git a/Documentation/devicetree/bindings/net/meson-dwmac.txt b/Documentation/devicetree/bindings/net/meson-dwmac.txt
index 61cada2..1321bb1 100644
--- a/Documentation/devicetree/bindings/net/meson-dwmac.txt
+++ b/Documentation/devicetree/bindings/net/meson-dwmac.txt
@@ -11,6 +11,7 @@ Required properties on all platforms:
- "amlogic,meson8b-dwmac"
- "amlogic,meson8m2-dwmac"
- "amlogic,meson-gxbb-dwmac"
+ - "amlogic,meson-axg-dwmac"
Additionally "snps,dwmac" and any applicable more
detailed version number described in net/stmmac.txt
should be used.
diff --git a/Documentation/devicetree/bindings/net/microchip,lan78xx.txt b/Documentation/devicetree/bindings/net/microchip,lan78xx.txt
new file mode 100644
index 0000000..76786a0
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/microchip,lan78xx.txt
@@ -0,0 +1,54 @@
+Microchip LAN78xx Gigabit Ethernet controller
+
+The LAN78XX devices are usually configured by programming their OTP or with
+an external EEPROM, but some platforms (e.g. Raspberry Pi 3 B+) have neither.
+The Device Tree properties, if present, override the OTP and EEPROM.
+
+Required properties:
+- compatible: Should be one of "usb424,7800", "usb424,7801" or "usb424,7850".
+
+Optional properties:
+- local-mac-address: see ethernet.txt
+- mac-address: see ethernet.txt
+
+Optional properties of the embedded PHY:
+- microchip,led-modes: a 0..4 element vector, with each element configuring
+ the operating mode of an LED. Omitted LEDs are turned off. Allowed values
+ are defined in "include/dt-bindings/net/microchip-lan78xx.h".
+
+Example:
+
+/* Based on the configuration for a Raspberry Pi 3 B+ */
+&usb {
+ usb-port@1 {
+ compatible = "usb424,2514";
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ usb-port@1 {
+ compatible = "usb424,2514";
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet: ethernet@1 {
+ compatible = "usb424,7800";
+ reg = <1>;
+ local-mac-address = [ 00 11 22 33 44 55 ];
+
+ mdio {
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+ eth_phy: ethernet-phy@1 {
+ reg = <1>;
+ microchip,led-modes = <
+ LAN78XX_LINK_1000_ACTIVITY
+ LAN78XX_LINK_10_100_ACTIVITY
+ >;
+ };
+ };
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/mscc-miim.txt b/Documentation/devicetree/bindings/net/mscc-miim.txt
new file mode 100644
index 0000000..7104679
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/mscc-miim.txt
@@ -0,0 +1,26 @@
+Microsemi MII Management Controller (MIIM) / MDIO
+=================================================
+
+Properties:
+- compatible: must be "mscc,ocelot-miim"
+- reg: The base address of the MDIO bus controller register bank. Optionally, a
+ second register bank can be defined if there is an associated reset register
+ for internal PHYs
+- #address-cells: Must be <1>.
+- #size-cells: Must be <0>. MDIO addresses have no size component.
+- interrupts: interrupt specifier (refer to the interrupt binding)
+
+Typically an MDIO bus might have several children.
+
+Example:
+ mdio@107009c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "mscc,ocelot-miim";
+ reg = <0x107009c 0x36>, <0x10700f0 0x8>;
+ interrupts = <14>;
+
+ phy0: ethernet-phy@0 {
+ reg = <0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/mscc-ocelot.txt b/Documentation/devicetree/bindings/net/mscc-ocelot.txt
new file mode 100644
index 0000000..0a84711
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/mscc-ocelot.txt
@@ -0,0 +1,82 @@
+Microsemi Ocelot network Switch
+===============================
+
+The Microsemi Ocelot network switch can be found on Microsemi SoCs (VSC7513,
+VSC7514)
+
+Required properties:
+- compatible: Should be "mscc,vsc7514-switch"
+- reg: Must contain an (offset, length) pair of the register set for each
+ entry in reg-names.
+- reg-names: Must include the following entries:
+ - "sys"
+ - "rew"
+ - "qs"
+ - "hsio"
+ - "qsys"
+ - "ana"
+ - "portX" with X from 0 to the number of last port index available on that
+ switch
+- interrupts: Should contain the switch interrupts for frame extraction and
+ frame injection
+- interrupt-names: should contain the interrupt names: "xtr", "inj"
+- ethernet-ports: A container for child nodes representing switch ports.
+
+The ethernet-ports container has the following properties
+
+Required properties:
+
+- #address-cells: Must be 1
+- #size-cells: Must be 0
+
+Each port node must have the following mandatory properties:
+- reg: Describes the port address in the switch
+
+Port nodes may also contain the following optional standardised
+properties, described in binding documents:
+
+- phy-handle: Phandle to a PHY on an MDIO bus. See
+ Documentation/devicetree/bindings/net/ethernet.txt for details.
+
+Example:
+
+ switch@1010000 {
+ compatible = "mscc,vsc7514-switch";
+ reg = <0x1010000 0x10000>,
+ <0x1030000 0x10000>,
+ <0x1080000 0x100>,
+ <0x10d0000 0x10000>,
+ <0x11e0000 0x100>,
+ <0x11f0000 0x100>,
+ <0x1200000 0x100>,
+ <0x1210000 0x100>,
+ <0x1220000 0x100>,
+ <0x1230000 0x100>,
+ <0x1240000 0x100>,
+ <0x1250000 0x100>,
+ <0x1260000 0x100>,
+ <0x1270000 0x100>,
+ <0x1280000 0x100>,
+ <0x1800000 0x80000>,
+ <0x1880000 0x10000>;
+ reg-names = "sys", "rew", "qs", "hsio", "port0",
+ "port1", "port2", "port3", "port4", "port5",
+ "port6", "port7", "port8", "port9", "port10",
+ "qsys", "ana";
+ interrupts = <21 22>;
+ interrupt-names = "xtr", "inj";
+
+ ethernet-ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port0: port@0 {
+ reg = <0>;
+ phy-handle = <&phy0>;
+ };
+ port1: port@1 {
+ reg = <1>;
+ phy-handle = <&phy1>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt b/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
new file mode 100644
index 0000000..0ea18a5
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
@@ -0,0 +1,30 @@
+Qualcomm Bluetooth Chips
+---------------------
+
+This documents the binding structure and common properties for serial
+attached Qualcomm devices.
+
+Serial attached Qualcomm devices shall be a child node of the host UART
+device the slave device is attached to.
+
+Required properties:
+ - compatible: should contain one of the following:
+ * "qcom,qca6174-bt"
+
+Optional properties:
+ - enable-gpios: gpio specifier used to enable chip
+ - clocks: clock provided to the controller (SUSCLK_32KHZ)
+
+Example:
+
+serial@7570000 {
+ label = "BT-UART";
+ status = "okay";
+
+ bluetooth {
+ compatible = "qcom,qca6174-bt";
+
+ enable-gpios = <&pm8994_gpios 19 GPIO_ACTIVE_HIGH>;
+ clocks = <&divclk4>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/renesas,ravb.txt b/Documentation/devicetree/bindings/net/renesas,ravb.txt
index 890526d..fac897d 100644
--- a/Documentation/devicetree/bindings/net/renesas,ravb.txt
+++ b/Documentation/devicetree/bindings/net/renesas,ravb.txt
@@ -21,6 +21,7 @@ Required properties:
- "renesas,etheravb-r8a77965" for the R8A77965 SoC.
- "renesas,etheravb-r8a77970" for the R8A77970 SoC.
- "renesas,etheravb-r8a77980" for the R8A77980 SoC.
+ - "renesas,etheravb-r8a77990" for the R8A77990 SoC.
- "renesas,etheravb-r8a77995" for the R8A77995 SoC.
- "renesas,etheravb-rcar-gen3" as a fallback for the above
R-Car Gen3 devices.
diff --git a/Documentation/devicetree/bindings/net/sff,sfp.txt b/Documentation/devicetree/bindings/net/sff,sfp.txt
index 929591d..8321399 100644
--- a/Documentation/devicetree/bindings/net/sff,sfp.txt
+++ b/Documentation/devicetree/bindings/net/sff,sfp.txt
@@ -7,11 +7,11 @@ Required properties:
"sff,sfp" for SFP modules
"sff,sff" for soldered down SFF modules
-Optional Properties:
-
- i2c-bus : phandle of an I2C bus controller for the SFP two wire serial
interface
+Optional Properties:
+
- mod-def0-gpios : GPIO phandle and a specifier of the MOD-DEF0 (AKA Mod_ABS)
module presence input gpio signal, active (module absent) high. Must
not be present for SFF modules
diff --git a/Documentation/devicetree/bindings/net/sh_eth.txt b/Documentation/devicetree/bindings/net/sh_eth.txt
index 5172799..82a4cf2 100644
--- a/Documentation/devicetree/bindings/net/sh_eth.txt
+++ b/Documentation/devicetree/bindings/net/sh_eth.txt
@@ -14,6 +14,7 @@ Required properties:
"renesas,ether-r8a7791" if the device is a part of R8A7791 SoC.
"renesas,ether-r8a7793" if the device is a part of R8A7793 SoC.
"renesas,ether-r8a7794" if the device is a part of R8A7794 SoC.
+ "renesas,gether-r8a77980" if the device is a part of R8A77980 SoC.
"renesas,ether-r7s72100" if the device is a part of R7S72100 SoC.
"renesas,rcar-gen1-ether" for a generic R-Car Gen1 device.
"renesas,rcar-gen2-ether" for a generic R-Car Gen2 or RZ/G1
diff --git a/Documentation/devicetree/bindings/net/socionext,uniphier-ave4.txt b/Documentation/devicetree/bindings/net/socionext,uniphier-ave4.txt
index 96398cc..fc8f017 100644
--- a/Documentation/devicetree/bindings/net/socionext,uniphier-ave4.txt
+++ b/Documentation/devicetree/bindings/net/socionext,uniphier-ave4.txt
@@ -13,13 +13,25 @@ Required properties:
- reg: Address where registers are mapped and size of region.
- interrupts: Should contain the MAC interrupt.
- phy-mode: See ethernet.txt in the same directory. Allow to choose
- "rgmii", "rmii", or "mii" according to the PHY.
+ "rgmii", "rmii", "mii", or "internal" according to the PHY.
+ The acceptable mode is SoC-dependent.
- phy-handle: Should point to the external phy device.
See ethernet.txt file in the same directory.
- clocks: A phandle to the clock for the MAC.
+ For Pro4 SoC, that is "socionext,uniphier-pro4-ave4",
+ another MAC clock, GIO bus clock and PHY clock are also required.
+ - clock-names: Should contain
+ - "ether", "ether-gb", "gio", "ether-phy" for Pro4 SoC
+ - "ether" for others
+ - resets: A phandle to the reset control for the MAC. For Pro4 SoC,
+ GIO bus reset is also required.
+ - reset-names: Should contain
+ - "ether", "gio" for Pro4 SoC
+ - "ether" for others
+ - socionext,syscon-phy-mode: A phandle to syscon with one argument
+ that configures phy mode. The argument is the ID of MAC instance.
Optional properties:
- - resets: A phandle to the reset control for the MAC.
- local-mac-address: See ethernet.txt in the same directory.
Required subnode:
@@ -34,8 +46,11 @@ Example:
interrupts = <0 66 4>;
phy-mode = "rgmii";
phy-handle = <&ethphy>;
+ clock-names = "ether";
clocks = <&sys_clk 6>;
+ reset-names = "ether";
resets = <&sys_rst 6>;
+ socionext,syscon-phy-mode = <&soc_glue 0>;
local-mac-address = [00 00 00 00 00 00];
mdio {
diff --git a/Documentation/devicetree/bindings/net/stm32-dwmac.txt b/Documentation/devicetree/bindings/net/stm32-dwmac.txt
index 489dbcb..1341012 100644
--- a/Documentation/devicetree/bindings/net/stm32-dwmac.txt
+++ b/Documentation/devicetree/bindings/net/stm32-dwmac.txt
@@ -6,14 +6,28 @@ Please see stmmac.txt for the other unchanged properties.
The device node has following properties.
Required properties:
-- compatible: Should be "st,stm32-dwmac" to select glue, and
+- compatible: For MCU family should be "st,stm32-dwmac" to select glue, and
"snps,dwmac-3.50a" to select IP version.
+ For MPU family should be "st,stm32mp1-dwmac" to select
+ glue, and "snps,dwmac-4.20a" to select IP version.
- clocks: Must contain a phandle for each entry in clock-names.
- clock-names: Should be "stmmaceth" for the host clock.
Should be "mac-clk-tx" for the MAC TX clock.
Should be "mac-clk-rx" for the MAC RX clock.
+ For MPU family need to add also "ethstp" for power mode clock and,
+ "syscfg-clk" for SYSCFG clock.
+- interrupt-names: Should contain a list of interrupt names corresponding to
+ the interrupts in the interrupts property, if available.
+ Should be "macirq" for the main MAC IRQ
+ Should be "eth_wake_irq" for the IT which wake up system
- st,syscon : Should be phandle/offset pair. The phandle to the syscon node which
- encompases the glue register, and the offset of the control register.
+ encompases the glue register, and the offset of the control register.
+
+Optional properties:
+- clock-names: For MPU family "mac-clk-ck" for PHY without quartz
+- st,int-phyclk (boolean) : valid only where PHY do not have quartz and need to be clock
+ by RCC
+
Example:
ethernet@40028000 {
diff --git a/Documentation/devicetree/bindings/net/wireless/qcom,ath10k.txt b/Documentation/devicetree/bindings/net/wireless/qcom,ath10k.txt
index 3d2a031..7fd4e8c 100644
--- a/Documentation/devicetree/bindings/net/wireless/qcom,ath10k.txt
+++ b/Documentation/devicetree/bindings/net/wireless/qcom,ath10k.txt
@@ -4,6 +4,7 @@ Required properties:
- compatible: Should be one of the following:
* "qcom,ath10k"
* "qcom,ipq4019-wifi"
+ * "qcom,wcn3990-wifi"
PCI based devices uses compatible string "qcom,ath10k" and takes calibration
data along with board specific data via "qcom,ath10k-calibration-data".
@@ -18,8 +19,12 @@ In general, entry "qcom,ath10k-pre-calibration-data" and
"qcom,ath10k-calibration-data" conflict with each other and only one
can be provided per device.
+SNOC based devices (i.e. wcn3990) uses compatible string "qcom,wcn3990-wifi".
+
Optional properties:
- reg: Address and length of the register set for the device.
+- reg-names: Must include the list of following reg names,
+ "membase"
- resets: Must contain an entry for each entry in reset-names.
See ../reset/reseti.txt for details.
- reset-names: Must include the list of following reset names,
@@ -49,6 +54,8 @@ Optional properties:
hw versions.
- qcom,ath10k-pre-calibration-data : pre calibration data as an array,
the length can vary between hw versions.
+- <supply-name>-supply: handle to the regulator device tree node
+ optional "supply-name" is "vdd-0.8-cx-mx".
Example (to supply the calibration data alone):
@@ -119,3 +126,27 @@ wifi0: wifi@a000000 {
qcom,msi_base = <0x40>;
qcom,ath10k-pre-calibration-data = [ 01 02 03 ... ];
};
+
+Example (to supply wcn3990 SoC wifi block details):
+
+wifi@18000000 {
+ compatible = "qcom,wcn3990-wifi";
+ reg = <0x18800000 0x800000>;
+ reg-names = "membase";
+ clocks = <&clock_gcc clk_aggre2_noc_clk>;
+ clock-names = "smmu_aggre2_noc_clk"
+ interrupts =
+ <0 130 0 /* CE0 */ >,
+ <0 131 0 /* CE1 */ >,
+ <0 132 0 /* CE2 */ >,
+ <0 133 0 /* CE3 */ >,
+ <0 134 0 /* CE4 */ >,
+ <0 135 0 /* CE5 */ >,
+ <0 136 0 /* CE6 */ >,
+ <0 137 0 /* CE7 */ >,
+ <0 138 0 /* CE8 */ >,
+ <0 139 0 /* CE9 */ >,
+ <0 140 0 /* CE10 */ >,
+ <0 141 0 /* CE11 */ >;
+ vdd-0.8-cx-mx-supply = <&pm8998_l5>;
+};
diff --git a/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt b/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
index d695437..e319fe5 100644
--- a/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
+++ b/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
@@ -4,6 +4,7 @@ Required properties:
- compatible: Should be one of the following:
"allwinner,sun4i-a10-sid"
"allwinner,sun7i-a20-sid"
+ "allwinner,sun8i-a83t-sid"
"allwinner,sun8i-h3-sid"
"allwinner,sun50i-a64-sid"
diff --git a/Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt b/Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt
new file mode 100644
index 0000000..d5e22fc
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt
@@ -0,0 +1,40 @@
+Zodiac Inflight Innovations RAVE EEPROM Bindings
+
+RAVE SP EEPROM device is a "MFD cell" device exposing physical EEPROM
+attached to RAVE Supervisory Processor. It is expected that its Device
+Tree node is specified as a child of the node corresponding to the
+parent RAVE SP device (as documented in
+Documentation/devicetree/bindings/mfd/zii,rave-sp.txt)
+
+Required properties:
+
+- compatible: Should be "zii,rave-sp-eeprom"
+
+Optional properties:
+
+- zii,eeprom-name: Unique EEPROM identifier describing its function in the
+ system. Will be used as created NVMEM deivce's name.
+
+Data cells:
+
+Data cells are child nodes of eerpom node, bindings for which are
+documented in Documentation/bindings/nvmem/nvmem.txt
+
+Example:
+
+ rave-sp {
+ compatible = "zii,rave-sp-rdu1";
+ current-speed = <38400>;
+
+ eeprom@a4 {
+ compatible = "zii,rave-sp-eeprom";
+ reg = <0xa4 0x4000>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ zii,eeprom-name = "main-eeprom";
+
+ wdt_timeout: wdt-timeout@81 {
+ reg = <0x81 2>;
+ };
+ };
+ }
diff --git a/Documentation/devicetree/bindings/pci/designware-pcie.txt b/Documentation/devicetree/bindings/pci/designware-pcie.txt
index 1da7ade..c124f9b 100644
--- a/Documentation/devicetree/bindings/pci/designware-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/designware-pcie.txt
@@ -1,7 +1,9 @@
* Synopsys DesignWare PCIe interface
Required properties:
-- compatible: should contain "snps,dw-pcie" to identify the core.
+- compatible:
+ "snps,dw-pcie" for RC mode;
+ "snps,dw-pcie-ep" for EP mode;
- reg: Should contain the configuration address space.
- reg-names: Must be "config" for the PCIe configuration space.
(The old way of getting the configuration address space from "ranges"
@@ -41,11 +43,11 @@ EP mode:
Example configuration:
- pcie: pcie@dffff000 {
+ pcie: pcie@dfc00000 {
compatible = "snps,dw-pcie";
- reg = <0xdffff000 0x1000>, /* Controller registers */
- <0xd0000000 0x2000>; /* PCI config space */
- reg-names = "ctrlreg", "config";
+ reg = <0xdfc00000 0x0001000>, /* IP registers */
+ <0xd0000000 0x0002000>; /* Configuration space */
+ reg-names = "dbi", "config";
#address-cells = <3>;
#size-cells = <2>;
device_type = "pci";
@@ -54,5 +56,15 @@ Example configuration:
interrupts = <25>, <24>;
#interrupt-cells = <1>;
num-lanes = <1>;
- num-viewport = <3>;
+ };
+or
+ pcie: pcie@dfc00000 {
+ compatible = "snps,dw-pcie-ep";
+ reg = <0xdfc00000 0x0001000>, /* IP registers 1 */
+ <0xdfc01000 0x0001000>, /* IP registers 2 */
+ <0xd0000000 0x2000000>; /* Configuration space */
+ reg-names = "dbi", "dbi2", "addr_space";
+ num-ib-windows = <6>;
+ num-ob-windows = <2>;
+ num-lanes = <1>;
};
diff --git a/Documentation/devicetree/bindings/pci/mobiveil-pcie.txt b/Documentation/devicetree/bindings/pci/mobiveil-pcie.txt
new file mode 100644
index 0000000..65038aa
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/mobiveil-pcie.txt
@@ -0,0 +1,73 @@
+* Mobiveil AXI PCIe Root Port Bridge DT description
+
+Mobiveil's GPEX 4.0 is a PCIe Gen4 root port bridge IP. This configurable IP
+has up to 8 outbound and inbound windows for the address translation.
+
+Required properties:
+- #address-cells: Address representation for root ports, set to <3>
+- #size-cells: Size representation for root ports, set to <2>
+- #interrupt-cells: specifies the number of cells needed to encode an
+ interrupt source. The value must be 1.
+- compatible: Should contain "mbvl,gpex40-pcie"
+- reg: Should contain PCIe registers location and length
+ "config_axi_slave": PCIe controller registers
+ "csr_axi_slave" : Bridge config registers
+ "gpio_slave" : GPIO registers to control slot power
+ "apb_csr" : MSI registers
+
+- device_type: must be "pci"
+- apio-wins : number of requested apio outbound windows
+ default 2 outbound windows are configured -
+ 1. Config window
+ 2. Memory window
+- ppio-wins : number of requested ppio inbound windows
+ default 1 inbound memory window is configured.
+- bus-range: PCI bus numbers covered
+- interrupt-controller: identifies the node as an interrupt controller
+- #interrupt-cells: specifies the number of cells needed to encode an
+ interrupt source. The value must be 1.
+- interrupt-parent : phandle to the interrupt controller that
+ it is attached to, it should be set to gic to point to
+ ARM's Generic Interrupt Controller node in system DT.
+- interrupts: The interrupt line of the PCIe controller
+ last cell of this field is set to 4 to
+ denote it as IRQ_TYPE_LEVEL_HIGH type interrupt.
+- interrupt-map-mask,
+ interrupt-map: standard PCI properties to define the mapping of the
+ PCI interface to interrupt numbers.
+- ranges: ranges for the PCI memory regions (I/O space region is not
+ supported by hardware)
+ Please refer to the standard PCI bus binding document for a more
+ detailed explanation
+
+
+Example:
+++++++++
+ pcie0: pcie@a0000000 {
+ #address-cells = <3>;
+ #size-cells = <2>;
+ compatible = "mbvl,gpex40-pcie";
+ reg = <0xa0000000 0x00001000>,
+ <0xb0000000 0x00010000>,
+ <0xff000000 0x00200000>,
+ <0xb0010000 0x00001000>;
+ reg-names = "config_axi_slave",
+ "csr_axi_slave",
+ "gpio_slave",
+ "apb_csr";
+ device_type = "pci";
+ apio-wins = <2>;
+ ppio-wins = <1>;
+ bus-range = <0x00000000 0x000000ff>;
+ interrupt-controller;
+ interrupt-parent = <&gic>;
+ #interrupt-cells = <1>;
+ interrupts = < 0 89 4 >;
+ interrupt-map-mask = <0 0 0 7>;
+ interrupt-map = <0 0 0 0 &pci_express 0>,
+ <0 0 0 1 &pci_express 1>,
+ <0 0 0 2 &pci_express 2>,
+ <0 0 0 3 &pci_express 3>;
+ ranges = < 0x83000000 0 0x00000000 0xa8000000 0 0x8000000>;
+
+ };
diff --git a/Documentation/devicetree/bindings/pci/pci-armada8k.txt b/Documentation/devicetree/bindings/pci/pci-armada8k.txt
index c1e4c3d..9e3fc15 100644
--- a/Documentation/devicetree/bindings/pci/pci-armada8k.txt
+++ b/Documentation/devicetree/bindings/pci/pci-armada8k.txt
@@ -12,7 +12,10 @@ Required properties:
- "ctrl" for the control register region
- "config" for the config space region
- interrupts: Interrupt specifier for the PCIe controler
-- clocks: reference to the PCIe controller clock
+- clocks: reference to the PCIe controller clocks
+- clock-names: mandatory if there is a second clock, in this case the
+ name must be "core" for the first clock and "reg" for the second
+ one
Example:
diff --git a/Documentation/devicetree/bindings/pci/rcar-pci.txt b/Documentation/devicetree/bindings/pci/rcar-pci.txt
index 1fb614e..a5f7fc6 100644
--- a/Documentation/devicetree/bindings/pci/rcar-pci.txt
+++ b/Documentation/devicetree/bindings/pci/rcar-pci.txt
@@ -8,6 +8,7 @@ compatible: "renesas,pcie-r8a7743" for the R8A7743 SoC;
"renesas,pcie-r8a7793" for the R8A7793 SoC;
"renesas,pcie-r8a7795" for the R8A7795 SoC;
"renesas,pcie-r8a7796" for the R8A7796 SoC;
+ "renesas,pcie-r8a77980" for the R8A77980 SoC;
"renesas,pcie-rcar-gen2" for a generic R-Car Gen2 or
RZ/G1 compatible device.
"renesas,pcie-rcar-gen3" for a generic R-Car Gen3 compatible device.
@@ -32,6 +33,11 @@ compatible: "renesas,pcie-r8a7743" for the R8A7743 SoC;
and PCIe bus clocks.
- clock-names: from common clock binding: should be "pcie" and "pcie_bus".
+Optional properties:
+- phys: from common PHY binding: PHY phandle and specifier (only make sense
+ for R-Car gen3 SoCs where the PCIe PHYs have their own register blocks).
+- phy-names: from common PHY binding: should be "pcie".
+
Example:
SoC-specific DT Entry:
diff --git a/Documentation/devicetree/bindings/pci/rockchip-pcie-ep.txt b/Documentation/devicetree/bindings/pci/rockchip-pcie-ep.txt
new file mode 100644
index 0000000..77846730
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/rockchip-pcie-ep.txt
@@ -0,0 +1,62 @@
+* Rockchip AXI PCIe Endpoint Controller DT description
+
+Required properties:
+- compatible: Should contain "rockchip,rk3399-pcie-ep"
+- reg: Two register ranges as listed in the reg-names property
+- reg-names: Must include the following names
+ - "apb-base"
+ - "mem-base"
+- clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names: Must include the following entries:
+ - "aclk"
+ - "aclk-perf"
+ - "hclk"
+ - "pm"
+- resets: Must contain seven entries for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following names
+ - "core"
+ - "mgmt"
+ - "mgmt-sticky"
+ - "pipe"
+ - "pm"
+ - "aclk"
+ - "pclk"
+- pinctrl-names : The pin control state names
+- pinctrl-0: The "default" pinctrl state
+- phys: Must contain an phandle to a PHY for each entry in phy-names.
+- phy-names: Must include 4 entries for all 4 lanes even if some of
+ them won't be used for your cases. Entries are of the form "pcie-phy-N":
+ where N ranges from 0 to 3.
+ (see example below and you MUST also refer to ../phy/rockchip-pcie-phy.txt
+ for changing the #phy-cells of phy node to support it)
+- rockchip,max-outbound-regions: Maximum number of outbound regions
+
+Optional Property:
+- num-lanes: number of lanes to use
+- max-functions: Maximum number of functions that can be configured (default 1).
+
+pcie0-ep: pcie@f8000000 {
+ compatible = "rockchip,rk3399-pcie-ep";
+ #address-cells = <3>;
+ #size-cells = <2>;
+ rockchip,max-outbound-regions = <16>;
+ clocks = <&cru ACLK_PCIE>, <&cru ACLK_PERF_PCIE>,
+ <&cru PCLK_PCIE>, <&cru SCLK_PCIE_PM>;
+ clock-names = "aclk", "aclk-perf",
+ "hclk", "pm";
+ max-functions = /bits/ 8 <8>;
+ num-lanes = <4>;
+ reg = <0x0 0xfd000000 0x0 0x1000000>, <0x0 0x80000000 0x0 0x20000>;
+ reg-names = "apb-base", "mem-base";
+ resets = <&cru SRST_PCIE_CORE>, <&cru SRST_PCIE_MGMT>,
+ <&cru SRST_PCIE_MGMT_STICKY>, <&cru SRST_PCIE_PIPE> ,
+ <&cru SRST_PCIE_PM>, <&cru SRST_P_PCIE>, <&cru SRST_A_PCIE>;
+ reset-names = "core", "mgmt", "mgmt-sticky", "pipe",
+ "pm", "pclk", "aclk";
+ phys = <&pcie_phy 0>, <&pcie_phy 1>, <&pcie_phy 2>, <&pcie_phy 3>;
+ phy-names = "pcie-phy-0", "pcie-phy-1", "pcie-phy-2", "pcie-phy-3";
+ pinctrl-names = "default";
+ pinctrl-0 = <&pcie_clkreq>;
+};
diff --git a/Documentation/devicetree/bindings/pci/rockchip-pcie.txt b/Documentation/devicetree/bindings/pci/rockchip-pcie-host.txt
index af34c65..af34c65 100644
--- a/Documentation/devicetree/bindings/pci/rockchip-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/rockchip-pcie-host.txt
diff --git a/Documentation/devicetree/bindings/pci/xgene-pci.txt b/Documentation/devicetree/bindings/pci/xgene-pci.txt
index 6fd2dec..9249033 100644
--- a/Documentation/devicetree/bindings/pci/xgene-pci.txt
+++ b/Documentation/devicetree/bindings/pci/xgene-pci.txt
@@ -25,8 +25,6 @@ Optional properties:
Example:
-SoC-specific DT Entry:
-
pcie0: pcie@1f2b0000 {
status = "disabled";
device_type = "pci";
@@ -50,8 +48,3 @@ SoC-specific DT Entry:
clocks = <&pcie0clk 0>;
};
-
-Board-specific DT Entry:
- &pcie0 {
- status = "ok";
- };
diff --git a/Documentation/devicetree/bindings/phy/phy-mtk-xsphy.txt b/Documentation/devicetree/bindings/phy/phy-mtk-xsphy.txt
new file mode 100644
index 0000000..e7caefa
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-mtk-xsphy.txt
@@ -0,0 +1,109 @@
+MediaTek XS-PHY binding
+--------------------------
+
+The XS-PHY controller supports physical layer functionality for USB3.1
+GEN2 controller on MediaTek SoCs.
+
+Required properties (controller (parent) node):
+ - compatible : should be "mediatek,<soc-model>-xsphy", "mediatek,xsphy",
+ soc-model is the name of SoC, such as mt3611 etc;
+ when using "mediatek,xsphy" compatible string, you need SoC specific
+ ones in addition, one of:
+ - "mediatek,mt3611-xsphy"
+
+ - #address-cells, #size-cells : should use the same values as the root node
+ - ranges: must be present
+
+Optional properties (controller (parent) node):
+ - reg : offset and length of register shared by multiple U3 ports,
+ exclude port's private register, if only U2 ports provided,
+ shouldn't use the property.
+ - mediatek,src-ref-clk-mhz : u32, frequency of reference clock for slew rate
+ calibrate
+ - mediatek,src-coef : u32, coefficient for slew rate calibrate, depends on
+ SoC process
+
+Required nodes : a sub-node is required for each port the controller
+ provides. Address range information including the usual
+ 'reg' property is used inside these nodes to describe
+ the controller's topology.
+
+Required properties (port (child) node):
+- reg : address and length of the register set for the port.
+- clocks : a list of phandle + clock-specifier pairs, one for each
+ entry in clock-names
+- clock-names : must contain
+ "ref": 48M reference clock for HighSpeed analog phy; and 26M
+ reference clock for SuperSpeedPlus analog phy, sometimes is
+ 24M, 25M or 27M, depended on platform.
+- #phy-cells : should be 1
+ cell after port phandle is phy type from:
+ - PHY_TYPE_USB2
+ - PHY_TYPE_USB3
+
+The following optional properties are only for debug or HQA test
+Optional properties (PHY_TYPE_USB2 port (child) node):
+- mediatek,eye-src : u32, the value of slew rate calibrate
+- mediatek,eye-vrt : u32, the selection of VRT reference voltage
+- mediatek,eye-term : u32, the selection of HS_TX TERM reference voltage
+- mediatek,efuse-intr : u32, the selection of Internal Resistor
+
+Optional properties (PHY_TYPE_USB3 port (child) node):
+- mediatek,efuse-intr : u32, the selection of Internal Resistor
+- mediatek,efuse-tx-imp : u32, the selection of TX Impedance
+- mediatek,efuse-rx-imp : u32, the selection of RX Impedance
+
+Banks layout of xsphy
+-------------------------------------------------------------
+port offset bank
+u2 port0 0x0000 MISC
+ 0x0100 FMREG
+ 0x0300 U2PHY_COM
+u2 port1 0x1000 MISC
+ 0x1100 FMREG
+ 0x1300 U2PHY_COM
+u2 port2 0x2000 MISC
+ ...
+u31 common 0x3000 DIG_GLB
+ 0x3100 PHYA_GLB
+u31 port0 0x3400 DIG_LN_TOP
+ 0x3500 DIG_LN_TX0
+ 0x3600 DIG_LN_RX0
+ 0x3700 DIG_LN_DAIF
+ 0x3800 PHYA_LN
+u31 port1 0x3a00 DIG_LN_TOP
+ 0x3b00 DIG_LN_TX0
+ 0x3c00 DIG_LN_RX0
+ 0x3d00 DIG_LN_DAIF
+ 0x3e00 PHYA_LN
+ ...
+
+DIG_GLB & PHYA_GLB are shared by U31 ports.
+
+Example:
+
+u3phy: usb-phy@11c40000 {
+ compatible = "mediatek,mt3611-xsphy", "mediatek,xsphy";
+ reg = <0 0x11c43000 0 0x0200>;
+ mediatek,src-ref-clk-mhz = <26>;
+ mediatek,src-coef = <17>;
+ #address-cells = <2>;
+ #size-cells = <2>;
+ ranges;
+
+ u2port0: usb-phy@11c40000 {
+ reg = <0 0x11c40000 0 0x0400>;
+ clocks = <&clk48m>;
+ clock-names = "ref";
+ mediatek,eye-src = <4>;
+ #phy-cells = <1>;
+ };
+
+ u3port0: usb-phy@11c43000 {
+ reg = <0 0x11c43400 0 0x0500>;
+ clocks = <&clk26m>;
+ clock-names = "ref";
+ mediatek,efuse-intr = <28>;
+ #phy-cells = <1>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt b/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
index dcf1b8f..266a1bb 100644
--- a/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
+++ b/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
@@ -9,7 +9,8 @@ Required properties:
"qcom,ipq8074-qmp-pcie-phy" for PCIe phy on IPQ8074
"qcom,msm8996-qmp-pcie-phy" for 14nm PCIe phy on msm8996,
"qcom,msm8996-qmp-usb3-phy" for 14nm USB3 phy on msm8996,
- "qcom,qmp-v3-usb3-phy" for USB3 QMP V3 phy.
+ "qcom,sdm845-qmp-usb3-phy" for USB3 QMP V3 phy on sdm845,
+ "qcom,sdm845-qmp-usb3-uni-phy" for USB3 QMP V3 UNI phy on sdm845.
- reg: offset and length of register set for PHY's common serdes block.
diff --git a/Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt b/Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt
index 42c9742..03025d9 100644
--- a/Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt
+++ b/Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt
@@ -6,7 +6,7 @@ QUSB2 controller supports LS/FS/HS usb connectivity on Qualcomm chipsets.
Required properties:
- compatible: compatible list, contains
"qcom,msm8996-qusb2-phy" for 14nm PHY on msm8996,
- "qcom,qusb2-v2-phy" for QUSB2 V2 PHY.
+ "qcom,sdm845-qusb2-phy" for 10nm PHY on sdm845.
- reg: offset and length of the PHY register set.
- #phy-cells: must be 0.
@@ -27,6 +27,27 @@ Optional properties:
tuning parameter value for qusb2 phy.
- qcom,tcsr-syscon: Phandle to TCSR syscon register region.
+ - qcom,imp-res-offset-value: It is a 6 bit value that specifies offset to be
+ added to PHY refgen RESCODE via IMP_CTRL1 register. It is a PHY
+ tuning parameter that may vary for different boards of same SOC.
+ This property is applicable to only QUSB2 v2 PHY (sdm845).
+ - qcom,hstx-trim-value: It is a 4 bit value that specifies tuning for HSTX
+ output current.
+ Possible range is - 15mA to 24mA (stepsize of 600 uA).
+ See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
+ This property is applicable to only QUSB2 v2 PHY (sdm845).
+ Default value is 22.2mA for sdm845.
+ - qcom,preemphasis-level: It is a 2 bit value that specifies pre-emphasis level.
+ Possible range is 0 to 15% (stepsize of 5%).
+ See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
+ This property is applicable to only QUSB2 v2 PHY (sdm845).
+ Default value is 10% for sdm845.
+- qcom,preemphasis-width: It is a 1 bit value that specifies how long the HSTX
+ pre-emphasis (specified using qcom,preemphasis-level) must be in
+ effect. Duration could be half-bit of full-bit.
+ See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
+ This property is applicable to only QUSB2 v2 PHY (sdm845).
+ Default value is full-bit width for sdm845.
Example:
hsusb_phy: phy@7411000 {
diff --git a/Documentation/devicetree/bindings/pinctrl/actions,s900-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/actions,s900-pinctrl.txt
index fb87c7d..8fb5a53 100644
--- a/Documentation/devicetree/bindings/pinctrl/actions,s900-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/actions,s900-pinctrl.txt
@@ -8,6 +8,17 @@ Required Properties:
- reg: Should contain the register base address and size of
the pin controller.
- clocks: phandle of the clock feeding the pin controller
+- gpio-controller: Marks the device node as a GPIO controller.
+- gpio-ranges: Specifies the mapping between gpio controller and
+ pin-controller pins.
+- #gpio-cells: Should be two. The first cell is the gpio pin number
+ and the second cell is used for optional parameters.
+- interrupt-controller: Marks the device node as an interrupt controller.
+- #interrupt-cells: Specifies the number of cells needed to encode an
+ interrupt. Shall be set to 2. The first cell
+ defines the interrupt number, the second encodes
+ the trigger flags described in
+ bindings/interrupt-controller/interrupts.txt
Please refer to pinctrl-bindings.txt in this directory for details of the
common pinctrl bindings used by client devices, including the meaning of the
@@ -164,6 +175,11 @@ Example:
compatible = "actions,s900-pinctrl";
reg = <0x0 0xe01b0000 0x0 0x1000>;
clocks = <&cmu CLK_GPIO>;
+ gpio-controller;
+ gpio-ranges = <&pinctrl 0 0 146>;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
uart2-default: uart2-default {
pinmux {
diff --git a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
index 64bc5c2..258a464 100644
--- a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
@@ -28,6 +28,7 @@ Required properties:
"allwinner,sun50i-a64-r-pinctrl"
"allwinner,sun50i-h5-pinctrl"
"allwinner,sun50i-h6-pinctrl"
+ "allwinner,sun50i-h6-r-pinctrl"
"nextthing,gr8-pinctrl"
- reg: Should contain the register physical address and length for the
diff --git a/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt b/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt
index 2569866..3fac0a0 100644
--- a/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt
+++ b/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt
@@ -36,6 +36,24 @@ listed. In other words, a subnode that lists only a mux function implies no
information about any pull configuration. Similarly, a subnode that lists only
a pul parameter implies no information about the mux function.
+The BCM2835 pin configuration and multiplexing supports the generic bindings.
+For details on each properties, you can refer to ./pinctrl-bindings.txt.
+
+Required sub-node properties:
+ - pins
+ - function
+
+Optional sub-node properties:
+ - bias-disable
+ - bias-pull-up
+ - bias-pull-down
+ - output-high
+ - output-low
+
+Legacy pin configuration and multiplexing binding:
+*** (Its use is deprecated, use generic multiplexing and configuration
+bindings instead)
+
Required subnode-properties:
- brcm,pins: An array of cells. Each cell contains the ID of a pin. Valid IDs
are the integer GPIO IDs; 0==GPIO0, 1==GPIO1, ... 53==GPIO53.
diff --git a/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt
index 2c12f97..54ecb8a 100644
--- a/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt
@@ -3,8 +3,10 @@
Required properties for the root node:
- compatible: one of "amlogic,meson8-cbus-pinctrl"
"amlogic,meson8b-cbus-pinctrl"
+ "amlogic,meson8m2-cbus-pinctrl"
"amlogic,meson8-aobus-pinctrl"
"amlogic,meson8b-aobus-pinctrl"
+ "amlogic,meson8m2-aobus-pinctrl"
"amlogic,meson-gxbb-periphs-pinctrl"
"amlogic,meson-gxbb-aobus-pinctrl"
"amlogic,meson-gxl-periphs-pinctrl"
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt
index a5a8322..a677145 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt
@@ -18,7 +18,9 @@ Required properties:
removed.
- #gpio-cells : Should be two.
- first cell is the pin number
- - second cell is used to specify flags. Flags are currently unused.
+ - second cell is used to specify flags as described in
+ 'Documentation/devicetree/bindings/gpio/gpio.txt'. Allowed values defined by
+ 'include/dt-bindings/gpio/gpio.h' (e.g. GPIO_ACTIVE_LOW).
- gpio-controller : Marks the device node as a GPIO controller.
- reg : For an address on its bus. I2C uses this a the I2C address of the chip.
SPI uses this to specify the chipselect line which the chip is
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-mt7622.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-mt7622.txt
index f18ed99..def8fca 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-mt7622.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-mt7622.txt
@@ -9,6 +9,16 @@ Required properties for the root node:
- #gpio-cells: Should be two. The first cell is the pin number and the
second is the GPIO flags.
+Optional properties:
+- interrupt-controller : Marks the device node as an interrupt controller
+
+If the property interrupt-controller is defined, following property is required
+- reg-names: A string describing the "reg" entries. Must contain "eint".
+- interrupts : The interrupt output from the controller.
+- #interrupt-cells: Should be two.
+- interrupt-parent: Phandle of the interrupt parent to which the external
+ GPIO interrupts are forwarded to.
+
Please refer to pinctrl-bindings.txt in this directory for details of the
common pinctrl bindings used by client devices, including the meaning of the
phrase "pin configuration node".
diff --git a/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt
index 892d8fd..abd8fbc 100644
--- a/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt
@@ -15,6 +15,7 @@ Required Properties:
- "renesas,pfc-r8a7740": for R8A7740 (R-Mobile A1) compatible pin-controller.
- "renesas,pfc-r8a7743": for R8A7743 (RZ/G1M) compatible pin-controller.
- "renesas,pfc-r8a7745": for R8A7745 (RZ/G1E) compatible pin-controller.
+ - "renesas,pfc-r8a77470": for R8A77470 (RZ/G1C) compatible pin-controller.
- "renesas,pfc-r8a7778": for R8A7778 (R-Car M1) compatible pin-controller.
- "renesas,pfc-r8a7779": for R8A7779 (R-Car H1) compatible pin-controller.
- "renesas,pfc-r8a7790": for R8A7790 (R-Car H2) compatible pin-controller.
@@ -27,6 +28,7 @@ Required Properties:
- "renesas,pfc-r8a77965": for R8A77965 (R-Car M3-N) compatible pin-controller.
- "renesas,pfc-r8a77970": for R8A77970 (R-Car V3M) compatible pin-controller.
- "renesas,pfc-r8a77980": for R8A77980 (R-Car V3H) compatible pin-controller.
+ - "renesas,pfc-r8a77990": for R8A77990 (R-Car E3) compatible pin-controller.
- "renesas,pfc-r8a77995": for R8A77995 (R-Car D3) compatible pin-controller.
- "renesas,pfc-sh73a0": for SH73A0 (SH-Mobile AG5) compatible pin-controller.
diff --git a/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt
index a01a3b8..0919db2 100644
--- a/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt
@@ -20,6 +20,7 @@ defined as gpio sub-nodes of the pinmux controller.
Required properties for iomux controller:
- compatible: should be
+ "rockchip,px30-pinctrl": for Rockchip PX30
"rockchip,rv1108-pinctrl": for Rockchip RV1108
"rockchip,rk2928-pinctrl": for Rockchip RK2928
"rockchip,rk3066a-pinctrl": for Rockchip RK3066a
diff --git a/Documentation/devicetree/bindings/power/pd-samsung.txt b/Documentation/devicetree/bindings/power/pd-samsung.txt
index 549f7de..92ef355 100644
--- a/Documentation/devicetree/bindings/power/pd-samsung.txt
+++ b/Documentation/devicetree/bindings/power/pd-samsung.txt
@@ -15,23 +15,13 @@ Required Properties:
Optional Properties:
- label: Human readable string with domain name. Will be visible in userspace
to let user to distinguish between multiple domains in SoC.
-- clocks: List of clock handles. The parent clocks of the input clocks to the
- devices in this power domain are set to oscclk before power gating
- and restored back after powering on a domain. This is required for
- all domains which are powered on and off and not required for unused
- domains.
-- clock-names: The following clocks can be specified:
- - oscclk: Oscillator clock.
- - clkN: Input clocks to the devices in this power domain. These clocks
- will be reparented to oscclk before switching power domain off.
- Their original parent will be brought back after turning on
- the domain. Maximum of 4 clocks (N = 0 to 3) are supported.
- - asbN: Clocks required by asynchronous bridges (ASB) present in
- the power domain. These clock should be enabled during power
- domain on/off operations.
- power-domains: phandle pointing to the parent power domain, for more details
see Documentation/devicetree/bindings/power/power_domain.txt
+Deprecated Properties:
+- clocks
+- clock-names
+
Node of a device using power domains must have a power-domains property
defined with a phandle to respective power domain.
@@ -47,8 +37,6 @@ Example:
mfc_pd: power-domain@10044060 {
compatible = "samsung,exynos4210-pd";
reg = <0x10044060 0x20>;
- clocks = <&clock CLK_FIN_PLL>, <&clock CLK_MOUT_USER_ACLK333>;
- clock-names = "oscclk", "clk0";
#power-domain-cells = <0>;
label = "MFC";
};
diff --git a/Documentation/devicetree/bindings/power/power_domain.txt b/Documentation/devicetree/bindings/power/power_domain.txt
index 4733f76..9b387f8 100644
--- a/Documentation/devicetree/bindings/power/power_domain.txt
+++ b/Documentation/devicetree/bindings/power/power_domain.txt
@@ -111,8 +111,8 @@ Example 3:
==PM domain consumers==
Required properties:
- - power-domains : A phandle and PM domain specifier as defined by bindings of
- the power controller specified by phandle.
+ - power-domains : A list of PM domain specifiers, as defined by bindings of
+ the power controller that is the PM domain provider.
Example:
@@ -122,9 +122,18 @@ Example:
power-domains = <&power 0>;
};
-The node above defines a typical PM domain consumer device, which is located
-inside a PM domain with index 0 of a power controller represented by a node
-with the label "power".
+ leaky-device@12351000 {
+ compatible = "foo,i-leak-current";
+ reg = <0x12351000 0x1000>;
+ power-domains = <&power 0>, <&power 1> ;
+ };
+
+The first example above defines a typical PM domain consumer device, which is
+located inside a PM domain with index 0 of a power controller represented by a
+node with the label "power".
+In the second example the consumer device are partitioned across two PM domains,
+the first with index 0 and the second with index 1, of a power controller that
+is represented by a node with the label "power.
Optional properties:
- required-opps: This contains phandle to an OPP node in another device's OPP
diff --git a/Documentation/devicetree/bindings/power/renesas,rcar-sysc.txt b/Documentation/devicetree/bindings/power/renesas,rcar-sysc.txt
index ab399e5..180ae65 100644
--- a/Documentation/devicetree/bindings/power/renesas,rcar-sysc.txt
+++ b/Documentation/devicetree/bindings/power/renesas,rcar-sysc.txt
@@ -9,6 +9,7 @@ Required properties:
- compatible: Must contain exactly one of the following:
- "renesas,r8a7743-sysc" (RZ/G1M)
- "renesas,r8a7745-sysc" (RZ/G1E)
+ - "renesas,r8a77470-sysc" (RZ/G1C)
- "renesas,r8a7779-sysc" (R-Car H1)
- "renesas,r8a7790-sysc" (R-Car H2)
- "renesas,r8a7791-sysc" (R-Car M2-W)
@@ -20,6 +21,7 @@ Required properties:
- "renesas,r8a77965-sysc" (R-Car M3-N)
- "renesas,r8a77970-sysc" (R-Car V3M)
- "renesas,r8a77980-sysc" (R-Car V3H)
+ - "renesas,r8a77990-sysc" (R-Car E3)
- "renesas,r8a77995-sysc" (R-Car D3)
- reg: Address start and address range for the device.
- #power-domain-cells: Must be 1.
diff --git a/Documentation/devicetree/bindings/power/supply/bq27xxx.txt b/Documentation/devicetree/bindings/power/supply/bq27xxx.txt
index 615c1cb..37994fd 100644
--- a/Documentation/devicetree/bindings/power/supply/bq27xxx.txt
+++ b/Documentation/devicetree/bindings/power/supply/bq27xxx.txt
@@ -25,6 +25,7 @@ Required properties:
* "ti,bq27545" - BQ27545
* "ti,bq27421" - BQ27421
* "ti,bq27425" - BQ27425
+ * "ti,bq27426" - BQ27426
* "ti,bq27441" - BQ27441
* "ti,bq27621" - BQ27621
- reg: integer, I2C address of the fuel gauge.
diff --git a/Documentation/devicetree/bindings/pps/pps-gpio.txt b/Documentation/devicetree/bindings/pps/pps-gpio.txt
index 0de23b7..3683874 100644
--- a/Documentation/devicetree/bindings/pps/pps-gpio.txt
+++ b/Documentation/devicetree/bindings/pps/pps-gpio.txt
@@ -20,5 +20,4 @@ Example:
assert-falling-edge;
compatible = "pps-gpio";
- status = "okay";
};
diff --git a/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt b/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
new file mode 100644
index 0000000..0f569d8
--- /dev/null
+++ b/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
@@ -0,0 +1,69 @@
+* Freescale QorIQ 1588 timer based PTP clock
+
+General Properties:
+
+ - compatible Should be "fsl,etsec-ptp"
+ - reg Offset and length of the register set for the device
+ - interrupts There should be at least two interrupts. Some devices
+ have as many as four PTP related interrupts.
+
+Clock Properties:
+
+ - fsl,cksel Timer reference clock source.
+ - fsl,tclk-period Timer reference clock period in nanoseconds.
+ - fsl,tmr-prsc Prescaler, divides the output clock.
+ - fsl,tmr-add Frequency compensation value.
+ - fsl,tmr-fiper1 Fixed interval period pulse generator.
+ - fsl,tmr-fiper2 Fixed interval period pulse generator.
+ - fsl,max-adj Maximum frequency adjustment in parts per billion.
+
+ These properties set the operational parameters for the PTP
+ clock. You must choose these carefully for the clock to work right.
+ Here is how to figure good values:
+
+ TimerOsc = selected reference clock MHz
+ tclk_period = desired clock period nanoseconds
+ NominalFreq = 1000 / tclk_period MHz
+ FreqDivRatio = TimerOsc / NominalFreq (must be greater that 1.0)
+ tmr_add = ceil(2^32 / FreqDivRatio)
+ OutputClock = NominalFreq / tmr_prsc MHz
+ PulseWidth = 1 / OutputClock microseconds
+ FiperFreq1 = desired frequency in Hz
+ FiperDiv1 = 1000000 * OutputClock / FiperFreq1
+ tmr_fiper1 = tmr_prsc * tclk_period * FiperDiv1 - tclk_period
+ max_adj = 1000000000 * (FreqDivRatio - 1.0) - 1
+
+ The calculation for tmr_fiper2 is the same as for tmr_fiper1. The
+ driver expects that tmr_fiper1 will be correctly set to produce a 1
+ Pulse Per Second (PPS) signal, since this will be offered to the PPS
+ subsystem to synchronize the Linux clock.
+
+ Reference clock source is determined by the value, which is holded
+ in CKSEL bits in TMR_CTRL register. "fsl,cksel" property keeps the
+ value, which will be directly written in those bits, that is why,
+ according to reference manual, the next clock sources can be used:
+
+ <0> - external high precision timer reference clock (TSEC_TMR_CLK
+ input is used for this purpose);
+ <1> - eTSEC system clock;
+ <2> - eTSEC1 transmit clock;
+ <3> - RTC clock input.
+
+ When this attribute is not used, eTSEC system clock will serve as
+ IEEE 1588 timer reference clock.
+
+Example:
+
+ ptp_clock@24e00 {
+ compatible = "fsl,etsec-ptp";
+ reg = <0x24E00 0xB0>;
+ interrupts = <12 0x8 13 0x8>;
+ interrupt-parent = < &ipic >;
+ fsl,cksel = <1>;
+ fsl,tclk-period = <10>;
+ fsl,tmr-prsc = <100>;
+ fsl,tmr-add = <0x999999A4>;
+ fsl,tmr-fiper1 = <0x3B9AC9F6>;
+ fsl,tmr-fiper2 = <0x00018696>;
+ fsl,max-adj = <659999998>;
+ };
diff --git a/Documentation/devicetree/bindings/pwm/pwm-omap-dmtimer.txt b/Documentation/devicetree/bindings/pwm/pwm-omap-dmtimer.txt
index 2e53324..5ccfcc8 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-omap-dmtimer.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-omap-dmtimer.txt
@@ -2,7 +2,7 @@
Required properties:
- compatible: Shall contain "ti,omap-dmtimer-pwm".
-- ti,timers: phandle to PWM capable OMAP timer. See arm/omap/timer.txt for info
+- ti,timers: phandle to PWM capable OMAP timer. See timer/ti,timer.txt for info
about these timers.
- #pwm-cells: Should be 3. See pwm.txt in this directory for a description of
the cells format.
diff --git a/Documentation/devicetree/bindings/regulator/pfuze100.txt b/Documentation/devicetree/bindings/regulator/pfuze100.txt
index c6dd3f5..f0ada3b 100644
--- a/Documentation/devicetree/bindings/regulator/pfuze100.txt
+++ b/Documentation/devicetree/bindings/regulator/pfuze100.txt
@@ -21,7 +21,7 @@ Each regulator is defined using the standard binding for regulators.
Example 1: PFUZE100
- pmic: pfuze100@8 {
+ pfuze100: pmic@8 {
compatible = "fsl,pfuze100";
reg = <0x08>;
@@ -122,7 +122,7 @@ Example 1: PFUZE100
Example 2: PFUZE200
- pmic: pfuze200@8 {
+ pfuze200: pmic@8 {
compatible = "fsl,pfuze200";
reg = <0x08>;
@@ -216,7 +216,7 @@ Example 2: PFUZE200
Example 3: PFUZE3000
- pmic: pfuze3000@8 {
+ pfuze3000: pmic@8 {
compatible = "fsl,pfuze3000";
reg = <0x08>;
diff --git a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
index 57d2c658..406f2e5 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
@@ -110,6 +110,11 @@ Qualcomm SPMI Regulators
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
+- qcom,saw-reg:
+ Usage: optional
+ Value type: <phandle>
+ Description: Reference to syscon node defining the SAW registers.
+
The regulator node houses sub-nodes for each regulator within the device. Each
sub-node is identified using the node's name, with valid values listed for each
@@ -201,6 +206,17 @@ see regulator.txt - with additional custom properties described below:
2 = 0.55 uA
3 = 0.75 uA
+- qcom,saw-slave:
+ Usage: optional
+ Value type: <boo>
+ Description: SAW controlled gang slave. Will not be configured.
+
+- qcom,saw-leader:
+ Usage: optional
+ Value type: <boo>
+ Description: SAW controlled gang leader. Will be configured as
+ SAW regulator.
+
Example:
regulators {
@@ -221,3 +237,32 @@ Example:
....
};
+
+Example 2:
+
+ saw3: syscon@9A10000 {
+ compatible = "syscon";
+ reg = <0x9A10000 0x1000>;
+ };
+
+ ...
+
+ spm-regulators {
+ compatible = "qcom,pm8994-regulators";
+ qcom,saw-reg = <&saw3>;
+ s8 {
+ qcom,saw-slave;
+ };
+ s9 {
+ qcom,saw-slave;
+ };
+ s10 {
+ qcom,saw-slave;
+ };
+ pm8994_s11_saw: s11 {
+ qcom,saw-leader;
+ regulator-always-on;
+ regulator-min-microvolt = <900000>;
+ regulator-max-microvolt = <1140000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/regulator.txt b/Documentation/devicetree/bindings/regulator/regulator.txt
index 2babe15b..a7cd368 100644
--- a/Documentation/devicetree/bindings/regulator/regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/regulator.txt
@@ -59,6 +59,11 @@ Optional properties:
- regulator-initial-mode: initial operating mode. The set of possible operating
modes depends on the capabilities of every hardware so each device binding
documentation explains which values the regulator supports.
+- regulator-allowed-modes: list of operating modes that software is allowed to
+ configure for the regulator at run-time. Elements may be specified in any
+ order. The set of possible operating modes depends on the capabilities of
+ every hardware so each device binding document explains which values the
+ regulator supports.
- regulator-system-load: Load in uA present on regulator that is not captured by
any consumer request.
- regulator-pull-down: Enable pull down resistor when the regulator is disabled.
@@ -68,6 +73,11 @@ Optional properties:
0: Disable active discharge.
1: Enable active discharge.
Absence of this property will leave configuration to default.
+- regulator-coupled-with: Regulators with which the regulator
+ is coupled. The linkage is 2-way - all coupled regulators should be linked
+ with each other. A regulator should not be coupled with its supplier.
+- regulator-coupled-max-spread: Max spread between voltages of coupled regulators
+ in microvolts.
Deprecated properties:
- regulator-compatible: If a regulator chip contains multiple
diff --git a/Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt b/Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt
new file mode 100644
index 0000000..4edf313
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt
@@ -0,0 +1,126 @@
+ROHM BD71837 Power Management Integrated Circuit (PMIC) regulator bindings
+
+BD71837MWV is a programmable Power Management
+IC (PMIC) for powering single-core, dual-core, and
+quad-core SoC’s such as NXP-i.MX 8M. It is optimized
+for low BOM cost and compact solution footprint. It
+integrates 8 Buck regulators and 7 LDO’s to provide all
+the power rails required by the SoC and the commonly
+used peripherals.
+
+Required properties:
+ - regulator-name: should be "buck1", ..., "buck8" and "ldo1", ..., "ldo7"
+
+List of regulators provided by this controller. BD71837 regulators node
+should be sub node of the BD71837 MFD node. See BD71837 MFD bindings at
+Documentation/devicetree/bindings/mfd/rohm,bd71837-pmic.txt
+Regulator nodes should be named to BUCK_<number> and LDO_<number>. The
+definition for each of these nodes is defined using the standard
+binding for regulators at
+Documentation/devicetree/bindings/regulator/regulator.txt.
+Note that if BD71837 starts at RUN state you probably want to use
+regulator-boot-on at least for BUCK6 and BUCK7 so that those are not
+disabled by driver at startup. LDO5 and LDO6 are supplied by those and
+if they are disabled at startup the voltage monitoring for LDO5/LDO6 will
+cause PMIC to reset.
+
+The valid names for regulator nodes are:
+BUCK1, BUCK2, BUCK3, BUCK4, BUCK5, BUCK6, BUCK7, BUCK8
+LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7
+
+Optional properties:
+- Any optional property defined in bindings/regulator/regulator.txt
+
+Example:
+regulators {
+ buck1: BUCK1 {
+ regulator-name = "buck1";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1300000>;
+ regulator-boot-on;
+ regulator-ramp-delay = <1250>;
+ };
+ buck2: BUCK2 {
+ regulator-name = "buck2";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1300000>;
+ regulator-boot-on;
+ regulator-always-on;
+ regulator-ramp-delay = <1250>;
+ };
+ buck3: BUCK3 {
+ regulator-name = "buck3";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1300000>;
+ regulator-boot-on;
+ };
+ buck4: BUCK4 {
+ regulator-name = "buck4";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1300000>;
+ regulator-boot-on;
+ };
+ buck5: BUCK5 {
+ regulator-name = "buck5";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1350000>;
+ regulator-boot-on;
+ };
+ buck6: BUCK6 {
+ regulator-name = "buck6";
+ regulator-min-microvolt = <3000000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-boot-on;
+ };
+ buck7: BUCK7 {
+ regulator-name = "buck7";
+ regulator-min-microvolt = <1605000>;
+ regulator-max-microvolt = <1995000>;
+ regulator-boot-on;
+ };
+ buck8: BUCK8 {
+ regulator-name = "buck8";
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <1400000>;
+ };
+
+ ldo1: LDO1 {
+ regulator-name = "ldo1";
+ regulator-min-microvolt = <3000000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-boot-on;
+ };
+ ldo2: LDO2 {
+ regulator-name = "ldo2";
+ regulator-min-microvolt = <900000>;
+ regulator-max-microvolt = <900000>;
+ regulator-boot-on;
+ };
+ ldo3: LDO3 {
+ regulator-name = "ldo3";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+ ldo4: LDO4 {
+ regulator-name = "ldo4";
+ regulator-min-microvolt = <900000>;
+ regulator-max-microvolt = <1800000>;
+ };
+ ldo5: LDO5 {
+ regulator-name = "ldo5";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+ ldo6: LDO6 {
+ regulator-name = "ldo6";
+ regulator-min-microvolt = <900000>;
+ regulator-max-microvolt = <1800000>;
+ };
+ ldo7_reg: LDO7 {
+ regulator-name = "ldo7";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+};
+
+
diff --git a/Documentation/devicetree/bindings/regulator/sy8106a-regulator.txt b/Documentation/devicetree/bindings/regulator/sy8106a-regulator.txt
new file mode 100644
index 0000000..39a8ca7
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/sy8106a-regulator.txt
@@ -0,0 +1,23 @@
+SY8106A Voltage regulator
+
+Required properties:
+- compatible: Must be "silergy,sy8106a"
+- reg: I2C slave address - must be <0x65>
+- silergy,fixed-microvolt - the voltage when I2C regulating is disabled (set
+ by external resistor like a fixed voltage)
+
+Any property defined as part of the core regulator binding, defined in
+./regulator.txt, can also be used.
+
+Example:
+
+ sy8106a {
+ compatible = "silergy,sy8106a";
+ reg = <0x65>;
+ regulator-name = "sy8106a-vdd";
+ silergy,fixed-microvolt = <1200000>;
+ regulator-min-microvolt = <1000000>;
+ regulator-max-microvolt = <1400000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
diff --git a/Documentation/devicetree/bindings/remoteproc/qcom,q6v5.txt b/Documentation/devicetree/bindings/remoteproc/qcom,q6v5.txt
index 00d3d58..d901824 100644
--- a/Documentation/devicetree/bindings/remoteproc/qcom,q6v5.txt
+++ b/Documentation/devicetree/bindings/remoteproc/qcom,q6v5.txt
@@ -11,6 +11,7 @@ on the Qualcomm Hexagon core.
"qcom,msm8916-mss-pil",
"qcom,msm8974-mss-pil"
"qcom,msm8996-mss-pil"
+ "qcom,sdm845-mss-pil"
- reg:
Usage: required
diff --git a/Documentation/devicetree/bindings/reserved-memory/qcom,cmd-db.txt b/Documentation/devicetree/bindings/reserved-memory/qcom,cmd-db.txt
new file mode 100644
index 0000000..6839553
--- /dev/null
+++ b/Documentation/devicetree/bindings/reserved-memory/qcom,cmd-db.txt
@@ -0,0 +1,37 @@
+Command DB
+---------
+
+Command DB is a database that provides a mapping between resource key and the
+resource address for a system resource managed by a remote processor. The data
+is stored in a shared memory region and is loaded by the remote processor.
+
+Some of the Qualcomm Technologies Inc SoC's have hardware accelerators for
+controlling shared resources. Depending on the board configuration the shared
+resource properties may change. These properties are dynamically probed by the
+remote processor and made available in the shared memory.
+
+The bindings for Command DB is specified in the reserved-memory section in
+devicetree. The devicetree representation of the command DB driver should be:
+
+Properties:
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: Should be "qcom,cmd-db"
+
+- reg:
+ Usage: required
+ Value type: <prop encoded array>
+ Definition: The register address that points to the actual location of
+ the Command DB in memory.
+
+Example:
+
+ reserved-memory {
+ [...]
+ reserved-memory@85fe0000 {
+ reg = <0x0 0x85fe0000 0x0 0x20000>;
+ compatible = "qcom,cmd-db";
+ no-map;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/reset/renesas,rst.txt b/Documentation/devicetree/bindings/reset/renesas,rst.txt
index 294a0da..67e83b0 100644
--- a/Documentation/devicetree/bindings/reset/renesas,rst.txt
+++ b/Documentation/devicetree/bindings/reset/renesas,rst.txt
@@ -17,6 +17,7 @@ Required properties:
Examples with soctypes are:
- "renesas,r8a7743-rst" (RZ/G1M)
- "renesas,r8a7745-rst" (RZ/G1E)
+ - "renesas,r8a77470-rst" (RZ/G1C)
- "renesas,r8a7778-reset-wdt" (R-Car M1A)
- "renesas,r8a7779-reset-wdt" (R-Car H1)
- "renesas,r8a7790-rst" (R-Car H2)
@@ -29,6 +30,7 @@ Required properties:
- "renesas,r8a77965-rst" (R-Car M3-N)
- "renesas,r8a77970-rst" (R-Car V3M)
- "renesas,r8a77980-rst" (R-Car V3H)
+ - "renesas,r8a77990-rst" (R-Car E3)
- "renesas,r8a77995-rst" (R-Car D3)
- reg: Address start and address range for the device.
diff --git a/Documentation/devicetree/bindings/rng/brcm,bcm2835.txt b/Documentation/devicetree/bindings/rng/brcm,bcm2835.txt
index 627b295..aaac797 100644
--- a/Documentation/devicetree/bindings/rng/brcm,bcm2835.txt
+++ b/Documentation/devicetree/bindings/rng/brcm,bcm2835.txt
@@ -14,11 +14,16 @@ Optional properties:
- clocks : phandle to clock-controller plus clock-specifier pair
- clock-names : "ipsec" as a clock name
+Optional properties:
+
+- interrupts: specify the interrupt for the RNG block
+
Example:
rng {
- compatible = "brcm,bcm2835-rng";
- reg = <0x7e104000 0x10>;
+ compatible = "brcm,bcm2835-rng";
+ reg = <0x7e104000 0x10>;
+ interrupts = <2 29>;
};
rng@18033000 {
diff --git a/Documentation/devicetree/bindings/crypto/samsung,exynos-rng4.txt b/Documentation/devicetree/bindings/rng/samsung,exynos4-rng.txt
index a13fbdb..a13fbdb 100644
--- a/Documentation/devicetree/bindings/crypto/samsung,exynos-rng4.txt
+++ b/Documentation/devicetree/bindings/rng/samsung,exynos4-rng.txt
diff --git a/Documentation/devicetree/bindings/sparc_sun_oracle_rng.txt b/Documentation/devicetree/bindings/rng/sparc_sun_oracle_rng.txt
index b0b2111..b0b2111 100644
--- a/Documentation/devicetree/bindings/sparc_sun_oracle_rng.txt
+++ b/Documentation/devicetree/bindings/rng/sparc_sun_oracle_rng.txt
diff --git a/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt b/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt
index 5cbc0b1..811124a 100644
--- a/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt
+++ b/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt
@@ -9,7 +9,7 @@ Optional properties:
Example:
-rtc: nxp,rtc-pcf2123@3 {
+pcf2123: rtc@3 {
compatible = "nxp,rtc-pcf2123"
reg = <3>
spi-cs-high;
diff --git a/Documentation/devicetree/bindings/rtc/st,stm32-rtc.txt b/Documentation/devicetree/bindings/rtc/st,stm32-rtc.txt
index a66692a..c920e27 100644
--- a/Documentation/devicetree/bindings/rtc/st,stm32-rtc.txt
+++ b/Documentation/devicetree/bindings/rtc/st,stm32-rtc.txt
@@ -1,23 +1,29 @@
STM32 Real Time Clock
Required properties:
-- compatible: can be either "st,stm32-rtc" or "st,stm32h7-rtc", depending on
- the device is compatible with stm32(f4/f7) or stm32h7.
+- compatible: can be one of the following:
+ - "st,stm32-rtc" for devices compatible with stm32(f4/f7).
+ - "st,stm32h7-rtc" for devices compatible with stm32h7.
+ - "st,stm32mp1-rtc" for devices compatible with stm32mp1.
- reg: address range of rtc register set.
- clocks: can use up to two clocks, depending on part used:
- "rtc_ck": RTC clock source.
- It is required on stm32(f4/f7) and stm32h7.
- "pclk": RTC APB interface clock.
It is not present on stm32(f4/f7).
- It is required on stm32h7.
+ It is required on stm32(h7/mp1).
- clock-names: must be "rtc_ck" and "pclk".
- It is required only on stm32h7.
+ It is required on stm32(h7/mp1).
- interrupt-parent: phandle for the interrupt controller.
-- interrupts: rtc alarm interrupt.
-- st,syscfg: phandle for pwrcfg, mandatory to disable/enable backup domain
- (RTC registers) write protection.
+ It is required on stm32(f4/f7/h7).
+- interrupts: rtc alarm interrupt. On stm32mp1, a second interrupt is required
+ for rtc alarm wakeup interrupt.
+- st,syscfg: phandle/offset/mask triplet. The phandle to pwrcfg used to
+ access control register at offset, and change the dbp (Disable Backup
+ Protection) bit represented by the mask, mandatory to disable/enable backup
+ domain (RTC registers) write protection.
+ It is required on stm32(f4/f7/h7).
-Optional properties (to override default rtc_ck parent clock):
+Optional properties (to override default rtc_ck parent clock on stm32(f4/f7/h7):
- assigned-clocks: reference to the rtc_ck clock entry.
- assigned-clock-parents: phandle of the new parent clock of rtc_ck.
@@ -31,7 +37,7 @@ Example:
assigned-clock-parents = <&rcc 1 CLK_LSE>;
interrupt-parent = <&exti>;
interrupts = <17 1>;
- st,syscfg = <&pwrcfg>;
+ st,syscfg = <&pwrcfg 0x00 0x100>;
};
rtc: rtc@58004000 {
@@ -44,5 +50,14 @@ Example:
interrupt-parent = <&exti>;
interrupts = <17 1>;
interrupt-names = "alarm";
- st,syscfg = <&pwrcfg>;
+ st,syscfg = <&pwrcfg 0x00 0x100>;
+ };
+
+ rtc: rtc@5c004000 {
+ compatible = "st,stm32mp1-rtc";
+ reg = <0x5c004000 0x400>;
+ clocks = <&rcc RTCAPB>, <&rcc RTC>;
+ clock-names = "pclk", "rtc_ck";
+ interrupts-extended = <&intc GIC_SPI 3 IRQ_TYPE_NONE>,
+ <&exti 19 1>;
};
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt
new file mode 100644
index 0000000..bcc612c
--- /dev/null
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt
@@ -0,0 +1,84 @@
+Qualcomm APR (Asynchronous Packet Router) binding
+
+This binding describes the Qualcomm APR. APR is a IPC protocol for
+communication between Application processor and QDSP. APR is mainly
+used for audio/voice services on the QDSP.
+
+- compatible:
+ Usage: required
+ Value type: <stringlist>
+ Definition: must be "qcom,apr-v<VERSION-NUMBER>", example "qcom,apr-v2"
+
+- reg
+ Usage: required
+ Value type: <u32>
+ Definition: Destination processor ID.
+ Possible values are :
+ 1 - APR simulator
+ 2 - PC
+ 3 - MODEM
+ 4 - ADSP
+ 5 - APPS
+ 6 - MODEM2
+ 7 - APPS2
+
+= APR SERVICES
+Each subnode of the APR node represents service tied to this apr. The name
+of the nodes are not important. The properties of these nodes are defined
+by the individual bindings for the specific service
+- All APR services MUST contain the following property:
+
+- reg
+ Usage: required
+ Value type: <u32>
+ Definition: APR Service ID
+ Possible values are :
+ 3 - DSP Core Service
+ 4 - Audio Front End Service.
+ 5 - Voice Stream Manager Service.
+ 6 - Voice processing manager.
+ 7 - Audio Stream Manager Service.
+ 8 - Audio Device Manager Service.
+ 9 - Multimode voice manager.
+ 10 - Core voice stream.
+ 11 - Core voice processor.
+ 12 - Ultrasound stream manager.
+ 13 - Listen stream manager.
+
+= EXAMPLE
+The following example represents a QDSP based sound card on a MSM8996 device
+which uses apr as communication between Apps and QDSP.
+
+ apr@4 {
+ compatible = "qcom,apr-v2";
+ reg = <APR_DOMAIN_ADSP>;
+
+ q6core@3 {
+ compatible = "qcom,q6core";
+ reg = <APR_SVC_ADSP_CORE>;
+ };
+
+ q6afe@4 {
+ compatible = "qcom,q6afe";
+ reg = <APR_SVC_AFE>;
+
+ dais {
+ #sound-dai-cells = <1>;
+ hdmi@1 {
+ reg = <1>;
+ };
+ };
+ };
+
+ q6asm@7 {
+ compatible = "qcom,q6asm";
+ reg = <APR_SVC_ASM>;
+ ...
+ };
+
+ q6adm@8 {
+ compatible = "qcom,q6adm";
+ reg = <APR_SVC_ADM>;
+ ...
+ };
+ };
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,geni-se.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,geni-se.txt
new file mode 100644
index 0000000..d330c73
--- /dev/null
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,geni-se.txt
@@ -0,0 +1,119 @@
+Qualcomm Technologies, Inc. GENI Serial Engine QUP Wrapper Controller
+
+Generic Interface (GENI) based Qualcomm Universal Peripheral (QUP) wrapper
+is a programmable module for supporting a wide range of serial interfaces
+like UART, SPI, I2C, I3C, etc. A single QUP module can provide upto 8 Serial
+Interfaces, using its internal Serial Engines. The GENI Serial Engine QUP
+Wrapper controller is modeled as a node with zero or more child nodes each
+representing a serial engine.
+
+Required properties:
+- compatible: Must be "qcom,geni-se-qup".
+- reg: Must contain QUP register address and length.
+- clock-names: Must contain "m-ahb" and "s-ahb".
+- clocks: AHB clocks needed by the device.
+
+Required properties if child node exists:
+- #address-cells: Must be <1> for Serial Engine Address
+- #size-cells: Must be <1> for Serial Engine Address Size
+- ranges: Must be present
+
+Properties for children:
+
+A GENI based QUP wrapper controller node can contain 0 or more child nodes
+representing serial devices. These serial devices can be a QCOM UART, I2C
+controller, SPI controller, or some combination of aforementioned devices.
+Please refer below the child node definitions for the supported serial
+interface protocols.
+
+Qualcomm Technologies Inc. GENI Serial Engine based I2C Controller
+
+Required properties:
+- compatible: Must be "qcom,geni-i2c".
+- reg: Must contain QUP register address and length.
+- interrupts: Must contain I2C interrupt.
+- clock-names: Must contain "se".
+- clocks: Serial engine core clock needed by the device.
+- #address-cells: Must be <1> for I2C device address.
+- #size-cells: Must be <0> as I2C addresses have no size component.
+
+Optional property:
+- clock-frequency: Desired I2C bus clock frequency in Hz.
+ When missing default to 400000Hz.
+
+Child nodes should conform to I2C bus binding as described in i2c.txt.
+
+Qualcomm Technologies Inc. GENI Serial Engine based UART Controller
+
+Required properties:
+- compatible: Must be "qcom,geni-debug-uart".
+- reg: Must contain UART register location and length.
+- interrupts: Must contain UART core interrupts.
+- clock-names: Must contain "se".
+- clocks: Serial engine core clock needed by the device.
+
+Qualcomm Technologies Inc. GENI Serial Engine based SPI Controller
+
+Required properties:
+- compatible: Must contain "qcom,geni-spi".
+- reg: Must contain SPI register location and length.
+- interrupts: Must contain SPI controller interrupts.
+- clock-names: Must contain "se".
+- clocks: Serial engine core clock needed by the device.
+- spi-max-frequency: Specifies maximum SPI clock frequency, units - Hz.
+- #address-cells: Must be <1> to define a chip select address on
+ the SPI bus.
+- #size-cells: Must be <0>.
+
+SPI slave nodes must be children of the SPI master node and conform to SPI bus
+binding as described in Documentation/devicetree/bindings/spi/spi-bus.txt.
+
+Example:
+ geniqup@8c0000 {
+ compatible = "qcom,geni-se-qup";
+ reg = <0x8c0000 0x6000>;
+ clock-names = "m-ahb", "s-ahb";
+ clocks = <&clock_gcc GCC_QUPV3_WRAP_0_M_AHB_CLK>,
+ <&clock_gcc GCC_QUPV3_WRAP_0_S_AHB_CLK>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ i2c0: i2c@a94000 {
+ compatible = "qcom,geni-i2c";
+ reg = <0xa94000 0x4000>;
+ interrupts = <GIC_SPI 358 IRQ_TYPE_LEVEL_HIGH>;
+ clock-names = "se";
+ clocks = <&clock_gcc GCC_QUPV3_WRAP0_S5_CLK>;
+ pinctrl-names = "default", "sleep";
+ pinctrl-0 = <&qup_1_i2c_5_active>;
+ pinctrl-1 = <&qup_1_i2c_5_sleep>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ uart0: serial@a88000 {
+ compatible = "qcom,geni-debug-uart";
+ reg = <0xa88000 0x7000>;
+ interrupts = <GIC_SPI 355 IRQ_TYPE_LEVEL_HIGH>;
+ clock-names = "se";
+ clocks = <&clock_gcc GCC_QUPV3_WRAP0_S0_CLK>;
+ pinctrl-names = "default", "sleep";
+ pinctrl-0 = <&qup_1_uart_3_active>;
+ pinctrl-1 = <&qup_1_uart_3_sleep>;
+ };
+
+ spi0: spi@a84000 {
+ compatible = "qcom,geni-spi";
+ reg = <0xa84000 0x4000>;
+ interrupts = <GIC_SPI 354 IRQ_TYPE_LEVEL_HIGH>;
+ clock-names = "se";
+ clocks = <&clock_gcc GCC_QUPV3_WRAP0_S0_CLK>;
+ pinctrl-names = "default", "sleep";
+ pinctrl-0 = <&qup_1_spi_2_active>;
+ pinctrl-1 = <&qup_1_spi_2_sleep>;
+ spi-max-frequency = <19200000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+ }
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,smd-rpm.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,smd-rpm.txt
index a48049c..89e1cb9 100644
--- a/Documentation/devicetree/bindings/soc/qcom/qcom,smd-rpm.txt
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,smd-rpm.txt
@@ -22,6 +22,7 @@ resources.
"qcom,rpm-apq8084"
"qcom,rpm-msm8916"
"qcom,rpm-msm8974"
+ "qcom,rpm-msm8998"
- qcom,smd-channels:
Usage: required
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,smd.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,smd.txt
index ea1dc75..234ae22 100644
--- a/Documentation/devicetree/bindings/soc/qcom/qcom,smd.txt
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,smd.txt
@@ -22,9 +22,15 @@ The edge is described by the following properties:
Definition: should specify the IRQ used by the remote processor to
signal this processor about communication related updates
-- qcom,ipc:
+- mboxes:
Usage: required
Value type: <prop-encoded-array>
+ Definition: reference to the associated doorbell in APCS, as described
+ in mailbox/mailbox.txt
+
+- qcom,ipc:
+ Usage: required, unless mboxes is specified
+ Value type: <prop-encoded-array>
Definition: three entries specifying the outgoing ipc bit used for
signaling the remote processor:
- phandle to a syscon node representing the apcs registers
diff --git a/Documentation/devicetree/bindings/soc/rockchip/power_domain.txt b/Documentation/devicetree/bindings/soc/rockchip/power_domain.txt
index 301d2a9..5d49d0a 100644
--- a/Documentation/devicetree/bindings/soc/rockchip/power_domain.txt
+++ b/Documentation/devicetree/bindings/soc/rockchip/power_domain.txt
@@ -5,6 +5,10 @@ powered up/down by software based on different application scenes to save power.
Required properties for power domain controller:
- compatible: Should be one of the following.
+ "rockchip,px30-power-controller" - for PX30 SoCs.
+ "rockchip,rk3036-power-controller" - for RK3036 SoCs.
+ "rockchip,rk3128-power-controller" - for RK3128 SoCs.
+ "rockchip,rk3228-power-controller" - for RK3228 SoCs.
"rockchip,rk3288-power-controller" - for RK3288 SoCs.
"rockchip,rk3328-power-controller" - for RK3328 SoCs.
"rockchip,rk3366-power-controller" - for RK3366 SoCs.
@@ -17,6 +21,10 @@ Required properties for power domain controller:
Required properties for power domain sub nodes:
- reg: index of the power domain, should use macros in:
+ "include/dt-bindings/power/px30-power.h" - for PX30 type power domain.
+ "include/dt-bindings/power/rk3036-power.h" - for RK3036 type power domain.
+ "include/dt-bindings/power/rk3128-power.h" - for RK3128 type power domain.
+ "include/dt-bindings/power/rk3228-power.h" - for RK3228 type power domain.
"include/dt-bindings/power/rk3288-power.h" - for RK3288 type power domain.
"include/dt-bindings/power/rk3328-power.h" - for RK3328 type power domain.
"include/dt-bindings/power/rk3366-power.h" - for RK3366 type power domain.
@@ -93,6 +101,10 @@ Node of a device using power domains must have a power-domains property,
containing a phandle to the power device node and an index specifying which
power domain to use.
The index should use macros in:
+ "include/dt-bindings/power/px30-power.h" - for px30 type power domain.
+ "include/dt-bindings/power/rk3036-power.h" - for rk3036 type power domain.
+ "include/dt-bindings/power/rk3128-power.h" - for rk3128 type power domain.
+ "include/dt-bindings/power/rk3128-power.h" - for rk3228 type power domain.
"include/dt-bindings/power/rk3288-power.h" - for rk3288 type power domain.
"include/dt-bindings/power/rk3328-power.h" - for rk3328 type power domain.
"include/dt-bindings/power/rk3366-power.h" - for rk3366 type power domain.
diff --git a/Documentation/devicetree/bindings/soc/ti/keystone-navigator-qmss.txt b/Documentation/devicetree/bindings/soc/ti/keystone-navigator-qmss.txt
index 77cd42c..b025770 100644
--- a/Documentation/devicetree/bindings/soc/ti/keystone-navigator-qmss.txt
+++ b/Documentation/devicetree/bindings/soc/ti/keystone-navigator-qmss.txt
@@ -17,7 +17,8 @@ pool management.
Required properties:
-- compatible : Must be "ti,keystone-navigator-qmss";
+- compatible : Must be "ti,keystone-navigator-qmss".
+ : Must be "ti,66ak2g-navss-qm" for QMSS on K2G SoC.
- clocks : phandle to the reference clock for this device.
- queue-range : <start number> total range of queue numbers for the device.
- linkram0 : <address size> for internal link ram, where size is the total
@@ -39,6 +40,12 @@ Required properties:
- Descriptor memory setup region.
- Queue Management/Queue Proxy region for queue Push.
- Queue Management/Queue Proxy region for queue Pop.
+
+For QMSS on K2G SoC, following QM reg indexes are used in that order
+ - Queue Peek region.
+ - Queue configuration region.
+ - Queue Management/Queue Proxy region for queue Push/Pop.
+
- queue-pools : child node classifying the queue ranges into pools.
Queue ranges are grouped into 3 type of pools:
- qpend : pool of qpend(interruptible) queues
diff --git a/Documentation/devicetree/bindings/sound/adi,ssm2305.txt b/Documentation/devicetree/bindings/sound/adi,ssm2305.txt
new file mode 100644
index 0000000..a9c9d83
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/adi,ssm2305.txt
@@ -0,0 +1,14 @@
+Analog Devices SSM2305 Speaker Amplifier
+========================================
+
+Required properties:
+ - compatible : "adi,ssm2305"
+ - shutdown-gpios : The gpio connected to the shutdown pin.
+ The gpio signal is ACTIVE_LOW.
+
+Example:
+
+ssm2305: analog-amplifier {
+ compatible = "adi,ssm2305";
+ shutdown-gpios = <&gpio3 20 GPIO_ACTIVE_LOW>;
+};
diff --git a/Documentation/devicetree/bindings/sound/atmel-i2s.txt b/Documentation/devicetree/bindings/sound/atmel-i2s.txt
new file mode 100644
index 0000000..735368b
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/atmel-i2s.txt
@@ -0,0 +1,47 @@
+* Atmel I2S controller
+
+Required properties:
+- compatible: Should be "atmel,sama5d2-i2s".
+- reg: Should be the physical base address of the controller and the
+ length of memory mapped region.
+- interrupts: Should contain the interrupt for the controller.
+- dmas: Should be one per channel name listed in the dma-names property,
+ as described in atmel-dma.txt and dma.txt files.
+- dma-names: Two dmas have to be defined, "tx" and "rx".
+ This IP also supports one shared channel for both rx and tx;
+ if this mode is used, one "rx-tx" name must be used.
+- clocks: Must contain an entry for each entry in clock-names.
+ Please refer to clock-bindings.txt.
+- clock-names: Should be one of each entry matching the clocks phandles list:
+ - "pclk" (peripheral clock) Required.
+ - "gclk" (generated clock) Optional (1).
+ - "aclk" (Audio PLL clock) Optional (1).
+ - "muxclk" (I2S mux clock) Optional (1).
+
+Optional properties:
+- pinctrl-0: Should specify pin control groups used for this controller.
+- princtrl-names: Should contain only one value - "default".
+
+
+(1) : Only the peripheral clock is required. The generated clock, the Audio
+ PLL clock adn the I2S mux clock are optional and should only be set
+ together, when Master Mode is required.
+
+Example:
+
+ i2s@f8050000 {
+ compatible = "atmel,sama5d2-i2s";
+ reg = <0xf8050000 0x300>;
+ interrupts = <54 IRQ_TYPE_LEVEL_HIGH 7>;
+ dmas = <&dma0
+ (AT91_XDMAC_DT_MEM_IF(0) | AT91_XDMAC_DT_PER_IF(1) |
+ AT91_XDMAC_DT_PERID(31))>,
+ <&dma0
+ (AT91_XDMAC_DT_MEM_IF(0) | AT91_XDMAC_DT_PER_IF(1) |
+ AT91_XDMAC_DT_PERID(32))>;
+ dma-names = "tx", "rx";
+ clocks = <&i2s0_clk>, <&i2s0_gclk>, <&audio_pll_pmc>, <&i2s0muxck>;
+ clock-names = "pclk", "gclk", "aclk", "muxclk";
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_i2s0_default>;
+ };
diff --git a/Documentation/devicetree/bindings/sound/cs42xx8.txt b/Documentation/devicetree/bindings/sound/cs42xx8.txt
index f631fbc..8619a15 100644
--- a/Documentation/devicetree/bindings/sound/cs42xx8.txt
+++ b/Documentation/devicetree/bindings/sound/cs42xx8.txt
@@ -16,7 +16,7 @@ Required properties:
Example:
-codec: cs42888@48 {
+cs42888: codec@48 {
compatible = "cirrus,cs42888";
reg = <0x48>;
clocks = <&codec_mclk 0>;
diff --git a/Documentation/devicetree/bindings/sound/fsl,asrc.txt b/Documentation/devicetree/bindings/sound/fsl,asrc.txt
index f5a1411..1d4d9f9 100644
--- a/Documentation/devicetree/bindings/sound/fsl,asrc.txt
+++ b/Documentation/devicetree/bindings/sound/fsl,asrc.txt
@@ -31,14 +31,16 @@ Required properties:
it. This property is optional depending on the SoC
design.
- - big-endian : If this property is absent, the little endian mode
- will be in use as default. Otherwise, the big endian
- mode will be in use for all the device registers.
-
- fsl,asrc-rate : Defines a mutual sample rate used by DPCM Back Ends.
- fsl,asrc-width : Defines a mutual sample width used by DPCM Back Ends.
+Optional properties:
+
+ - big-endian : If this property is absent, the little endian mode
+ will be in use as default. Otherwise, the big endian
+ mode will be in use for all the device registers.
+
Example:
asrc: asrc@2034000 {
diff --git a/Documentation/devicetree/bindings/sound/fsl,esai.txt b/Documentation/devicetree/bindings/sound/fsl,esai.txt
index cacd18b..5b99143 100644
--- a/Documentation/devicetree/bindings/sound/fsl,esai.txt
+++ b/Documentation/devicetree/bindings/sound/fsl,esai.txt
@@ -42,6 +42,8 @@ Required properties:
means all the settings for Receiving would be
duplicated from Transmition related registers.
+Optional properties:
+
- big-endian : If this property is absent, the native endian mode
will be in use as default, or the big endian mode
will be in use for all the device registers.
diff --git a/Documentation/devicetree/bindings/sound/fsl,spdif.txt b/Documentation/devicetree/bindings/sound/fsl,spdif.txt
index 38cfa75..8b324f8 100644
--- a/Documentation/devicetree/bindings/sound/fsl,spdif.txt
+++ b/Documentation/devicetree/bindings/sound/fsl,spdif.txt
@@ -33,6 +33,8 @@ Required properties:
it. This property is optional depending on the SoC
design.
+Optional properties:
+
- big-endian : If this property is absent, the native endian mode
will be in use as default, or the big endian mode
will be in use for all the device registers.
diff --git a/Documentation/devicetree/bindings/sound/fsl-sai.txt b/Documentation/devicetree/bindings/sound/fsl-sai.txt
index 740b467..dd9e597 100644
--- a/Documentation/devicetree/bindings/sound/fsl-sai.txt
+++ b/Documentation/devicetree/bindings/sound/fsl-sai.txt
@@ -28,9 +28,6 @@ Required properties:
pinctrl-names. See ../pinctrl/pinctrl-bindings.txt
for details of the property values.
- - big-endian : Boolean property, required if all the FTM_PWM
- registers are big-endian rather than little-endian.
-
- lsb-first : Configures whether the LSB or the MSB is transmitted
first for the fifo data. If this property is absent,
the MSB is transmitted first as default, or the LSB
@@ -48,6 +45,11 @@ Required properties:
receive data by following their own bit clocks and
frame sync clocks separately.
+Optional properties:
+
+ - big-endian : Boolean property, required if all the SAI
+ registers are big-endian rather than little-endian.
+
Optional properties (for mx6ul):
- fsl,sai-mclk-direction-output: This is a boolean property. If present,
diff --git a/Documentation/devicetree/bindings/sound/mt2701-afe-pcm.txt b/Documentation/devicetree/bindings/sound/mt2701-afe-pcm.txt
index e2f7f49..560762e 100644
--- a/Documentation/devicetree/bindings/sound/mt2701-afe-pcm.txt
+++ b/Documentation/devicetree/bindings/sound/mt2701-afe-pcm.txt
@@ -1,7 +1,9 @@
Mediatek AFE PCM controller for mt2701
Required properties:
-- compatible = "mediatek,mt2701-audio";
+- compatible: should be one of the followings.
+ - "mediatek,mt2701-audio"
+ - "mediatek,mt7622-audio"
- interrupts: should contain AFE and ASYS interrupts
- interrupt-names: should be "afe" and "asys"
- power-domains: should define the power domain
diff --git a/Documentation/devicetree/bindings/sound/mt6351.txt b/Documentation/devicetree/bindings/sound/mt6351.txt
new file mode 100644
index 0000000..7fb2cb9
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/mt6351.txt
@@ -0,0 +1,16 @@
+Mediatek MT6351 Audio Codec
+
+The communication between MT6351 and SoC is through Mediatek PMIC wrapper.
+For more detail, please visit Mediatek PMIC wrapper documentation.
+
+Must be a child node of PMIC wrapper.
+
+Required properties:
+
+- compatible : "mediatek,mt6351-sound".
+
+Example:
+
+mt6351_snd {
+ compatible = "mediatek,mt6351-sound";
+};
diff --git a/Documentation/devicetree/bindings/sound/mt6797-afe-pcm.txt b/Documentation/devicetree/bindings/sound/mt6797-afe-pcm.txt
new file mode 100644
index 0000000..0ae29de
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/mt6797-afe-pcm.txt
@@ -0,0 +1,42 @@
+Mediatek AFE PCM controller for mt6797
+
+Required properties:
+- compatible = "mediatek,mt6797-audio";
+- reg: register location and size
+- interrupts: should contain AFE interrupt
+- power-domains: should define the power domain
+- clocks: Must contain an entry for each entry in clock-names
+- clock-names: should have these clock names:
+ "infra_sys_audio_clk",
+ "infra_sys_audio_26m",
+ "mtkaif_26m_clk",
+ "top_mux_audio",
+ "top_mux_aud_intbus",
+ "top_sys_pll3_d4",
+ "top_sys_pll1_d4",
+ "top_clk26m_clk";
+
+Example:
+
+ afe: mt6797-afe-pcm@11220000 {
+ compatible = "mediatek,mt6797-audio";
+ reg = <0 0x11220000 0 0x1000>;
+ interrupts = <GIC_SPI 151 IRQ_TYPE_LEVEL_LOW>;
+ power-domains = <&scpsys MT6797_POWER_DOMAIN_AUDIO>;
+ clocks = <&infrasys CLK_INFRA_AUDIO>,
+ <&infrasys CLK_INFRA_AUDIO_26M>,
+ <&infrasys CLK_INFRA_AUDIO_26M_PAD_TOP>,
+ <&topckgen CLK_TOP_MUX_AUDIO>,
+ <&topckgen CLK_TOP_MUX_AUD_INTBUS>,
+ <&topckgen CLK_TOP_SYSPLL3_D4>,
+ <&topckgen CLK_TOP_SYSPLL1_D4>,
+ <&clk26m>;
+ clock-names = "infra_sys_audio_clk",
+ "infra_sys_audio_26m",
+ "mtkaif_26m_clk",
+ "top_mux_audio",
+ "top_mux_aud_intbus",
+ "top_sys_pll3_d4",
+ "top_sys_pll1_d4",
+ "top_clk26m_clk";
+ };
diff --git a/Documentation/devicetree/bindings/sound/mt6797-mt6351.txt b/Documentation/devicetree/bindings/sound/mt6797-mt6351.txt
new file mode 100644
index 0000000..1d95a88
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/mt6797-mt6351.txt
@@ -0,0 +1,14 @@
+MT6797 with MT6351 CODEC
+
+Required properties:
+- compatible: "mediatek,mt6797-mt6351-sound"
+- mediatek,platform: the phandle of MT6797 ASoC platform
+- mediatek,audio-codec: the phandles of MT6351 codec
+
+Example:
+
+ sound {
+ compatible = "mediatek,mt6797-mt6351-sound";
+ mediatek,audio-codec = <&mt6351_snd>;
+ mediatek,platform = <&afe>;
+ };
diff --git a/Documentation/devicetree/bindings/sound/qcom,apq8096.txt b/Documentation/devicetree/bindings/sound/qcom,apq8096.txt
new file mode 100644
index 0000000..aa54e49
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/qcom,apq8096.txt
@@ -0,0 +1,109 @@
+* Qualcomm Technologies APQ8096 ASoC sound card driver
+
+This binding describes the APQ8096 sound card, which uses qdsp for audio.
+
+- compatible:
+ Usage: required
+ Value type: <stringlist>
+ Definition: must be "qcom,apq8096-sndcard"
+
+- qcom,audio-routing:
+ Usage: Optional
+ Value type: <stringlist>
+ Definition: A list of the connections between audio components.
+ Each entry is a pair of strings, the first being the
+ connection's sink, the second being the connection's
+ source. Valid names could be power supplies, MicBias
+ of codec and the jacks on the board:
+ Valid names include:
+
+ Board Connectors:
+ "Headphone Left"
+ "Headphone Right"
+ "Earphone"
+ "Line Out1"
+ "Line Out2"
+ "Line Out3"
+ "Line Out4"
+ "Analog Mic1"
+ "Analog Mic2"
+ "Analog Mic3"
+ "Analog Mic4"
+ "Analog Mic5"
+ "Analog Mic6"
+ "Digital Mic2"
+ "Digital Mic3"
+
+ Audio pins and MicBias on WCD9335 Codec:
+ "MIC_BIAS1
+ "MIC_BIAS2"
+ "MIC_BIAS3"
+ "MIC_BIAS4"
+ "AMIC1"
+ "AMIC2"
+ "AMIC3"
+ "AMIC4"
+ "AMIC5"
+ "AMIC6"
+ "AMIC6"
+ "DMIC1"
+ "DMIC2"
+ "DMIC3"
+= dailinks
+Each subnode of sndcard represents either a dailink, and subnodes of each
+dailinks would be cpu/codec/platform dais.
+
+- link-name:
+ Usage: required
+ Value type: <string>
+ Definition: User friendly name for dai link
+
+= CPU, PLATFORM, CODEC dais subnodes
+- cpu:
+ Usage: required
+ Value type: <subnode>
+ Definition: cpu dai sub-node
+
+- codec:
+ Usage: Optional
+ Value type: <subnode>
+ Definition: codec dai sub-node
+
+- platform:
+ Usage: Optional
+ Value type: <subnode>
+ Definition: platform dai sub-node
+
+- sound-dai:
+ Usage: required
+ Value type: <phandle with arguments>
+ Definition: dai phandle/s and port of CPU/CODEC/PLATFORM node.
+
+Example:
+
+audio {
+ compatible = "qcom,apq8096-sndcard";
+ qcom,model = "DB820c";
+
+ mm1-dai-link {
+ link-name = "MultiMedia1";
+ cpu {
+ sound-dai = <&q6asmdai MSM_FRONTEND_DAI_MULTIMEDIA1>;
+ };
+ };
+
+ hdmi-dai-link {
+ link-name = "HDMI Playback";
+ cpu {
+ sound-dai = <&q6afe HDMI_RX>;
+ };
+
+ platform {
+ sound-dai = <&q6adm>;
+ };
+
+ codec {
+ sound-dai = <&hdmi 0>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/qcom,q6adm.txt b/Documentation/devicetree/bindings/sound/qcom,q6adm.txt
new file mode 100644
index 0000000..cb709e5
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/qcom,q6adm.txt
@@ -0,0 +1,33 @@
+Qualcomm Audio Device Manager (Q6ADM) binding
+
+Q6ADM is one of the APR audio service on Q6DSP.
+Please refer to qcom,apr.txt for details of the coommon apr service bindings
+used by the apr service device.
+
+- but must contain the following property:
+
+- compatible:
+ Usage: required
+ Value type: <stringlist>
+ Definition: must be "qcom,q6adm-v<MAJOR-NUMBER>.<MINOR-NUMBER>".
+ Or "qcom,q6adm" where the version number can be queried
+ from DSP.
+ example "qcom,q6adm-v2.0"
+
+
+= ADM routing
+"routing" subnode of the ADM node represents adm routing specific configuration
+
+- #sound-dai-cells
+ Usage: required
+ Value type: <u32>
+ Definition: Must be 0
+
+= EXAMPLE
+q6adm@8 {
+ compatible = "qcom,q6adm";
+ reg = <APR_SVC_ADM>;
+ q6routing: routing {
+ #sound-dai-cells = <0>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/qcom,q6afe.txt b/Documentation/devicetree/bindings/sound/qcom,q6afe.txt
new file mode 100644
index 0000000..bdbf87d
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/qcom,q6afe.txt
@@ -0,0 +1,172 @@
+Qualcomm Audio Front End (Q6AFE) binding
+
+AFE is one of the APR audio service on Q6DSP
+Please refer to qcom,apr.txt for details of the common apr service bindings
+used by all apr services. Must contain the following properties.
+
+- compatible:
+ Usage: required
+ Value type: <stringlist>
+ Definition: must be "qcom,q6afe-v<MAJOR-NUMBER>.<MINOR-NUMBER>"
+ Or "qcom,q6afe" where the version number can be queried
+ from DSP.
+ example "qcom,q6afe"
+
+= AFE DAIs (Digial Audio Interface)
+"dais" subnode of the AFE node. It represents afe dais, each afe dai is a
+subnode of "dais" representing board specific dai setup.
+"dais" node should have following properties followed by dai children.
+
+- #sound-dai-cells
+ Usage: required
+ Value type: <u32>
+ Definition: Must be 1
+
+- #address-cells
+ Usage: required
+ Value type: <u32>
+ Definition: Must be 1
+
+- #size-cells
+ Usage: required
+ Value type: <u32>
+ Definition: Must be 0
+
+== AFE DAI is subnode of "dais" and represent a dai, it includes board specific
+configuration of each dai. Must contain the following properties.
+
+- reg
+ Usage: required
+ Value type: <u32>
+ Definition: Must be dai id
+
+- qcom,sd-lines
+ Usage: required for mi2s interface
+ Value type: <prop-encoded-array>
+ Definition: Must be list of serial data lines used by this dai.
+ should be one or more of the 1-4 sd lines.
+
+ - qcom,tdm-sync-mode:
+ Usage: required for tdm interface
+ Value type: <prop-encoded-array>
+ Definition: Synchronization mode.
+ 0 - Short sync bit mode
+ 1 - Long sync mode
+ 2 - Short sync slot mode
+
+ - qcom,tdm-sync-src:
+ Usage: required for tdm interface
+ Value type: <prop-encoded-array>
+ Definition: Synchronization source.
+ 0 - External source
+ 1 - Internal source
+
+ - qcom,tdm-data-out:
+ Usage: required for tdm interface
+ Value type: <prop-encoded-array>
+ Definition: Data out signal to drive with other masters.
+ 0 - Disable
+ 1 - Enable
+
+ - qcom,tdm-invert-sync:
+ Usage: required for tdm interface
+ Value type: <prop-encoded-array>
+ Definition: Invert the sync.
+ 0 - Normal
+ 1 - Invert
+
+ - qcom,tdm-data-delay:
+ Usage: required for tdm interface
+ Value type: <prop-encoded-array>
+ Definition: Number of bit clock to delay data
+ with respect to sync edge.
+ 0 - 0 bit clock cycle
+ 1 - 1 bit clock cycle
+ 2 - 2 bit clock cycle
+
+ - qcom,tdm-data-align:
+ Usage: required for tdm interface
+ Value type: <prop-encoded-array>
+ Definition: Indicate how data is packed
+ within the slot. For example, 32 slot width in case of
+ sample bit width is 24.
+ 0 - MSB
+ 1 - LSB
+
+= EXAMPLE
+
+q6afe@4 {
+ compatible = "qcom,q6afe";
+ reg = <APR_SVC_AFE>;
+
+ dais {
+ #sound-dai-cells = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ hdmi@1 {
+ reg = <1>;
+ };
+
+ tdm@24 {
+ reg = <24>;
+ qcom,tdm-sync-mode = <1>:
+ qcom,tdm-sync-src = <1>;
+ qcom,tdm-data-out = <0>;
+ qcom,tdm-invert-sync = <1>;
+ qcom,tdm-data-delay = <1>;
+ qcom,tdm-data-align = <0>;
+
+ };
+
+ tdm@25 {
+ reg = <25>;
+ qcom,tdm-sync-mode = <1>:
+ qcom,tdm-sync-src = <1>;
+ qcom,tdm-data-out = <0>;
+ qcom,tdm-invert-sync = <1>;
+ qcom,tdm-data-delay <1>:
+ qcom,tdm-data-align = <0>;
+ };
+
+ prim-mi2s-rx@16 {
+ reg = <16>;
+ qcom,sd-lines = <1 3>;
+ };
+
+ prim-mi2s-tx@17 {
+ reg = <17>;
+ qcom,sd-lines = <2>;
+ };
+
+ sec-mi2s-rx@18 {
+ reg = <18>;
+ qcom,sd-lines = <1 4>;
+ };
+
+ sec-mi2s-tx@19 {
+ reg = <19>;
+ qcom,sd-lines = <2>;
+ };
+
+ tert-mi2s-rx@20 {
+ reg = <20>;
+ qcom,sd-lines = <2 4>;
+ };
+
+ tert-mi2s-tx@21 {
+ reg = <21>;
+ qcom,sd-lines = <1>;
+ };
+
+ quat-mi2s-rx@22 {
+ reg = <22>;
+ qcom,sd-lines = <1>;
+ };
+
+ quat-mi2s-tx@23 {
+ reg = <23>;
+ qcom,sd-lines = <2>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/qcom,q6asm.txt b/Documentation/devicetree/bindings/sound/qcom,q6asm.txt
new file mode 100644
index 0000000..2178eb9
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/qcom,q6asm.txt
@@ -0,0 +1,33 @@
+Qualcomm Audio Stream Manager (Q6ASM) binding
+
+Q6ASM is one of the APR audio service on Q6DSP.
+Please refer to qcom,apr.txt for details of the common apr service bindings
+used by the apr service device.
+
+- but must contain the following property:
+
+- compatible:
+ Usage: required
+ Value type: <stringlist>
+ Definition: must be "qcom,q6asm-v<MAJOR-NUMBER>.<MINOR-NUMBER>".
+ Or "qcom,q6asm" where the version number can be queried
+ from DSP.
+ example "qcom,q6asm-v2.0"
+
+= ASM DAIs (Digial Audio Interface)
+"dais" subnode of the ASM node represents dai specific configuration
+
+- #sound-dai-cells
+ Usage: required
+ Value type: <u32>
+ Definition: Must be 1
+
+= EXAMPLE
+
+q6asm@7 {
+ compatible = "qcom,q6asm";
+ reg = <APR_SVC_ASM>;
+ q6asmdai: dais {
+ #sound-dai-cells = <1>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/qcom,q6core.txt b/Documentation/devicetree/bindings/sound/qcom,q6core.txt
new file mode 100644
index 0000000..7f36ff8
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/qcom,q6core.txt
@@ -0,0 +1,21 @@
+Qualcomm ADSP Core service binding
+
+Q6CORE is one of the APR audio service on Q6DSP.
+Please refer to qcom,apr.txt for details of the common apr service bindings
+used by the apr service device.
+
+- but must contain the following property:
+
+- compatible:
+ Usage: required
+ Value type: <stringlist>
+ Definition: must be "qcom,q6core-v<MAJOR-NUMBER>.<MINOR-NUMBER>".
+ Or "qcom,q6core" where the version number can be queried
+ from DSP.
+ example "qcom,q6core-v2.0"
+
+= EXAMPLE
+q6core@3 {
+ compatible = "qcom,q6core";
+ reg = <APR_SVC_ADSP_CORE>;
+};
diff --git a/Documentation/devicetree/bindings/sound/rt274.txt b/Documentation/devicetree/bindings/sound/rt274.txt
index e9a6178..791a1bd 100644
--- a/Documentation/devicetree/bindings/sound/rt274.txt
+++ b/Documentation/devicetree/bindings/sound/rt274.txt
@@ -26,7 +26,7 @@ Pins on the device (for linking into audio routes) for RT274:
Example:
-codec: rt274@1c {
+rt274: codec@1c {
compatible = "realtek,rt274";
reg = <0x1c>;
interrupts = <7 IRQ_TYPE_EDGE_FALLING>;
diff --git a/Documentation/devicetree/bindings/sound/rt5514.txt b/Documentation/devicetree/bindings/sound/rt5514.txt
index 4f33b0d..b25ed08 100644
--- a/Documentation/devicetree/bindings/sound/rt5514.txt
+++ b/Documentation/devicetree/bindings/sound/rt5514.txt
@@ -32,7 +32,7 @@ Pins on the device (for linking into audio routes) for I2C:
Example:
-codec: rt5514@57 {
+rt5514: codec@57 {
compatible = "realtek,rt5514";
reg = <0x57>;
};
diff --git a/Documentation/devicetree/bindings/sound/rt5616.txt b/Documentation/devicetree/bindings/sound/rt5616.txt
index e410858..540a4bf 100644
--- a/Documentation/devicetree/bindings/sound/rt5616.txt
+++ b/Documentation/devicetree/bindings/sound/rt5616.txt
@@ -26,7 +26,7 @@ Pins on the device (for linking into audio routes) for RT5616:
Example:
-codec: rt5616@1b {
+rt5616: codec@1b {
compatible = "realtek,rt5616";
reg = <0x1b>;
};
diff --git a/Documentation/devicetree/bindings/sound/rt5640.txt b/Documentation/devicetree/bindings/sound/rt5640.txt
index 57fe646..e40e489 100644
--- a/Documentation/devicetree/bindings/sound/rt5640.txt
+++ b/Documentation/devicetree/bindings/sound/rt5640.txt
@@ -22,6 +22,41 @@ Optional properties:
- realtek,ldo1-en-gpios : The GPIO that controls the CODEC's LDO1_EN pin.
+- realtek,dmic1-data-pin
+ 0: dmic1 is not used
+ 1: using IN1P pin as dmic1 data pin
+ 2: using GPIO3 pin as dmic1 data pin
+
+- realtek,dmic2-data-pin
+ 0: dmic2 is not used
+ 1: using IN1N pin as dmic2 data pin
+ 2: using GPIO4 pin as dmic2 data pin
+
+- realtek,jack-detect-source
+ u32. Valid values:
+ 0: jack-detect is not used
+ 1: Use GPIO1 for jack-detect
+ 2: Use JD1_IN4P for jack-detect
+ 3: Use JD2_IN4N for jack-detect
+ 4: Use GPIO2 for jack-detect
+ 5: Use GPIO3 for jack-detect
+ 6: Use GPIO4 for jack-detect
+
+- realtek,jack-detect-not-inverted
+ bool. Normal jack-detect switches give an inverted signal, set this bool
+ in the rare case you've a jack-detect switch which is not inverted.
+
+- realtek,over-current-threshold-microamp
+ u32, micbias over-current detection threshold in µA, valid values are
+ 600, 1500 and 2000µA.
+
+- realtek,over-current-scale-factor
+ u32, micbias over-current detection scale-factor, valid values are:
+ 0: Scale current by 0.5
+ 1: Scale current by 0.75
+ 2: Scale current by 1.0
+ 3: Scale current by 1.5
+
Pins on the device (for linking into audio routes) for RT5639/RT5640:
* DMIC1
diff --git a/Documentation/devicetree/bindings/sound/rt5645.txt b/Documentation/devicetree/bindings/sound/rt5645.txt
index 7cee1f51..a03f9a8 100644
--- a/Documentation/devicetree/bindings/sound/rt5645.txt
+++ b/Documentation/devicetree/bindings/sound/rt5645.txt
@@ -69,4 +69,4 @@ codec: rt5650@1a {
realtek,dmic-en = "true";
realtek,en-jd-func = "true";
realtek,jd-mode = <3>;
-}; \ No newline at end of file
+};
diff --git a/Documentation/devicetree/bindings/sound/rt5651.txt b/Documentation/devicetree/bindings/sound/rt5651.txt
index b852218..a41199a 100644
--- a/Documentation/devicetree/bindings/sound/rt5651.txt
+++ b/Documentation/devicetree/bindings/sound/rt5651.txt
@@ -50,7 +50,7 @@ Pins on the device (for linking into audio routes) for RT5651:
Example:
-codec: rt5651@1a {
+rt5651: codec@1a {
compatible = "realtek,rt5651";
reg = <0x1a>;
realtek,dmic-en = "true";
diff --git a/Documentation/devicetree/bindings/sound/rt5663.txt b/Documentation/devicetree/bindings/sound/rt5663.txt
index 497bcfc..2338644 100644
--- a/Documentation/devicetree/bindings/sound/rt5663.txt
+++ b/Documentation/devicetree/bindings/sound/rt5663.txt
@@ -47,7 +47,7 @@ Pins on the device (for linking into audio routes) for RT5663:
Example:
-codec: rt5663@12 {
+rt5663: codec@12 {
compatible = "realtek,rt5663";
reg = <0x12>;
interrupts = <7 IRQ_TYPE_EDGE_FALLING>;
diff --git a/Documentation/devicetree/bindings/sound/rt5668.txt b/Documentation/devicetree/bindings/sound/rt5668.txt
new file mode 100644
index 0000000..c88b96e
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/rt5668.txt
@@ -0,0 +1,50 @@
+RT5668B audio CODEC
+
+This device supports I2C only.
+
+Required properties:
+
+- compatible : "realtek,rt5668b"
+
+- reg : The I2C address of the device.
+
+Optional properties:
+
+- interrupts : The CODEC's interrupt output.
+
+- realtek,dmic1-data-pin
+ 0: dmic1 is not used
+ 1: using GPIO2 pin as dmic1 data pin
+ 2: using GPIO5 pin as dmic1 data pin
+
+- realtek,dmic1-clk-pin
+ 0: using GPIO1 pin as dmic1 clock pin
+ 1: using GPIO3 pin as dmic1 clock pin
+
+- realtek,jd-src
+ 0: No JD is used
+ 1: using JD1 as JD source
+
+- realtek,ldo1-en-gpios : The GPIO that controls the CODEC's LDO1_EN pin.
+
+Pins on the device (for linking into audio routes) for RT5668B:
+
+ * DMIC L1
+ * DMIC R1
+ * IN1P
+ * HPOL
+ * HPOR
+
+Example:
+
+rt5668 {
+ compatible = "realtek,rt5668b";
+ reg = <0x1a>;
+ interrupt-parent = <&gpio>;
+ interrupts = <TEGRA_GPIO(U, 6) GPIO_ACTIVE_HIGH>;
+ realtek,ldo1-en-gpios =
+ <&gpio TEGRA_GPIO(R, 2) GPIO_ACTIVE_HIGH>;
+ realtek,dmic1-data-pin = <1>;
+ realtek,dmic1-clk-pin = <1>;
+ realtek,jd-src = <1>;
+};
diff --git a/Documentation/devicetree/bindings/sound/sgtl5000.txt b/Documentation/devicetree/bindings/sound/sgtl5000.txt
index 9a36c7e..0f21445 100644
--- a/Documentation/devicetree/bindings/sound/sgtl5000.txt
+++ b/Documentation/devicetree/bindings/sound/sgtl5000.txt
@@ -39,7 +39,7 @@ VDDIO 1.8V 2.5V 3.3V
Example:
-codec: sgtl5000@a {
+sgtl5000: codec@a {
compatible = "fsl,sgtl5000";
reg = <0x0a>;
#sound-dai-cells = <0>;
diff --git a/Documentation/devicetree/bindings/sound/simple-card.txt b/Documentation/devicetree/bindings/sound/simple-card.txt
index 17c13e7..a4c72d0 100644
--- a/Documentation/devicetree/bindings/sound/simple-card.txt
+++ b/Documentation/devicetree/bindings/sound/simple-card.txt
@@ -86,6 +86,11 @@ Optional CPU/CODEC subnodes properties:
in dai startup() and disabled with
clk_disable_unprepare() in dai
shutdown().
+ If a clock is specified and a
+ multiplication factor is given with
+ mclk-fs, the clock will be set to the
+ calculated mclk frequency when the
+ stream starts.
- system-clock-direction-out : specifies clock direction as 'out' on
initialization. It is useful for some aCPUs with
fixed clocks.
diff --git a/Documentation/devicetree/bindings/sound/ti,tas6424.txt b/Documentation/devicetree/bindings/sound/ti,tas6424.txt
index 1c4ada0..eacb54f 100644
--- a/Documentation/devicetree/bindings/sound/ti,tas6424.txt
+++ b/Documentation/devicetree/bindings/sound/ti,tas6424.txt
@@ -6,6 +6,8 @@ Required properties:
- compatible: "ti,tas6424" - TAS6424
- reg: I2C slave address
- sound-dai-cells: must be equal to 0
+ - standby-gpios: GPIO used to shut the TAS6424 down.
+ - mute-gpios: GPIO used to mute all the outputs
Example:
diff --git a/Documentation/devicetree/bindings/sound/tscs42xx.txt b/Documentation/devicetree/bindings/sound/tscs42xx.txt
index 2ac2f09..7eea32e 100644
--- a/Documentation/devicetree/bindings/sound/tscs42xx.txt
+++ b/Documentation/devicetree/bindings/sound/tscs42xx.txt
@@ -8,9 +8,15 @@ Required Properties:
- reg : <0x71> for analog mic
<0x69> for digital mic
+ - clock-names: Must one of the following "mclk1", "xtal", "mclk2"
+
+ - clocks: phandle of the clock that provides the codec sysclk
+
Example:
wookie: codec@69 {
compatible = "tempo,tscs42A2";
reg = <0x69>;
+ clock-names = "xtal";
+ clocks = <&audio_xtal>;
};
diff --git a/Documentation/devicetree/bindings/sound/tscs454.txt b/Documentation/devicetree/bindings/sound/tscs454.txt
new file mode 100644
index 0000000..3ba3e2d
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tscs454.txt
@@ -0,0 +1,23 @@
+TSCS454 Audio CODEC
+
+Required Properties:
+
+ - compatible : "tempo,tscs454"
+
+ - reg : <0x69>
+
+ - clock-names: Must one of the following "xtal", "mclk1", "mclk2"
+
+ - clocks: phandle of the clock that provides the codec sysclk
+
+ Note: If clock is not provided then bit clock is assumed
+
+Example:
+
+redwood: codec@69 {
+ #sound-dai-cells = <1>;
+ compatible = "tempo,tscs454";
+ reg = <0x69>;
+ clock-names = "mclk1";
+ clocks = <&audio_mclk>;
+};
diff --git a/Documentation/devicetree/bindings/sound/wm8510.txt b/Documentation/devicetree/bindings/sound/wm8510.txt
index fa1a32b..e6b6cc0 100644
--- a/Documentation/devicetree/bindings/sound/wm8510.txt
+++ b/Documentation/devicetree/bindings/sound/wm8510.txt
@@ -12,7 +12,7 @@ Required properties:
Example:
-codec: wm8510@1a {
+wm8510: codec@1a {
compatible = "wlf,wm8510";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8523.txt b/Documentation/devicetree/bindings/sound/wm8523.txt
index 0474618..f3a6485 100644
--- a/Documentation/devicetree/bindings/sound/wm8523.txt
+++ b/Documentation/devicetree/bindings/sound/wm8523.txt
@@ -10,7 +10,7 @@ Required properties:
Example:
-codec: wm8523@1a {
+wm8523: codec@1a {
compatible = "wlf,wm8523";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8524.txt b/Documentation/devicetree/bindings/sound/wm8524.txt
index 0f05535..f6c0c26 100644
--- a/Documentation/devicetree/bindings/sound/wm8524.txt
+++ b/Documentation/devicetree/bindings/sound/wm8524.txt
@@ -10,7 +10,7 @@ Required properties:
Example:
-codec: wm8524 {
+wm8524: codec {
compatible = "wlf,wm8524";
wlf,mute-gpios = <&gpio1 8 GPIO_ACTIVE_LOW>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8580.txt b/Documentation/devicetree/bindings/sound/wm8580.txt
index 78fce9b..ff3f9f5 100644
--- a/Documentation/devicetree/bindings/sound/wm8580.txt
+++ b/Documentation/devicetree/bindings/sound/wm8580.txt
@@ -10,7 +10,7 @@ Required properties:
Example:
-codec: wm8580@1a {
+wm8580: codec@1a {
compatible = "wlf,wm8580";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8711.txt b/Documentation/devicetree/bindings/sound/wm8711.txt
index 8ed9998..c30a138 100644
--- a/Documentation/devicetree/bindings/sound/wm8711.txt
+++ b/Documentation/devicetree/bindings/sound/wm8711.txt
@@ -12,7 +12,7 @@ Required properties:
Example:
-codec: wm8711@1a {
+wm8711: codec@1a {
compatible = "wlf,wm8711";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8728.txt b/Documentation/devicetree/bindings/sound/wm8728.txt
index a8b5c36..a3608b4 100644
--- a/Documentation/devicetree/bindings/sound/wm8728.txt
+++ b/Documentation/devicetree/bindings/sound/wm8728.txt
@@ -12,7 +12,7 @@ Required properties:
Example:
-codec: wm8728@1a {
+wm8728: codec@1a {
compatible = "wlf,wm8728";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8731.txt b/Documentation/devicetree/bindings/sound/wm8731.txt
index 236690e..f660d9b 100644
--- a/Documentation/devicetree/bindings/sound/wm8731.txt
+++ b/Documentation/devicetree/bindings/sound/wm8731.txt
@@ -12,7 +12,7 @@ Required properties:
Example:
-codec: wm8731@1a {
+wm8731: codec@1a {
compatible = "wlf,wm8731";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8737.txt b/Documentation/devicetree/bindings/sound/wm8737.txt
index 4bc2cea..eda1ec6 100644
--- a/Documentation/devicetree/bindings/sound/wm8737.txt
+++ b/Documentation/devicetree/bindings/sound/wm8737.txt
@@ -12,7 +12,7 @@ Required properties:
Example:
-codec: wm8737@1a {
+wm8737: codec@1a {
compatible = "wlf,wm8737";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8741.txt b/Documentation/devicetree/bindings/sound/wm8741.txt
index a133154..b69e196 100644
--- a/Documentation/devicetree/bindings/sound/wm8741.txt
+++ b/Documentation/devicetree/bindings/sound/wm8741.txt
@@ -21,7 +21,7 @@ Optional properties:
Example:
-codec: wm8741@1a {
+wm8741: codec@1a {
compatible = "wlf,wm8741";
reg = <0x1a>;
diff --git a/Documentation/devicetree/bindings/sound/wm8750.txt b/Documentation/devicetree/bindings/sound/wm8750.txt
index 8db239f..682f221 100644
--- a/Documentation/devicetree/bindings/sound/wm8750.txt
+++ b/Documentation/devicetree/bindings/sound/wm8750.txt
@@ -12,7 +12,7 @@ Required properties:
Example:
-codec: wm8750@1a {
+wm8750: codec@1a {
compatible = "wlf,wm8750";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8753.txt b/Documentation/devicetree/bindings/sound/wm8753.txt
index 8eee612..eca9e5a 100644
--- a/Documentation/devicetree/bindings/sound/wm8753.txt
+++ b/Documentation/devicetree/bindings/sound/wm8753.txt
@@ -34,7 +34,7 @@ Pins on the device (for linking into audio routes):
Example:
-codec: wm8753@1a {
+wm8753: codec@1a {
compatible = "wlf,wm8753";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8770.txt b/Documentation/devicetree/bindings/sound/wm8770.txt
index 866e00c..cac762a 100644
--- a/Documentation/devicetree/bindings/sound/wm8770.txt
+++ b/Documentation/devicetree/bindings/sound/wm8770.txt
@@ -10,7 +10,7 @@ Required properties:
Example:
-codec: wm8770@1 {
+wm8770: codec@1 {
compatible = "wlf,wm8770";
reg = <1>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8776.txt b/Documentation/devicetree/bindings/sound/wm8776.txt
index 3b9ca49..0117336 100644
--- a/Documentation/devicetree/bindings/sound/wm8776.txt
+++ b/Documentation/devicetree/bindings/sound/wm8776.txt
@@ -12,7 +12,7 @@ Required properties:
Example:
-codec: wm8776@1a {
+wm8776: codec@1a {
compatible = "wlf,wm8776";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8804.txt b/Documentation/devicetree/bindings/sound/wm8804.txt
index 6fd124b..2c1641c 100644
--- a/Documentation/devicetree/bindings/sound/wm8804.txt
+++ b/Documentation/devicetree/bindings/sound/wm8804.txt
@@ -19,7 +19,7 @@ Optional properties:
Example:
-codec: wm8804@1a {
+wm8804: codec@1a {
compatible = "wlf,wm8804";
reg = <0x1a>;
};
diff --git a/Documentation/devicetree/bindings/sound/wm8903.txt b/Documentation/devicetree/bindings/sound/wm8903.txt
index afc51ca..6371c24 100644
--- a/Documentation/devicetree/bindings/sound/wm8903.txt
+++ b/Documentation/devicetree/bindings/sound/wm8903.txt
@@ -57,7 +57,7 @@ Pins on the device (for linking into audio routes):
Example:
-codec: wm8903@1a {
+wm8903: codec@1a {
compatible = "wlf,wm8903";
reg = <0x1a>;
interrupts = < 347 >;
diff --git a/Documentation/devicetree/bindings/sound/wm8960.txt b/Documentation/devicetree/bindings/sound/wm8960.txt
index 2deb8a3..6d29ac3 100644
--- a/Documentation/devicetree/bindings/sound/wm8960.txt
+++ b/Documentation/devicetree/bindings/sound/wm8960.txt
@@ -23,7 +23,7 @@ Optional properties:
Example:
-codec: wm8960@1a {
+wm8960: codec@1a {
compatible = "wlf,wm8960";
reg = <0x1a>;
diff --git a/Documentation/devicetree/bindings/sound/wm8962.txt b/Documentation/devicetree/bindings/sound/wm8962.txt
index 7f82b59..dcfa9a33 100644
--- a/Documentation/devicetree/bindings/sound/wm8962.txt
+++ b/Documentation/devicetree/bindings/sound/wm8962.txt
@@ -24,7 +24,7 @@ Optional properties:
Example:
-codec: wm8962@1a {
+wm8962: codec@1a {
compatible = "wlf,wm8962";
reg = <0x1a>;
diff --git a/Documentation/devicetree/bindings/sound/wm8994.txt b/Documentation/devicetree/bindings/sound/wm8994.txt
index 68c4e8d..4a9dead 100644
--- a/Documentation/devicetree/bindings/sound/wm8994.txt
+++ b/Documentation/devicetree/bindings/sound/wm8994.txt
@@ -59,7 +59,7 @@ Optional properties:
Example:
-codec: wm8994@1a {
+wm8994: codec@1a {
compatible = "wlf,wm8994";
reg = <0x1a>;
diff --git a/Documentation/devicetree/bindings/submitting-patches.txt b/Documentation/devicetree/bindings/submitting-patches.txt
index 274058c..de0d609 100644
--- a/Documentation/devicetree/bindings/submitting-patches.txt
+++ b/Documentation/devicetree/bindings/submitting-patches.txt
@@ -6,7 +6,14 @@ I. For patch submitters
0) Normal patch submission rules from Documentation/process/submitting-patches.rst
applies.
- 1) The Documentation/ portion of the patch should be a separate patch.
+ 1) The Documentation/ and include/dt-bindings/ portion of the patch should
+ be a separate patch. The preferred subject prefix for binding patches is:
+
+ "dt-bindings: <binding dir>: ..."
+
+ The 80 characters of the subject are precious. It is recommended to not
+ use "Documentation" or "doc" because that is implied. All bindings are
+ docs. Repeating "binding" again should also be avoided.
2) Submit the entire series to the devicetree mailinglist at
diff --git a/Documentation/devicetree/bindings/thermal/exynos-thermal.txt b/Documentation/devicetree/bindings/thermal/exynos-thermal.txt
index b957acf..ad648d9 100644
--- a/Documentation/devicetree/bindings/thermal/exynos-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/exynos-thermal.txt
@@ -12,7 +12,6 @@
"samsung,exynos5420-tmu-ext-triminfo" for TMU channels 2, 3 and 4
Exynos5420 (Must pass triminfo base and triminfo clock)
"samsung,exynos5433-tmu"
- "samsung,exynos5440-tmu"
"samsung,exynos7-tmu"
- interrupt-parent : The phandle for the interrupt controller
- reg : Address range of the thermal registers. For soc's which has multiple
@@ -68,18 +67,7 @@ Example 1):
#thermal-sensor-cells = <0>;
};
-Example 2):
-
- tmuctrl_0: tmuctrl@160118 {
- compatible = "samsung,exynos5440-tmu";
- reg = <0x160118 0x230>, <0x160368 0x10>;
- interrupts = <0 58 0>;
- clocks = <&clock 21>;
- clock-names = "tmu_apbif";
- #thermal-sensor-cells = <0>;
- };
-
-Example 3): (In case of Exynos5420 "with misplaced TRIMINFO register")
+Example 2): (In case of Exynos5420 "with misplaced TRIMINFO register")
tmu_cpu2: tmu@10068000 {
compatible = "samsung,exynos5420-tmu-ext-triminfo";
reg = <0x10068000 0x100>, <0x1006c000 0x4>;
diff --git a/Documentation/devicetree/bindings/thermal/imx-thermal.txt b/Documentation/devicetree/bindings/thermal/imx-thermal.txt
index 379eb76..823e417 100644
--- a/Documentation/devicetree/bindings/thermal/imx-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/imx-thermal.txt
@@ -1,8 +1,13 @@
* Temperature Monitor (TEMPMON) on Freescale i.MX SoCs
Required properties:
-- compatible : "fsl,imx6q-tempmon" for i.MX6Q, "fsl,imx6sx-tempmon" for i.MX6SX.
- i.MX6SX has two more IRQs than i.MX6Q, one is IRQ_LOW and the other is IRQ_PANIC,
+- compatible : must be one of following:
+ - "fsl,imx6q-tempmon" for i.MX6Q,
+ - "fsl,imx6sx-tempmon" for i.MX6SX,
+ - "fsl,imx7d-tempmon" for i.MX7S/D.
+- interrupts : the interrupt output of the controller:
+ i.MX6Q has one IRQ which will be triggered when temperature is higher than high threshold,
+ i.MX6SX and i.MX7S/D have two more IRQs than i.MX6Q, one is IRQ_LOW and the other is IRQ_PANIC,
when temperature is below than low threshold, IRQ_LOW will be triggered, when temperature
is higher than panic threshold, system will auto reboot by SRC module.
- fsl,tempmon : phandle pointer to system controller that contains TEMPMON
diff --git a/Documentation/devicetree/bindings/thermal/mediatek-thermal.txt b/Documentation/devicetree/bindings/thermal/mediatek-thermal.txt
index 0d73ea5..41d6a44 100644
--- a/Documentation/devicetree/bindings/thermal/mediatek-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/mediatek-thermal.txt
@@ -12,6 +12,7 @@ Required properties:
- "mediatek,mt8173-thermal" : For MT8173 family of SoCs
- "mediatek,mt2701-thermal" : For MT2701 family of SoCs
- "mediatek,mt2712-thermal" : For MT2712 family of SoCs
+ - "mediatek,mt7622-thermal" : For MT7622 SoC
- reg: Address range of the thermal controller
- interrupts: IRQ for the thermal controller
- clocks, clock-names: Clocks needed for the thermal controller. required
diff --git a/Documentation/devicetree/bindings/thermal/qcom-tsens.txt b/Documentation/devicetree/bindings/thermal/qcom-tsens.txt
index 292ed89..06195e8 100644
--- a/Documentation/devicetree/bindings/thermal/qcom-tsens.txt
+++ b/Documentation/devicetree/bindings/thermal/qcom-tsens.txt
@@ -8,6 +8,7 @@ Required properties:
- reg: Address range of the thermal registers
- #thermal-sensor-cells : Should be 1. See ./thermal.txt for a description.
+- #qcom,sensors: Number of sensors in tsens block
- Refer to Documentation/devicetree/bindings/nvmem/nvmem.txt to know how to specify
nvmem cells
diff --git a/Documentation/devicetree/bindings/thermal/rcar-gen3-thermal.txt b/Documentation/devicetree/bindings/thermal/rcar-gen3-thermal.txt
index fdf5caa..cfa154b 100644
--- a/Documentation/devicetree/bindings/thermal/rcar-gen3-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/rcar-gen3-thermal.txt
@@ -9,6 +9,7 @@ Required properties:
Examples with soctypes are:
- "renesas,r8a7795-thermal" (R-Car H3)
- "renesas,r8a7796-thermal" (R-Car M3-W)
+ - "renesas,r8a77965-thermal" (R-Car M3-N)
- reg : Address ranges of the thermal registers. Each sensor
needs one address range. Sorting must be done in
increasing order according to datasheet, i.e.
@@ -18,7 +19,7 @@ Required properties:
Optional properties:
-- interrupts : interrupts routed to the TSC (3 for H3 and M3-W)
+- interrupts : interrupts routed to the TSC (3 for H3, M3-W and M3-N)
- power-domain : Must contain a reference to the power domain. This
property is mandatory if the thermal sensor instance
is part of a controllable power domain.
@@ -27,9 +28,9 @@ Example:
tsc: thermal@e6198000 {
compatible = "renesas,r8a7795-thermal";
- reg = <0 0xe6198000 0 0x68>,
- <0 0xe61a0000 0 0x5c>,
- <0 0xe61a8000 0 0x5c>;
+ reg = <0 0xe6198000 0 0x100>,
+ <0 0xe61a0000 0 0x100>,
+ <0 0xe61a8000 0 0x100>;
interrupts = <GIC_SPI 67 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 68 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 69 IRQ_TYPE_LEVEL_HIGH>;
diff --git a/Documentation/devicetree/bindings/thermal/rcar-thermal.txt b/Documentation/devicetree/bindings/thermal/rcar-thermal.txt
index 349e635..67c563f 100644
--- a/Documentation/devicetree/bindings/thermal/rcar-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/rcar-thermal.txt
@@ -3,7 +3,8 @@
Required properties:
- compatible : "renesas,thermal-<soctype>",
"renesas,rcar-gen2-thermal" (with thermal-zone) or
- "renesas,rcar-thermal" (without thermal-zone) as fallback.
+ "renesas,rcar-thermal" (without thermal-zone) as
+ fallback except R-Car D3.
Examples with soctypes are:
- "renesas,thermal-r8a73a4" (R-Mobile APE6)
- "renesas,thermal-r8a7743" (RZ/G1M)
@@ -12,13 +13,15 @@ Required properties:
- "renesas,thermal-r8a7791" (R-Car M2-W)
- "renesas,thermal-r8a7792" (R-Car V2H)
- "renesas,thermal-r8a7793" (R-Car M2-N)
+ - "renesas,thermal-r8a77995" (R-Car D3)
- reg : Address range of the thermal registers.
The 1st reg will be recognized as common register
if it has "interrupts".
Option properties:
-- interrupts : use interrupt
+- interrupts : If present should contain 3 interrupts for
+ R-Car D3 or 1 interrupt otherwise.
Example (non interrupt support):
diff --git a/Documentation/devicetree/bindings/thermal/uniphier-thermal.txt b/Documentation/devicetree/bindings/thermal/uniphier-thermal.txt
index 686c0b4..ceb92a9 100644
--- a/Documentation/devicetree/bindings/thermal/uniphier-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/uniphier-thermal.txt
@@ -8,6 +8,7 @@ Required properties:
- compatible :
- "socionext,uniphier-pxs2-thermal" : For UniPhier PXs2 SoC
- "socionext,uniphier-ld20-thermal" : For UniPhier LD20 SoC
+ - "socionext,uniphier-pxs3-thermal" : For UniPhier PXs3 SoC
- interrupts : IRQ for the temperature alarm
- #thermal-sensor-cells : Should be 0. See ./thermal.txt for details.
diff --git a/Documentation/devicetree/bindings/nios2/timer.txt b/Documentation/devicetree/bindings/timer/altr,timer-1.0.txt
index 904a584..904a584 100644
--- a/Documentation/devicetree/bindings/nios2/timer.txt
+++ b/Documentation/devicetree/bindings/timer/altr,timer-1.0.txt
diff --git a/Documentation/devicetree/bindings/arm/arch_timer.txt b/Documentation/devicetree/bindings/timer/arm,arch_timer.txt
index 68301b7..68301b7 100644
--- a/Documentation/devicetree/bindings/arm/arch_timer.txt
+++ b/Documentation/devicetree/bindings/timer/arm,arch_timer.txt
diff --git a/Documentation/devicetree/bindings/arm/armv7m_systick.txt b/Documentation/devicetree/bindings/timer/arm,armv7m-systick.txt
index 7cf4a24..7cf4a24 100644
--- a/Documentation/devicetree/bindings/arm/armv7m_systick.txt
+++ b/Documentation/devicetree/bindings/timer/arm,armv7m-systick.txt
diff --git a/Documentation/devicetree/bindings/arm/global_timer.txt b/Documentation/devicetree/bindings/timer/arm,global_timer.txt
index bdae3a8..bdae3a8 100644
--- a/Documentation/devicetree/bindings/arm/global_timer.txt
+++ b/Documentation/devicetree/bindings/timer/arm,global_timer.txt
diff --git a/Documentation/devicetree/bindings/arm/twd.txt b/Documentation/devicetree/bindings/timer/arm,twd.txt
index 383ea19..383ea19 100644
--- a/Documentation/devicetree/bindings/arm/twd.txt
+++ b/Documentation/devicetree/bindings/timer/arm,twd.txt
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt b/Documentation/devicetree/bindings/timer/fsl,gtm.txt
index 9a33efd..9a33efd 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt
+++ b/Documentation/devicetree/bindings/timer/fsl,gtm.txt
diff --git a/Documentation/devicetree/bindings/arm/mrvl/timer.txt b/Documentation/devicetree/bindings/timer/mrvl,mmp-timer.txt
index 9a6e251..9a6e251 100644
--- a/Documentation/devicetree/bindings/arm/mrvl/timer.txt
+++ b/Documentation/devicetree/bindings/timer/mrvl,mmp-timer.txt
diff --git a/Documentation/devicetree/bindings/arm/msm/timer.txt b/Documentation/devicetree/bindings/timer/qcom,msm-timer.txt
index 5e10c34..5e10c34 100644
--- a/Documentation/devicetree/bindings/arm/msm/timer.txt
+++ b/Documentation/devicetree/bindings/timer/qcom,msm-timer.txt
diff --git a/Documentation/devicetree/bindings/timer/renesas,cmt.txt b/Documentation/devicetree/bindings/timer/renesas,cmt.txt
index d740989..b40add2 100644
--- a/Documentation/devicetree/bindings/timer/renesas,cmt.txt
+++ b/Documentation/devicetree/bindings/timer/renesas,cmt.txt
@@ -22,6 +22,10 @@ Required Properties:
- "renesas,r8a73a4-cmt0" for the 32-bit CMT0 device included in r8a73a4.
- "renesas,r8a73a4-cmt1" for the 48-bit CMT1 device included in r8a73a4.
+ - "renesas,r8a7743-cmt0" for the 32-bit CMT0 device included in r8a7743.
+ - "renesas,r8a7743-cmt1" for the 48-bit CMT1 device included in r8a7743.
+ - "renesas,r8a7745-cmt0" for the 32-bit CMT0 device included in r8a7745.
+ - "renesas,r8a7745-cmt1" for the 48-bit CMT1 device included in r8a7745.
- "renesas,r8a7790-cmt0" for the 32-bit CMT0 device included in r8a7790.
- "renesas,r8a7790-cmt1" for the 48-bit CMT1 device included in r8a7790.
- "renesas,r8a7791-cmt0" for the 32-bit CMT0 device included in r8a7791.
@@ -31,10 +35,12 @@ Required Properties:
- "renesas,r8a7794-cmt0" for the 32-bit CMT0 device included in r8a7794.
- "renesas,r8a7794-cmt1" for the 48-bit CMT1 device included in r8a7794.
- - "renesas,rcar-gen2-cmt0" for 32-bit CMT0 devices included in R-Car Gen2.
- - "renesas,rcar-gen2-cmt1" for 48-bit CMT1 devices included in R-Car Gen2.
- These are fallbacks for r8a73a4 and all the R-Car Gen2
- entries listed above.
+ - "renesas,rcar-gen2-cmt0" for 32-bit CMT0 devices included in R-Car Gen2
+ and RZ/G1.
+ - "renesas,rcar-gen2-cmt1" for 48-bit CMT1 devices included in R-Car Gen2
+ and RZ/G1.
+ These are fallbacks for r8a73a4, R-Car Gen2 and RZ/G1 entries
+ listed above.
- reg: base address and length of the registers block for the timer module.
- interrupts: interrupt-specifier for the timer, one per channel.
diff --git a/Documentation/devicetree/bindings/arm/spear-timer.txt b/Documentation/devicetree/bindings/timer/st,spear-timer.txt
index c001722..c001722 100644
--- a/Documentation/devicetree/bindings/arm/spear-timer.txt
+++ b/Documentation/devicetree/bindings/timer/st,spear-timer.txt
diff --git a/Documentation/devicetree/bindings/c6x/timer64.txt b/Documentation/devicetree/bindings/timer/ti,c64x+timer64.txt
index 95911fe..95911fe 100644
--- a/Documentation/devicetree/bindings/c6x/timer64.txt
+++ b/Documentation/devicetree/bindings/timer/ti,c64x+timer64.txt
diff --git a/Documentation/devicetree/bindings/arm/omap/timer.txt b/Documentation/devicetree/bindings/timer/ti,timer.txt
index d02e27c..d02e27c 100644
--- a/Documentation/devicetree/bindings/arm/omap/timer.txt
+++ b/Documentation/devicetree/bindings/timer/ti,timer.txt
diff --git a/Documentation/devicetree/bindings/arm/vt8500/via,vt8500-timer.txt b/Documentation/devicetree/bindings/timer/via,vt8500-timer.txt
index 901c73f..901c73f 100644
--- a/Documentation/devicetree/bindings/arm/vt8500/via,vt8500-timer.txt
+++ b/Documentation/devicetree/bindings/timer/via,vt8500-timer.txt
diff --git a/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt b/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
index 0e03344..2e93181 100644
--- a/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
+++ b/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
@@ -76,6 +76,10 @@ Optional properties:
needs to make sure it does not send more than 90%
maximum_periodic_data_per_frame. The use case is multiple transactions, but
less frame rate.
+- mux-controls: The mux control for toggling host/device output of this
+ controller. It's expected that a mux state of 0 indicates device mode and a
+ mux state of 1 indicates host mode.
+- mux-control-names: Shall be "usb_switch" if mux-controls is specified.
i.mx specific properties
- fsl,usbmisc: phandler of non-core register device, with one
@@ -102,4 +106,6 @@ Example:
rx-burst-size-dword = <0x10>;
extcon = <0>, <&usb_id>;
phy-clkgate-delay-us = <400>;
+ mux-controls = <&usb_switch>;
+ mux-control-names = "usb_switch";
};
diff --git a/Documentation/devicetree/bindings/usb/dwc3.txt b/Documentation/devicetree/bindings/usb/dwc3.txt
index 0dbd308..7f13ebe 100644
--- a/Documentation/devicetree/bindings/usb/dwc3.txt
+++ b/Documentation/devicetree/bindings/usb/dwc3.txt
@@ -7,6 +7,26 @@ Required properties:
- compatible: must be "snps,dwc3"
- reg : Address and length of the register set for the device
- interrupts: Interrupts used by the dwc3 controller.
+ - clock-names: should contain "ref", "bus_early", "suspend"
+ - clocks: list of phandle and clock specifier pairs corresponding to
+ entries in the clock-names property.
+
+Exception for clocks:
+ clocks are optional if the parent node (i.e. glue-layer) is compatible to
+ one of the following:
+ "amlogic,meson-axg-dwc3"
+ "amlogic,meson-gxl-dwc3"
+ "cavium,octeon-7130-usb-uctl"
+ "qcom,dwc3"
+ "samsung,exynos5250-dwusb3"
+ "samsung,exynos7-dwusb3"
+ "sprd,sc9860-dwc3"
+ "st,stih407-dwc3"
+ "ti,am437x-dwc3"
+ "ti,dwc3"
+ "ti,keystone-dwc3"
+ "rockchip,rk3399-dwc3"
+ "xlnx,zynqmp-dwc3"
Optional properties:
- usb-phy : array of phandle for the PHY device. The first element
@@ -15,6 +35,7 @@ Optional properties:
- phys: from the *Generic PHY* bindings
- phy-names: from the *Generic PHY* bindings; supported names are "usb2-phy"
or "usb3-phy".
+ - resets: a single pair of phandle and reset specifier
- snps,usb3_lpm_capable: determines if platform is USB3 LPM capable
- snps,disable_scramble_quirk: true when SW should disable data scrambling.
Only really useful for FPGA builds.
diff --git a/Documentation/devicetree/bindings/usb/fcs,fusb302.txt b/Documentation/devicetree/bindings/usb/fcs,fusb302.txt
index 472facf..6087dc7 100644
--- a/Documentation/devicetree/bindings/usb/fcs,fusb302.txt
+++ b/Documentation/devicetree/bindings/usb/fcs,fusb302.txt
@@ -6,12 +6,6 @@ Required properties :
- interrupts : Interrupt specifier
Optional properties :
-- fcs,max-sink-microvolt : Maximum voltage to negotiate when configured as sink
-- fcs,max-sink-microamp : Maximum current to negotiate when configured as sink
-- fcs,max-sink-microwatt : Maximum power to negotiate when configured as sink
- If this is less then max-sink-microvolt *
- max-sink-microamp then the configured current will
- be clamped.
- fcs,operating-sink-microwatt :
Minimum amount of power accepted from a sink
when negotiating
diff --git a/Documentation/devicetree/bindings/usb/hisilicon,histb-xhci.txt b/Documentation/devicetree/bindings/usb/hisilicon,histb-xhci.txt
new file mode 100644
index 0000000..f463349
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/hisilicon,histb-xhci.txt
@@ -0,0 +1,45 @@
+HiSilicon STB xHCI
+
+The device node for HiSilicon STB xHCI host controller
+
+Required properties:
+ - compatible: should be "hisilicon,hi3798cv200-xhci"
+ - reg: specifies physical base address and size of the registers
+ - interrupts : interrupt used by the controller
+ - clocks: a list of phandle + clock-specifier pairs, one for each
+ entry in clock-names
+ - clock-names: must contain
+ "bus": for bus clock
+ "utmi": for utmi clock
+ "pipe": for pipe clock
+ "suspend": for suspend clock
+ - resets: a list of phandle and reset specifier pairs as listed in
+ reset-names property.
+ - reset-names: must contain
+ "soft": for soft reset
+ - phys: a list of phandle + phy specifier pairs
+ - phy-names: must contain at least one of following:
+ "inno": for inno phy
+ "combo": for combo phy
+
+Optional properties:
+ - usb2-lpm-disable: indicate if we don't want to enable USB2 HW LPM
+ - usb3-lpm-capable: determines if platform is USB3 LPM capable
+ - imod-interval-ns: default interrupt moderation interval is 40000ns
+
+Example:
+
+xhci0: xchi@f98a0000 {
+ compatible = "hisilicon,hi3798cv200-xhci";
+ reg = <0xf98a0000 0x10000>;
+ interrupts = <GIC_SPI 69 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&crg HISTB_USB3_BUS_CLK>,
+ <&crg HISTB_USB3_UTMI_CLK>,
+ <&crg HISTB_USB3_PIPE_CLK>,
+ <&crg HISTB_USB3_SUSPEND_CLK>;
+ clock-names = "bus", "utmi", "pipe", "suspend";
+ resets = <&crg 0xb0 12>;
+ reset-names = "soft";
+ phys = <&usb2_phy1_port1 0>, <&combphy0 PHY_TYPE_USB3>;
+ phy-names = "inno", "combo";
+};
diff --git a/Documentation/devicetree/bindings/usb/qcom,dwc3.txt b/Documentation/devicetree/bindings/usb/qcom,dwc3.txt
index bc8a2fa..95afdcf 100644
--- a/Documentation/devicetree/bindings/usb/qcom,dwc3.txt
+++ b/Documentation/devicetree/bindings/usb/qcom,dwc3.txt
@@ -1,54 +1,95 @@
Qualcomm SuperSpeed DWC3 USB SoC controller
Required properties:
-- compatible: should contain "qcom,dwc3"
+- compatible: Compatible list, contains
+ "qcom,dwc3"
+ "qcom,msm8996-dwc3" for msm8996 SOC.
+ "qcom,sdm845-dwc3" for sdm845 SOC.
+- reg: Offset and length of register set for QSCRATCH wrapper
+- power-domains: specifies a phandle to PM domain provider node
- clocks: A list of phandle + clock-specifier pairs for the
clocks listed in clock-names
-- clock-names: Should contain the following:
+- clock-names: Should contain the following:
"core" Master/Core clock, have to be >= 125 MHz for SS
operation and >= 60MHz for HS operation
+ "mock_utmi" Mock utmi clock needed for ITP/SOF generation in
+ host mode. Its frequency should be 19.2MHz.
+ "sleep" Sleep clock, used for wakeup when USB3 core goes
+ into low power mode (U3).
Optional clocks:
- "iface" System bus AXI clock. Not present on all platforms
- "sleep" Sleep clock, used when USB3 core goes into low
- power mode (U3).
+ "iface" System bus AXI clock.
+ Not present on "qcom,msm8996-dwc3" compatible.
+ "cfg_noc" System Config NOC clock.
+ Not present on "qcom,msm8996-dwc3" compatible.
+- assigned-clocks: Should be:
+ MOCK_UTMI_CLK
+ MASTER_CLK
+- assigned-clock-rates: Should be:
+ 19.2Mhz (192000000) for MOCK_UTMI_CLK
+ >=125Mhz (125000000) for MASTER_CLK in SS mode
+ >=60Mhz (60000000) for MASTER_CLK in HS mode
+
+Optional properties:
+- resets: Phandle to reset control that resets core and wrapper.
+- interrupts: specifies interrupts from controller wrapper used
+ to wakeup from low power/susepnd state. Must contain
+ one or more entry for interrupt-names property
+- interrupt-names: Must include the following entries:
+ - "hs_phy_irq": The interrupt that is asserted when a
+ wakeup event is received on USB2 bus
+ - "ss_phy_irq": The interrupt that is asserted when a
+ wakeup event is received on USB3 bus
+ - "dm_hs_phy_irq" and "dp_hs_phy_irq": Separate
+ interrupts for any wakeup event on DM and DP lines
+- qcom,select-utmi-as-pipe-clk: if present, disable USB3 pipe_clk requirement.
+ Used when dwc3 operates without SSPHY and only
+ HS/FS/LS modes are supported.
Required child node:
A child node must exist to represent the core DWC3 IP block. The name of
the node is not important. The content of the node is defined in dwc3.txt.
Phy documentation is provided in the following places:
-Documentation/devicetree/bindings/phy/qcom-dwc3-usb-phy.txt
+Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt - USB3 QMP PHY
+Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt - USB2 QUSB2 PHY
Example device nodes:
hs_phy: phy@100f8800 {
- compatible = "qcom,dwc3-hs-usb-phy";
- reg = <0x100f8800 0x30>;
- clocks = <&gcc USB30_0_UTMI_CLK>;
- clock-names = "ref";
- #phy-cells = <0>;
-
+ compatible = "qcom,qusb2-v2-phy";
+ ...
};
ss_phy: phy@100f8830 {
- compatible = "qcom,dwc3-ss-usb-phy";
- reg = <0x100f8830 0x30>;
- clocks = <&gcc USB30_0_MASTER_CLK>;
- clock-names = "ref";
- #phy-cells = <0>;
-
+ compatible = "qcom,qmp-v3-usb3-phy";
+ ...
};
- usb3_0: usb30@0 {
+ usb3_0: usb30@a6f8800 {
compatible = "qcom,dwc3";
+ reg = <0xa6f8800 0x400>;
#address-cells = <1>;
#size-cells = <1>;
- clocks = <&gcc USB30_0_MASTER_CLK>;
- clock-names = "core";
-
ranges;
+ interrupts = <0 131 0>, <0 486 0>, <0 488 0>, <0 489 0>;
+ interrupt-names = "hs_phy_irq", "ss_phy_irq",
+ "dm_hs_phy_irq", "dp_hs_phy_irq";
+
+ clocks = <&gcc GCC_USB30_PRIM_MASTER_CLK>,
+ <&gcc GCC_USB30_PRIM_MOCK_UTMI_CLK>,
+ <&gcc GCC_USB30_PRIM_SLEEP_CLK>;
+ clock-names = "core", "mock_utmi", "sleep";
+
+ assigned-clocks = <&gcc GCC_USB30_PRIM_MOCK_UTMI_CLK>,
+ <&gcc GCC_USB30_PRIM_MASTER_CLK>;
+ assigned-clock-rates = <19200000>, <133000000>;
+
+ resets = <&gcc GCC_USB30_PRIM_BCR>;
+ reset-names = "core_reset";
+ power-domains = <&gcc USB30_PRIM_GDSC>;
+ qcom,select-utmi-as-pipe-clk;
dwc3@10000000 {
compatible = "snps,dwc3";
diff --git a/Documentation/devicetree/bindings/usb/richtek,rt1711h.txt b/Documentation/devicetree/bindings/usb/richtek,rt1711h.txt
new file mode 100644
index 0000000..09e847e
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/richtek,rt1711h.txt
@@ -0,0 +1,17 @@
+Richtek RT1711H TypeC PD Controller.
+
+Required properties:
+ - compatible : Must be "richtek,rt1711h".
+ - reg : Must be 0x4e, it's slave address of RT1711H.
+ - interrupt-parent : the phandle for the interrupt controller that
+ provides interrupts for this device.
+ - interrupts : <a b> where a is the interrupt number and b represents an
+ encoding of the sense and level information for the interrupt.
+
+Example :
+rt1711h@4e {
+ compatible = "richtek,rt1711h";
+ reg = <0x4e>;
+ interrupt-parent = <&gpio26>;
+ interrupts = <0 IRQ_TYPE_LEVEL_LOW>;
+};
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt
index a38d8bf..7cad066 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.txt
+++ b/Documentation/devicetree/bindings/vendor-prefixes.txt
@@ -32,6 +32,7 @@ andestech Andes Technology Corporation
apm Applied Micro Circuits Corporation (APM)
aptina Aptina Imaging
arasan Arasan Chip Systems
+archermind ArcherMind Technology (Nanjing) Co., Ltd.
arctic Arctic Sand
aries Aries Embedded GmbH
arm ARM Ltd.
@@ -47,6 +48,7 @@ auvidea Auvidea GmbH
avago Avago Technologies
avia avia semiconductor
avic Shanghai AVIC Optoelectronics Co., Ltd.
+avnet Avnet, Inc.
axentia Axentia Technologies AB
axis Axis Communications AB
bananapi BIPAI KEJI LIMITED
@@ -56,6 +58,7 @@ bosch Bosch Sensortec GmbH
boundary Boundary Devices Inc.
brcm Broadcom Corporation
buffalo Buffalo, Inc.
+bticino Bticino International
calxeda Calxeda
capella Capella Microsystems, Inc
cascoda Cascoda, Ltd.
@@ -75,6 +78,7 @@ cnxt Conexant Systems, Inc.
compulab CompuLab Ltd.
cortina Cortina Systems, Inc.
cosmic Cosmic Circuits
+crane Crane Connectivity Solutions
creative Creative Technology Ltd
crystalfontz Crystalfontz America, Inc.
cubietech Cubietech, Ltd.
@@ -185,6 +189,7 @@ khadas Khadas
kiebackpeter Kieback & Peter GmbH
kinetic Kinetic Technologies
kingnovel Kingnovel Technology Co., Ltd.
+koe Kaohsiung Opto-Electronics Inc.
kosagi Sutajio Ko-Usagi PTE Ltd.
kyo Kyocera Corporation
lacie LaCie
@@ -199,11 +204,13 @@ linaro Linaro Limited
linksys Belkin International, Inc. (Linksys)
linux Linux-specific binding
lltc Linear Technology Corporation
+logicpd Logic PD, Inc.
lsi LSI Corp. (LSI Logic)
lwn Liebherr-Werk Nenzing GmbH
macnica Macnica Americas
marvell Marvell Technology Group Ltd.
maxim Maxim Integrated Products
+mbvl Mobiveil Inc.
mcube mCube
meas Measurement Specialties
mediatek MediaTek Inc.
@@ -279,6 +286,7 @@ pine64 Pine64
pixcir PIXCIR MICROELECTRONICS Co., Ltd
plathome Plat'Home Co., Ltd.
plda PLDA
+portwell Portwell Inc.
poslab Poslab Technology Co., Ltd.
powervr PowerVR (deprecated, use img)
probox2 PROBOX2 (by W2COMP Co., Ltd.)
@@ -318,6 +326,7 @@ sgx SGX Sensortech
sharp Sharp Corporation
shimafuji Shimafuji Electric, Inc.
si-en Si-En Technology Ltd.
+sifive SiFive, Inc.
sigma Sigma Designs, Inc.
sii Seiko Instruments, Inc.
sil Silicon Image
@@ -393,6 +402,7 @@ vot Vision Optical Technology Co., Ltd.
wd Western Digital Corp.
wetek WeTek Electronics, limited.
wexler Wexler
+wi2wi Wi2Wi, Inc.
winbond Winbond Electronics corp.
winstar Winstar Display Corp.
wlf Wolfson Microelectronics
diff --git a/Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt b/Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt
index cb44918..ce1cb72 100644
--- a/Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt
@@ -3,10 +3,15 @@ Ingenic Watchdog Timer (WDT) Controller for JZ4740 & JZ4780
Required properties:
compatible: "ingenic,jz4740-watchdog" or "ingenic,jz4780-watchdog"
reg: Register address and length for watchdog registers
+clocks: phandle to the RTC clock
+clock-names: should be "rtc"
Example:
watchdog: jz4740-watchdog@10002000 {
compatible = "ingenic,jz4740-watchdog";
- reg = <0x10002000 0x100>;
+ reg = <0x10002000 0x10>;
+
+ clocks = <&cgu JZ4740_CLK_RTC>;
+ clock-names = "rtc";
};
diff --git a/Documentation/devicetree/bindings/watchdog/renesas-wdt.txt b/Documentation/devicetree/bindings/watchdog/renesas-wdt.txt
index 74b2f03..f24d802 100644
--- a/Documentation/devicetree/bindings/watchdog/renesas-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/renesas-wdt.txt
@@ -1,18 +1,27 @@
Renesas Watchdog Timer (WDT) Controller
Required properties:
-- compatible : Should be "renesas,<soctype>-wdt", and
- "renesas,rcar-gen3-wdt" or "renesas,rza-wdt" as fallback.
+ - compatible : Must be "renesas,<soctype>-wdt", followed by a generic
+ fallback compatible string when compatible with the generic
+ version.
Examples with soctypes are:
- - "renesas,r7s72100-wdt" (RZ/A1)
+ - "renesas,r8a7743-wdt" (RZ/G1M)
+ - "renesas,r8a7745-wdt" (RZ/G1E)
+ - "renesas,r8a7790-wdt" (R-Car H2)
+ - "renesas,r8a7791-wdt" (R-Car M2-W)
+ - "renesas,r8a7792-wdt" (R-Car V2H)
+ - "renesas,r8a7793-wdt" (R-Car M2-N)
+ - "renesas,r8a7794-wdt" (R-Car E2)
- "renesas,r8a7795-wdt" (R-Car H3)
- "renesas,r8a7796-wdt" (R-Car M3-W)
+ - "renesas,r8a77965-wdt" (R-Car M3-N)
- "renesas,r8a77970-wdt" (R-Car V3M)
- "renesas,r8a77995-wdt" (R-Car D3)
-
- When compatible with the generic version, nodes must list the SoC-specific
- version corresponding to the platform first, followed by the generic
- version.
+ - "renesas,r7s72100-wdt" (RZ/A1)
+ The generic compatible string must be:
+ - "renesas,rza-wdt" for RZ/A
+ - "renesas,rcar-gen2-wdt" for R-Car Gen2 and RZ/G
+ - "renesas,rcar-gen3-wdt" for R-Car Gen3
- reg : Should contain WDT registers location and length
- clocks : the clock feeding the watchdog timer.
diff --git a/Documentation/driver-api/clk.rst b/Documentation/driver-api/clk.rst
index 511628b..593cca5 100644
--- a/Documentation/driver-api/clk.rst
+++ b/Documentation/driver-api/clk.rst
@@ -96,7 +96,7 @@ the operations defined in clk-provider.h::
int (*get_phase)(struct clk_hw *hw);
int (*set_phase)(struct clk_hw *hw, int degrees);
void (*init)(struct clk_hw *hw);
- int (*debug_init)(struct clk_hw *hw,
+ void (*debug_init)(struct clk_hw *hw,
struct dentry *dentry);
};
diff --git a/Documentation/driver-api/firmware/fallback-mechanisms.rst b/Documentation/driver-api/firmware/fallback-mechanisms.rst
index f353783..d35fed6 100644
--- a/Documentation/driver-api/firmware/fallback-mechanisms.rst
+++ b/Documentation/driver-api/firmware/fallback-mechanisms.rst
@@ -72,9 +72,12 @@ the firmware requested, and establishes it in the device hierarchy by
associating the device used to make the request as the device's parent.
The sysfs directory's file attributes are defined and controlled through
the new device's class (firmware_class) and group (fw_dev_attr_groups).
-This is actually where the original firmware_class.c file name comes from,
-as originally the only firmware loading mechanism available was the
-mechanism we now use as a fallback mechanism.
+This is actually where the original firmware_class module name came from,
+given that originally the only firmware loading mechanism available was the
+mechanism we now use as a fallback mechanism, which registers a struct class
+firmware_class. Because the attributes exposed are part of the module name, the
+module name firmware_class cannot be renamed in the future, to ensure backward
+compatibility with old userspace.
To load firmware using the sysfs interface we expose a loading indicator,
and a file upload firmware into:
@@ -83,7 +86,7 @@ and a file upload firmware into:
* /sys/$DEVPATH/data
To upload firmware you will echo 1 onto the loading file to indicate
-you are loading firmware. You then cat the firmware into the data file,
+you are loading firmware. You then write the firmware into the data file,
and you notify the kernel the firmware is ready by echo'ing 0 onto
the loading file.
@@ -136,7 +139,8 @@ by kobject uevents. This is specially exacerbated due to the fact that most
distributions today disable CONFIG_FW_LOADER_USER_HELPER_FALLBACK.
Refer to do_firmware_uevent() for details of the kobject event variables
-setup. Variables passwdd with a kobject add event:
+setup. The variables currently passed to userspace with a "kobject add"
+event are:
* FIRMWARE=firmware name
* TIMEOUT=timeout value
diff --git a/Documentation/driver-api/firmware/firmware_cache.rst b/Documentation/driver-api/firmware/firmware_cache.rst
index 2210e5b..c2e69d9 100644
--- a/Documentation/driver-api/firmware/firmware_cache.rst
+++ b/Documentation/driver-api/firmware/firmware_cache.rst
@@ -29,8 +29,8 @@ Some implementation details about the firmware cache setup:
* If an asynchronous call is used the firmware cache is only set up for a
device if if the second argument (uevent) to request_firmware_nowait() is
true. When uevent is true it requests that a kobject uevent be sent to
- userspace for the firmware request. For details refer to the Fackback
- mechanism documented below.
+ userspace for the firmware request through the sysfs fallback mechanism
+ if the firmware file is not found.
* If the firmware cache is determined to be needed as per the above two
criteria the firmware cache is setup by adding a devres entry for the
diff --git a/Documentation/driver-api/firmware/request_firmware.rst b/Documentation/driver-api/firmware/request_firmware.rst
index d5ec95a..f62bdcb 100644
--- a/Documentation/driver-api/firmware/request_firmware.rst
+++ b/Documentation/driver-api/firmware/request_firmware.rst
@@ -20,6 +20,11 @@ request_firmware
.. kernel-doc:: drivers/base/firmware_loader/main.c
:functions: request_firmware
+firmware_request_nowarn
+-----------------------
+.. kernel-doc:: drivers/base/firmware_loader/main.c
+ :functions: firmware_request_nowarn
+
request_firmware_direct
-----------------------
.. kernel-doc:: drivers/base/firmware_loader/main.c
diff --git a/Documentation/driver-api/fpga/fpga-bridge.rst b/Documentation/driver-api/fpga/fpga-bridge.rst
new file mode 100644
index 0000000..2c2aaca
--- /dev/null
+++ b/Documentation/driver-api/fpga/fpga-bridge.rst
@@ -0,0 +1,49 @@
+FPGA Bridge
+===========
+
+API to implement a new FPGA bridge
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. kernel-doc:: include/linux/fpga/fpga-bridge.h
+ :functions: fpga_bridge
+
+.. kernel-doc:: include/linux/fpga/fpga-bridge.h
+ :functions: fpga_bridge_ops
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_create
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_free
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_register
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_unregister
+
+API to control an FPGA bridge
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+You probably won't need these directly. FPGA regions should handle this.
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: of_fpga_bridge_get
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_get
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_put
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_get_to_list
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: of_fpga_bridge_get_to_list
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_enable
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_disable
diff --git a/Documentation/driver-api/fpga/fpga-mgr.rst b/Documentation/driver-api/fpga/fpga-mgr.rst
new file mode 100644
index 0000000..bcf2dd2
--- /dev/null
+++ b/Documentation/driver-api/fpga/fpga-mgr.rst
@@ -0,0 +1,220 @@
+FPGA Manager
+============
+
+Overview
+--------
+
+The FPGA manager core exports a set of functions for programming an FPGA with
+an image. The API is manufacturer agnostic. All manufacturer specifics are
+hidden away in a low level driver which registers a set of ops with the core.
+The FPGA image data itself is very manufacturer specific, but for our purposes
+it's just binary data. The FPGA manager core won't parse it.
+
+The FPGA image to be programmed can be in a scatter gather list, a single
+contiguous buffer, or a firmware file. Because allocating contiguous kernel
+memory for the buffer should be avoided, users are encouraged to use a scatter
+gather list instead if possible.
+
+The particulars for programming the image are presented in a structure (struct
+fpga_image_info). This struct contains parameters such as pointers to the
+FPGA image as well as image-specific particulars such as whether the image was
+built for full or partial reconfiguration.
+
+How to support a new FPGA device
+--------------------------------
+
+To add another FPGA manager, write a driver that implements a set of ops. The
+probe function calls fpga_mgr_register(), such as::
+
+ static const struct fpga_manager_ops socfpga_fpga_ops = {
+ .write_init = socfpga_fpga_ops_configure_init,
+ .write = socfpga_fpga_ops_configure_write,
+ .write_complete = socfpga_fpga_ops_configure_complete,
+ .state = socfpga_fpga_ops_state,
+ };
+
+ static int socfpga_fpga_probe(struct platform_device *pdev)
+ {
+ struct device *dev = &pdev->dev;
+ struct socfpga_fpga_priv *priv;
+ struct fpga_manager *mgr;
+ int ret;
+
+ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ /*
+ * do ioremaps, get interrupts, etc. and save
+ * them in priv
+ */
+
+ mgr = fpga_mgr_create(dev, "Altera SOCFPGA FPGA Manager",
+ &socfpga_fpga_ops, priv);
+ if (!mgr)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, mgr);
+
+ ret = fpga_mgr_register(mgr);
+ if (ret)
+ fpga_mgr_free(mgr);
+
+ return ret;
+ }
+
+ static int socfpga_fpga_remove(struct platform_device *pdev)
+ {
+ struct fpga_manager *mgr = platform_get_drvdata(pdev);
+
+ fpga_mgr_unregister(mgr);
+
+ return 0;
+ }
+
+
+The ops will implement whatever device specific register writes are needed to
+do the programming sequence for this particular FPGA. These ops return 0 for
+success or negative error codes otherwise.
+
+The programming sequence is::
+ 1. .write_init
+ 2. .write or .write_sg (may be called once or multiple times)
+ 3. .write_complete
+
+The .write_init function will prepare the FPGA to receive the image data. The
+buffer passed into .write_init will be atmost .initial_header_size bytes long,
+if the whole bitstream is not immediately available then the core code will
+buffer up at least this much before starting.
+
+The .write function writes a buffer to the FPGA. The buffer may be contain the
+whole FPGA image or may be a smaller chunk of an FPGA image. In the latter
+case, this function is called multiple times for successive chunks. This interface
+is suitable for drivers which use PIO.
+
+The .write_sg version behaves the same as .write except the input is a sg_table
+scatter list. This interface is suitable for drivers which use DMA.
+
+The .write_complete function is called after all the image has been written
+to put the FPGA into operating mode.
+
+The ops include a .state function which will read the hardware FPGA manager and
+return a code of type enum fpga_mgr_states. It doesn't result in a change in
+hardware state.
+
+How to write an image buffer to a supported FPGA
+------------------------------------------------
+
+Some sample code::
+
+ #include <linux/fpga/fpga-mgr.h>
+
+ struct fpga_manager *mgr;
+ struct fpga_image_info *info;
+ int ret;
+
+ /*
+ * Get a reference to FPGA manager. The manager is not locked, so you can
+ * hold onto this reference without it preventing programming.
+ *
+ * This example uses the device node of the manager. Alternatively, use
+ * fpga_mgr_get(dev) instead if you have the device.
+ */
+ mgr = of_fpga_mgr_get(mgr_node);
+
+ /* struct with information about the FPGA image to program. */
+ info = fpga_image_info_alloc(dev);
+
+ /* flags indicates whether to do full or partial reconfiguration */
+ info->flags = FPGA_MGR_PARTIAL_RECONFIG;
+
+ /*
+ * At this point, indicate where the image is. This is pseudo-code; you're
+ * going to use one of these three.
+ */
+ if (image is in a scatter gather table) {
+
+ info->sgt = [your scatter gather table]
+
+ } else if (image is in a buffer) {
+
+ info->buf = [your image buffer]
+ info->count = [image buffer size]
+
+ } else if (image is in a firmware file) {
+
+ info->firmware_name = devm_kstrdup(dev, firmware_name, GFP_KERNEL);
+
+ }
+
+ /* Get exclusive control of FPGA manager */
+ ret = fpga_mgr_lock(mgr);
+
+ /* Load the buffer to the FPGA */
+ ret = fpga_mgr_buf_load(mgr, &info, buf, count);
+
+ /* Release the FPGA manager */
+ fpga_mgr_unlock(mgr);
+ fpga_mgr_put(mgr);
+
+ /* Deallocate the image info if you're done with it */
+ fpga_image_info_free(info);
+
+API for implementing a new FPGA Manager driver
+----------------------------------------------
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_manager
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_manager_ops
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_create
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_free
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_register
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_unregister
+
+API for programming a FPGA
+--------------------------
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_image_info
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_mgr_states
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_image_info_alloc
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_image_info_free
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: of_fpga_mgr_get
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_get
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_put
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_lock
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_unlock
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_mgr_states
+
+Note - use :c:func:`fpga_region_program_fpga()` instead of :c:func:`fpga_mgr_load()`
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_load
diff --git a/Documentation/driver-api/fpga/fpga-region.rst b/Documentation/driver-api/fpga/fpga-region.rst
new file mode 100644
index 0000000..f89e4a3
--- /dev/null
+++ b/Documentation/driver-api/fpga/fpga-region.rst
@@ -0,0 +1,102 @@
+FPGA Region
+===========
+
+Overview
+--------
+
+This document is meant to be an brief overview of the FPGA region API usage. A
+more conceptual look at regions can be found in the Device Tree binding
+document [#f1]_.
+
+For the purposes of this API document, let's just say that a region associates
+an FPGA Manager and a bridge (or bridges) with a reprogrammable region of an
+FPGA or the whole FPGA. The API provides a way to register a region and to
+program a region.
+
+Currently the only layer above fpga-region.c in the kernel is the Device Tree
+support (of-fpga-region.c) described in [#f1]_. The DT support layer uses regions
+to program the FPGA and then DT to handle enumeration. The common region code
+is intended to be used by other schemes that have other ways of accomplishing
+enumeration after programming.
+
+An fpga-region can be set up to know the following things:
+
+ * which FPGA manager to use to do the programming
+
+ * which bridges to disable before programming and enable afterwards.
+
+Additional info needed to program the FPGA image is passed in the struct
+fpga_image_info including:
+
+ * pointers to the image as either a scatter-gather buffer, a contiguous
+ buffer, or the name of firmware file
+
+ * flags indicating specifics such as whether the image if for partial
+ reconfiguration.
+
+How to program a FPGA using a region
+------------------------------------
+
+First, allocate the info struct::
+
+ info = fpga_image_info_alloc(dev);
+ if (!info)
+ return -ENOMEM;
+
+Set flags as needed, i.e.::
+
+ info->flags |= FPGA_MGR_PARTIAL_RECONFIG;
+
+Point to your FPGA image, such as::
+
+ info->sgt = &sgt;
+
+Add info to region and do the programming::
+
+ region->info = info;
+ ret = fpga_region_program_fpga(region);
+
+:c:func:`fpga_region_program_fpga()` operates on info passed in the
+fpga_image_info (region->info). This function will attempt to:
+
+ * lock the region's mutex
+ * lock the region's FPGA manager
+ * build a list of FPGA bridges if a method has been specified to do so
+ * disable the bridges
+ * program the FPGA
+ * re-enable the bridges
+ * release the locks
+
+Then you will want to enumerate whatever hardware has appeared in the FPGA.
+
+How to add a new FPGA region
+----------------------------
+
+An example of usage can be seen in the probe function of [#f2]_.
+
+.. [#f1] ../devicetree/bindings/fpga/fpga-region.txt
+.. [#f2] ../../drivers/fpga/of-fpga-region.c
+
+API to program a FGPA
+---------------------
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_program_fpga
+
+API to add a new FPGA region
+----------------------------
+
+.. kernel-doc:: include/linux/fpga/fpga-region.h
+ :functions: fpga_region
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_create
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_free
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_register
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_unregister
diff --git a/Documentation/driver-api/fpga/index.rst b/Documentation/driver-api/fpga/index.rst
new file mode 100644
index 0000000..c51e5eb
--- /dev/null
+++ b/Documentation/driver-api/fpga/index.rst
@@ -0,0 +1,13 @@
+==============
+FPGA Subsystem
+==============
+
+:Author: Alan Tull
+
+.. toctree::
+ :maxdepth: 2
+
+ intro
+ fpga-mgr
+ fpga-bridge
+ fpga-region
diff --git a/Documentation/driver-api/fpga/intro.rst b/Documentation/driver-api/fpga/intro.rst
new file mode 100644
index 0000000..51cd81d
--- /dev/null
+++ b/Documentation/driver-api/fpga/intro.rst
@@ -0,0 +1,54 @@
+Introduction
+============
+
+The FPGA subsystem supports reprogramming FPGAs dynamically under
+Linux. Some of the core intentions of the FPGA subsystems are:
+
+* The FPGA subsystem is vendor agnostic.
+
+* The FPGA subsystem separates upper layers (userspace interfaces and
+ enumeration) from lower layers that know how to program a specific
+ FPGA.
+
+* Code should not be shared between upper and lower layers. This
+ should go without saying. If that seems necessary, there's probably
+ framework functionality that that can be added that will benefit
+ other users. Write the linux-fpga mailing list and maintainers and
+ seek out a solution that expands the framework for broad reuse.
+
+* Generally, when adding code, think of the future. Plan for re-use.
+
+The framework in the kernel is divided into:
+
+FPGA Manager
+------------
+
+If you are adding a new FPGA or a new method of programming a FPGA,
+this is the subsystem for you. Low level FPGA manager drivers contain
+the knowledge of how to program a specific device. This subsystem
+includes the framework in fpga-mgr.c and the low level drivers that
+are registered with it.
+
+FPGA Bridge
+-----------
+
+FPGA Bridges prevent spurious signals from going out of a FPGA or a
+region of a FPGA during programming. They are disabled before
+programming begins and re-enabled afterwards. An FPGA bridge may be
+actual hard hardware that gates a bus to a cpu or a soft ("freeze")
+bridge in FPGA fabric that surrounds a partial reconfiguration region
+of an FPGA. This subsystem includes fpga-bridge.c and the low level
+drivers that are registered with it.
+
+FPGA Region
+-----------
+
+If you are adding a new interface to the FPGA framework, add it on top
+of a FPGA region to allow the most reuse of your interface.
+
+The FPGA Region framework (fpga-region.c) associates managers and
+bridges as reconfigurable regions. A region may refer to the whole
+FPGA in full reconfiguration or to a partial reconfiguration region.
+
+The Device Tree FPGA Region support (of-fpga-region.c) handles
+reprogramming FPGAs when device tree overlays are applied.
diff --git a/Documentation/driver-api/gpio/board.rst b/Documentation/driver-api/gpio/board.rst
index 25d62b2..2c11255 100644
--- a/Documentation/driver-api/gpio/board.rst
+++ b/Documentation/driver-api/gpio/board.rst
@@ -177,3 +177,19 @@ mapping and is thus transparent to GPIO consumers.
A set of functions such as gpiod_set_value() is available to work with
the new descriptor-oriented interface.
+
+Boards using platform data can also hog GPIO lines by defining GPIO hog tables.
+
+.. code-block:: c
+
+ struct gpiod_hog gpio_hog_table[] = {
+ GPIO_HOG("gpio.0", 10, "foo", GPIO_ACTIVE_LOW, GPIOD_OUT_HIGH),
+ { }
+ };
+
+And the table can be added to the board code as follows::
+
+ gpiod_add_hogs(gpio_hog_table);
+
+The line will be hogged as soon as the gpiochip is created or - in case the
+chip was created earlier - when the hog table is registered.
diff --git a/Documentation/driver-api/gpio/drivers-on-gpio.rst b/Documentation/driver-api/gpio/drivers-on-gpio.rst
index 7da0c1d..f3a1893 100644
--- a/Documentation/driver-api/gpio/drivers-on-gpio.rst
+++ b/Documentation/driver-api/gpio/drivers-on-gpio.rst
@@ -85,6 +85,10 @@ hardware descriptions such as device tree or ACPI:
any other serio bus to the system and makes it possible to connect drivers
for e.g. keyboards and other PS/2 protocol based devices.
+- cec-gpio: drivers/media/platform/cec-gpio/ is used to interact with a CEC
+ Consumer Electronics Control bus using only GPIO. It is used to communicate
+ with devices on the HDMI bus.
+
Apart from this there are special GPIO drivers in subsystems like MMC/SD to
read card detect and write protect GPIO lines, and in the TTY serial subsystem
to emulate MCTRL (modem control) signals CTS/RTS by using two GPIO lines. The
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index 5d04296..6d9f2f9 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -36,6 +36,7 @@ available subsections can be seen below.
edac
scsi
libata
+ target
mtdnand
miscellaneous
w1
@@ -51,6 +52,7 @@ available subsections can be seen below.
dmaengine/index
slimbus
soundwire/index
+ fpga/index
.. only:: subproject and html
diff --git a/Documentation/driver-api/scsi.rst b/Documentation/driver-api/scsi.rst
index 31ad0fe..64b231d 100644
--- a/Documentation/driver-api/scsi.rst
+++ b/Documentation/driver-api/scsi.rst
@@ -334,5 +334,5 @@ todo
~~~~
Parallel (fast/wide/ultra) SCSI, USB, SATA, SAS, Fibre Channel,
-FireWire, ATAPI devices, Infiniband, I2O, iSCSI, Parallel ports,
+FireWire, ATAPI devices, Infiniband, I2O, Parallel ports,
netlink...
diff --git a/Documentation/driver-api/soundwire/error_handling.rst b/Documentation/driver-api/soundwire/error_handling.rst
new file mode 100644
index 0000000..aa3a0a23
--- /dev/null
+++ b/Documentation/driver-api/soundwire/error_handling.rst
@@ -0,0 +1,65 @@
+========================
+SoundWire Error Handling
+========================
+
+The SoundWire PHY was designed with care and errors on the bus are going to
+be very unlikely, and if they happen it should be limited to single bit
+errors. Examples of this design can be found in the synchronization
+mechanism (sync loss after two errors) and short CRCs used for the Bulk
+Register Access.
+
+The errors can be detected with multiple mechanisms:
+
+1. Bus clash or parity errors: This mechanism relies on low-level detectors
+ that are independent of the payload and usages, and they cover both control
+ and audio data. The current implementation only logs such errors.
+ Improvements could be invalidating an entire programming sequence and
+ restarting from a known position. In the case of such errors outside of a
+ control/command sequence, there is no concealment or recovery for audio
+ data enabled by the SoundWire protocol, the location of the error will also
+ impact its audibility (most-significant bits will be more impacted in PCM),
+ and after a number of such errors are detected the bus might be reset. Note
+ that bus clashes due to programming errors (two streams using the same bit
+ slots) or electrical issues during the transmit/receive transition cannot
+ be distinguished, although a recurring bus clash when audio is enabled is a
+ indication of a bus allocation issue. The interrupt mechanism can also help
+ identify Slaves which detected a Bus Clash or a Parity Error, but they may
+ not be responsible for the errors so resetting them individually is not a
+ viable recovery strategy.
+
+2. Command status: Each command is associated with a status, which only
+ covers transmission of the data between devices. The ACK status indicates
+ that the command was received and will be executed by the end of the
+ current frame. A NAK indicates that the command was in error and will not
+ be applied. In case of a bad programming (command sent to non-existent
+ Slave or to a non-implemented register) or electrical issue, no response
+ signals the command was ignored. Some Master implementations allow for a
+ command to be retransmitted several times. If the retransmission fails,
+ backtracking and restarting the entire programming sequence might be a
+ solution. Alternatively some implementations might directly issue a bus
+ reset and re-enumerate all devices.
+
+3. Timeouts: In a number of cases such as ChannelPrepare or
+ ClockStopPrepare, the bus driver is supposed to poll a register field until
+ it transitions to a NotFinished value of zero. The MIPI SoundWire spec 1.1
+ does not define timeouts but the MIPI SoundWire DisCo document adds
+ recommendation on timeouts. If such configurations do not complete, the
+ driver will return a -ETIMEOUT. Such timeouts are symptoms of a faulty
+ Slave device and are likely impossible to recover from.
+
+Errors during global reconfiguration sequences are extremely difficult to
+handle:
+
+1. BankSwitch: An error during the last command issuing a BankSwitch is
+ difficult to backtrack from. Retransmitting the Bank Switch command may be
+ possible in a single segment setup, but this can lead to synchronization
+ problems when enabling multiple bus segments (a command with side effects
+ such as frame reconfiguration would be handled at different times). A global
+ hard-reset might be the best solution.
+
+Note that SoundWire does not provide a mechanism to detect illegal values
+written in valid registers. In a number of cases the standard even mentions
+that the Slave might behave in implementation-defined ways. The bus
+implementation does not provide a recovery mechanism for such errors, Slave
+or Master driver implementers are responsible for writing valid values in
+valid registers and implement additional range checking if needed.
diff --git a/Documentation/driver-api/soundwire/index.rst b/Documentation/driver-api/soundwire/index.rst
index 647e946..6db0260 100644
--- a/Documentation/driver-api/soundwire/index.rst
+++ b/Documentation/driver-api/soundwire/index.rst
@@ -6,6 +6,9 @@ SoundWire Documentation
:maxdepth: 1
summary
+ stream
+ error_handling
+ locking
.. only:: subproject
diff --git a/Documentation/driver-api/soundwire/locking.rst b/Documentation/driver-api/soundwire/locking.rst
new file mode 100644
index 0000000..253f7355
--- /dev/null
+++ b/Documentation/driver-api/soundwire/locking.rst
@@ -0,0 +1,106 @@
+=================
+SoundWire Locking
+=================
+
+This document explains locking mechanism of the SoundWire Bus. Bus uses
+following locks in order to avoid race conditions in Bus operations on
+shared resources.
+
+ - Bus lock
+
+ - Message lock
+
+Bus lock
+========
+
+SoundWire Bus lock is a mutex and is part of Bus data structure
+(sdw_bus) which is used for every Bus instance. This lock is used to
+serialize each of the following operations(s) within SoundWire Bus instance.
+
+ - Addition and removal of Slave(s), changing Slave status.
+
+ - Prepare, Enable, Disable and De-prepare stream operations.
+
+ - Access of Stream data structure.
+
+Message lock
+============
+
+SoundWire message transfer lock. This mutex is part of
+Bus data structure (sdw_bus). This lock is used to serialize the message
+transfers (read/write) within a SoundWire Bus instance.
+
+Below examples show how locks are acquired.
+
+Example 1
+---------
+
+Message transfer.
+
+ 1. For every message transfer
+
+ a. Acquire Message lock.
+
+ b. Transfer message (Read/Write) to Slave1 or broadcast message on
+ Bus in case of bank switch.
+
+ c. Release Message lock ::
+
+ +----------+ +---------+
+ | | | |
+ | Bus | | Master |
+ | | | Driver |
+ | | | |
+ +----+-----+ +----+----+
+ | |
+ | bus->ops->xfer_msg() |
+ <-------------------------------+ a. Acquire Message lock
+ | | b. Transfer message
+ | |
+ +-------------------------------> c. Release Message lock
+ | return success/error | d. Return success/error
+ | |
+ + +
+
+Example 2
+---------
+
+Prepare operation.
+
+ 1. Acquire lock for Bus instance associated with Master 1.
+
+ 2. For every message transfer in Prepare operation
+
+ a. Acquire Message lock.
+
+ b. Transfer message (Read/Write) to Slave1 or broadcast message on
+ Bus in case of bank switch.
+
+ c. Release Message lock.
+
+ 3. Release lock for Bus instance associated with Master 1 ::
+
+ +----------+ +---------+
+ | | | |
+ | Bus | | Master |
+ | | | Driver |
+ | | | |
+ +----+-----+ +----+----+
+ | |
+ | sdw_prepare_stream() |
+ <-------------------------------+ 1. Acquire bus lock
+ | | 2. Perform stream prepare
+ | |
+ | |
+ | bus->ops->xfer_msg() |
+ <-------------------------------+ a. Acquire Message lock
+ | | b. Transfer message
+ | |
+ +-------------------------------> c. Release Message lock
+ | return success/error | d. Return success/error
+ | |
+ | |
+ | return success/error | 3. Release bus lock
+ +-------------------------------> 4. Return success/error
+ | |
+ + +
diff --git a/Documentation/driver-api/soundwire/stream.rst b/Documentation/driver-api/soundwire/stream.rst
new file mode 100644
index 0000000..29121aa
--- /dev/null
+++ b/Documentation/driver-api/soundwire/stream.rst
@@ -0,0 +1,372 @@
+=========================
+Audio Stream in SoundWire
+=========================
+
+An audio stream is a logical or virtual connection created between
+
+ (1) System memory buffer(s) and Codec(s)
+
+ (2) DSP memory buffer(s) and Codec(s)
+
+ (3) FIFO(s) and Codec(s)
+
+ (4) Codec(s) and Codec(s)
+
+which is typically driven by a DMA(s) channel through the data link. An
+audio stream contains one or more channels of data. All channels within
+stream must have same sample rate and same sample size.
+
+Assume a stream with two channels (Left & Right) is opened using SoundWire
+interface. Below are some ways a stream can be represented in SoundWire.
+
+Stream Sample in memory (System memory, DSP memory or FIFOs) ::
+
+ -------------------------
+ | L | R | L | R | L | R |
+ -------------------------
+
+Example 1: Stereo Stream with L and R channels is rendered from Master to
+Slave. Both Master and Slave is using single port. ::
+
+ +---------------+ Clock Signal +---------------+
+ | Master +----------------------------------+ Slave |
+ | Interface | | Interface |
+ | | | 1 |
+ | | Data Signal | |
+ | L + R +----------------------------------+ L + R |
+ | (Data) | Data Direction | (Data) |
+ +---------------+ +-----------------------> +---------------+
+
+
+Example 2: Stereo Stream with L and R channels is captured from Slave to
+Master. Both Master and Slave is using single port. ::
+
+
+ +---------------+ Clock Signal +---------------+
+ | Master +----------------------------------+ Slave |
+ | Interface | | Interface |
+ | | | 1 |
+ | | Data Signal | |
+ | L + R +----------------------------------+ L + R |
+ | (Data) | Data Direction | (Data) |
+ +---------------+ <-----------------------+ +---------------+
+
+
+Example 3: Stereo Stream with L and R channels is rendered by Master. Each
+of the L and R channel is received by two different Slaves. Master and both
+Slaves are using single port. ::
+
+ +---------------+ Clock Signal +---------------+
+ | Master +---------+------------------------+ Slave |
+ | Interface | | | Interface |
+ | | | | 1 |
+ | | | Data Signal | |
+ | L + R +---+------------------------------+ L |
+ | (Data) | | | Data Direction | (Data) |
+ +---------------+ | | +-------------> +---------------+
+ | |
+ | |
+ | | +---------------+
+ | +----------------------> | Slave |
+ | | Interface |
+ | | 2 |
+ | | |
+ +----------------------------> | R |
+ | (Data) |
+ +---------------+
+
+
+Example 4: Stereo Stream with L and R channel is rendered by two different
+Ports of the Master and is received by only single Port of the Slave
+interface. ::
+
+ +--------------------+
+ | |
+ | +--------------+ +----------------+
+ | | || | |
+ | | Data Port || L Channel | |
+ | | 1 |------------+ | |
+ | | L Channel || | +-----+----+ |
+ | | (Data) || | L + R Channel || Data | |
+ | Master +----------+ | +---+---------> || Port | |
+ | Interface | | || 1 | |
+ | +--------------+ | || | |
+ | | || | +----------+ |
+ | | Data Port |------------+ | |
+ | | 2 || R Channel | Slave |
+ | | R Channel || | Interface |
+ | | (Data) || | 1 |
+ | +--------------+ Clock Signal | L + R |
+ | +---------------------------> | (Data) |
+ +--------------------+ | |
+ +----------------+
+
+SoundWire Stream Management flow
+================================
+
+Stream definitions
+------------------
+
+ (1) Current stream: This is classified as the stream on which operation has
+ to be performed like prepare, enable, disable, de-prepare etc.
+
+ (2) Active stream: This is classified as the stream which is already active
+ on Bus other than current stream. There can be multiple active streams
+ on the Bus.
+
+SoundWire Bus manages stream operations for each stream getting
+rendered/captured on the SoundWire Bus. This section explains Bus operations
+done for each of the stream allocated/released on Bus. Following are the
+stream states maintained by the Bus for each of the audio stream.
+
+
+SoundWire stream states
+-----------------------
+
+Below shows the SoundWire stream states and state transition diagram. ::
+
+ +-----------+ +------------+ +----------+ +----------+
+ | ALLOCATED +---->| CONFIGURED +---->| PREPARED +---->| ENABLED |
+ | STATE | | STATE | | STATE | | STATE |
+ +-----------+ +------------+ +----------+ +----+-----+
+ ^
+ |
+ |
+ v
+ +----------+ +------------+ +----+-----+
+ | RELEASED |<----------+ DEPREPARED |<-------+ DISABLED |
+ | STATE | | STATE | | STATE |
+ +----------+ +------------+ +----------+
+
+NOTE: State transition between prepare and deprepare is supported in Spec
+but not in the software (subsystem)
+
+NOTE2: Stream state transition checks need to be handled by caller
+framework, for example ALSA/ASoC. No checks for stream transition exist in
+SoundWire subsystem.
+
+Stream State Operations
+-----------------------
+
+Below section explains the operations done by the Bus on Master(s) and
+Slave(s) as part of stream state transitions.
+
+SDW_STREAM_ALLOCATED
+~~~~~~~~~~~~~~~~~~~~
+
+Allocation state for stream. This is the entry state
+of the stream. Operations performed before entering in this state:
+
+ (1) A stream runtime is allocated for the stream. This stream
+ runtime is used as a reference for all the operations performed
+ on the stream.
+
+ (2) The resources required for holding stream runtime information are
+ allocated and initialized. This holds all stream related information
+ such as stream type (PCM/PDM) and parameters, Master and Slave
+ interface associated with the stream, stream state etc.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_ALLOCATED``.
+
+Bus implements below API for allocate a stream which needs to be called once
+per stream. From ASoC DPCM framework, this stream state maybe linked to
+.startup() operation.
+
+ .. code-block:: c
+ int sdw_alloc_stream(char * stream_name);
+
+
+SDW_STREAM_CONFIGURED
+~~~~~~~~~~~~~~~~~~~~~
+
+Configuration state of stream. Operations performed before entering in
+this state:
+
+ (1) The resources allocated for stream information in SDW_STREAM_ALLOCATED
+ state are updated here. This includes stream parameters, Master(s)
+ and Slave(s) runtime information associated with current stream.
+
+ (2) All the Master(s) and Slave(s) associated with current stream provide
+ the port information to Bus which includes port numbers allocated by
+ Master(s) and Slave(s) for current stream and their channel mask.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_CONFIGURED``.
+
+Bus implements below APIs for CONFIG state which needs to be called by
+the respective Master(s) and Slave(s) associated with stream. These APIs can
+only be invoked once by respective Master(s) and Slave(s). From ASoC DPCM
+framework, this stream state is linked to .hw_params() operation.
+
+ .. code-block:: c
+ int sdw_stream_add_master(struct sdw_bus * bus,
+ struct sdw_stream_config * stream_config,
+ struct sdw_ports_config * ports_config,
+ struct sdw_stream_runtime * stream);
+
+ int sdw_stream_add_slave(struct sdw_slave * slave,
+ struct sdw_stream_config * stream_config,
+ struct sdw_ports_config * ports_config,
+ struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_PREPARED
+~~~~~~~~~~~~~~~~~~~
+
+Prepare state of stream. Operations performed before entering in this state:
+
+ (1) Bus parameters such as bandwidth, frame shape, clock frequency,
+ are computed based on current stream as well as already active
+ stream(s) on Bus. Re-computation is required to accommodate current
+ stream on the Bus.
+
+ (2) Transport and port parameters of all Master(s) and Slave(s) port(s) are
+ computed for the current as well as already active stream based on frame
+ shape and clock frequency computed in step 1.
+
+ (3) Computed Bus and transport parameters are programmed in Master(s) and
+ Slave(s) registers. The banked registers programming is done on the
+ alternate bank (bank currently unused). Port(s) are enabled for the
+ already active stream(s) on the alternate bank (bank currently unused).
+ This is done in order to not disrupt already active stream(s).
+
+ (4) Once all the values are programmed, Bus initiates switch to alternate
+ bank where all new values programmed gets into effect.
+
+ (5) Ports of Master(s) and Slave(s) for current stream are prepared by
+ programming PrepareCtrl register.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_PREPARED``.
+
+Bus implements below API for PREPARE state which needs to be called once per
+stream. From ASoC DPCM framework, this stream state is linked to
+.prepare() operation.
+
+ .. code-block:: c
+ int sdw_prepare_stream(struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_ENABLED
+~~~~~~~~~~~~~~~~~~
+
+Enable state of stream. The data port(s) are enabled upon entering this state.
+Operations performed before entering in this state:
+
+ (1) All the values computed in SDW_STREAM_PREPARED state are programmed
+ in alternate bank (bank currently unused). It includes programming of
+ already active stream(s) as well.
+
+ (2) All the Master(s) and Slave(s) port(s) for the current stream are
+ enabled on alternate bank (bank currently unused) by programming
+ ChannelEn register.
+
+ (3) Once all the values are programmed, Bus initiates switch to alternate
+ bank where all new values programmed gets into effect and port(s)
+ associated with current stream are enabled.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_ENABLED``.
+
+Bus implements below API for ENABLE state which needs to be called once per
+stream. From ASoC DPCM framework, this stream state is linked to
+.trigger() start operation.
+
+ .. code-block:: c
+ int sdw_enable_stream(struct sdw_stream_runtime * stream);
+
+SDW_STREAM_DISABLED
+~~~~~~~~~~~~~~~~~~~
+
+Disable state of stream. The data port(s) are disabled upon exiting this state.
+Operations performed before entering in this state:
+
+ (1) All the Master(s) and Slave(s) port(s) for the current stream are
+ disabled on alternate bank (bank currently unused) by programming
+ ChannelEn register.
+
+ (2) All the current configuration of Bus and active stream(s) are programmed
+ into alternate bank (bank currently unused).
+
+ (3) Once all the values are programmed, Bus initiates switch to alternate
+ bank where all new values programmed gets into effect and port(s) associated
+ with current stream are disabled.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_DISABLED``.
+
+Bus implements below API for DISABLED state which needs to be called once
+per stream. From ASoC DPCM framework, this stream state is linked to
+.trigger() stop operation.
+
+ .. code-block:: c
+ int sdw_disable_stream(struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_DEPREPARED
+~~~~~~~~~~~~~~~~~~~~~
+
+De-prepare state of stream. Operations performed before entering in this
+state:
+
+ (1) All the port(s) of Master(s) and Slave(s) for current stream are
+ de-prepared by programming PrepareCtrl register.
+
+ (2) The payload bandwidth of current stream is reduced from the total
+ bandwidth requirement of bus and new parameters calculated and
+ applied by performing bank switch etc.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_DEPREPARED``.
+
+Bus implements below API for DEPREPARED state which needs to be called once
+per stream. From ASoC DPCM framework, this stream state is linked to
+.trigger() stop operation.
+
+ .. code-block:: c
+ int sdw_deprepare_stream(struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_RELEASED
+~~~~~~~~~~~~~~~~~~~
+
+Release state of stream. Operations performed before entering in this state:
+
+ (1) Release port resources for all Master(s) and Slave(s) port(s)
+ associated with current stream.
+
+ (2) Release Master(s) and Slave(s) runtime resources associated with
+ current stream.
+
+ (3) Release stream runtime resources associated with current stream.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_RELEASED``.
+
+Bus implements below APIs for RELEASE state which needs to be called by
+all the Master(s) and Slave(s) associated with stream. From ASoC DPCM
+framework, this stream state is linked to .hw_free() operation.
+
+ .. code-block:: c
+ int sdw_stream_remove_master(struct sdw_bus * bus,
+ struct sdw_stream_runtime * stream);
+ int sdw_stream_remove_slave(struct sdw_slave * slave,
+ struct sdw_stream_runtime * stream);
+
+
+The .shutdown() ASoC DPCM operation calls below Bus API to release
+stream assigned as part of ALLOCATED state.
+
+In .shutdown() the data structure maintaining stream state are freed up.
+
+ .. code-block:: c
+ void sdw_release_stream(struct sdw_stream_runtime * stream);
+
+Not Supported
+=============
+
+1. A single port with multiple channels supported cannot be used between two
+streams or across stream. For example a port with 4 channels cannot be used
+to handle 2 independent stereo streams even though it's possible in theory
+in SoundWire.
diff --git a/Documentation/driver-api/target.rst b/Documentation/driver-api/target.rst
new file mode 100644
index 0000000..4363611
--- /dev/null
+++ b/Documentation/driver-api/target.rst
@@ -0,0 +1,64 @@
+=================================
+target and iSCSI Interfaces Guide
+=================================
+
+Introduction and Overview
+=========================
+
+TBD
+
+Target core device interfaces
+=============================
+
+.. kernel-doc:: drivers/target/target_core_device.c
+ :export:
+
+Target core transport interfaces
+================================
+
+.. kernel-doc:: drivers/target/target_core_transport.c
+ :export:
+
+Target-supported userspace I/O
+==============================
+
+.. kernel-doc:: drivers/target/target_core_user.c
+ :doc: Userspace I/O
+
+.. kernel-doc:: include/uapi/linux/target_core_user.h
+ :doc: Ring Design
+
+iSCSI helper functions
+======================
+
+.. kernel-doc:: drivers/scsi/libiscsi.c
+ :export:
+
+
+iSCSI boot information
+======================
+
+.. kernel-doc:: drivers/scsi/iscsi_boot_sysfs.c
+ :export:
+
+
+iSCSI transport class
+=====================
+
+The file drivers/scsi/scsi_transport_iscsi.c defines transport
+attributes for the iSCSI class, which sends SCSI packets over TCP/IP
+connections.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_iscsi.c
+ :export:
+
+
+iSCSI TCP interfaces
+====================
+
+.. kernel-doc:: drivers/scsi/iscsi_tcp.c
+ :internal:
+
+.. kernel-doc:: drivers/scsi/libiscsi_tcp.c
+ :export:
+
diff --git a/Documentation/driver-api/usb/dwc3.rst b/Documentation/driver-api/usb/dwc3.rst
index c3dc84a50..8b36ff1 100644
--- a/Documentation/driver-api/usb/dwc3.rst
+++ b/Documentation/driver-api/usb/dwc3.rst
@@ -674,9 +674,8 @@ operations, both of which can be traced. Format is::
__entry->flags & DWC3_EP_ENABLED ? 'E' : 'e',
__entry->flags & DWC3_EP_STALL ? 'S' : 's',
__entry->flags & DWC3_EP_WEDGE ? 'W' : 'w',
- __entry->flags & DWC3_EP_BUSY ? 'B' : 'b',
+ __entry->flags & DWC3_EP_TRANSFER_STARTED ? 'B' : 'b',
__entry->flags & DWC3_EP_PENDING_REQUEST ? 'P' : 'p',
- __entry->flags & DWC3_EP_MISSED_ISOC ? 'M' : 'm',
__entry->flags & DWC3_EP_END_TRANSFER_PENDING ? 'E' : 'e',
__entry->direction ? '<' : '>'
)
diff --git a/Documentation/features/vm/pte_special/arch-support.txt b/Documentation/features/vm/pte_special/arch-support.txt
index 6a608a6..a837842 100644
--- a/Documentation/features/vm/pte_special/arch-support.txt
+++ b/Documentation/features/vm/pte_special/arch-support.txt
@@ -1,6 +1,6 @@
#
# Feature name: pte_special
-# Kconfig: __HAVE_ARCH_PTE_SPECIAL
+# Kconfig: ARCH_HAS_PTE_SPECIAL
# description: arch supports the pte_special()/pte_mkspecial() VM APIs
#
-----------------------
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX
index b7bd6c9..0937bad 100644
--- a/Documentation/filesystems/00-INDEX
+++ b/Documentation/filesystems/00-INDEX
@@ -10,8 +10,8 @@ afs.txt
- info and examples for the distributed AFS (Andrew File System) fs.
affs.txt
- info and mount options for the Amiga Fast File System.
-autofs4-mount-control.txt
- - info on device control operations for autofs4 module.
+autofs-mount-control.txt
+ - info on device control operations for autofs module.
automount-support.txt
- information about filesystem automount support.
befs.txt
@@ -89,8 +89,6 @@ locks.txt
- info on file locking implementations, flock() vs. fcntl(), etc.
mandatory-locking.txt
- info on the Linux implementation of Sys V mandatory file locking.
-ncpfs.txt
- - info on Novell Netware(tm) filesystem using NCP protocol.
nfs/
- nfs-related documentation.
nilfs2.txt
diff --git a/Documentation/filesystems/autofs4-mount-control.txt b/Documentation/filesystems/autofs-mount-control.txt
index e5177cb..45edad6 100644
--- a/Documentation/filesystems/autofs4-mount-control.txt
+++ b/Documentation/filesystems/autofs-mount-control.txt
@@ -1,5 +1,5 @@
-Miscellaneous Device control operations for the autofs4 kernel module
+Miscellaneous Device control operations for the autofs kernel module
====================================================================
The problem
@@ -164,7 +164,7 @@ possibility for future development due to the requirements of the
message bus architecture.
-autofs4 Miscellaneous Device mount control interface
+autofs Miscellaneous Device mount control interface
====================================================
The control interface is opening a device node, typically /dev/autofs.
@@ -244,7 +244,7 @@ The device node ioctl operations implemented by this interface are:
AUTOFS_DEV_IOCTL_VERSION
------------------------
-Get the major and minor version of the autofs4 device ioctl kernel module
+Get the major and minor version of the autofs device ioctl kernel module
implementation. It requires an initialized struct autofs_dev_ioctl as an
input parameter and sets the version information in the passed in structure.
It returns 0 on success or the error -EINVAL if a version mismatch is
@@ -254,7 +254,7 @@ detected.
AUTOFS_DEV_IOCTL_PROTOVER_CMD and AUTOFS_DEV_IOCTL_PROTOSUBVER_CMD
------------------------------------------------------------------
-Get the major and minor version of the autofs4 protocol version understood
+Get the major and minor version of the autofs protocol version understood
by loaded module. This call requires an initialized struct autofs_dev_ioctl
with the ioctlfd field set to a valid autofs mount point descriptor
and sets the requested version number in version field of struct args_protover
@@ -404,4 +404,3 @@ type is also given we are looking for a particular autofs mount and if
a match isn't found a fail is returned. If the the located path is the
root of a mount 1 is returned along with the super magic of the mount
or 0 otherwise.
-
diff --git a/Documentation/filesystems/autofs4.txt b/Documentation/filesystems/autofs.txt
index f10dd59..373ad25 100644
--- a/Documentation/filesystems/autofs4.txt
+++ b/Documentation/filesystems/autofs.txt
@@ -30,15 +30,15 @@ key advantages:
Context
-------
-The "autofs4" filesystem module is only one part of an autofs system.
+The "autofs" filesystem module is only one part of an autofs system.
There also needs to be a user-space program which looks up names
and mounts filesystems. This will often be the "automount" program,
-though other tools including "systemd" can make use of "autofs4".
+though other tools including "systemd" can make use of "autofs".
This document describes only the kernel module and the interactions
required with any user-space program. Subsequent text refers to this
as the "automount daemon" or simply "the daemon".
-"autofs4" is a Linux kernel module with provides the "autofs"
+"autofs" is a Linux kernel module with provides the "autofs"
filesystem type. Several "autofs" filesystems can be mounted and they
can each be managed separately, or all managed by the same daemon.
@@ -215,7 +215,7 @@ of expiry.
The VFS also supports "expiry" of mounts using the MNT_EXPIRE flag to
the `umount` system call. Unmounting with MNT_EXPIRE will fail unless
a previous attempt had been made, and the filesystem has been inactive
-and untouched since that previous attempt. autofs4 does not depend on
+and untouched since that previous attempt. autofs does not depend on
this but has its own internal tracking of whether filesystems were
recently used. This allows individual names in the autofs directory
to expire separately.
@@ -415,7 +415,7 @@ which can be used to communicate directly with the autofs filesystem.
It requires CAP_SYS_ADMIN for access.
The `ioctl`s that can be used on this device are described in a separate
-document `autofs4-mount-control.txt`, and are summarized briefly here.
+document `autofs-mount-control.txt`, and are summarized briefly here.
Each ioctl is passed a pointer to an `autofs_dev_ioctl` structure:
struct autofs_dev_ioctl {
diff --git a/Documentation/filesystems/automount-support.txt b/Documentation/filesystems/automount-support.txt
index 7eb762e..b0afd3d 100644
--- a/Documentation/filesystems/automount-support.txt
+++ b/Documentation/filesystems/automount-support.txt
@@ -9,7 +9,7 @@ also be requested by userspace.
IN-KERNEL AUTOMOUNTING
======================
-See section "Mount Traps" of Documentation/filesystems/autofs4.txt
+See section "Mount Traps" of Documentation/filesystems/autofs.txt
Then from userspace, you can just do something like:
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
index 12a147c..69f8de9 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.txt
@@ -182,13 +182,15 @@ whint_mode=%s Control which write hints are passed down to block
passes down hints with its policy.
alloc_mode=%s Adjust block allocation policy, which supports "reuse"
and "default".
-fsync_mode=%s Control the policy of fsync. Currently supports "posix"
- and "strict". In "posix" mode, which is default, fsync
- will follow POSIX semantics and does a light operation
- to improve the filesystem performance. In "strict" mode,
- fsync will be heavy and behaves in line with xfs, ext4
- and btrfs, where xfstest generic/342 will pass, but the
- performance will regress.
+fsync_mode=%s Control the policy of fsync. Currently supports "posix",
+ "strict", and "nobarrier". In "posix" mode, which is
+ default, fsync will follow POSIX semantics and does a
+ light operation to improve the filesystem performance.
+ In "strict" mode, fsync will be heavy and behaves in line
+ with xfs, ext4 and btrfs, where xfstest generic/342 will
+ pass, but the performance will regress. "nobarrier" is
+ based on "posix", but doesn't issue flush command for
+ non-atomic files likewise "nobarrier" mount option.
test_dummy_encryption Enable dummy encryption, which provides a fake fscrypt
context. The fake fscrypt context is used by xfstests.
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index cfbc18f..48b424d 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -191,11 +191,21 @@ Currently, the following pairs of encryption modes are supported:
- AES-256-XTS for contents and AES-256-CTS-CBC for filenames
- AES-128-CBC for contents and AES-128-CTS-CBC for filenames
+- Speck128/256-XTS for contents and Speck128/256-CTS-CBC for filenames
It is strongly recommended to use AES-256-XTS for contents encryption.
AES-128-CBC was added only for low-powered embedded devices with
crypto accelerators such as CAAM or CESA that do not support XTS.
+Similarly, Speck128/256 support was only added for older or low-end
+CPUs which cannot do AES fast enough -- especially ARM CPUs which have
+NEON instructions but not the Cryptography Extensions -- and for which
+it would not otherwise be feasible to use encryption at all. It is
+not recommended to use Speck on CPUs that have AES instructions.
+Speck support is only available if it has been enabled in the crypto
+API via CONFIG_CRYPTO_SPECK. Also, on ARM platforms, to get
+acceptable performance CONFIG_CRYPTO_SPECK_NEON must be enabled.
+
New encryption modes can be added relatively easily, without changes
to individual filesystems. However, authenticated encryption (AE)
modes are not currently supported because of the difficulty of dealing
diff --git a/Documentation/filesystems/fuse-io.txt b/Documentation/filesystems/fuse-io.txt
new file mode 100644
index 0000000..07b8f73f
--- /dev/null
+++ b/Documentation/filesystems/fuse-io.txt
@@ -0,0 +1,38 @@
+Fuse supports the following I/O modes:
+
+- direct-io
+- cached
+ + write-through
+ + writeback-cache
+
+The direct-io mode can be selected with the FOPEN_DIRECT_IO flag in the
+FUSE_OPEN reply.
+
+In direct-io mode the page cache is completely bypassed for reads and writes.
+No read-ahead takes place. Shared mmap is disabled.
+
+In cached mode reads may be satisfied from the page cache, and data may be
+read-ahead by the kernel to fill the cache. The cache is always kept consistent
+after any writes to the file. All mmap modes are supported.
+
+The cached mode has two sub modes controlling how writes are handled. The
+write-through mode is the default and is supported on all kernels. The
+writeback-cache mode may be selected by the FUSE_WRITEBACK_CACHE flag in the
+FUSE_INIT reply.
+
+In write-through mode each write is immediately sent to userspace as one or more
+WRITE requests, as well as updating any cached pages (and caching previously
+uncached, but fully written pages). No READ requests are ever sent for writes,
+so when an uncached page is partially written, the page is discarded.
+
+In writeback-cache mode (enabled by the FUSE_WRITEBACK_CACHE flag) writes go to
+the cache only, which means that the write(2) syscall can often complete very
+fast. Dirty pages are written back implicitly (background writeback or page
+reclaim on memory pressure) or explicitly (invoked by close(2), fsync(2) and
+when the last ref to the file is being released on munmap(2)). This mode
+assumes that all changes to the filesystem go through the FUSE kernel module
+(size and atime/ctime/mtime attributes are kept up-to-date by the kernel), so
+it's generally not suitable for network filesystems. If a partial page is
+written, then the page needs to be first read from userspace. This means, that
+even for files opened for O_WRONLY it is possible that READ requests will be
+generated by the kernel.
diff --git a/Documentation/filesystems/ncpfs.txt b/Documentation/filesystems/ncpfs.txt
deleted file mode 100644
index 5af164f..0000000
--- a/Documentation/filesystems/ncpfs.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-The ncpfs filesystem understands the NCP protocol, designed by the
-Novell Corporation for their NetWare(tm) product. NCP is functionally
-similar to the NFS used in the TCP/IP community.
-To mount a NetWare filesystem, you need a special mount program, which
-can be found in the ncpfs package. The home site for ncpfs is
-ftp.gwdg.de/pub/linux/misc/ncpfs, but sunsite and its many mirrors
-will have it as well.
-
-Related products are linware and mars_nwe, which will give Linux partial
-NetWare server functionality.
-
-mars_nwe can be found on ftp.gwdg.de/pub/linux/misc/ncpfs.
diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt
index 5efae00..d296312 100644
--- a/Documentation/filesystems/nfs/nfsroot.txt
+++ b/Documentation/filesystems/nfs/nfsroot.txt
@@ -5,6 +5,7 @@ Written 1996 by Gero Kuhlmann <gero@gkminix.han.de>
Updated 1997 by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
Updated 2006 by Nico Schottelius <nico-kernel-nfsroot@schottelius.org>
Updated 2006 by Horms <horms@verge.net.au>
+Updated 2018 by Chris Novakovic <chris@chrisn.me.uk>
@@ -79,7 +80,7 @@ nfsroot=[<server-ip>:]<root-dir>[,<nfs-options>]
ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>:
- <dns0-ip>:<dns1-ip>
+ <dns0-ip>:<dns1-ip>:<ntp0-ip>
This parameter tells the kernel how to configure IP addresses of devices
and also how to set up the IP routing table. It was originally called
@@ -110,6 +111,9 @@ ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>:
will not be triggered if it is missing and NFS root is not
in operation.
+ Value is exported to /proc/net/pnp with the prefix "bootserver "
+ (see below).
+
Default: Determined using autoconfiguration.
The address of the autoconfiguration server is used.
@@ -123,10 +127,13 @@ ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>:
Default: Determined using autoconfiguration.
- <hostname> Name of the client. May be supplied by autoconfiguration,
- but its absence will not trigger autoconfiguration.
- If specified and DHCP is used, the user provided hostname will
- be carried in the DHCP request to hopefully update DNS record.
+ <hostname> Name of the client. If a '.' character is present, anything
+ before the first '.' is used as the client's hostname, and anything
+ after it is used as its NIS domain name. May be supplied by
+ autoconfiguration, but its absence will not trigger autoconfiguration.
+ If specified and DHCP is used, the user-provided hostname (and NIS
+ domain name, if present) will be carried in the DHCP request; this
+ may cause a DNS record to be created or updated for the client.
Default: Client IP address is used in ASCII notation.
@@ -162,12 +169,55 @@ ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>:
Default: any
- <dns0-ip> IP address of first nameserver.
- Value gets exported by /proc/net/pnp which is often linked
- on embedded systems by /etc/resolv.conf.
+ <dns0-ip> IP address of primary nameserver.
+ Value is exported to /proc/net/pnp with the prefix "nameserver "
+ (see below).
+
+ Default: None if not using autoconfiguration; determined
+ automatically if using autoconfiguration.
+
+ <dns1-ip> IP address of secondary nameserver.
+ See <dns0-ip>.
+
+ <ntp0-ip> IP address of a Network Time Protocol (NTP) server.
+ Value is exported to /proc/net/ipconfig/ntp_servers, but is
+ otherwise unused (see below).
+
+ Default: None if not using autoconfiguration; determined
+ automatically if using autoconfiguration.
+
+ After configuration (whether manual or automatic) is complete, two files
+ are created in the following format; lines are omitted if their respective
+ value is empty following configuration:
+
+ - /proc/net/pnp:
+
+ #PROTO: <DHCP|BOOTP|RARP|MANUAL> (depending on configuration method)
+ domain <dns-domain> (if autoconfigured, the DNS domain)
+ nameserver <dns0-ip> (primary name server IP)
+ nameserver <dns1-ip> (secondary name server IP)
+ nameserver <dns2-ip> (tertiary name server IP)
+ bootserver <server-ip> (NFS server IP)
+
+ - /proc/net/ipconfig/ntp_servers:
+
+ <ntp0-ip> (NTP server IP)
+ <ntp1-ip> (NTP server IP)
+ <ntp2-ip> (NTP server IP)
+
+ <dns-domain> and <dns2-ip> (in /proc/net/pnp) and <ntp1-ip> and <ntp2-ip>
+ (in /proc/net/ipconfig/ntp_servers) are requested during autoconfiguration;
+ they cannot be specified as part of the "ip=" kernel command line parameter.
+
+ Because the "domain" and "nameserver" options are recognised by DNS
+ resolvers, /etc/resolv.conf is often linked to /proc/net/pnp on systems
+ that use an NFS root filesystem.
- <dns1-ip> IP address of second nameserver.
- Same as above.
+ Note that the kernel will not synchronise the system time with any NTP
+ servers it discovers; this is the responsibility of a user space process
+ (e.g. an initrd/initramfs script that passes the IP addresses listed in
+ /proc/net/ipconfig/ntp_servers to an NTP client before mounting the real
+ root filesystem if it is on NFS).
nfsrootdebug
diff --git a/Documentation/filesystems/overlayfs.txt b/Documentation/filesystems/overlayfs.txt
index 961b287..72615a2 100644
--- a/Documentation/filesystems/overlayfs.txt
+++ b/Documentation/filesystems/overlayfs.txt
@@ -429,11 +429,12 @@ This verification may cause significant overhead in some cases.
Testsuite
---------
-There's testsuite developed by David Howells at:
+There's a testsuite originally developed by David Howells and currently
+maintained by Amir Goldstein at:
- git://git.infradead.org/users/dhowells/unionmount-testsuite.git
+ https://github.com/amir73il/unionmount-testsuite.git
Run as root:
# cd unionmount-testsuite
- # ./run --ov
+ # ./run --ov --verify
diff --git a/Documentation/filesystems/path-lookup.md b/Documentation/filesystems/path-lookup.md
index 1933ef7..e2edd45 100644
--- a/Documentation/filesystems/path-lookup.md
+++ b/Documentation/filesystems/path-lookup.md
@@ -460,7 +460,7 @@ this retry process in the next article.
Automount points are locations in the filesystem where an attempt to
lookup a name can trigger changes to how that lookup should be
handled, in particular by mounting a filesystem there. These are
-covered in greater detail in autofs4.txt in the Linux documentation
+covered in greater detail in autofs.txt in the Linux documentation
tree, but a few notes specifically related to path lookup are in order
here.
diff --git a/Documentation/fpga/fpga-mgr.txt b/Documentation/fpga/fpga-mgr.txt
deleted file mode 100644
index cc6413e..0000000
--- a/Documentation/fpga/fpga-mgr.txt
+++ /dev/null
@@ -1,199 +0,0 @@
-FPGA Manager Core
-
-Alan Tull 2015
-
-Overview
-========
-
-The FPGA manager core exports a set of functions for programming an FPGA with
-an image. The API is manufacturer agnostic. All manufacturer specifics are
-hidden away in a low level driver which registers a set of ops with the core.
-The FPGA image data itself is very manufacturer specific, but for our purposes
-it's just binary data. The FPGA manager core won't parse it.
-
-The FPGA image to be programmed can be in a scatter gather list, a single
-contiguous buffer, or a firmware file. Because allocating contiguous kernel
-memory for the buffer should be avoided, users are encouraged to use a scatter
-gather list instead if possible.
-
-The particulars for programming the image are presented in a structure (struct
-fpga_image_info). This struct contains parameters such as pointers to the
-FPGA image as well as image-specific particulars such as whether the image was
-built for full or partial reconfiguration.
-
-API Functions:
-==============
-
-To program the FPGA:
---------------------
-
- int fpga_mgr_load(struct fpga_manager *mgr,
- struct fpga_image_info *info);
-
-Load the FPGA from an image which is indicated in the info. If successful,
-the FPGA ends up in operating mode. Return 0 on success or a negative error
-code.
-
-To allocate or free a struct fpga_image_info:
----------------------------------------------
-
- struct fpga_image_info *fpga_image_info_alloc(struct device *dev);
-
- void fpga_image_info_free(struct fpga_image_info *info);
-
-To get/put a reference to a FPGA manager:
------------------------------------------
-
- struct fpga_manager *of_fpga_mgr_get(struct device_node *node);
- struct fpga_manager *fpga_mgr_get(struct device *dev);
- void fpga_mgr_put(struct fpga_manager *mgr);
-
-Given a DT node or device, get a reference to a FPGA manager. This pointer
-can be saved until you are ready to program the FPGA. fpga_mgr_put releases
-the reference.
-
-
-To get exclusive control of a FPGA manager:
--------------------------------------------
-
- int fpga_mgr_lock(struct fpga_manager *mgr);
- void fpga_mgr_unlock(struct fpga_manager *mgr);
-
-The user should call fpga_mgr_lock and verify that it returns 0 before
-attempting to program the FPGA. Likewise, the user should call
-fpga_mgr_unlock when done programming the FPGA.
-
-
-To register or unregister the low level FPGA-specific driver:
--------------------------------------------------------------
-
- int fpga_mgr_register(struct device *dev, const char *name,
- const struct fpga_manager_ops *mops,
- void *priv);
-
- void fpga_mgr_unregister(struct device *dev);
-
-Use of these two functions is described below in "How To Support a new FPGA
-device."
-
-
-How to write an image buffer to a supported FPGA
-================================================
-#include <linux/fpga/fpga-mgr.h>
-
-struct fpga_manager *mgr;
-struct fpga_image_info *info;
-int ret;
-
-/*
- * Get a reference to FPGA manager. The manager is not locked, so you can
- * hold onto this reference without it preventing programming.
- *
- * This example uses the device node of the manager. Alternatively, use
- * fpga_mgr_get(dev) instead if you have the device.
- */
-mgr = of_fpga_mgr_get(mgr_node);
-
-/* struct with information about the FPGA image to program. */
-info = fpga_image_info_alloc(dev);
-
-/* flags indicates whether to do full or partial reconfiguration */
-info->flags = FPGA_MGR_PARTIAL_RECONFIG;
-
-/*
- * At this point, indicate where the image is. This is pseudo-code; you're
- * going to use one of these three.
- */
-if (image is in a scatter gather table) {
-
- info->sgt = [your scatter gather table]
-
-} else if (image is in a buffer) {
-
- info->buf = [your image buffer]
- info->count = [image buffer size]
-
-} else if (image is in a firmware file) {
-
- info->firmware_name = devm_kstrdup(dev, firmware_name, GFP_KERNEL);
-
-}
-
-/* Get exclusive control of FPGA manager */
-ret = fpga_mgr_lock(mgr);
-
-/* Load the buffer to the FPGA */
-ret = fpga_mgr_buf_load(mgr, &info, buf, count);
-
-/* Release the FPGA manager */
-fpga_mgr_unlock(mgr);
-fpga_mgr_put(mgr);
-
-/* Deallocate the image info if you're done with it */
-fpga_image_info_free(info);
-
-How to support a new FPGA device
-================================
-To add another FPGA manager, write a driver that implements a set of ops. The
-probe function calls fpga_mgr_register(), such as:
-
-static const struct fpga_manager_ops socfpga_fpga_ops = {
- .write_init = socfpga_fpga_ops_configure_init,
- .write = socfpga_fpga_ops_configure_write,
- .write_complete = socfpga_fpga_ops_configure_complete,
- .state = socfpga_fpga_ops_state,
-};
-
-static int socfpga_fpga_probe(struct platform_device *pdev)
-{
- struct device *dev = &pdev->dev;
- struct socfpga_fpga_priv *priv;
- int ret;
-
- priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
- if (!priv)
- return -ENOMEM;
-
- /* ... do ioremaps, get interrupts, etc. and save
- them in priv... */
-
- return fpga_mgr_register(dev, "Altera SOCFPGA FPGA Manager",
- &socfpga_fpga_ops, priv);
-}
-
-static int socfpga_fpga_remove(struct platform_device *pdev)
-{
- fpga_mgr_unregister(&pdev->dev);
-
- return 0;
-}
-
-
-The ops will implement whatever device specific register writes are needed to
-do the programming sequence for this particular FPGA. These ops return 0 for
-success or negative error codes otherwise.
-
-The programming sequence is:
- 1. .write_init
- 2. .write or .write_sg (may be called once or multiple times)
- 3. .write_complete
-
-The .write_init function will prepare the FPGA to receive the image data. The
-buffer passed into .write_init will be atmost .initial_header_size bytes long,
-if the whole bitstream is not immediately available then the core code will
-buffer up at least this much before starting.
-
-The .write function writes a buffer to the FPGA. The buffer may be contain the
-whole FPGA image or may be a smaller chunk of an FPGA image. In the latter
-case, this function is called multiple times for successive chunks. This interface
-is suitable for drivers which use PIO.
-
-The .write_sg version behaves the same as .write except the input is a sg_table
-scatter list. This interface is suitable for drivers which use DMA.
-
-The .write_complete function is called after all the image has been written
-to put the FPGA into operating mode.
-
-The ops include a .state function which will read the hardware FPGA manager and
-return a code of type enum fpga_mgr_states. It doesn't result in a change in
-hardware state.
diff --git a/Documentation/fpga/fpga-region.txt b/Documentation/fpga/fpga-region.txt
deleted file mode 100644
index 139a02b..0000000
--- a/Documentation/fpga/fpga-region.txt
+++ /dev/null
@@ -1,95 +0,0 @@
-FPGA Regions
-
-Alan Tull 2017
-
-CONTENTS
- - Introduction
- - The FPGA region API
- - Usage example
-
-Introduction
-============
-
-This document is meant to be an brief overview of the FPGA region API usage. A
-more conceptual look at regions can be found in [1].
-
-For the purposes of this API document, let's just say that a region associates
-an FPGA Manager and a bridge (or bridges) with a reprogrammable region of an
-FPGA or the whole FPGA. The API provides a way to register a region and to
-program a region.
-
-Currently the only layer above fpga-region.c in the kernel is the Device Tree
-support (of-fpga-region.c) described in [1]. The DT support layer uses regions
-to program the FPGA and then DT to handle enumeration. The common region code
-is intended to be used by other schemes that have other ways of accomplishing
-enumeration after programming.
-
-An fpga-region can be set up to know the following things:
-* which FPGA manager to use to do the programming
-* which bridges to disable before programming and enable afterwards.
-
-Additional info needed to program the FPGA image is passed in the struct
-fpga_image_info [2] including:
-* pointers to the image as either a scatter-gather buffer, a contiguous
- buffer, or the name of firmware file
-* flags indicating specifics such as whether the image if for partial
- reconfiguration.
-
-===================
-The FPGA region API
-===================
-
-To register or unregister a region:
------------------------------------
-
- int fpga_region_register(struct device *dev,
- struct fpga_region *region);
- int fpga_region_unregister(struct fpga_region *region);
-
-An example of usage can be seen in the probe function of [3]
-
-To program an FPGA:
--------------------
- int fpga_region_program_fpga(struct fpga_region *region);
-
-This function operates on info passed in the fpga_image_info
-(region->info).
-
-This function will attempt to:
- * lock the region's mutex
- * lock the region's FPGA manager
- * build a list of FPGA bridges if a method has been specified to do so
- * disable the bridges
- * program the FPGA
- * re-enable the bridges
- * release the locks
-
-=============
-Usage example
-=============
-
-First, allocate the info struct:
-
- info = fpga_image_info_alloc(dev);
- if (!info)
- return -ENOMEM;
-
-Set flags as needed, i.e.
-
- info->flags |= FPGA_MGR_PARTIAL_RECONFIG;
-
-Point to your FPGA image, such as:
-
- info->sgt = &sgt;
-
-Add info to region and do the programming:
-
- region->info = info;
- ret = fpga_region_program_fpga(region);
-
-Then enumerate whatever hardware has appeared in the FPGA.
-
---
-[1] ../devicetree/bindings/fpga/fpga-region.txt
-[2] ./fpga-mgr.txt
-[3] ../../drivers/fpga/of-fpga-region.c
diff --git a/Documentation/fpga/overview.txt b/Documentation/fpga/overview.txt
deleted file mode 100644
index 0f1236e..0000000
--- a/Documentation/fpga/overview.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-Linux kernel FPGA support
-
-Alan Tull 2017
-
-The main point of this project has been to separate the out the upper layers
-that know when to reprogram a FPGA from the lower layers that know how to
-reprogram a specific FPGA device. The intention is to make this manufacturer
-agnostic, understanding that of course the FPGA images are very device specific
-themselves.
-
-The framework in the kernel includes:
-* low level FPGA manager drivers that know how to program a specific device
-* the fpga-mgr framework they are registered with
-* low level FPGA bridge drivers for hard/soft bridges which are intended to
- be disable during FPGA programming
-* the fpga-bridge framework they are registered with
-* the fpga-region framework which associates and controls managers and bridges
- as reconfigurable regions
-* the of-fpga-region support for reprogramming FPGAs when device tree overlays
- are applied.
-
-I would encourage you the user to add code that creates FPGA regions rather
-that trying to control managers and bridges separately.
diff --git a/Documentation/gpu/drivers.rst b/Documentation/gpu/drivers.rst
index e8c8441..f982558 100644
--- a/Documentation/gpu/drivers.rst
+++ b/Documentation/gpu/drivers.rst
@@ -10,8 +10,10 @@ GPU Driver Documentation
tegra
tinydrm
tve200
+ v3d
vc4
bridge/dw-hdmi
+ xen-front
.. only:: subproject and html
diff --git a/Documentation/gpu/i915.rst b/Documentation/gpu/i915.rst
index 41dc881..055df45 100644
--- a/Documentation/gpu/i915.rst
+++ b/Documentation/gpu/i915.rst
@@ -58,6 +58,12 @@ Intel GVT-g Host Support(vGPU device model)
.. kernel-doc:: drivers/gpu/drm/i915/intel_gvt.c
:internal:
+Workarounds
+-----------
+
+.. kernel-doc:: drivers/gpu/drm/i915/intel_workarounds.c
+ :doc: Hardware workarounds
+
Display Hardware Handling
=========================
@@ -249,6 +255,103 @@ Memory Management and Command Submission
This sections covers all things related to the GEM implementation in the
i915 driver.
+Intel GPU Basics
+----------------
+
+An Intel GPU has multiple engines. There are several engine types.
+
+- RCS engine is for rendering 3D and performing compute, this is named
+ `I915_EXEC_RENDER` in user space.
+- BCS is a blitting (copy) engine, this is named `I915_EXEC_BLT` in user
+ space.
+- VCS is a video encode and decode engine, this is named `I915_EXEC_BSD`
+ in user space
+- VECS is video enhancement engine, this is named `I915_EXEC_VEBOX` in user
+ space.
+- The enumeration `I915_EXEC_DEFAULT` does not refer to specific engine;
+ instead it is to be used by user space to specify a default rendering
+ engine (for 3D) that may or may not be the same as RCS.
+
+The Intel GPU family is a family of integrated GPU's using Unified
+Memory Access. For having the GPU "do work", user space will feed the
+GPU batch buffers via one of the ioctls `DRM_IOCTL_I915_GEM_EXECBUFFER2`
+or `DRM_IOCTL_I915_GEM_EXECBUFFER2_WR`. Most such batchbuffers will
+instruct the GPU to perform work (for example rendering) and that work
+needs memory from which to read and memory to which to write. All memory
+is encapsulated within GEM buffer objects (usually created with the ioctl
+`DRM_IOCTL_I915_GEM_CREATE`). An ioctl providing a batchbuffer for the GPU
+to create will also list all GEM buffer objects that the batchbuffer reads
+and/or writes. For implementation details of memory management see
+`GEM BO Management Implementation Details`_.
+
+The i915 driver allows user space to create a context via the ioctl
+`DRM_IOCTL_I915_GEM_CONTEXT_CREATE` which is identified by a 32-bit
+integer. Such a context should be viewed by user-space as -loosely-
+analogous to the idea of a CPU process of an operating system. The i915
+driver guarantees that commands issued to a fixed context are to be
+executed so that writes of a previously issued command are seen by
+reads of following commands. Actions issued between different contexts
+(even if from the same file descriptor) are NOT given that guarantee
+and the only way to synchronize across contexts (even from the same
+file descriptor) is through the use of fences. At least as far back as
+Gen4, also have that a context carries with it a GPU HW context;
+the HW context is essentially (most of atleast) the state of a GPU.
+In addition to the ordering guarantees, the kernel will restore GPU
+state via HW context when commands are issued to a context, this saves
+user space the need to restore (most of atleast) the GPU state at the
+start of each batchbuffer. The non-deprecated ioctls to submit batchbuffer
+work can pass that ID (in the lower bits of drm_i915_gem_execbuffer2::rsvd1)
+to identify what context to use with the command.
+
+The GPU has its own memory management and address space. The kernel
+driver maintains the memory translation table for the GPU. For older
+GPUs (i.e. those before Gen8), there is a single global such translation
+table, a global Graphics Translation Table (GTT). For newer generation
+GPUs each context has its own translation table, called Per-Process
+Graphics Translation Table (PPGTT). Of important note, is that although
+PPGTT is named per-process it is actually per context. When user space
+submits a batchbuffer, the kernel walks the list of GEM buffer objects
+used by the batchbuffer and guarantees that not only is the memory of
+each such GEM buffer object resident but it is also present in the
+(PP)GTT. If the GEM buffer object is not yet placed in the (PP)GTT,
+then it is given an address. Two consequences of this are: the kernel
+needs to edit the batchbuffer submitted to write the correct value of
+the GPU address when a GEM BO is assigned a GPU address and the kernel
+might evict a different GEM BO from the (PP)GTT to make address room
+for another GEM BO. Consequently, the ioctls submitting a batchbuffer
+for execution also include a list of all locations within buffers that
+refer to GPU-addresses so that the kernel can edit the buffer correctly.
+This process is dubbed relocation.
+
+GEM BO Management Implementation Details
+----------------------------------------
+
+.. kernel-doc:: drivers/gpu/drm/i915/i915_vma.h
+ :doc: Virtual Memory Address
+
+Buffer Object Eviction
+----------------------
+
+This section documents the interface functions for evicting buffer
+objects to make space available in the virtual gpu address spaces. Note
+that this is mostly orthogonal to shrinking buffer objects caches, which
+has the goal to make main memory (shared with the gpu through the
+unified memory architecture) available.
+
+.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_evict.c
+ :internal:
+
+Buffer Object Memory Shrinking
+------------------------------
+
+This section documents the interface function for shrinking memory usage
+of buffer object caches. Shrinking is used to make main memory
+available. Note that this is mostly orthogonal to evicting buffer
+objects, which has the goal to make space in gpu virtual address spaces.
+
+.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_shrinker.c
+ :internal:
+
Batchbuffer Parsing
-------------------
@@ -267,6 +370,12 @@ Batchbuffer Pools
.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_batch_pool.c
:internal:
+User Batchbuffer Execution
+--------------------------
+
+.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_execbuffer.c
+ :doc: User command execution
+
Logical Rings, Logical Ring Contexts and Execlists
--------------------------------------------------
@@ -312,28 +421,14 @@ Object Tiling IOCTLs
.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_tiling.c
:doc: buffer object tiling
-Buffer Object Eviction
-----------------------
-
-This section documents the interface functions for evicting buffer
-objects to make space available in the virtual gpu address spaces. Note
-that this is mostly orthogonal to shrinking buffer objects caches, which
-has the goal to make main memory (shared with the gpu through the
-unified memory architecture) available.
-
-.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_evict.c
- :internal:
-
-Buffer Object Memory Shrinking
-------------------------------
+WOPCM
+=====
-This section documents the interface function for shrinking memory usage
-of buffer object caches. Shrinking is used to make main memory
-available. Note that this is mostly orthogonal to evicting buffer
-objects, which has the goal to make space in gpu virtual address spaces.
+WOPCM Layout
+------------
-.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_shrinker.c
- :internal:
+.. kernel-doc:: drivers/gpu/drm/i915/intel_wopcm.c
+ :doc: WOPCM Layout
GuC
===
@@ -359,6 +454,12 @@ GuC Firmware Layout
.. kernel-doc:: drivers/gpu/drm/i915/intel_guc_fwif.h
:doc: GuC Firmware Layout
+GuC Address Space
+-----------------
+
+.. kernel-doc:: drivers/gpu/drm/i915/intel_guc.c
+ :doc: GuC Address Space
+
Tracing
=======
diff --git a/Documentation/gpu/kms-properties.csv b/Documentation/gpu/kms-properties.csv
index 6b28b01..07ed22e 100644
--- a/Documentation/gpu/kms-properties.csv
+++ b/Documentation/gpu/kms-properties.csv
@@ -98,5 +98,4 @@ radeon,DVI-I,“coherent”,RANGE,"Min=0, Max=1",Connector,TBD
,,"""underscan vborder""",RANGE,"Min=0, Max=128",Connector,TBD
,Audio,“audio”,ENUM,"{ ""off"", ""on"", ""auto"" }",Connector,TBD
,FMT Dithering,“dither”,ENUM,"{ ""off"", ""on"" }",Connector,TBD
-rcar-du,Generic,"""alpha""",RANGE,"Min=0, Max=255",Plane,TBD
,,"""colorkey""",RANGE,"Min=0, Max=0x01ffffff",Plane,TBD
diff --git a/Documentation/gpu/todo.rst b/Documentation/gpu/todo.rst
index f4d0b34..a7c150d 100644
--- a/Documentation/gpu/todo.rst
+++ b/Documentation/gpu/todo.rst
@@ -212,6 +212,24 @@ probably use drm_fb_helper_fbdev_teardown().
Contact: Maintainer of the driver you plan to convert
+Clean up mmap forwarding
+------------------------
+
+A lot of drivers forward gem mmap calls to dma-buf mmap for imported buffers.
+And also a lot of them forward dma-buf mmap to the gem mmap implementations.
+Would be great to refactor this all into a set of small common helpers.
+
+Contact: Daniel Vetter
+
+Put a reservation_object into drm_gem_object
+--------------------------------------------
+
+This would remove the need for the ->gem_prime_res_obj callback. It would also
+allow us to implement generic helpers for waiting for a bo, allowing for quite a
+bit of refactoring in the various wait ioctl implementations.
+
+Contact: Daniel Vetter
+
idr_init_base()
---------------
diff --git a/Documentation/gpu/xen-front.rst b/Documentation/gpu/xen-front.rst
new file mode 100644
index 0000000..d988da7
--- /dev/null
+++ b/Documentation/gpu/xen-front.rst
@@ -0,0 +1,31 @@
+====================================================
+ drm/xen-front Xen para-virtualized frontend driver
+====================================================
+
+This frontend driver implements Xen para-virtualized display
+according to the display protocol described at
+include/xen/interface/io/displif.h
+
+Driver modes of operation in terms of display buffers used
+==========================================================
+
+.. kernel-doc:: drivers/gpu/drm/xen/xen_drm_front.h
+ :doc: Driver modes of operation in terms of display buffers used
+
+Buffers allocated by the frontend driver
+----------------------------------------
+
+.. kernel-doc:: drivers/gpu/drm/xen/xen_drm_front.h
+ :doc: Buffers allocated by the frontend driver
+
+Buffers allocated by the backend
+--------------------------------
+
+.. kernel-doc:: drivers/gpu/drm/xen/xen_drm_front.h
+ :doc: Buffers allocated by the backend
+
+Driver limitations
+==================
+
+.. kernel-doc:: drivers/gpu/drm/xen/xen_drm_front.h
+ :doc: Driver limitations
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
index 7f7413e..480c860 100644
--- a/Documentation/ioctl/ioctl-number.txt
+++ b/Documentation/ioctl/ioctl-number.txt
@@ -151,7 +151,7 @@ Code Seq#(hex) Include File Comments
'J' 00-1F drivers/scsi/gdth_ioctl.h
'K' all linux/kd.h
'L' 00-1F linux/loop.h conflict!
-'L' 10-1F drivers/scsi/mpt2sas/mpt2sas_ctl.h conflict!
+'L' 10-1F drivers/scsi/mpt3sas/mpt3sas_ctl.h conflict!
'L' 20-2F linux/lightnvm.h
'L' E0-FF linux/ppdd.h encrypted disk device driver
<http://linux01.gwdg.de/~alatham/ppdd.html>
@@ -296,7 +296,8 @@ Code Seq#(hex) Include File Comments
0x90 00 drivers/cdrom/sbpcd.h
0x92 00-0F drivers/usb/mon/mon_bin.c
0x93 60-7F linux/auto_fs.h
-0x94 all fs/btrfs/ioctl.h
+0x94 all fs/btrfs/ioctl.h Btrfs filesystem
+ and linux/fs.h some lifted to vfs/generic
0x97 00-7F fs/ceph/ioctl.h Ceph file system
0x99 00-0F 537-Addinboard driver
<mailto:buk@buks.ipn.de>
@@ -327,6 +328,7 @@ Code Seq#(hex) Include File Comments
0xCA 80-BF uapi/scsi/cxlflash_ioctl.h
0xCB 00-1F CBM serial IEC bus in development:
<mailto:michael.klein@puffin.lb.shuttle.de>
+0xCC 00-0F drivers/misc/ibmvmc.h pseries VMC driver
0xCD 01 linux/reiserfs_fs.h
0xCF 02 fs/cifs/ioctl.c
0xDB 00-0F drivers/char/mwave/mwavepub.h
diff --git a/Documentation/kbuild/kconfig-language.txt b/Documentation/kbuild/kconfig-language.txt
index f5b9493..0e966e8 100644
--- a/Documentation/kbuild/kconfig-language.txt
+++ b/Documentation/kbuild/kconfig-language.txt
@@ -198,14 +198,6 @@ applicable everywhere (see syntax).
enables the third modular state for all config symbols.
At most one symbol may have the "modules" option set.
- - "env"=<value>
- This imports the environment variable into Kconfig. It behaves like
- a default, except that the value comes from the environment, this
- also means that the behaviour when mixing it with normal defaults is
- undefined at this point. The symbol is currently not exported back
- to the build environment (if this is desired, it can be done via
- another symbol).
-
- "allnoconfig_y"
This declares the symbol as one that should have the value y when
using "allnoconfig". Used for symbols that hide other symbols.
diff --git a/Documentation/kbuild/kconfig-macro-language.txt b/Documentation/kbuild/kconfig-macro-language.txt
new file mode 100644
index 0000000..07da2ea
--- /dev/null
+++ b/Documentation/kbuild/kconfig-macro-language.txt
@@ -0,0 +1,242 @@
+Concept
+-------
+
+The basic idea was inspired by Make. When we look at Make, we notice sort of
+two languages in one. One language describes dependency graphs consisting of
+targets and prerequisites. The other is a macro language for performing textual
+substitution.
+
+There is clear distinction between the two language stages. For example, you
+can write a makefile like follows:
+
+ APP := foo
+ SRC := foo.c
+ CC := gcc
+
+ $(APP): $(SRC)
+ $(CC) -o $(APP) $(SRC)
+
+The macro language replaces the variable references with their expanded form,
+and handles as if the source file were input like follows:
+
+ foo: foo.c
+ gcc -o foo foo.c
+
+Then, Make analyzes the dependency graph and determines the targets to be
+updated.
+
+The idea is quite similar in Kconfig - it is possible to describe a Kconfig
+file like this:
+
+ CC := gcc
+
+ config CC_HAS_FOO
+ def_bool $(shell, $(srctree)/scripts/gcc-check-foo.sh $(CC))
+
+The macro language in Kconfig processes the source file into the following
+intermediate:
+
+ config CC_HAS_FOO
+ def_bool y
+
+Then, Kconfig moves onto the evaluation stage to resolve inter-symbol
+dependency as explained in kconfig-language.txt.
+
+
+Variables
+---------
+
+Like in Make, a variable in Kconfig works as a macro variable. A macro
+variable is expanded "in place" to yield a text string that may then be
+expanded further. To get the value of a variable, enclose the variable name in
+$( ). The parentheses are required even for single-letter variable names; $X is
+a syntax error. The curly brace form as in ${CC} is not supported either.
+
+There are two types of variables: simply expanded variables and recursively
+expanded variables.
+
+A simply expanded variable is defined using the := assignment operator. Its
+righthand side is expanded immediately upon reading the line from the Kconfig
+file.
+
+A recursively expanded variable is defined using the = assignment operator.
+Its righthand side is simply stored as the value of the variable without
+expanding it in any way. Instead, the expansion is performed when the variable
+is used.
+
+There is another type of assignment operator; += is used to append text to a
+variable. The righthand side of += is expanded immediately if the lefthand
+side was originally defined as a simple variable. Otherwise, its evaluation is
+deferred.
+
+The variable reference can take parameters, in the following form:
+
+ $(name,arg1,arg2,arg3)
+
+You can consider the parameterized reference as a function. (more precisely,
+"user-defined function" in contrast to "built-in function" listed below).
+
+Useful functions must be expanded when they are used since the same function is
+expanded differently if different parameters are passed. Hence, a user-defined
+function is defined using the = assignment operator. The parameters are
+referenced within the body definition with $(1), $(2), etc.
+
+In fact, recursively expanded variables and user-defined functions are the same
+internally. (In other words, "variable" is "function with zero argument".)
+When we say "variable" in a broad sense, it includes "user-defined function".
+
+
+Built-in functions
+------------------
+
+Like Make, Kconfig provides several built-in functions. Every function takes a
+particular number of arguments.
+
+In Make, every built-in function takes at least one argument. Kconfig allows
+zero argument for built-in functions, such as $(fileno), $(lineno). You could
+consider those as "built-in variable", but it is just a matter of how we call
+it after all. Let's say "built-in function" here to refer to natively supported
+functionality.
+
+Kconfig currently supports the following built-in functions.
+
+ - $(shell,command)
+
+ The "shell" function accepts a single argument that is expanded and passed
+ to a subshell for execution. The standard output of the command is then read
+ and returned as the value of the function. Every newline in the output is
+ replaced with a space. Any trailing newlines are deleted. The standard error
+ is not returned, nor is any program exit status.
+
+ - $(info,text)
+
+ The "info" function takes a single argument and prints it to stdout.
+ It evaluates to an empty string.
+
+ - $(warning-if,condition,text)
+
+ The "warning-if" function takes two arguments. If the condition part is "y",
+ the text part is sent to stderr. The text is prefixed with the name of the
+ current Kconfig file and the current line number.
+
+ - $(error-if,condition,text)
+
+ The "error-if" function is similar to "warning-if", but it terminates the
+ parsing immediately if the condition part is "y".
+
+ - $(filename)
+
+ The 'filename' takes no argument, and $(filename) is expanded to the file
+ name being parsed.
+
+ - $(lineno)
+
+ The 'lineno' takes no argument, and $(lineno) is expanded to the line number
+ being parsed.
+
+
+Make vs Kconfig
+---------------
+
+Kconfig adopts Make-like macro language, but the function call syntax is
+slightly different.
+
+A function call in Make looks like this:
+
+ $(func-name arg1,arg2,arg3)
+
+The function name and the first argument are separated by at least one
+whitespace. Then, leading whitespaces are trimmed from the first argument,
+while whitespaces in the other arguments are kept. You need to use a kind of
+trick to start the first parameter with spaces. For example, if you want
+to make "info" function print " hello", you can write like follows:
+
+ empty :=
+ space := $(empty) $(empty)
+ $(info $(space)$(space)hello)
+
+Kconfig uses only commas for delimiters, and keeps all whitespaces in the
+function call. Some people prefer putting a space after each comma delimiter:
+
+ $(func-name, arg1, arg2, arg3)
+
+In this case, "func-name" will receive " arg1", " arg2", " arg3". The presence
+of leading spaces may matter depending on the function. The same applies to
+Make - for example, $(subst .c, .o, $(sources)) is a typical mistake; it
+replaces ".c" with " .o".
+
+In Make, a user-defined function is referenced by using a built-in function,
+'call', like this:
+
+ $(call my-func,arg1,arg2,arg3)
+
+Kconfig invokes user-defined functions and built-in functions in the same way.
+The omission of 'call' makes the syntax shorter.
+
+In Make, some functions treat commas verbatim instead of argument separators.
+For example, $(shell echo hello, world) runs the command "echo hello, world".
+Likewise, $(info hello, world) prints "hello, world" to stdout. You could say
+this is _useful_ inconsistency.
+
+In Kconfig, for simpler implementation and grammatical consistency, commas that
+appear in the $( ) context are always delimiters. It means
+
+ $(shell, echo hello, world)
+
+is an error because it is passing two parameters where the 'shell' function
+accepts only one. To pass commas in arguments, you can use the following trick:
+
+ comma := ,
+ $(shell, echo hello$(comma) world)
+
+
+Caveats
+-------
+
+A variable (or function) cannot be expanded across tokens. So, you cannot use
+a variable as a shorthand for an expression that consists of multiple tokens.
+The following works:
+
+ RANGE_MIN := 1
+ RANGE_MAX := 3
+
+ config FOO
+ int "foo"
+ range $(RANGE_MIN) $(RANGE_MAX)
+
+But, the following does not work:
+
+ RANGES := 1 3
+
+ config FOO
+ int "foo"
+ range $(RANGES)
+
+A variable cannot be expanded to any keyword in Kconfig. The following does
+not work:
+
+ MY_TYPE := tristate
+
+ config FOO
+ $(MY_TYPE) "foo"
+ default y
+
+Obviously from the design, $(shell command) is expanded in the textual
+substitution phase. You cannot pass symbols to the 'shell' function.
+The following does not work as expected.
+
+ config ENDIAN_FLAG
+ string
+ default "-mbig-endian" if CPU_BIG_ENDIAN
+ default "-mlittle-endian" if CPU_LITTLE_ENDIAN
+
+ config CC_HAS_ENDIAN_FLAG
+ def_bool $(shell $(srctree)/scripts/gcc-check-flag ENDIAN_FLAG)
+
+Instead, you can do like follows so that any function call is statically
+expanded.
+
+ config CC_HAS_ENDIAN_FLAG
+ bool
+ default $(shell $(srctree)/scripts/gcc-check-flag -mbig-endian) if CPU_BIG_ENDIAN
+ default $(shell $(srctree)/scripts/gcc-check-flag -mlittle-endian) if CPU_LITTLE_ENDIAN
diff --git a/Documentation/livepatch/livepatch.txt b/Documentation/livepatch/livepatch.txt
index 1ae2de75..2d7ed09 100644
--- a/Documentation/livepatch/livepatch.txt
+++ b/Documentation/livepatch/livepatch.txt
@@ -429,30 +429,6 @@ See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.
The current Livepatch implementation has several limitations:
-
- + The patch must not change the semantic of the patched functions.
-
- The current implementation guarantees only that either the old
- or the new function is called. The functions are patched one
- by one. It means that the patch must _not_ change the semantic
- of the function.
-
-
- + Data structures can not be patched.
-
- There is no support to version data structures or anyhow migrate
- one structure into another. Also the simple consistency model does
- not allow to switch more functions atomically.
-
- Once there is more complex consistency mode, it will be possible to
- use some workarounds. For example, it will be possible to use a hole
- for a new member because the data structure is aligned. Or it will
- be possible to use an existing member for something else.
-
- There are no plans to add more generic support for modified structures
- at the moment.
-
-
+ Only functions that can be traced could be patched.
Livepatch is based on the dynamic ftrace. In particular, functions
diff --git a/Documentation/media/kapi/cec-core.rst b/Documentation/media/kapi/cec-core.rst
index a9f53f0..1d989c5 100644
--- a/Documentation/media/kapi/cec-core.rst
+++ b/Documentation/media/kapi/cec-core.rst
@@ -246,7 +246,10 @@ CEC_TX_STATUS_LOW_DRIVE:
CEC_TX_STATUS_ERROR:
some unspecified error occurred: this can be one of ARB_LOST
or LOW_DRIVE if the hardware cannot differentiate or something
- else entirely.
+ else entirely. Some hardware only supports OK and FAIL as the
+ result of a transmit, i.e. there is no way to differentiate
+ between the different possible errors. In that case map FAIL
+ to CEC_TX_STATUS_NACK and not to CEC_TX_STATUS_ERROR.
CEC_TX_STATUS_MAX_RETRIES:
could not transmit the message after trying multiple times.
diff --git a/Documentation/media/uapi/cec/cec-ioc-receive.rst b/Documentation/media/uapi/cec/cec-ioc-receive.rst
index bdad4b1..e964074c 100644
--- a/Documentation/media/uapi/cec/cec-ioc-receive.rst
+++ b/Documentation/media/uapi/cec/cec-ioc-receive.rst
@@ -231,26 +231,32 @@ View On' messages from initiator 0xf ('Unregistered') to destination 0 ('TV').
- ``CEC_TX_STATUS_OK``
- 0x01
- The message was transmitted successfully. This is mutually
- exclusive with :ref:`CEC_TX_STATUS_MAX_RETRIES <CEC-TX-STATUS-MAX-RETRIES>`. Other bits can still
- be set if earlier attempts met with failure before the transmit
- was eventually successful.
+ exclusive with :ref:`CEC_TX_STATUS_MAX_RETRIES <CEC-TX-STATUS-MAX-RETRIES>`.
+ Other bits can still be set if earlier attempts met with failure before
+ the transmit was eventually successful.
* .. _`CEC-TX-STATUS-ARB-LOST`:
- ``CEC_TX_STATUS_ARB_LOST``
- 0x02
- - CEC line arbitration was lost.
+ - CEC line arbitration was lost, i.e. another transmit started at the
+ same time with a higher priority. Optional status, not all hardware
+ can detect this error condition.
* .. _`CEC-TX-STATUS-NACK`:
- ``CEC_TX_STATUS_NACK``
- 0x04
- - Message was not acknowledged.
+ - Message was not acknowledged. Note that some hardware cannot tell apart
+ a 'Not Acknowledged' status from other error conditions, i.e. the result
+ of a transmit is just OK or FAIL. In that case this status will be
+ returned when the transmit failed.
* .. _`CEC-TX-STATUS-LOW-DRIVE`:
- ``CEC_TX_STATUS_LOW_DRIVE``
- 0x08
- Low drive was detected on the CEC bus. This indicates that a
follower detected an error on the bus and requests a
- retransmission.
+ retransmission. Optional status, not all hardware can detect this
+ error condition.
* .. _`CEC-TX-STATUS-ERROR`:
- ``CEC_TX_STATUS_ERROR``
@@ -258,14 +264,14 @@ View On' messages from initiator 0xf ('Unregistered') to destination 0 ('TV').
- Some error occurred. This is used for any errors that do not fit
``CEC_TX_STATUS_ARB_LOST`` or ``CEC_TX_STATUS_LOW_DRIVE``, either because
the hardware could not tell which error occurred, or because the hardware
- tested for other conditions besides those two.
+ tested for other conditions besides those two. Optional status.
* .. _`CEC-TX-STATUS-MAX-RETRIES`:
- ``CEC_TX_STATUS_MAX_RETRIES``
- 0x20
- The transmit failed after one or more retries. This status bit is
- mutually exclusive with :ref:`CEC_TX_STATUS_OK <CEC-TX-STATUS-OK>`. Other bits can still
- be set to explain which failures were seen.
+ mutually exclusive with :ref:`CEC_TX_STATUS_OK <CEC-TX-STATUS-OK>`.
+ Other bits can still be set to explain which failures were seen.
.. tabularcolumns:: |p{5.6cm}|p{0.9cm}|p{11.0cm}|
diff --git a/Documentation/media/uapi/dvb/dvbapi.rst b/Documentation/media/uapi/dvb/dvbapi.rst
index 18c86b3..89ddca3 100644
--- a/Documentation/media/uapi/dvb/dvbapi.rst
+++ b/Documentation/media/uapi/dvb/dvbapi.rst
@@ -62,7 +62,7 @@ Authors:
- Original author of the Digital TV API documentation.
-- Carvalho Chehab, Mauro <m.chehab@kernel.org>
+- Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>
- Ported document to Docbook XML, addition of DVBv5 API, documentation gaps fix.
diff --git a/Documentation/media/uapi/rc/lirc-dev-intro.rst b/Documentation/media/uapi/rc/lirc-dev-intro.rst
index 698e4f8..11516c8 100644
--- a/Documentation/media/uapi/rc/lirc-dev-intro.rst
+++ b/Documentation/media/uapi/rc/lirc-dev-intro.rst
@@ -18,7 +18,7 @@ Example dmesg output upon a driver registering w/LIRC:
.. code-block:: none
$ dmesg |grep lirc_dev
- rc rc0: lirc_dev: driver mceusb registered at minor = 0
+ rc rc0: lirc_dev: driver mceusb registered at minor = 0, raw IR receiver, raw IR transmitter
What you should see for a chardev:
diff --git a/Documentation/media/uapi/rc/lirc-set-rec-timeout.rst b/Documentation/media/uapi/rc/lirc-set-rec-timeout.rst
index b3e16bb..a833a6a 100644
--- a/Documentation/media/uapi/rc/lirc-set-rec-timeout.rst
+++ b/Documentation/media/uapi/rc/lirc-set-rec-timeout.rst
@@ -1,19 +1,23 @@
.. -*- coding: utf-8; mode: rst -*-
.. _lirc_set_rec_timeout:
+.. _lirc_get_rec_timeout:
-**************************
-ioctl LIRC_SET_REC_TIMEOUT
-**************************
+***************************************************
+ioctl LIRC_GET_REC_TIMEOUT and LIRC_SET_REC_TIMEOUT
+***************************************************
Name
====
-LIRC_SET_REC_TIMEOUT - sets the integer value for IR inactivity timeout.
+LIRC_GET_REC_TIMEOUT/LIRC_SET_REC_TIMEOUT - Get/set the integer value for IR inactivity timeout.
Synopsis
========
+.. c:function:: int ioctl( int fd, LIRC_GET_REC_TIMEOUT, __u32 *timeout )
+ :name: LIRC_GET_REC_TIMEOUT
+
.. c:function:: int ioctl( int fd, LIRC_SET_REC_TIMEOUT, __u32 *timeout )
:name: LIRC_SET_REC_TIMEOUT
@@ -30,7 +34,7 @@ Arguments
Description
===========
-Sets the integer value for IR inactivity timeout.
+Get and set the integer value for IR inactivity timeout.
If supported by the hardware, setting it to 0 disables all hardware timeouts
and data should be reported as soon as possible. If the exact value
diff --git a/Documentation/media/uapi/v4l/common.rst b/Documentation/media/uapi/v4l/common.rst
index 13f2ed3..5f93e71 100644
--- a/Documentation/media/uapi/v4l/common.rst
+++ b/Documentation/media/uapi/v4l/common.rst
@@ -41,6 +41,6 @@ applicable to all devices.
extended-controls
format
planar-apis
- crop
selection-api
+ crop
streaming-par
diff --git a/Documentation/media/uapi/v4l/crop.rst b/Documentation/media/uapi/v4l/crop.rst
index 182565b..45e8a89 100644
--- a/Documentation/media/uapi/v4l/crop.rst
+++ b/Documentation/media/uapi/v4l/crop.rst
@@ -2,9 +2,18 @@
.. _crop:
-*************************************
-Image Cropping, Insertion and Scaling
-*************************************
+*****************************************************
+Image Cropping, Insertion and Scaling -- the CROP API
+*****************************************************
+
+.. note::
+
+ The CROP API is mostly superseded by the newer :ref:`SELECTION API
+ <selection-api>`. The new API should be preferred in most cases,
+ with the exception of pixel aspect ratio detection, which is
+ implemented by :ref:`VIDIOC_CROPCAP <VIDIOC_CROPCAP>` and has no
+ equivalent in the SELECTION API. See :ref:`selection-vs-crop` for a
+ comparison of the two APIs.
Some video capture devices can sample a subsection of the picture and
shrink or enlarge it to an image of arbitrary size. We call these
@@ -42,10 +51,9 @@ where applicable) will be fixed in this case.
.. note::
- All capture and output devices must support the
- :ref:`VIDIOC_CROPCAP <VIDIOC_CROPCAP>` ioctl such that applications
- can determine if scaling takes place.
-
+ All capture and output devices that support the CROP or SELECTION
+ API will also support the :ref:`VIDIOC_CROPCAP <VIDIOC_CROPCAP>`
+ ioctl.
Cropping Structures
===================
diff --git a/Documentation/media/uapi/v4l/selection-api-005.rst b/Documentation/media/uapi/v4l/selection-api-005.rst
deleted file mode 100644
index 5b47a28..0000000
--- a/Documentation/media/uapi/v4l/selection-api-005.rst
+++ /dev/null
@@ -1,34 +0,0 @@
-.. -*- coding: utf-8; mode: rst -*-
-
-********************************
-Comparison with old cropping API
-********************************
-
-The selection API was introduced to cope with deficiencies of previous
-:ref:`API <crop>`, that was designed to control simple capture
-devices. Later the cropping API was adopted by video output drivers. The
-ioctls are used to select a part of the display were the video signal is
-inserted. It should be considered as an API abuse because the described
-operation is actually the composing. The selection API makes a clear
-distinction between composing and cropping operations by setting the
-appropriate targets. The V4L2 API lacks any support for composing to and
-cropping from an image inside a memory buffer. The application could
-configure a capture device to fill only a part of an image by abusing
-V4L2 API. Cropping a smaller image from a larger one is achieved by
-setting the field ``bytesperline`` at struct
-:c:type:`v4l2_pix_format`.
-Introducing an image offsets could be done by modifying field ``m_userptr``
-at struct
-:c:type:`v4l2_buffer` before calling
-:ref:`VIDIOC_QBUF`. Those operations should be avoided because they are not
-portable (endianness), and do not work for macroblock and Bayer formats
-and mmap buffers. The selection API deals with configuration of buffer
-cropping/composing in a clear, intuitive and portable way. Next, with
-the selection API the concepts of the padded target and constraints
-flags are introduced. Finally, struct :c:type:`v4l2_crop`
-and struct :c:type:`v4l2_cropcap` have no reserved
-fields. Therefore there is no way to extend their functionality. The new
-struct :c:type:`v4l2_selection` provides a lot of place
-for future extensions. Driver developers are encouraged to implement
-only selection API. The former cropping API would be simulated using the
-new one.
diff --git a/Documentation/media/uapi/v4l/selection-api-004.rst b/Documentation/media/uapi/v4l/selection-api-configuration.rst
index d782cd5..0a4ddc2 100644
--- a/Documentation/media/uapi/v4l/selection-api-004.rst
+++ b/Documentation/media/uapi/v4l/selection-api-configuration.rst
@@ -41,7 +41,7 @@ The driver may further adjust the requested size and/or position
according to hardware limitations.
Each capture device has a default source rectangle, given by the
-``V4L2_SEL_TGT_CROP_DEFAULT`` target. This rectangle shall over what the
+``V4L2_SEL_TGT_CROP_DEFAULT`` target. This rectangle shall cover what the
driver writer considers the complete picture. Drivers shall set the
active crop rectangle to the default when the driver is first loaded,
but not later.
diff --git a/Documentation/media/uapi/v4l/selection-api-006.rst b/Documentation/media/uapi/v4l/selection-api-examples.rst
index 67e0e9a..67e0e9a 100644
--- a/Documentation/media/uapi/v4l/selection-api-006.rst
+++ b/Documentation/media/uapi/v4l/selection-api-examples.rst
diff --git a/Documentation/media/uapi/v4l/selection-api-002.rst b/Documentation/media/uapi/v4l/selection-api-intro.rst
index 09ca93f..09ca93f 100644
--- a/Documentation/media/uapi/v4l/selection-api-002.rst
+++ b/Documentation/media/uapi/v4l/selection-api-intro.rst
diff --git a/Documentation/media/uapi/v4l/selection-api-003.rst b/Documentation/media/uapi/v4l/selection-api-targets.rst
index bf7e76d..bf7e76d 100644
--- a/Documentation/media/uapi/v4l/selection-api-003.rst
+++ b/Documentation/media/uapi/v4l/selection-api-targets.rst
diff --git a/Documentation/media/uapi/v4l/selection-api-vs-crop-api.rst b/Documentation/media/uapi/v4l/selection-api-vs-crop-api.rst
new file mode 100644
index 0000000..e7455fb
--- /dev/null
+++ b/Documentation/media/uapi/v4l/selection-api-vs-crop-api.rst
@@ -0,0 +1,39 @@
+.. -*- coding: utf-8; mode: rst -*-
+
+.. _selection-vs-crop:
+
+********************************
+Comparison with old cropping API
+********************************
+
+The selection API was introduced to cope with deficiencies of the
+older :ref:`CROP API <crop>`, that was designed to control simple
+capture devices. Later the cropping API was adopted by video output
+drivers. The ioctls are used to select a part of the display were the
+video signal is inserted. It should be considered as an API abuse
+because the described operation is actually the composing. The
+selection API makes a clear distinction between composing and cropping
+operations by setting the appropriate targets.
+
+The CROP API lacks any support for composing to and cropping from an
+image inside a memory buffer. The application could configure a
+capture device to fill only a part of an image by abusing V4L2
+API. Cropping a smaller image from a larger one is achieved by setting
+the field ``bytesperline`` at struct :c:type:`v4l2_pix_format`.
+Introducing an image offsets could be done by modifying field
+``m_userptr`` at struct :c:type:`v4l2_buffer` before calling
+:ref:`VIDIOC_QBUF <VIDIOC_QBUF>`. Those operations should be avoided
+because they are not portable (endianness), and do not work for
+macroblock and Bayer formats and mmap buffers.
+
+The selection API deals with configuration of buffer
+cropping/composing in a clear, intuitive and portable way. Next, with
+the selection API the concepts of the padded target and constraints
+flags are introduced. Finally, struct :c:type:`v4l2_crop` and struct
+:c:type:`v4l2_cropcap` have no reserved fields. Therefore there is no
+way to extend their functionality. The new struct
+:c:type:`v4l2_selection` provides a lot of place for future
+extensions.
+
+Driver developers are encouraged to implement only selection API. The
+former cropping API would be simulated using the new one.
diff --git a/Documentation/media/uapi/v4l/selection-api.rst b/Documentation/media/uapi/v4l/selection-api.rst
index 81ea52d..390233f 100644
--- a/Documentation/media/uapi/v4l/selection-api.rst
+++ b/Documentation/media/uapi/v4l/selection-api.rst
@@ -2,15 +2,15 @@
.. _selection-api:
-API for cropping, composing and scaling
-=======================================
+Cropping, composing and scaling -- the SELECTION API
+====================================================
.. toctree::
:maxdepth: 1
- selection-api-002
- selection-api-003
- selection-api-004
- selection-api-005
- selection-api-006
+ selection-api-intro.rst
+ selection-api-targets.rst
+ selection-api-configuration.rst
+ selection-api-vs-crop-api.rst
+ selection-api-examples.rst
diff --git a/Documentation/media/uapi/v4l/selection.svg b/Documentation/media/uapi/v4l/selection.svg
index a93e3b5..911062b 100644
--- a/Documentation/media/uapi/v4l/selection.svg
+++ b/Documentation/media/uapi/v4l/selection.svg
@@ -1128,11 +1128,11 @@
</text>
</g>
<text transform="matrix(.96106 0 0 1.0405 48.571 195.53)" x="2438.062" y="1368.429" enable-background="new" font-size="50" style="line-height:125%">
- <tspan x="2438.062" y="1368.429">COMPOSE_BONDS</tspan>
+ <tspan x="2438.062" y="1368.429">COMPOSE_BOUNDS</tspan>
</text>
<g font-size="40">
<text transform="translate(48.571 195.53)" x="8.082" y="1438.896" enable-background="new" style="line-height:125%">
- <tspan x="8.082" y="1438.896" font-size="50">CROP_BONDS</tspan>
+ <tspan x="8.082" y="1438.896" font-size="50">CROP_BOUNDS</tspan>
</text>
<text transform="translate(48.571 195.53)" x="1455.443" y="-26.808" enable-background="new" style="line-height:125%">
<tspan x="1455.443" y="-26.808" font-size="50">overscan area</tspan>
diff --git a/Documentation/media/uapi/v4l/v4l2.rst b/Documentation/media/uapi/v4l/v4l2.rst
index 2128717..b89e562 100644
--- a/Documentation/media/uapi/v4l/v4l2.rst
+++ b/Documentation/media/uapi/v4l/v4l2.rst
@@ -45,7 +45,7 @@ Authors, in alphabetical order:
- Subdev selections API.
-- Carvalho Chehab, Mauro <m.chehab@kernel.org>
+- Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>
- Documented libv4l, designed and added v4l2grab example, Remote Controller chapter.
diff --git a/Documentation/media/v4l-drivers/cx23885-cardlist.rst b/Documentation/media/v4l-drivers/cx23885-cardlist.rst
index 3129ef0..8c24df8 100644
--- a/Documentation/media/v4l-drivers/cx23885-cardlist.rst
+++ b/Documentation/media/v4l-drivers/cx23885-cardlist.rst
@@ -186,7 +186,7 @@ cx23885 cards list
* - 43
- Hauppauge ImpactVCB-e
- - 0070:7133
+ - 0070:7133, 0070:7137
* - 44
- DViCO FusionHDTV DVB-T Dual Express2
@@ -243,3 +243,19 @@ cx23885 cards list
* - 57
- Hauppauge WinTV-QuadHD-ATSC
- 0070:6a18, 0070:6b18
+
+ * - 58
+ - Hauppauge WinTV-HVR-1265(161111)
+ - 0070:2a18
+
+ * - 59
+ - Hauppauge WinTV-Starburst2
+ - 0070:f02a
+
+ * - 60
+ - Hauppauge WinTV-QuadHD-DVB(885)
+ -
+
+ * - 61
+ - Hauppauge WinTV-QuadHD-ATSC(885)
+ -
diff --git a/Documentation/media/v4l-drivers/em28xx-cardlist.rst b/Documentation/media/v4l-drivers/em28xx-cardlist.rst
index ec938c0..dfe882c 100644
--- a/Documentation/media/v4l-drivers/em28xx-cardlist.rst
+++ b/Documentation/media/v4l-drivers/em28xx-cardlist.rst
@@ -391,7 +391,7 @@ EM28xx cards list
* - 94
- PCTV tripleStick (292e)
- em28178
- - 2013:025f, 2040:0264
+ - 2013:025f, 2013:0264, 2040:0264, 2040:8264, 2040:8268, 2040:8268
* - 95
- Leadtek VC100
- em2861
@@ -411,12 +411,16 @@ EM28xx cards list
* - 99
- Hauppauge WinTV-dualHD DVB
- em28174
- - 2040:0265
+ - 2040:0265, 2040:8265
* - 100
- Hauppauge WinTV-dualHD 01595 ATSC/QAM
- em28174
- - 2040:026d
+ - 2040:026d, 2040:826d
* - 101
- Terratec Cinergy H6 rev. 2
- em2884
- 0ccd:10b2
+ * - 102
+ - :ZOLID HYBRID TV STICK
+ - em2882
+ -
diff --git a/Documentation/misc-devices/ibmvmc.rst b/Documentation/misc-devices/ibmvmc.rst
new file mode 100644
index 0000000..46ded79
--- /dev/null
+++ b/Documentation/misc-devices/ibmvmc.rst
@@ -0,0 +1,226 @@
+.. SPDX-License-Identifier: GPL-2.0+
+======================================================
+IBM Virtual Management Channel Kernel Driver (IBMVMC)
+======================================================
+
+:Authors:
+ Dave Engebretsen <engebret@us.ibm.com>,
+ Adam Reznechek <adreznec@linux.vnet.ibm.com>,
+ Steven Royer <seroyer@linux.vnet.ibm.com>,
+ Bryant G. Ly <bryantly@linux.vnet.ibm.com>,
+
+Introduction
+============
+
+Note: Knowledge of virtualization technology is required to understand
+this document.
+
+A good reference document would be:
+
+https://openpowerfoundation.org/wp-content/uploads/2016/05/LoPAPR_DRAFT_v11_24March2016_cmt1.pdf
+
+The Virtual Management Channel (VMC) is a logical device which provides an
+interface between the hypervisor and a management partition. This interface
+is like a message passing interface. This management partition is intended
+to provide an alternative to systems that use a Hardware Management
+Console (HMC) - based system management.
+
+The primary hardware management solution that is developed by IBM relies
+on an appliance server named the Hardware Management Console (HMC),
+packaged as an external tower or rack-mounted personal computer. In a
+Power Systems environment, a single HMC can manage multiple POWER
+processor-based systems.
+
+Management Application
+----------------------
+
+In the management partition, a management application exists which enables
+a system administrator to configure the system’s partitioning
+characteristics via a command line interface (CLI) or Representational
+State Transfer Application (REST API's).
+
+The management application runs on a Linux logical partition on a
+POWER8 or newer processor-based server that is virtualized by PowerVM.
+System configuration, maintenance, and control functions which
+traditionally require an HMC can be implemented in the management
+application using a combination of HMC to hypervisor interfaces and
+existing operating system methods. This tool provides a subset of the
+functions implemented by the HMC and enables basic partition configuration.
+The set of HMC to hypervisor messages supported by the management
+application component are passed to the hypervisor over a VMC interface,
+which is defined below.
+
+The VMC enables the management partition to provide basic partitioning
+functions:
+
+- Logical Partitioning Configuration
+- Start, and stop actions for individual partitions
+- Display of partition status
+- Management of virtual Ethernet
+- Management of virtual Storage
+- Basic system management
+
+Virtual Management Channel (VMC)
+--------------------------------
+
+A logical device, called the Virtual Management Channel (VMC), is defined
+for communicating between the management application and the hypervisor. It
+basically creates the pipes that enable virtualization management
+software. This device is presented to a designated management partition as
+a virtual device.
+
+This communication device uses Command/Response Queue (CRQ) and the
+Remote Direct Memory Access (RDMA) interfaces. A three-way handshake is
+defined that must take place to establish that both the hypervisor and
+management partition sides of the channel are running prior to
+sending/receiving any of the protocol messages.
+
+This driver also utilizes Transport Event CRQs. CRQ messages are sent
+when the hypervisor detects one of the peer partitions has abnormally
+terminated, or one side has called H_FREE_CRQ to close their CRQ.
+Two new classes of CRQ messages are introduced for the VMC device. VMC
+Administrative messages are used for each partition using the VMC to
+communicate capabilities to their partner. HMC Interface messages are used
+for the actual flow of HMC messages between the management partition and
+the hypervisor. As most HMC messages far exceed the size of a CRQ buffer,
+a virtual DMA (RMDA) of the HMC message data is done prior to each HMC
+Interface CRQ message. Only the management partition drives RDMA
+operations; hypervisors never directly cause the movement of message data.
+
+
+Terminology
+-----------
+RDMA
+ Remote Direct Memory Access is DMA transfer from the server to its
+ client or from the server to its partner partition. DMA refers
+ to both physical I/O to and from memory operations and to memory
+ to memory move operations.
+CRQ
+ Command/Response Queue a facility which is used to communicate
+ between partner partitions. Transport events which are signaled
+ from the hypervisor to partition are also reported in this queue.
+
+Example Management Partition VMC Driver Interface
+=================================================
+
+This section provides an example for the management application
+implementation where a device driver is used to interface to the VMC
+device. This driver consists of a new device, for example /dev/ibmvmc,
+which provides interfaces to open, close, read, write, and perform
+ioctl’s against the VMC device.
+
+VMC Interface Initialization
+----------------------------
+
+The device driver is responsible for initializing the VMC when the driver
+is loaded. It first creates and initializes the CRQ. Next, an exchange of
+VMC capabilities is performed to indicate the code version and number of
+resources available in both the management partition and the hypervisor.
+Finally, the hypervisor requests that the management partition create an
+initial pool of VMC buffers, one buffer for each possible HMC connection,
+which will be used for management application session initialization.
+Prior to completion of this initialization sequence, the device returns
+EBUSY to open() calls. EIO is returned for all open() failures.
+
+::
+
+ Management Partition Hypervisor
+ CRQ INIT
+ ---------------------------------------->
+ CRQ INIT COMPLETE
+ <----------------------------------------
+ CAPABILITIES
+ ---------------------------------------->
+ CAPABILITIES RESPONSE
+ <----------------------------------------
+ ADD BUFFER (HMC IDX=0,1,..) _
+ <---------------------------------------- |
+ ADD BUFFER RESPONSE | - Perform # HMCs Iterations
+ ----------------------------------------> -
+
+VMC Interface Open
+------------------
+
+After the basic VMC channel has been initialized, an HMC session level
+connection can be established. The application layer performs an open() to
+the VMC device and executes an ioctl() against it, indicating the HMC ID
+(32 bytes of data) for this session. If the VMC device is in an invalid
+state, EIO will be returned for the ioctl(). The device driver creates a
+new HMC session value (ranging from 1 to 255) and HMC index value (starting
+at index 0 and ranging to 254) for this HMC ID. The driver then does an
+RDMA of the HMC ID to the hypervisor, and then sends an Interface Open
+message to the hypervisor to establish the session over the VMC. After the
+hypervisor receives this information, it sends Add Buffer messages to the
+management partition to seed an initial pool of buffers for the new HMC
+connection. Finally, the hypervisor sends an Interface Open Response
+message, to indicate that it is ready for normal runtime messaging. The
+following illustrates this VMC flow:
+
+::
+
+ Management Partition Hypervisor
+ RDMA HMC ID
+ ---------------------------------------->
+ Interface Open
+ ---------------------------------------->
+ Add Buffer _
+ <---------------------------------------- |
+ Add Buffer Response | - Perform N Iterations
+ ----------------------------------------> -
+ Interface Open Response
+ <----------------------------------------
+
+VMC Interface Runtime
+---------------------
+
+During normal runtime, the management application and the hypervisor
+exchange HMC messages via the Signal VMC message and RDMA operations. When
+sending data to the hypervisor, the management application performs a
+write() to the VMC device, and the driver RDMA’s the data to the hypervisor
+and then sends a Signal Message. If a write() is attempted before VMC
+device buffers have been made available by the hypervisor, or no buffers
+are currently available, EBUSY is returned in response to the write(). A
+write() will return EIO for all other errors, such as an invalid device
+state. When the hypervisor sends a message to the management, the data is
+put into a VMC buffer and an Signal Message is sent to the VMC driver in
+the management partition. The driver RDMA’s the buffer into the partition
+and passes the data up to the appropriate management application via a
+read() to the VMC device. The read() request blocks if there is no buffer
+available to read. The management application may use select() to wait for
+the VMC device to become ready with data to read.
+
+::
+
+ Management Partition Hypervisor
+ MSG RDMA
+ ---------------------------------------->
+ SIGNAL MSG
+ ---------------------------------------->
+ SIGNAL MSG
+ <----------------------------------------
+ MSG RDMA
+ <----------------------------------------
+
+VMC Interface Close
+-------------------
+
+HMC session level connections are closed by the management partition when
+the application layer performs a close() against the device. This action
+results in an Interface Close message flowing to the hypervisor, which
+causes the session to be terminated. The device driver must free any
+storage allocated for buffers for this HMC connection.
+
+::
+
+ Management Partition Hypervisor
+ INTERFACE CLOSE
+ ---------------------------------------->
+ INTERFACE CLOSE RESPONSE
+ <----------------------------------------
+
+Additional Information
+======================
+
+For more information on the documentation for CRQ Messages, VMC Messages,
+HMC interface Buffers, and signal messages please refer to the Linux on
+Power Architecture Platform Reference. Section F.
diff --git a/Documentation/networking/6lowpan.txt b/Documentation/networking/6lowpan.txt
index a7dc7e9..2e5a939 100644
--- a/Documentation/networking/6lowpan.txt
+++ b/Documentation/networking/6lowpan.txt
@@ -24,10 +24,10 @@ enum lowpan_lltypes.
Example to evaluate the private usually you can do:
-static inline sturct lowpan_priv_foobar *
+static inline struct lowpan_priv_foobar *
lowpan_foobar_priv(struct net_device *dev)
{
- return (sturct lowpan_priv_foobar *)lowpan_priv(dev)->priv;
+ return (struct lowpan_priv_foobar *)lowpan_priv(dev)->priv;
}
switch (dev->type) {
diff --git a/Documentation/networking/af_xdp.rst b/Documentation/networking/af_xdp.rst
new file mode 100644
index 0000000..ff929cf
--- /dev/null
+++ b/Documentation/networking/af_xdp.rst
@@ -0,0 +1,312 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======
+AF_XDP
+======
+
+Overview
+========
+
+AF_XDP is an address family that is optimized for high performance
+packet processing.
+
+This document assumes that the reader is familiar with BPF and XDP. If
+not, the Cilium project has an excellent reference guide at
+http://cilium.readthedocs.io/en/latest/bpf/.
+
+Using the XDP_REDIRECT action from an XDP program, the program can
+redirect ingress frames to other XDP enabled netdevs, using the
+bpf_redirect_map() function. AF_XDP sockets enable the possibility for
+XDP programs to redirect frames to a memory buffer in a user-space
+application.
+
+An AF_XDP socket (XSK) is created with the normal socket()
+syscall. Associated with each XSK are two rings: the RX ring and the
+TX ring. A socket can receive packets on the RX ring and it can send
+packets on the TX ring. These rings are registered and sized with the
+setsockopts XDP_RX_RING and XDP_TX_RING, respectively. It is mandatory
+to have at least one of these rings for each socket. An RX or TX
+descriptor ring points to a data buffer in a memory area called a
+UMEM. RX and TX can share the same UMEM so that a packet does not have
+to be copied between RX and TX. Moreover, if a packet needs to be kept
+for a while due to a possible retransmit, the descriptor that points
+to that packet can be changed to point to another and reused right
+away. This again avoids copying data.
+
+The UMEM consists of a number of equally sized chunks. A descriptor in
+one of the rings references a frame by referencing its addr. The addr
+is simply an offset within the entire UMEM region. The user space
+allocates memory for this UMEM using whatever means it feels is most
+appropriate (malloc, mmap, huge pages, etc). This memory area is then
+registered with the kernel using the new setsockopt XDP_UMEM_REG. The
+UMEM also has two rings: the FILL ring and the COMPLETION ring. The
+fill ring is used by the application to send down addr for the kernel
+to fill in with RX packet data. References to these frames will then
+appear in the RX ring once each packet has been received. The
+completion ring, on the other hand, contains frame addr that the
+kernel has transmitted completely and can now be used again by user
+space, for either TX or RX. Thus, the frame addrs appearing in the
+completion ring are addrs that were previously transmitted using the
+TX ring. In summary, the RX and FILL rings are used for the RX path
+and the TX and COMPLETION rings are used for the TX path.
+
+The socket is then finally bound with a bind() call to a device and a
+specific queue id on that device, and it is not until bind is
+completed that traffic starts to flow.
+
+The UMEM can be shared between processes, if desired. If a process
+wants to do this, it simply skips the registration of the UMEM and its
+corresponding two rings, sets the XDP_SHARED_UMEM flag in the bind
+call and submits the XSK of the process it would like to share UMEM
+with as well as its own newly created XSK socket. The new process will
+then receive frame addr references in its own RX ring that point to
+this shared UMEM. Note that since the ring structures are
+single-consumer / single-producer (for performance reasons), the new
+process has to create its own socket with associated RX and TX rings,
+since it cannot share this with the other process. This is also the
+reason that there is only one set of FILL and COMPLETION rings per
+UMEM. It is the responsibility of a single process to handle the UMEM.
+
+How is then packets distributed from an XDP program to the XSKs? There
+is a BPF map called XSKMAP (or BPF_MAP_TYPE_XSKMAP in full). The
+user-space application can place an XSK at an arbitrary place in this
+map. The XDP program can then redirect a packet to a specific index in
+this map and at this point XDP validates that the XSK in that map was
+indeed bound to that device and ring number. If not, the packet is
+dropped. If the map is empty at that index, the packet is also
+dropped. This also means that it is currently mandatory to have an XDP
+program loaded (and one XSK in the XSKMAP) to be able to get any
+traffic to user space through the XSK.
+
+AF_XDP can operate in two different modes: XDP_SKB and XDP_DRV. If the
+driver does not have support for XDP, or XDP_SKB is explicitly chosen
+when loading the XDP program, XDP_SKB mode is employed that uses SKBs
+together with the generic XDP support and copies out the data to user
+space. A fallback mode that works for any network device. On the other
+hand, if the driver has support for XDP, it will be used by the AF_XDP
+code to provide better performance, but there is still a copy of the
+data into user space.
+
+Concepts
+========
+
+In order to use an AF_XDP socket, a number of associated objects need
+to be setup.
+
+Jonathan Corbet has also written an excellent article on LWN,
+"Accelerating networking with AF_XDP". It can be found at
+https://lwn.net/Articles/750845/.
+
+UMEM
+----
+
+UMEM is a region of virtual contiguous memory, divided into
+equal-sized frames. An UMEM is associated to a netdev and a specific
+queue id of that netdev. It is created and configured (chunk size,
+headroom, start address and size) by using the XDP_UMEM_REG setsockopt
+system call. A UMEM is bound to a netdev and queue id, via the bind()
+system call.
+
+An AF_XDP is socket linked to a single UMEM, but one UMEM can have
+multiple AF_XDP sockets. To share an UMEM created via one socket A,
+the next socket B can do this by setting the XDP_SHARED_UMEM flag in
+struct sockaddr_xdp member sxdp_flags, and passing the file descriptor
+of A to struct sockaddr_xdp member sxdp_shared_umem_fd.
+
+The UMEM has two single-producer/single-consumer rings, that are used
+to transfer ownership of UMEM frames between the kernel and the
+user-space application.
+
+Rings
+-----
+
+There are a four different kind of rings: Fill, Completion, RX and
+TX. All rings are single-producer/single-consumer, so the user-space
+application need explicit synchronization of multiple
+processes/threads are reading/writing to them.
+
+The UMEM uses two rings: Fill and Completion. Each socket associated
+with the UMEM must have an RX queue, TX queue or both. Say, that there
+is a setup with four sockets (all doing TX and RX). Then there will be
+one Fill ring, one Completion ring, four TX rings and four RX rings.
+
+The rings are head(producer)/tail(consumer) based rings. A producer
+writes the data ring at the index pointed out by struct xdp_ring
+producer member, and increasing the producer index. A consumer reads
+the data ring at the index pointed out by struct xdp_ring consumer
+member, and increasing the consumer index.
+
+The rings are configured and created via the _RING setsockopt system
+calls and mmapped to user-space using the appropriate offset to mmap()
+(XDP_PGOFF_RX_RING, XDP_PGOFF_TX_RING, XDP_UMEM_PGOFF_FILL_RING and
+XDP_UMEM_PGOFF_COMPLETION_RING).
+
+The size of the rings need to be of size power of two.
+
+UMEM Fill Ring
+~~~~~~~~~~~~~~
+
+The Fill ring is used to transfer ownership of UMEM frames from
+user-space to kernel-space. The UMEM addrs are passed in the ring. As
+an example, if the UMEM is 64k and each chunk is 4k, then the UMEM has
+16 chunks and can pass addrs between 0 and 64k.
+
+Frames passed to the kernel are used for the ingress path (RX rings).
+
+The user application produces UMEM addrs to this ring. Note that the
+kernel will mask the incoming addr. E.g. for a chunk size of 2k, the
+log2(2048) LSB of the addr will be masked off, meaning that 2048, 2050
+and 3000 refers to the same chunk.
+
+
+UMEM Completetion Ring
+~~~~~~~~~~~~~~~~~~~~~~
+
+The Completion Ring is used transfer ownership of UMEM frames from
+kernel-space to user-space. Just like the Fill ring, UMEM indicies are
+used.
+
+Frames passed from the kernel to user-space are frames that has been
+sent (TX ring) and can be used by user-space again.
+
+The user application consumes UMEM addrs from this ring.
+
+
+RX Ring
+~~~~~~~
+
+The RX ring is the receiving side of a socket. Each entry in the ring
+is a struct xdp_desc descriptor. The descriptor contains UMEM offset
+(addr) and the length of the data (len).
+
+If no frames have been passed to kernel via the Fill ring, no
+descriptors will (or can) appear on the RX ring.
+
+The user application consumes struct xdp_desc descriptors from this
+ring.
+
+TX Ring
+~~~~~~~
+
+The TX ring is used to send frames. The struct xdp_desc descriptor is
+filled (index, length and offset) and passed into the ring.
+
+To start the transfer a sendmsg() system call is required. This might
+be relaxed in the future.
+
+The user application produces struct xdp_desc descriptors to this
+ring.
+
+XSKMAP / BPF_MAP_TYPE_XSKMAP
+----------------------------
+
+On XDP side there is a BPF map type BPF_MAP_TYPE_XSKMAP (XSKMAP) that
+is used in conjunction with bpf_redirect_map() to pass the ingress
+frame to a socket.
+
+The user application inserts the socket into the map, via the bpf()
+system call.
+
+Note that if an XDP program tries to redirect to a socket that does
+not match the queue configuration and netdev, the frame will be
+dropped. E.g. an AF_XDP socket is bound to netdev eth0 and
+queue 17. Only the XDP program executing for eth0 and queue 17 will
+successfully pass data to the socket. Please refer to the sample
+application (samples/bpf/) in for an example.
+
+Usage
+=====
+
+In order to use AF_XDP sockets there are two parts needed. The
+user-space application and the XDP program. For a complete setup and
+usage example, please refer to the sample application. The user-space
+side is xdpsock_user.c and the XDP side xdpsock_kern.c.
+
+Naive ring dequeue and enqueue could look like this::
+
+ // struct xdp_rxtx_ring {
+ // __u32 *producer;
+ // __u32 *consumer;
+ // struct xdp_desc *desc;
+ // };
+
+ // struct xdp_umem_ring {
+ // __u32 *producer;
+ // __u32 *consumer;
+ // __u64 *desc;
+ // };
+
+ // typedef struct xdp_rxtx_ring RING;
+ // typedef struct xdp_umem_ring RING;
+
+ // typedef struct xdp_desc RING_TYPE;
+ // typedef __u64 RING_TYPE;
+
+ int dequeue_one(RING *ring, RING_TYPE *item)
+ {
+ __u32 entries = *ring->producer - *ring->consumer;
+
+ if (entries == 0)
+ return -1;
+
+ // read-barrier!
+
+ *item = ring->desc[*ring->consumer & (RING_SIZE - 1)];
+ (*ring->consumer)++;
+ return 0;
+ }
+
+ int enqueue_one(RING *ring, const RING_TYPE *item)
+ {
+ u32 free_entries = RING_SIZE - (*ring->producer - *ring->consumer);
+
+ if (free_entries == 0)
+ return -1;
+
+ ring->desc[*ring->producer & (RING_SIZE - 1)] = *item;
+
+ // write-barrier!
+
+ (*ring->producer)++;
+ return 0;
+ }
+
+
+For a more optimized version, please refer to the sample application.
+
+Sample application
+==================
+
+There is a xdpsock benchmarking/test application included that
+demonstrates how to use AF_XDP sockets with both private and shared
+UMEMs. Say that you would like your UDP traffic from port 4242 to end
+up in queue 16, that we will enable AF_XDP on. Here, we use ethtool
+for this::
+
+ ethtool -N p3p2 rx-flow-hash udp4 fn
+ ethtool -N p3p2 flow-type udp4 src-port 4242 dst-port 4242 \
+ action 16
+
+Running the rxdrop benchmark in XDP_DRV mode can then be done
+using::
+
+ samples/bpf/xdpsock -i p3p2 -q 16 -r -N
+
+For XDP_SKB mode, use the switch "-S" instead of "-N" and all options
+can be displayed with "-h", as usual.
+
+Credits
+=======
+
+- Björn Töpel (AF_XDP core)
+- Magnus Karlsson (AF_XDP core)
+- Alexander Duyck
+- Alexei Starovoitov
+- Daniel Borkmann
+- Jesper Dangaard Brouer
+- John Fastabend
+- Jonathan Corbet (LWN coverage)
+- Michael S. Tsirkin
+- Qi Z Zhang
+- Willem de Bruijn
+
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt
index 9ba04c0..c13214d 100644
--- a/Documentation/networking/bonding.txt
+++ b/Documentation/networking/bonding.txt
@@ -140,7 +140,7 @@ bonding module at load time, or are specified via sysfs.
Module options may be given as command line arguments to the
insmod or modprobe command, but are usually specified in either the
-/etc/modrobe.d/*.conf configuration files, or in a distro-specific
+/etc/modprobe.d/*.conf configuration files, or in a distro-specific
configuration file (some of which are detailed in the next section).
Details on bonding support for sysfs is provided in the
diff --git a/Documentation/networking/e100.txt b/Documentation/networking/e100.rst
index 54810b8..d4d8370 100644
--- a/Documentation/networking/e100.txt
+++ b/Documentation/networking/e100.rst
@@ -1,7 +1,7 @@
Linux* Base Driver for the Intel(R) PRO/100 Family of Adapters
==============================================================
-March 15, 2011
+June 1, 2018
Contents
========
@@ -36,16 +36,9 @@ Channel Bonding documentation can be found in the Linux kernel source:
Identifying Your Adapter
========================
-For more information on how to identify your adapter, go to the Adapter &
-Driver ID Guide at:
-
- http://support.intel.com/support/network/adapter/pro100/21397.htm
-
-For the latest Intel network drivers for Linux, refer to the following
-website. In the search field, enter your adapter name or type, or use the
-networking link on the left to search for your adapter:
-
- http://downloadfinder.intel.com/scripts-df/support_intel.asp
+For information on how to identify your adapter, and for the latest Intel
+network drivers, refer to the Intel Support website:
+http://www.intel.com/support
Driver Configuration Parameters
===============================
@@ -57,22 +50,26 @@ Rx Descriptors: Number of receive descriptors. A receive descriptor is a data
structure that describes a receive buffer and its attributes to the network
controller. The data in the descriptor is used by the controller to write
data from the controller to host memory. In the 3.x.x driver the valid range
- for this parameter is 64-256. The default value is 64. This parameter can be
- changed using the command:
+ for this parameter is 64-256. The default value is 256. This parameter can be
+ changed using the command::
- ethtool -G eth? rx n, where n is the number of desired rx descriptors.
+ ethtool -G eth? rx n
+
+ Where n is the number of desired Rx descriptors.
Tx Descriptors: Number of transmit descriptors. A transmit descriptor is a data
structure that describes a transmit buffer and its attributes to the network
controller. The data in the descriptor is used by the controller to read
data from the host memory to the controller. In the 3.x.x driver the valid
- range for this parameter is 64-256. The default value is 64. This parameter
- can be changed using the command:
+ range for this parameter is 64-256. The default value is 128. This parameter
+ can be changed using the command::
+
+ ethtool -G eth? tx n
- ethtool -G eth? tx n, where n is the number of desired tx descriptors.
+ Where n is the number of desired Tx descriptors.
Speed/Duplex: The driver auto-negotiates the link speed and duplex settings by
- default. The ethtool utility can be used as follows to force speed/duplex.
+ default. The ethtool utility can be used as follows to force speed/duplex.::
ethtool -s eth? autoneg off speed {10|100} duplex {full|half}
@@ -81,7 +78,7 @@ Speed/Duplex: The driver auto-negotiates the link speed and duplex settings by
Event Log Message Level: The driver uses the message level flag to log events
to syslog. The message level can be set at driver load time. It can also be
- set using the command:
+ set using the command::
ethtool -s eth? msglvl n
@@ -112,9 +109,9 @@ Additional Configurations
---------------------
In order to see link messages and other Intel driver information on your
console, you must set the dmesg level up to six. This can be done by
- entering the following on the command line before loading the e100 driver:
+ entering the following on the command line before loading the e100 driver::
- dmesg -n 8
+ dmesg -n 6
If you wish to see all messages issued by the driver, including debug
messages, set the dmesg level to eight.
@@ -146,7 +143,8 @@ Additional Configurations
NAPI (Rx polling mode) is supported in the e100 driver.
- See www.cyberus.ca/~hadi/usenix-paper.tgz for more information on NAPI.
+ See https://wiki.linuxfoundation.org/networking/napi for more information
+ on NAPI.
Multiple Interfaces on Same Ethernet Broadcast Network
------------------------------------------------------
@@ -160,7 +158,7 @@ Additional Configurations
If you have multiple interfaces in a server, either turn on ARP
filtering by
- (1) entering: echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
+ (1) entering:: echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
(this only works if your kernel's version is higher than 2.4.5), or
(2) installing the interfaces in separate broadcast domains (either
@@ -169,15 +167,11 @@ Additional Configurations
Support
=======
-
For general information, go to the Intel support website at:
+http://www.intel.com/support/
- http://support.intel.com
-
- or the Intel Wired Networking project hosted by Sourceforge at:
-
- http://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on the supported
-kernel with a supported adapter, email the specific information related to the
-issue to e1000-devel@lists.sourceforge.net.
+or the Intel Wired Networking project hosted by Sourceforge at:
+http://sourceforge.net/projects/e1000
+If an issue is identified with the released source code on a supported kernel
+with a supported adapter, email the specific information related to the issue
+to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/e1000.txt b/Documentation/networking/e1000.rst
index 1f6ed84..6168489 100644
--- a/Documentation/networking/e1000.txt
+++ b/Documentation/networking/e1000.rst
@@ -154,7 +154,7 @@ NOTE: When e1000 is loaded with default settings and multiple adapters
are in use simultaneously, the CPU utilization may increase non-
linearly. In order to limit the CPU utilization without impacting
the overall throughput, we recommend that you load the driver as
- follows:
+ follows::
modprobe e1000 InterruptThrottleRate=3000,3000,3000
@@ -167,8 +167,8 @@ NOTE: When e1000 is loaded with default settings and multiple adapters
RxDescriptors
-------------
-Valid Range: 80-256 for 82542 and 82543-based adapters
- 80-4096 for all other supported adapters
+Valid Range: 48-256 for 82542 and 82543-based adapters
+ 48-4096 for all other supported adapters
Default Value: 256
This value specifies the number of receive buffer descriptors allocated
@@ -230,8 +230,8 @@ speed. Duplex should also be set when Speed is set to either 10 or 100.
TxDescriptors
-------------
-Valid Range: 80-256 for 82542 and 82543-based adapters
- 80-4096 for all other supported adapters
+Valid Range: 48-256 for 82542 and 82543-based adapters
+ 48-4096 for all other supported adapters
Default Value: 256
This value is the number of transmit descriptors allocated by the driver.
@@ -242,41 +242,10 @@ NOTE: Depending on the available system resources, the request for a
higher number of transmit descriptors may be denied. In this case,
use a lower number.
-TxDescriptorStep
-----------------
-Valid Range: 1 (use every Tx Descriptor)
- 4 (use every 4th Tx Descriptor)
-
-Default Value: 1 (use every Tx Descriptor)
-
-On certain non-Intel architectures, it has been observed that intense TX
-traffic bursts of short packets may result in an improper descriptor
-writeback. If this occurs, the driver will report a "TX Timeout" and reset
-the adapter, after which the transmit flow will restart, though data may
-have stalled for as much as 10 seconds before it resumes.
-
-The improper writeback does not occur on the first descriptor in a system
-memory cache-line, which is typically 32 bytes, or 4 descriptors long.
-
-Setting TxDescriptorStep to a value of 4 will ensure that all TX descriptors
-are aligned to the start of a system memory cache line, and so this problem
-will not occur.
-
-NOTES: Setting TxDescriptorStep to 4 effectively reduces the number of
- TxDescriptors available for transmits to 1/4 of the normal allocation.
- This has a possible negative performance impact, which may be
- compensated for by allocating more descriptors using the TxDescriptors
- module parameter.
-
- There are other conditions which may result in "TX Timeout", which will
- not be resolved by the use of the TxDescriptorStep parameter. As the
- issue addressed by this parameter has never been observed on Intel
- Architecture platforms, it should not be used on Intel platforms.
-
TxIntDelay
----------
Valid Range: 0-65535 (0=off)
-Default Value: 64
+Default Value: 8
This value delays the generation of transmit interrupts in units of
1.024 microseconds. Transmit interrupt reduction can improve CPU
@@ -288,7 +257,7 @@ TxAbsIntDelay
-------------
(This parameter is supported only on 82540, 82545 and later adapters.)
Valid Range: 0-65535 (0=off)
-Default Value: 64
+Default Value: 32
This value, in units of 1.024 microseconds, limits the delay in which a
transmit interrupt is generated. Useful only if TxIntDelay is non-zero,
@@ -310,7 +279,7 @@ Copybreak
---------
Valid Range: 0-xxxxxxx (0=off)
Default Value: 256
-Usage: insmod e1000.ko copybreak=128
+Usage: modprobe e1000.ko copybreak=128
Driver copies all packets below or equaling this size to a fresh RX
buffer before handing it up the stack.
@@ -328,14 +297,6 @@ Default Value: 0 (disabled)
Allows PHY to turn off in lower power states. The user can turn off
this parameter in supported chipsets.
-KumeranLockLoss
----------------
-Valid Range: 0-1
-Default Value: 1 (enabled)
-
-This workaround skips resetting the PHY at shutdown for the initial
-silicon releases of ICH8 systems.
-
Speed and Duplex Configuration
==============================
@@ -397,12 +358,12 @@ Additional Configurations
------------
Jumbo Frames support is enabled by changing the MTU to a value larger than
the default of 1500. Use the ifconfig command to increase the MTU size.
- For example:
+ For example::
ifconfig eth<x> mtu 9000 up
This setting is not saved across reboots. It can be made permanent if
- you add:
+ you add::
MTU=9000
diff --git a/Documentation/networking/failover.rst b/Documentation/networking/failover.rst
new file mode 100644
index 0000000..f0c8483
--- /dev/null
+++ b/Documentation/networking/failover.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========
+FAILOVER
+========
+
+Overview
+========
+
+The failover module provides a generic interface for paravirtual drivers
+to register a netdev and a set of ops with a failover instance. The ops
+are used as event handlers that get called to handle netdev register/
+unregister/link change/name change events on slave pci ethernet devices
+with the same mac address as the failover netdev.
+
+This enables paravirtual drivers to use a VF as an accelerated low latency
+datapath. It also allows live migration of VMs with direct attached VFs by
+failing over to the paravirtual datapath when the VF is unplugged.
diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt
index fd55c7d..e6b4ebb 100644
--- a/Documentation/networking/filter.txt
+++ b/Documentation/networking/filter.txt
@@ -483,6 +483,12 @@ Example output from dmesg:
[ 3389.935851] JIT code: 00000030: 00 e8 28 94 ff e0 83 f8 01 75 07 b8 ff ff 00 00
[ 3389.935852] JIT code: 00000040: eb 02 31 c0 c9 c3
+When CONFIG_BPF_JIT_ALWAYS_ON is enabled, bpf_jit_enable is permanently set to 1 and
+setting any other value than that will return in failure. This is even the case for
+setting bpf_jit_enable to 2, since dumping the final JIT image into the kernel log
+is discouraged and introspection through bpftool (under tools/bpf/bpftool/) is the
+generally recommended approach instead.
+
In the kernel source tree under tools/bpf/, there's bpf_jit_disasm for
generating disassembly out of the kernel log's hexdump:
@@ -1136,6 +1142,7 @@ into a register from memory, the register's top 56 bits are known zero, while
the low 8 are unknown - which is represented as the tnum (0x0; 0xff). If we
then OR this with 0x40, we get (0x40; 0xbf), then if we add 1 we get (0x0;
0x1ff), because of potential carries.
+
Besides arithmetic, the register state can also be updated by conditional
branches. For instance, if a SCALAR_VALUE is compared > 8, in the 'true' branch
it will have a umin_value (unsigned minimum value) of 9, whereas in the 'false'
@@ -1144,14 +1151,16 @@ BPF_JSGE) would instead update the signed minimum/maximum values. Information
from the signed and unsigned bounds can be combined; for instance if a value is
first tested < 8 and then tested s> 4, the verifier will conclude that the value
is also > 4 and s< 8, since the bounds prevent crossing the sign boundary.
+
PTR_TO_PACKETs with a variable offset part have an 'id', which is common to all
pointers sharing that same variable offset. This is important for packet range
-checks: after adding some variable to a packet pointer, if you then copy it to
-another register and (say) add a constant 4, both registers will share the same
-'id' but one will have a fixed offset of +4. Then if it is bounds-checked and
-found to be less than a PTR_TO_PACKET_END, the other register is now known to
-have a safe range of at least 4 bytes. See 'Direct packet access', below, for
-more on PTR_TO_PACKET ranges.
+checks: after adding a variable to a packet pointer register A, if you then copy
+it to another register B and then add a constant 4 to A, both registers will
+share the same 'id' but the A will have a fixed offset of +4. Then if A is
+bounds-checked and found to be less than a PTR_TO_PACKET_END, the register B is
+now known to have a safe range of at least 4 bytes. See 'Direct packet access',
+below, for more on PTR_TO_PACKET ranges.
+
The 'id' field is also used on PTR_TO_MAP_VALUE_OR_NULL, common to all copies of
the pointer returned from a map lookup. This means that when one copy is
checked and found to be non-NULL, all copies can become PTR_TO_MAP_VALUEs.
diff --git a/Documentation/networking/gtp.txt b/Documentation/networking/gtp.txt
index 0d9c18f..6966bbe 100644
--- a/Documentation/networking/gtp.txt
+++ b/Documentation/networking/gtp.txt
@@ -67,7 +67,7 @@ Don't be confused by terminology: The GTP User Plane goes through
kernel accelerated path, while the GTP Control Plane goes to
Userspace :)
-The official homepge of the module is at
+The official homepage of the module is at
https://osmocom.org/projects/linux-kernel-gtp-u/wiki
== Userspace Programs with Linux Kernel GTP-U support ==
@@ -120,7 +120,7 @@ If yo have questions regarding how to use the Kernel GTP module from
your own software, or want to contribute to the code, please use the
osmocom-net-grps mailing list for related discussion. The list can be
reached at osmocom-net-gprs@lists.osmocom.org and the mailman
-interface for managign your subscription is at
+interface for managing your subscription is at
https://lists.osmocom.org/mailman/listinfo/osmocom-net-gprs
== Issue Tracker ==
diff --git a/Documentation/networking/ila.txt b/Documentation/networking/ila.txt
index 78df879..a17dac9 100644
--- a/Documentation/networking/ila.txt
+++ b/Documentation/networking/ila.txt
@@ -121,7 +121,7 @@ three options to deal with this:
- checksum neutral mapping
When an address is translated the difference can be offset
- elsewhere in a part of the packet that is covered by the
+ elsewhere in a part of the packet that is covered by
the checksum. The low order sixteen bits of the identifier
are used. This method is preferred since it doesn't require
parsing a packet beyond the IP header and in most cases the
diff --git a/Documentation/networking/index.rst b/Documentation/networking/index.rst
index f204eaf..fec8588 100644
--- a/Documentation/networking/index.rst
+++ b/Documentation/networking/index.rst
@@ -6,9 +6,12 @@ Contents:
.. toctree::
:maxdepth: 2
+ af_xdp
batman-adv
can
dpaa2/index
+ e100
+ e1000
kapi
z8530book
msg_zerocopy
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index 35ffaa2..ce8fbf5 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -26,7 +26,7 @@ ip_no_pmtu_disc - INTEGER
discarded. Outgoing frames are handled the same as in mode 1,
implicitly setting IP_PMTUDISC_DONT on every created socket.
- Mode 3 is a hardend pmtu discover mode. The kernel will only
+ Mode 3 is a hardened pmtu discover mode. The kernel will only
accept fragmentation-needed errors if the underlying protocol
can verify them besides a plain socket lookup. Current
protocols for which pmtu events will be honored are TCP, SCTP
@@ -449,8 +449,10 @@ tcp_recovery - INTEGER
features.
RACK: 0x1 enables the RACK loss detection for fast detection of lost
- retransmissions and tail drops.
+ retransmissions and tail drops. It also subsumes and disables
+ RFC6675 recovery for SACK connections.
RACK: 0x2 makes RACK's reordering window static (min_rtt/4).
+ RACK: 0x4 disables RACK's DUPACK threshold heuristic
Default: 0x1
@@ -523,6 +525,19 @@ tcp_rmem - vector of 3 INTEGERs: min, default, max
tcp_sack - BOOLEAN
Enable select acknowledgments (SACKS).
+tcp_comp_sack_delay_ns - LONG INTEGER
+ TCP tries to reduce number of SACK sent, using a timer
+ based on 5% of SRTT, capped by this sysctl, in nano seconds.
+ The default is 1ms, based on TSO autosizing period.
+
+ Default : 1,000,000 ns (1 ms)
+
+tcp_comp_sack_nr - INTEGER
+ Max numer of SACK that can be compressed.
+ Using 0 disables SACK compression.
+
+ Detault : 44
+
tcp_slow_start_after_idle - BOOLEAN
If set, provide RFC2861 behavior and time out the congestion
window after an idle period. An idle period is defined at
@@ -652,11 +667,15 @@ tcp_tso_win_divisor - INTEGER
building larger TSO frames.
Default: 3
-tcp_tw_reuse - BOOLEAN
- Allow to reuse TIME-WAIT sockets for new connections when it is
- safe from protocol viewpoint. Default value is 0.
+tcp_tw_reuse - INTEGER
+ Enable reuse of TIME-WAIT sockets for new connections when it is
+ safe from protocol viewpoint.
+ 0 - disable
+ 1 - global enable
+ 2 - enable for loopback traffic only
It should not be changed without advice/request of technical
experts.
+ Default: 2
tcp_window_scaling - BOOLEAN
Enable window scaling as defined in RFC1323.
@@ -1428,6 +1447,19 @@ ip6frag_low_thresh - INTEGER
ip6frag_time - INTEGER
Time in seconds to keep an IPv6 fragment in memory.
+IPv6 Segment Routing:
+
+seg6_flowlabel - INTEGER
+ Controls the behaviour of computing the flowlabel of outer
+ IPv6 header in case of SR T.encaps
+
+ -1 set flowlabel to zero.
+ 0 copy flowlabel from Inner packet in case of Inner IPv6
+ (Set flowlabel to 0 in case IPv4/L2)
+ 1 Compute the flowlabel using seg6_make_flowlabel()
+
+ Default is 0.
+
conf/default/*:
Change the interface-specific default settings.
diff --git a/Documentation/networking/ipsec.txt b/Documentation/networking/ipsec.txt
index 8dbc08b..ba794b7 100644
--- a/Documentation/networking/ipsec.txt
+++ b/Documentation/networking/ipsec.txt
@@ -25,8 +25,8 @@ Quote from RFC3173:
is implementation dependent.
Current IPComp implementation is indeed by the book, while as in practice
-when sending non-compressed packet to the peer(whether or not packet len
-is smaller than the threshold or the compressed len is large than original
+when sending non-compressed packet to the peer (whether or not packet len
+is smaller than the threshold or the compressed len is larger than original
packet len), the packet is dropped when checking the policy as this packet
matches the selector but not coming from any XFRM layer, i.e., with no
security path. Such naked packet will not eventually make it to upper layer.
diff --git a/Documentation/networking/ipvlan.txt b/Documentation/networking/ipvlan.txt
index 812ef00..27a38e5 100644
--- a/Documentation/networking/ipvlan.txt
+++ b/Documentation/networking/ipvlan.txt
@@ -73,11 +73,11 @@ mode to make conn-tracking work.
This is the default option. To configure the IPvlan port in this mode,
user can choose to either add this option on the command-line or don't specify
anything. This is the traditional mode where slaves can cross-talk among
-themseleves apart from talking through the master device.
+themselves apart from talking through the master device.
5.2 private:
If this option is added to the command-line, the port is set in private
-mode. i.e. port wont allow cross communication between slaves.
+mode. i.e. port won't allow cross communication between slaves.
5.3 vepa:
If this is added to the command-line, the port is set in VEPA mode.
diff --git a/Documentation/networking/kcm.txt b/Documentation/networking/kcm.txt
index 9a51329..b773a52 100644
--- a/Documentation/networking/kcm.txt
+++ b/Documentation/networking/kcm.txt
@@ -1,4 +1,4 @@
-Kernel Connection Mulitplexor
+Kernel Connection Multiplexor
-----------------------------
Kernel Connection Multiplexor (KCM) is a mechanism that provides a message based
@@ -31,7 +31,7 @@ KCM implements an NxM multiplexor in the kernel as diagrammed below:
KCM sockets
-----------
-The KCM sockets provide the user interface to the muliplexor. All the KCM sockets
+The KCM sockets provide the user interface to the multiplexor. All the KCM sockets
bound to a multiplexor are considered to have equivalent function, and I/O
operations in different sockets may be done in parallel without the need for
synchronization between threads in userspace.
@@ -199,7 +199,7 @@ while. Example use:
BFP programs for message delineation
------------------------------------
-BPF programs can be compiled using the BPF LLVM backend. For exmple,
+BPF programs can be compiled using the BPF LLVM backend. For example,
the BPF program for parsing Thrift is:
#include "bpf.h" /* for __sk_buff */
@@ -222,7 +222,7 @@ messages. The kernel provides necessary assurances that messages are sent
and received atomically. This relieves much of the burden applications have
in mapping a message based protocol onto the TCP stream. KCM also make
application layer messages a unit of work in the kernel for the purposes of
-steerng and scheduling, which in turn allows a simpler networking model in
+steering and scheduling, which in turn allows a simpler networking model in
multithreaded applications.
Configurations
@@ -272,7 +272,7 @@ on the socket thus waking up the application thread. When the application
sees the error (which may just be a disconnect) it should unattach the
socket from KCM and then close it. It is assumed that once an error is
posted on the TCP socket the data stream is unrecoverable (i.e. an error
-may have occurred in the middle of receiving a messssge).
+may have occurred in the middle of receiving a message).
TCP connection monitoring
-------------------------
diff --git a/Documentation/networking/net_failover.rst b/Documentation/networking/net_failover.rst
new file mode 100644
index 0000000..70ca2f5
--- /dev/null
+++ b/Documentation/networking/net_failover.rst
@@ -0,0 +1,116 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============
+NET_FAILOVER
+============
+
+Overview
+========
+
+The net_failover driver provides an automated failover mechanism via APIs
+to create and destroy a failover master netdev and mananges a primary and
+standby slave netdevs that get registered via the generic failover
+infrastructrure.
+
+The failover netdev acts a master device and controls 2 slave devices. The
+original paravirtual interface is registered as 'standby' slave netdev and
+a passthru/vf device with the same MAC gets registered as 'primary' slave
+netdev. Both 'standby' and 'failover' netdevs are associated with the same
+'pci' device. The user accesses the network interface via 'failover' netdev.
+The 'failover' netdev chooses 'primary' netdev as default for transmits when
+it is available with link up and running.
+
+This can be used by paravirtual drivers to enable an alternate low latency
+datapath. It also enables hypervisor controlled live migration of a VM with
+direct attached VF by failing over to the paravirtual datapath when the VF
+is unplugged.
+
+virtio-net accelerated datapath: STANDBY mode
+=============================================
+
+net_failover enables hypervisor controlled accelerated datapath to virtio-net
+enabled VMs in a transparent manner with no/minimal guest userspace chanages.
+
+To support this, the hypervisor needs to enable VIRTIO_NET_F_STANDBY
+feature on the virtio-net interface and assign the same MAC address to both
+virtio-net and VF interfaces.
+
+Here is an example XML snippet that shows such configuration.
+
+ <interface type='network'>
+ <mac address='52:54:00:00:12:53'/>
+ <source network='enp66s0f0_br'/>
+ <target dev='tap01'/>
+ <model type='virtio'/>
+ <driver name='vhost' queues='4'/>
+ <link state='down'/>
+ <address type='pci' domain='0x0000' bus='0x00' slot='0x0a' function='0x0'/>
+ </interface>
+ <interface type='hostdev' managed='yes'>
+ <mac address='52:54:00:00:12:53'/>
+ <source>
+ <address type='pci' domain='0x0000' bus='0x42' slot='0x02' function='0x5'/>
+ </source>
+ <address type='pci' domain='0x0000' bus='0x00' slot='0x0b' function='0x0'/>
+ </interface>
+
+Booting a VM with the above configuration will result in the following 3
+netdevs created in the VM.
+
+4: ens10: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
+ link/ether 52:54:00:00:12:53 brd ff:ff:ff:ff:ff:ff
+ inet 192.168.12.53/24 brd 192.168.12.255 scope global dynamic ens10
+ valid_lft 42482sec preferred_lft 42482sec
+ inet6 fe80::97d8:db2:8c10:b6d6/64 scope link
+ valid_lft forever preferred_lft forever
+5: ens10nsby: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master ens10 state UP group default qlen 1000
+ link/ether 52:54:00:00:12:53 brd ff:ff:ff:ff:ff:ff
+7: ens11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ens10 state UP group default qlen 1000
+ link/ether 52:54:00:00:12:53 brd ff:ff:ff:ff:ff:ff
+
+ens10 is the 'failover' master netdev, ens10nsby and ens11 are the slave
+'standby' and 'primary' netdevs respectively.
+
+Live Migration of a VM with SR-IOV VF & virtio-net in STANDBY mode
+==================================================================
+
+net_failover also enables hypervisor controlled live migration to be supported
+with VMs that have direct attached SR-IOV VF devices by automatic failover to
+the paravirtual datapath when the VF is unplugged.
+
+Here is a sample script that shows the steps to initiate live migration on
+the source hypervisor.
+
+# cat vf_xml
+<interface type='hostdev' managed='yes'>
+ <mac address='52:54:00:00:12:53'/>
+ <source>
+ <address type='pci' domain='0x0000' bus='0x42' slot='0x02' function='0x5'/>
+ </source>
+ <address type='pci' domain='0x0000' bus='0x00' slot='0x0b' function='0x0'/>
+</interface>
+
+# Source Hypervisor
+#!/bin/bash
+
+DOMAIN=fedora27-tap01
+PF=enp66s0f0
+VF_NUM=5
+TAP_IF=tap01
+VF_XML=
+
+MAC=52:54:00:00:12:53
+ZERO_MAC=00:00:00:00:00:00
+
+virsh domif-setlink $DOMAIN $TAP_IF up
+bridge fdb del $MAC dev $PF master
+virsh detach-device $DOMAIN $VF_XML
+ip link set $PF vf $VF_NUM mac $ZERO_MAC
+
+virsh migrate --live $DOMAIN qemu+ssh://$REMOTE_HOST/system
+
+# Destination Hypervisor
+#!/bin/bash
+
+virsh attach-device $DOMAIN $VF_XML
+virsh domif-setlink $DOMAIN $TAP_IF down
diff --git a/Documentation/networking/netdev-FAQ.txt b/Documentation/networking/netdev-FAQ.txt
index 2a3278d..fa951b8 100644
--- a/Documentation/networking/netdev-FAQ.txt
+++ b/Documentation/networking/netdev-FAQ.txt
@@ -179,6 +179,15 @@ A: No. See above answer. In short, if you think it really belongs in
dash marker line as described in Documentation/process/submitting-patches.rst to
temporarily embed that information into the patch that you send.
+Q: Are all networking bug fixes backported to all stable releases?
+
+A: Due to capacity, Dave could only take care of the backports for the last
+ 2 stable releases. For earlier stable releases, each stable branch maintainer
+ is supposed to take care of them. If you find any patch is missing from an
+ earlier stable branch, please notify stable@vger.kernel.org with either a
+ commit ID or a formal patch backported, and CC Dave and other relevant
+ networking developers.
+
Q: Someone said that the comment style and coding convention is different
for the networking content. Is this true?
diff --git a/Documentation/networking/netdev-features.txt b/Documentation/networking/netdev-features.txt
index c77f9d5..c4a54c1 100644
--- a/Documentation/networking/netdev-features.txt
+++ b/Documentation/networking/netdev-features.txt
@@ -113,6 +113,13 @@ whatever headers there might be.
NETIF_F_TSO_ECN means that hardware can properly split packets with CWR bit
set, be it TCPv4 (when NETIF_F_TSO is enabled) or TCPv6 (NETIF_F_TSO6).
+ * Transmit UDP segmentation offload
+
+NETIF_F_GSO_UDP_GSO_L4 accepts a single UDP header with a payload that exceeds
+gso_size. On segmentation, it segments the payload on gso_size boundaries and
+replicates the network and UDP headers (fixing up the last one if less than
+gso_size).
+
* Transmit DMA from high memory
On platforms where this is relevant, NETIF_F_HIGHDMA signals that
diff --git a/Documentation/networking/nf_conntrack-sysctl.txt b/Documentation/networking/nf_conntrack-sysctl.txt
index 433b672..1669dc2 100644
--- a/Documentation/networking/nf_conntrack-sysctl.txt
+++ b/Documentation/networking/nf_conntrack-sysctl.txt
@@ -156,7 +156,7 @@ nf_conntrack_timestamp - BOOLEAN
nf_conntrack_udp_timeout - INTEGER (seconds)
default 30
-nf_conntrack_udp_timeout_stream2 - INTEGER (seconds)
+nf_conntrack_udp_timeout_stream - INTEGER (seconds)
default 180
This extended timeout will be used in case there is an UDP stream
diff --git a/Documentation/sound/alsa-configuration.rst b/Documentation/sound/alsa-configuration.rst
index ab57611..4d83c1c 100644
--- a/Documentation/sound/alsa-configuration.rst
+++ b/Documentation/sound/alsa-configuration.rst
@@ -2224,6 +2224,13 @@ quirk_alias
Quirk alias list, pass strings like ``0123abcd:5678beef``, which
applies the existing quirk for the device 5678:beef to a new
device 0123:abcd.
+use_vmalloc
+ Use vmalloc() for allocations of the PCM buffers (default: yes).
+ For architectures with non-coherent memory like ARM or MIPS, the
+ mmap access may give inconsistent results with vmalloc'ed
+ buffers. If mmap is used on such architectures, turn off this
+ option, so that the DMA-coherent buffers are allocated and used
+ instead.
This module supports multiple devices, autoprobe and hotplugging.
diff --git a/Documentation/sound/hd-audio/models.rst b/Documentation/sound/hd-audio/models.rst
index 1fee5a4..7c2d375 100644
--- a/Documentation/sound/hd-audio/models.rst
+++ b/Documentation/sound/hd-audio/models.rst
@@ -263,6 +263,8 @@ hp-dock
HP dock support
mute-led-gpio
Mute LED control via GPIO
+hp-mic-fix
+ Fix for headset mic pin on HP boxes
STAC9200
========
diff --git a/Documentation/sound/soc/codec.rst b/Documentation/sound/soc/codec.rst
index 240770e..8a9737e 100644
--- a/Documentation/sound/soc/codec.rst
+++ b/Documentation/sound/soc/codec.rst
@@ -179,12 +179,12 @@ i.e.
static int wm8974_mute(struct snd_soc_dai *dai, int mute)
{
- struct snd_soc_codec *codec = dai->codec;
- u16 mute_reg = snd_soc_read(codec, WM8974_DAC) & 0xffbf;
+ struct snd_soc_component *component = dai->component;
+ u16 mute_reg = snd_soc_component_read32(component, WM8974_DAC) & 0xffbf;
if (mute)
- snd_soc_write(codec, WM8974_DAC, mute_reg | 0x40);
+ snd_soc_component_write(component, WM8974_DAC, mute_reg | 0x40);
else
- snd_soc_write(codec, WM8974_DAC, mute_reg);
+ snd_soc_component_write(component, WM8974_DAC, mute_reg);
return 0;
}
diff --git a/Documentation/sound/soc/platform.rst b/Documentation/sound/soc/platform.rst
index 02c93a8..c1badea 100644
--- a/Documentation/sound/soc/platform.rst
+++ b/Documentation/sound/soc/platform.rst
@@ -23,30 +23,26 @@ The platform DMA driver optionally supports the following ALSA operations:-
};
The platform driver exports its DMA functionality via struct
-snd_soc_platform_driver:-
+snd_soc_component_driver:-
::
- struct snd_soc_platform_driver {
- char *name;
+ struct snd_soc_component_driver {
+ const char *name;
- int (*probe)(struct platform_device *pdev);
- int (*remove)(struct platform_device *pdev);
- int (*suspend)(struct platform_device *pdev, struct snd_soc_cpu_dai *cpu_dai);
- int (*resume)(struct platform_device *pdev, struct snd_soc_cpu_dai *cpu_dai);
+ ...
+ int (*probe)(struct snd_soc_component *);
+ void (*remove)(struct snd_soc_component *);
+ int (*suspend)(struct snd_soc_component *);
+ int (*resume)(struct snd_soc_component *);
/* pcm creation and destruction */
- int (*pcm_new)(struct snd_card *, struct snd_soc_codec_dai *, struct snd_pcm *);
+ int (*pcm_new)(struct snd_soc_pcm_runtime *);
void (*pcm_free)(struct snd_pcm *);
- /*
- * For platform caused delay reporting.
- * Optional.
- */
- snd_pcm_sframes_t (*delay)(struct snd_pcm_substream *,
- struct snd_soc_dai *);
-
- /* platform stream ops */
- struct snd_pcm_ops *pcm_ops;
+ ...
+ const struct snd_pcm_ops *ops;
+ const struct snd_compr_ops *compr_ops;
+ ...
};
Please refer to the ALSA driver documentation for details of audio DMA.
diff --git a/Documentation/sysctl/net.txt b/Documentation/sysctl/net.txt
index 5992602..9ecde51 100644
--- a/Documentation/sysctl/net.txt
+++ b/Documentation/sysctl/net.txt
@@ -45,6 +45,7 @@ through bpf(2) and passing a verifier in the kernel, a JIT will then
translate these BPF proglets into native CPU instructions. There are
two flavors of JITs, the newer eBPF JIT currently supported on:
- x86_64
+ - x86_32
- arm64
- arm32
- ppc64
diff --git a/Documentation/trace/coresight-cpu-debug.txt b/Documentation/trace/coresight-cpu-debug.txt
index 2b9b51c..89ab09e 100644
--- a/Documentation/trace/coresight-cpu-debug.txt
+++ b/Documentation/trace/coresight-cpu-debug.txt
@@ -177,11 +177,11 @@ Here is an example of the debugging output format:
ARM external debug module:
coresight-cpu-debug 850000.debug: CPU[0]:
coresight-cpu-debug 850000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
-coresight-cpu-debug 850000.debug: EDPCSR: [<ffff00000808e9bc>] handle_IPI+0x174/0x1d8
+coresight-cpu-debug 850000.debug: EDPCSR: handle_IPI+0x174/0x1d8
coresight-cpu-debug 850000.debug: EDCIDSR: 00000000
coresight-cpu-debug 850000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
coresight-cpu-debug 852000.debug: CPU[1]:
coresight-cpu-debug 852000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
-coresight-cpu-debug 852000.debug: EDPCSR: [<ffff0000087fab34>] debug_notifier_call+0x23c/0x358
+coresight-cpu-debug 852000.debug: EDPCSR: debug_notifier_call+0x23c/0x358
coresight-cpu-debug 852000.debug: EDCIDSR: 00000000
coresight-cpu-debug 852000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
diff --git a/Documentation/trace/events.rst b/Documentation/trace/events.rst
index a5ea2cb..1afae55 100644
--- a/Documentation/trace/events.rst
+++ b/Documentation/trace/events.rst
@@ -338,10 +338,14 @@ used for conditionally invoking triggers.
The syntax for event triggers is roughly based on the syntax for
set_ftrace_filter 'ftrace filter commands' (see the 'Filter commands'
-section of Documentation/trace/ftrace.txt), but there are major
+section of Documentation/trace/ftrace.rst), but there are major
differences and the implementation isn't currently tied to it in any
way, so beware about making generalizations between the two.
+Note: Writing into trace_marker (See Documentation/trace/ftrace.rst)
+ can also enable triggers that are written into
+ /sys/kernel/tracing/events/ftrace/print/trigger
+
6.1 Expression syntax
---------------------
diff --git a/Documentation/trace/ftrace.rst b/Documentation/trace/ftrace.rst
index 6b80ac4..a20d349 100644
--- a/Documentation/trace/ftrace.rst
+++ b/Documentation/trace/ftrace.rst
@@ -512,6 +512,11 @@ of ftrace. Here is a list of some of the key files:
trace_fd = open("trace_marker", WR_ONLY);
+ Note: Writing into the trace_marker file can also initiate triggers
+ that are written into /sys/kernel/tracing/events/ftrace/print/trigger
+ See "Event triggers" in Documentation/trace/events.rst and an
+ example in Documentation/trace/histogram.rst (Section 3.)
+
trace_marker_raw:
This is similar to trace_marker above, but is meant for for binary data
diff --git a/Documentation/trace/histogram.txt b/Documentation/trace/histogram.txt
index 6e05510..b13771c 100644
--- a/Documentation/trace/histogram.txt
+++ b/Documentation/trace/histogram.txt
@@ -1604,7 +1604,6 @@
Entries: 7
Dropped: 0
-
2.2 Inter-event hist triggers
-----------------------------
@@ -1993,3 +1992,547 @@ hist trigger specification.
Hits: 12970
Entries: 2
Dropped: 0
+
+3. User space creating a trigger
+--------------------------------
+
+Writing into /sys/kernel/tracing/trace_marker writes into the ftrace
+ring buffer. This can also act like an event, by writing into the trigger
+file located in /sys/kernel/tracing/events/ftrace/print/
+
+Modifying cyclictest to write into the trace_marker file before it sleeps
+and after it wakes up, something like this:
+
+static void traceputs(char *str)
+{
+ /* tracemark_fd is the trace_marker file descriptor */
+ if (tracemark_fd < 0)
+ return;
+ /* write the tracemark message */
+ write(tracemark_fd, str, strlen(str));
+}
+
+And later add something like:
+
+ traceputs("start");
+ clock_nanosleep(...);
+ traceputs("end");
+
+We can make a histogram from this:
+
+ # cd /sys/kernel/tracing
+ # echo 'latency u64 lat' > synthetic_events
+ # echo 'hist:keys=common_pid:ts0=common_timestamp.usecs if buf == "start"' > events/ftrace/print/trigger
+ # echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$ts0:onmatch(ftrace.print).latency($lat) if buf == "end"' >> events/ftrace/print/trigger
+ # echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/trigger
+
+The above created a synthetic event called "latency" and two histograms
+against the trace_marker, one gets triggered when "start" is written into the
+trace_marker file and the other when "end" is written. If the pids match, then
+it will call the "latency" synthetic event with the calculated latency as its
+parameter. Finally, a histogram is added to the latency synthetic event to
+record the calculated latency along with the pid.
+
+Now running cyclictest with:
+
+ # ./cyclictest -p80 -d0 -i250 -n -a -t --tracemark -b 1000
+
+ -p80 : run threads at priority 80
+ -d0 : have all threads run at the same interval
+ -i250 : start the interval at 250 microseconds (all threads will do this)
+ -n : sleep with nanosleep
+ -a : affine all threads to a separate CPU
+ -t : one thread per available CPU
+ --tracemark : enable trace mark writing
+ -b 1000 : stop if any latency is greater than 1000 microseconds
+
+Note, the -b 1000 is used just to make --tracemark available.
+
+Then we can see the histogram created by this with:
+
+ # cat events/synthetic/latency/hist
+# event histogram
+#
+# trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048 [active]
+#
+
+{ lat: 107, common_pid: 2039 } hitcount: 1
+{ lat: 122, common_pid: 2041 } hitcount: 1
+{ lat: 166, common_pid: 2039 } hitcount: 1
+{ lat: 174, common_pid: 2039 } hitcount: 1
+{ lat: 194, common_pid: 2041 } hitcount: 1
+{ lat: 196, common_pid: 2036 } hitcount: 1
+{ lat: 197, common_pid: 2038 } hitcount: 1
+{ lat: 198, common_pid: 2039 } hitcount: 1
+{ lat: 199, common_pid: 2039 } hitcount: 1
+{ lat: 200, common_pid: 2041 } hitcount: 1
+{ lat: 201, common_pid: 2039 } hitcount: 2
+{ lat: 202, common_pid: 2038 } hitcount: 1
+{ lat: 202, common_pid: 2043 } hitcount: 1
+{ lat: 203, common_pid: 2039 } hitcount: 1
+{ lat: 203, common_pid: 2036 } hitcount: 1
+{ lat: 203, common_pid: 2041 } hitcount: 1
+{ lat: 206, common_pid: 2038 } hitcount: 2
+{ lat: 207, common_pid: 2039 } hitcount: 1
+{ lat: 207, common_pid: 2036 } hitcount: 1
+{ lat: 208, common_pid: 2040 } hitcount: 1
+{ lat: 209, common_pid: 2043 } hitcount: 1
+{ lat: 210, common_pid: 2039 } hitcount: 1
+{ lat: 211, common_pid: 2039 } hitcount: 4
+{ lat: 212, common_pid: 2043 } hitcount: 1
+{ lat: 212, common_pid: 2039 } hitcount: 2
+{ lat: 213, common_pid: 2039 } hitcount: 1
+{ lat: 214, common_pid: 2038 } hitcount: 1
+{ lat: 214, common_pid: 2039 } hitcount: 2
+{ lat: 214, common_pid: 2042 } hitcount: 1
+{ lat: 215, common_pid: 2039 } hitcount: 1
+{ lat: 217, common_pid: 2036 } hitcount: 1
+{ lat: 217, common_pid: 2040 } hitcount: 1
+{ lat: 217, common_pid: 2039 } hitcount: 1
+{ lat: 218, common_pid: 2039 } hitcount: 6
+{ lat: 219, common_pid: 2039 } hitcount: 9
+{ lat: 220, common_pid: 2039 } hitcount: 11
+{ lat: 221, common_pid: 2039 } hitcount: 5
+{ lat: 221, common_pid: 2042 } hitcount: 1
+{ lat: 222, common_pid: 2039 } hitcount: 7
+{ lat: 223, common_pid: 2036 } hitcount: 1
+{ lat: 223, common_pid: 2039 } hitcount: 3
+{ lat: 224, common_pid: 2039 } hitcount: 4
+{ lat: 224, common_pid: 2037 } hitcount: 1
+{ lat: 224, common_pid: 2036 } hitcount: 2
+{ lat: 225, common_pid: 2039 } hitcount: 5
+{ lat: 225, common_pid: 2042 } hitcount: 1
+{ lat: 226, common_pid: 2039 } hitcount: 7
+{ lat: 226, common_pid: 2036 } hitcount: 4
+{ lat: 227, common_pid: 2039 } hitcount: 6
+{ lat: 227, common_pid: 2036 } hitcount: 12
+{ lat: 227, common_pid: 2043 } hitcount: 1
+{ lat: 228, common_pid: 2039 } hitcount: 7
+{ lat: 228, common_pid: 2036 } hitcount: 14
+{ lat: 229, common_pid: 2039 } hitcount: 9
+{ lat: 229, common_pid: 2036 } hitcount: 8
+{ lat: 229, common_pid: 2038 } hitcount: 1
+{ lat: 230, common_pid: 2039 } hitcount: 11
+{ lat: 230, common_pid: 2036 } hitcount: 6
+{ lat: 230, common_pid: 2043 } hitcount: 1
+{ lat: 230, common_pid: 2042 } hitcount: 2
+{ lat: 231, common_pid: 2041 } hitcount: 1
+{ lat: 231, common_pid: 2036 } hitcount: 6
+{ lat: 231, common_pid: 2043 } hitcount: 1
+{ lat: 231, common_pid: 2039 } hitcount: 8
+{ lat: 232, common_pid: 2037 } hitcount: 1
+{ lat: 232, common_pid: 2039 } hitcount: 6
+{ lat: 232, common_pid: 2040 } hitcount: 2
+{ lat: 232, common_pid: 2036 } hitcount: 5
+{ lat: 232, common_pid: 2043 } hitcount: 1
+{ lat: 233, common_pid: 2036 } hitcount: 5
+{ lat: 233, common_pid: 2039 } hitcount: 11
+{ lat: 234, common_pid: 2039 } hitcount: 4
+{ lat: 234, common_pid: 2038 } hitcount: 2
+{ lat: 234, common_pid: 2043 } hitcount: 2
+{ lat: 234, common_pid: 2036 } hitcount: 11
+{ lat: 234, common_pid: 2040 } hitcount: 1
+{ lat: 235, common_pid: 2037 } hitcount: 2
+{ lat: 235, common_pid: 2036 } hitcount: 8
+{ lat: 235, common_pid: 2043 } hitcount: 2
+{ lat: 235, common_pid: 2039 } hitcount: 5
+{ lat: 235, common_pid: 2042 } hitcount: 2
+{ lat: 235, common_pid: 2040 } hitcount: 4
+{ lat: 235, common_pid: 2041 } hitcount: 1
+{ lat: 236, common_pid: 2036 } hitcount: 7
+{ lat: 236, common_pid: 2037 } hitcount: 1
+{ lat: 236, common_pid: 2041 } hitcount: 5
+{ lat: 236, common_pid: 2039 } hitcount: 3
+{ lat: 236, common_pid: 2043 } hitcount: 9
+{ lat: 236, common_pid: 2040 } hitcount: 7
+{ lat: 237, common_pid: 2037 } hitcount: 1
+{ lat: 237, common_pid: 2040 } hitcount: 1
+{ lat: 237, common_pid: 2036 } hitcount: 9
+{ lat: 237, common_pid: 2039 } hitcount: 3
+{ lat: 237, common_pid: 2043 } hitcount: 8
+{ lat: 237, common_pid: 2042 } hitcount: 2
+{ lat: 237, common_pid: 2041 } hitcount: 2
+{ lat: 238, common_pid: 2043 } hitcount: 10
+{ lat: 238, common_pid: 2040 } hitcount: 1
+{ lat: 238, common_pid: 2037 } hitcount: 9
+{ lat: 238, common_pid: 2038 } hitcount: 1
+{ lat: 238, common_pid: 2039 } hitcount: 1
+{ lat: 238, common_pid: 2042 } hitcount: 3
+{ lat: 238, common_pid: 2036 } hitcount: 7
+{ lat: 239, common_pid: 2041 } hitcount: 1
+{ lat: 239, common_pid: 2043 } hitcount: 11
+{ lat: 239, common_pid: 2037 } hitcount: 11
+{ lat: 239, common_pid: 2038 } hitcount: 6
+{ lat: 239, common_pid: 2036 } hitcount: 7
+{ lat: 239, common_pid: 2040 } hitcount: 1
+{ lat: 239, common_pid: 2042 } hitcount: 9
+{ lat: 240, common_pid: 2037 } hitcount: 29
+{ lat: 240, common_pid: 2043 } hitcount: 15
+{ lat: 240, common_pid: 2040 } hitcount: 44
+{ lat: 240, common_pid: 2039 } hitcount: 1
+{ lat: 240, common_pid: 2041 } hitcount: 2
+{ lat: 240, common_pid: 2038 } hitcount: 1
+{ lat: 240, common_pid: 2036 } hitcount: 10
+{ lat: 240, common_pid: 2042 } hitcount: 13
+{ lat: 241, common_pid: 2036 } hitcount: 21
+{ lat: 241, common_pid: 2041 } hitcount: 36
+{ lat: 241, common_pid: 2037 } hitcount: 34
+{ lat: 241, common_pid: 2042 } hitcount: 14
+{ lat: 241, common_pid: 2040 } hitcount: 94
+{ lat: 241, common_pid: 2039 } hitcount: 12
+{ lat: 241, common_pid: 2038 } hitcount: 2
+{ lat: 241, common_pid: 2043 } hitcount: 28
+{ lat: 242, common_pid: 2040 } hitcount: 109
+{ lat: 242, common_pid: 2041 } hitcount: 506
+{ lat: 242, common_pid: 2039 } hitcount: 155
+{ lat: 242, common_pid: 2042 } hitcount: 21
+{ lat: 242, common_pid: 2037 } hitcount: 52
+{ lat: 242, common_pid: 2043 } hitcount: 21
+{ lat: 242, common_pid: 2036 } hitcount: 16
+{ lat: 242, common_pid: 2038 } hitcount: 156
+{ lat: 243, common_pid: 2037 } hitcount: 46
+{ lat: 243, common_pid: 2039 } hitcount: 40
+{ lat: 243, common_pid: 2042 } hitcount: 119
+{ lat: 243, common_pid: 2041 } hitcount: 611
+{ lat: 243, common_pid: 2036 } hitcount: 69
+{ lat: 243, common_pid: 2038 } hitcount: 784
+{ lat: 243, common_pid: 2040 } hitcount: 323
+{ lat: 243, common_pid: 2043 } hitcount: 14
+{ lat: 244, common_pid: 2043 } hitcount: 35
+{ lat: 244, common_pid: 2042 } hitcount: 305
+{ lat: 244, common_pid: 2039 } hitcount: 8
+{ lat: 244, common_pid: 2040 } hitcount: 4515
+{ lat: 244, common_pid: 2038 } hitcount: 371
+{ lat: 244, common_pid: 2037 } hitcount: 31
+{ lat: 244, common_pid: 2036 } hitcount: 114
+{ lat: 244, common_pid: 2041 } hitcount: 3396
+{ lat: 245, common_pid: 2036 } hitcount: 700
+{ lat: 245, common_pid: 2041 } hitcount: 2772
+{ lat: 245, common_pid: 2037 } hitcount: 268
+{ lat: 245, common_pid: 2039 } hitcount: 472
+{ lat: 245, common_pid: 2038 } hitcount: 2758
+{ lat: 245, common_pid: 2042 } hitcount: 3833
+{ lat: 245, common_pid: 2040 } hitcount: 3105
+{ lat: 245, common_pid: 2043 } hitcount: 645
+{ lat: 246, common_pid: 2038 } hitcount: 3451
+{ lat: 246, common_pid: 2041 } hitcount: 142
+{ lat: 246, common_pid: 2037 } hitcount: 5101
+{ lat: 246, common_pid: 2040 } hitcount: 68
+{ lat: 246, common_pid: 2043 } hitcount: 5099
+{ lat: 246, common_pid: 2039 } hitcount: 5608
+{ lat: 246, common_pid: 2042 } hitcount: 3723
+{ lat: 246, common_pid: 2036 } hitcount: 4738
+{ lat: 247, common_pid: 2042 } hitcount: 312
+{ lat: 247, common_pid: 2043 } hitcount: 2385
+{ lat: 247, common_pid: 2041 } hitcount: 452
+{ lat: 247, common_pid: 2038 } hitcount: 792
+{ lat: 247, common_pid: 2040 } hitcount: 78
+{ lat: 247, common_pid: 2036 } hitcount: 2375
+{ lat: 247, common_pid: 2039 } hitcount: 1834
+{ lat: 247, common_pid: 2037 } hitcount: 2655
+{ lat: 248, common_pid: 2037 } hitcount: 36
+{ lat: 248, common_pid: 2042 } hitcount: 11
+{ lat: 248, common_pid: 2038 } hitcount: 122
+{ lat: 248, common_pid: 2036 } hitcount: 135
+{ lat: 248, common_pid: 2039 } hitcount: 26
+{ lat: 248, common_pid: 2041 } hitcount: 503
+{ lat: 248, common_pid: 2043 } hitcount: 66
+{ lat: 248, common_pid: 2040 } hitcount: 46
+{ lat: 249, common_pid: 2037 } hitcount: 29
+{ lat: 249, common_pid: 2038 } hitcount: 1
+{ lat: 249, common_pid: 2043 } hitcount: 29
+{ lat: 249, common_pid: 2039 } hitcount: 8
+{ lat: 249, common_pid: 2042 } hitcount: 56
+{ lat: 249, common_pid: 2040 } hitcount: 27
+{ lat: 249, common_pid: 2041 } hitcount: 11
+{ lat: 249, common_pid: 2036 } hitcount: 27
+{ lat: 250, common_pid: 2038 } hitcount: 1
+{ lat: 250, common_pid: 2036 } hitcount: 30
+{ lat: 250, common_pid: 2040 } hitcount: 19
+{ lat: 250, common_pid: 2043 } hitcount: 22
+{ lat: 250, common_pid: 2042 } hitcount: 20
+{ lat: 250, common_pid: 2041 } hitcount: 1
+{ lat: 250, common_pid: 2039 } hitcount: 6
+{ lat: 250, common_pid: 2037 } hitcount: 48
+{ lat: 251, common_pid: 2037 } hitcount: 43
+{ lat: 251, common_pid: 2039 } hitcount: 1
+{ lat: 251, common_pid: 2036 } hitcount: 12
+{ lat: 251, common_pid: 2042 } hitcount: 2
+{ lat: 251, common_pid: 2041 } hitcount: 1
+{ lat: 251, common_pid: 2043 } hitcount: 15
+{ lat: 251, common_pid: 2040 } hitcount: 3
+{ lat: 252, common_pid: 2040 } hitcount: 1
+{ lat: 252, common_pid: 2036 } hitcount: 12
+{ lat: 252, common_pid: 2037 } hitcount: 21
+{ lat: 252, common_pid: 2043 } hitcount: 14
+{ lat: 253, common_pid: 2037 } hitcount: 21
+{ lat: 253, common_pid: 2039 } hitcount: 2
+{ lat: 253, common_pid: 2036 } hitcount: 9
+{ lat: 253, common_pid: 2043 } hitcount: 6
+{ lat: 253, common_pid: 2040 } hitcount: 1
+{ lat: 254, common_pid: 2036 } hitcount: 8
+{ lat: 254, common_pid: 2043 } hitcount: 3
+{ lat: 254, common_pid: 2041 } hitcount: 1
+{ lat: 254, common_pid: 2042 } hitcount: 1
+{ lat: 254, common_pid: 2039 } hitcount: 1
+{ lat: 254, common_pid: 2037 } hitcount: 12
+{ lat: 255, common_pid: 2043 } hitcount: 1
+{ lat: 255, common_pid: 2037 } hitcount: 2
+{ lat: 255, common_pid: 2036 } hitcount: 2
+{ lat: 255, common_pid: 2039 } hitcount: 8
+{ lat: 256, common_pid: 2043 } hitcount: 1
+{ lat: 256, common_pid: 2036 } hitcount: 4
+{ lat: 256, common_pid: 2039 } hitcount: 6
+{ lat: 257, common_pid: 2039 } hitcount: 5
+{ lat: 257, common_pid: 2036 } hitcount: 4
+{ lat: 258, common_pid: 2039 } hitcount: 5
+{ lat: 258, common_pid: 2036 } hitcount: 2
+{ lat: 259, common_pid: 2036 } hitcount: 7
+{ lat: 259, common_pid: 2039 } hitcount: 7
+{ lat: 260, common_pid: 2036 } hitcount: 8
+{ lat: 260, common_pid: 2039 } hitcount: 6
+{ lat: 261, common_pid: 2036 } hitcount: 5
+{ lat: 261, common_pid: 2039 } hitcount: 7
+{ lat: 262, common_pid: 2039 } hitcount: 5
+{ lat: 262, common_pid: 2036 } hitcount: 5
+{ lat: 263, common_pid: 2039 } hitcount: 7
+{ lat: 263, common_pid: 2036 } hitcount: 7
+{ lat: 264, common_pid: 2039 } hitcount: 9
+{ lat: 264, common_pid: 2036 } hitcount: 9
+{ lat: 265, common_pid: 2036 } hitcount: 5
+{ lat: 265, common_pid: 2039 } hitcount: 1
+{ lat: 266, common_pid: 2036 } hitcount: 1
+{ lat: 266, common_pid: 2039 } hitcount: 3
+{ lat: 267, common_pid: 2036 } hitcount: 1
+{ lat: 267, common_pid: 2039 } hitcount: 3
+{ lat: 268, common_pid: 2036 } hitcount: 1
+{ lat: 268, common_pid: 2039 } hitcount: 6
+{ lat: 269, common_pid: 2036 } hitcount: 1
+{ lat: 269, common_pid: 2043 } hitcount: 1
+{ lat: 269, common_pid: 2039 } hitcount: 2
+{ lat: 270, common_pid: 2040 } hitcount: 1
+{ lat: 270, common_pid: 2039 } hitcount: 6
+{ lat: 271, common_pid: 2041 } hitcount: 1
+{ lat: 271, common_pid: 2039 } hitcount: 5
+{ lat: 272, common_pid: 2039 } hitcount: 10
+{ lat: 273, common_pid: 2039 } hitcount: 8
+{ lat: 274, common_pid: 2039 } hitcount: 2
+{ lat: 275, common_pid: 2039 } hitcount: 1
+{ lat: 276, common_pid: 2039 } hitcount: 2
+{ lat: 276, common_pid: 2037 } hitcount: 1
+{ lat: 276, common_pid: 2038 } hitcount: 1
+{ lat: 277, common_pid: 2039 } hitcount: 1
+{ lat: 277, common_pid: 2042 } hitcount: 1
+{ lat: 278, common_pid: 2039 } hitcount: 1
+{ lat: 279, common_pid: 2039 } hitcount: 4
+{ lat: 279, common_pid: 2043 } hitcount: 1
+{ lat: 280, common_pid: 2039 } hitcount: 3
+{ lat: 283, common_pid: 2036 } hitcount: 2
+{ lat: 284, common_pid: 2039 } hitcount: 1
+{ lat: 284, common_pid: 2043 } hitcount: 1
+{ lat: 288, common_pid: 2039 } hitcount: 1
+{ lat: 289, common_pid: 2039 } hitcount: 1
+{ lat: 300, common_pid: 2039 } hitcount: 1
+{ lat: 384, common_pid: 2039 } hitcount: 1
+
+Totals:
+ Hits: 67625
+ Entries: 278
+ Dropped: 0
+
+Note, the writes are around the sleep, so ideally they will all be of 250
+microseconds. If you are wondering how there are several that are under
+250 microseconds, that is because the way cyclictest works, is if one
+iteration comes in late, the next one will set the timer to wake up less that
+250. That is, if an iteration came in 50 microseconds late, the next wake up
+will be at 200 microseconds.
+
+But this could easily be done in userspace. To make this even more
+interesting, we can mix the histogram between events that happened in the
+kernel with trace_marker.
+
+ # cd /sys/kernel/tracing
+ # echo 'latency u64 lat' > synthetic_events
+ # echo 'hist:keys=pid:ts0=common_timestamp.usecs' > events/sched/sched_waking/trigger
+ # echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$ts0:onmatch(sched.sched_waking).latency($lat) if buf == "end"' > events/ftrace/print/trigger
+ # echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/trigger
+
+The difference this time is that instead of using the trace_marker to start
+the latency, the sched_waking event is used, matching the common_pid for the
+trace_marker write with the pid that is being woken by sched_waking.
+
+After running cyclictest again with the same parameters, we now have:
+
+ # cat events/synthetic/latency/hist
+# event histogram
+#
+# trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048 [active]
+#
+
+{ lat: 7, common_pid: 2302 } hitcount: 640
+{ lat: 7, common_pid: 2299 } hitcount: 42
+{ lat: 7, common_pid: 2303 } hitcount: 18
+{ lat: 7, common_pid: 2305 } hitcount: 166
+{ lat: 7, common_pid: 2306 } hitcount: 1
+{ lat: 7, common_pid: 2301 } hitcount: 91
+{ lat: 7, common_pid: 2300 } hitcount: 17
+{ lat: 8, common_pid: 2303 } hitcount: 8296
+{ lat: 8, common_pid: 2304 } hitcount: 6864
+{ lat: 8, common_pid: 2305 } hitcount: 9464
+{ lat: 8, common_pid: 2301 } hitcount: 9213
+{ lat: 8, common_pid: 2306 } hitcount: 6246
+{ lat: 8, common_pid: 2302 } hitcount: 8797
+{ lat: 8, common_pid: 2299 } hitcount: 8771
+{ lat: 8, common_pid: 2300 } hitcount: 8119
+{ lat: 9, common_pid: 2305 } hitcount: 1519
+{ lat: 9, common_pid: 2299 } hitcount: 2346
+{ lat: 9, common_pid: 2303 } hitcount: 2841
+{ lat: 9, common_pid: 2301 } hitcount: 1846
+{ lat: 9, common_pid: 2304 } hitcount: 3861
+{ lat: 9, common_pid: 2302 } hitcount: 1210
+{ lat: 9, common_pid: 2300 } hitcount: 2762
+{ lat: 9, common_pid: 2306 } hitcount: 4247
+{ lat: 10, common_pid: 2299 } hitcount: 16
+{ lat: 10, common_pid: 2306 } hitcount: 333
+{ lat: 10, common_pid: 2303 } hitcount: 16
+{ lat: 10, common_pid: 2304 } hitcount: 168
+{ lat: 10, common_pid: 2302 } hitcount: 240
+{ lat: 10, common_pid: 2301 } hitcount: 28
+{ lat: 10, common_pid: 2300 } hitcount: 95
+{ lat: 10, common_pid: 2305 } hitcount: 18
+{ lat: 11, common_pid: 2303 } hitcount: 5
+{ lat: 11, common_pid: 2305 } hitcount: 8
+{ lat: 11, common_pid: 2306 } hitcount: 221
+{ lat: 11, common_pid: 2302 } hitcount: 76
+{ lat: 11, common_pid: 2304 } hitcount: 26
+{ lat: 11, common_pid: 2300 } hitcount: 125
+{ lat: 11, common_pid: 2299 } hitcount: 2
+{ lat: 12, common_pid: 2305 } hitcount: 3
+{ lat: 12, common_pid: 2300 } hitcount: 6
+{ lat: 12, common_pid: 2306 } hitcount: 90
+{ lat: 12, common_pid: 2302 } hitcount: 4
+{ lat: 12, common_pid: 2303 } hitcount: 1
+{ lat: 12, common_pid: 2304 } hitcount: 122
+{ lat: 13, common_pid: 2300 } hitcount: 12
+{ lat: 13, common_pid: 2301 } hitcount: 1
+{ lat: 13, common_pid: 2306 } hitcount: 32
+{ lat: 13, common_pid: 2302 } hitcount: 5
+{ lat: 13, common_pid: 2305 } hitcount: 1
+{ lat: 13, common_pid: 2303 } hitcount: 1
+{ lat: 13, common_pid: 2304 } hitcount: 61
+{ lat: 14, common_pid: 2303 } hitcount: 4
+{ lat: 14, common_pid: 2306 } hitcount: 5
+{ lat: 14, common_pid: 2305 } hitcount: 4
+{ lat: 14, common_pid: 2304 } hitcount: 62
+{ lat: 14, common_pid: 2302 } hitcount: 19
+{ lat: 14, common_pid: 2300 } hitcount: 33
+{ lat: 14, common_pid: 2299 } hitcount: 1
+{ lat: 14, common_pid: 2301 } hitcount: 4
+{ lat: 15, common_pid: 2305 } hitcount: 1
+{ lat: 15, common_pid: 2302 } hitcount: 25
+{ lat: 15, common_pid: 2300 } hitcount: 11
+{ lat: 15, common_pid: 2299 } hitcount: 5
+{ lat: 15, common_pid: 2301 } hitcount: 1
+{ lat: 15, common_pid: 2304 } hitcount: 8
+{ lat: 15, common_pid: 2303 } hitcount: 1
+{ lat: 15, common_pid: 2306 } hitcount: 6
+{ lat: 16, common_pid: 2302 } hitcount: 31
+{ lat: 16, common_pid: 2306 } hitcount: 3
+{ lat: 16, common_pid: 2300 } hitcount: 5
+{ lat: 17, common_pid: 2302 } hitcount: 6
+{ lat: 17, common_pid: 2303 } hitcount: 1
+{ lat: 18, common_pid: 2304 } hitcount: 1
+{ lat: 18, common_pid: 2302 } hitcount: 8
+{ lat: 18, common_pid: 2299 } hitcount: 1
+{ lat: 18, common_pid: 2301 } hitcount: 1
+{ lat: 19, common_pid: 2303 } hitcount: 4
+{ lat: 19, common_pid: 2304 } hitcount: 5
+{ lat: 19, common_pid: 2302 } hitcount: 4
+{ lat: 19, common_pid: 2299 } hitcount: 3
+{ lat: 19, common_pid: 2306 } hitcount: 1
+{ lat: 19, common_pid: 2300 } hitcount: 4
+{ lat: 19, common_pid: 2305 } hitcount: 5
+{ lat: 20, common_pid: 2299 } hitcount: 2
+{ lat: 20, common_pid: 2302 } hitcount: 3
+{ lat: 20, common_pid: 2305 } hitcount: 1
+{ lat: 20, common_pid: 2300 } hitcount: 2
+{ lat: 20, common_pid: 2301 } hitcount: 2
+{ lat: 20, common_pid: 2303 } hitcount: 3
+{ lat: 21, common_pid: 2305 } hitcount: 1
+{ lat: 21, common_pid: 2299 } hitcount: 5
+{ lat: 21, common_pid: 2303 } hitcount: 4
+{ lat: 21, common_pid: 2302 } hitcount: 7
+{ lat: 21, common_pid: 2300 } hitcount: 1
+{ lat: 21, common_pid: 2301 } hitcount: 5
+{ lat: 21, common_pid: 2304 } hitcount: 2
+{ lat: 22, common_pid: 2302 } hitcount: 5
+{ lat: 22, common_pid: 2303 } hitcount: 1
+{ lat: 22, common_pid: 2306 } hitcount: 3
+{ lat: 22, common_pid: 2301 } hitcount: 2
+{ lat: 22, common_pid: 2300 } hitcount: 1
+{ lat: 22, common_pid: 2299 } hitcount: 1
+{ lat: 22, common_pid: 2305 } hitcount: 1
+{ lat: 22, common_pid: 2304 } hitcount: 1
+{ lat: 23, common_pid: 2299 } hitcount: 1
+{ lat: 23, common_pid: 2306 } hitcount: 2
+{ lat: 23, common_pid: 2302 } hitcount: 6
+{ lat: 24, common_pid: 2302 } hitcount: 3
+{ lat: 24, common_pid: 2300 } hitcount: 1
+{ lat: 24, common_pid: 2306 } hitcount: 2
+{ lat: 24, common_pid: 2305 } hitcount: 1
+{ lat: 24, common_pid: 2299 } hitcount: 1
+{ lat: 25, common_pid: 2300 } hitcount: 1
+{ lat: 25, common_pid: 2302 } hitcount: 4
+{ lat: 26, common_pid: 2302 } hitcount: 2
+{ lat: 27, common_pid: 2305 } hitcount: 1
+{ lat: 27, common_pid: 2300 } hitcount: 1
+{ lat: 27, common_pid: 2302 } hitcount: 3
+{ lat: 28, common_pid: 2306 } hitcount: 1
+{ lat: 28, common_pid: 2302 } hitcount: 4
+{ lat: 29, common_pid: 2302 } hitcount: 1
+{ lat: 29, common_pid: 2300 } hitcount: 2
+{ lat: 29, common_pid: 2306 } hitcount: 1
+{ lat: 29, common_pid: 2304 } hitcount: 1
+{ lat: 30, common_pid: 2302 } hitcount: 4
+{ lat: 31, common_pid: 2302 } hitcount: 6
+{ lat: 32, common_pid: 2302 } hitcount: 1
+{ lat: 33, common_pid: 2299 } hitcount: 1
+{ lat: 33, common_pid: 2302 } hitcount: 3
+{ lat: 34, common_pid: 2302 } hitcount: 2
+{ lat: 35, common_pid: 2302 } hitcount: 1
+{ lat: 35, common_pid: 2304 } hitcount: 1
+{ lat: 36, common_pid: 2302 } hitcount: 4
+{ lat: 37, common_pid: 2302 } hitcount: 6
+{ lat: 38, common_pid: 2302 } hitcount: 2
+{ lat: 39, common_pid: 2302 } hitcount: 2
+{ lat: 39, common_pid: 2304 } hitcount: 1
+{ lat: 40, common_pid: 2304 } hitcount: 2
+{ lat: 40, common_pid: 2302 } hitcount: 5
+{ lat: 41, common_pid: 2304 } hitcount: 1
+{ lat: 41, common_pid: 2302 } hitcount: 8
+{ lat: 42, common_pid: 2302 } hitcount: 6
+{ lat: 42, common_pid: 2304 } hitcount: 1
+{ lat: 43, common_pid: 2302 } hitcount: 3
+{ lat: 43, common_pid: 2304 } hitcount: 4
+{ lat: 44, common_pid: 2302 } hitcount: 6
+{ lat: 45, common_pid: 2302 } hitcount: 5
+{ lat: 46, common_pid: 2302 } hitcount: 5
+{ lat: 47, common_pid: 2302 } hitcount: 7
+{ lat: 48, common_pid: 2301 } hitcount: 1
+{ lat: 48, common_pid: 2302 } hitcount: 9
+{ lat: 49, common_pid: 2302 } hitcount: 3
+{ lat: 50, common_pid: 2302 } hitcount: 1
+{ lat: 50, common_pid: 2301 } hitcount: 1
+{ lat: 51, common_pid: 2302 } hitcount: 2
+{ lat: 51, common_pid: 2301 } hitcount: 1
+{ lat: 61, common_pid: 2302 } hitcount: 1
+{ lat: 110, common_pid: 2302 } hitcount: 1
+
+Totals:
+ Hits: 89565
+ Entries: 158
+ Dropped: 0
+
+This doesn't tell us any information about how late cyclictest may have
+woken up, but it does show us a nice histogram of how long it took from
+the time that cyclictest was woken to the time it made it into user space.
diff --git a/Documentation/userspace-api/seccomp_filter.rst b/Documentation/userspace-api/seccomp_filter.rst
index 099c412..82a468b 100644
--- a/Documentation/userspace-api/seccomp_filter.rst
+++ b/Documentation/userspace-api/seccomp_filter.rst
@@ -207,13 +207,6 @@ directory. Here's a description of each file in that directory:
to the file do not need to be in ordered form but reads from the file
will be ordered in the same way as the actions_avail sysctl.
- It is important to note that the value of ``actions_logged`` does not
- prevent certain actions from being logged when the audit subsystem is
- configured to audit a task. If the action is not found in
- ``actions_logged`` list, the final decision on whether to audit the
- action for that task is ultimately left up to the audit subsystem to
- decide for all seccomp return values other than ``SECCOMP_RET_ALLOW``.
-
The ``allow`` string is not accepted in the ``actions_logged`` sysctl
as it is not possible to log ``SECCOMP_RET_ALLOW`` actions. Attempting
to write ``allow`` to the sysctl will result in an EINVAL being
diff --git a/Documentation/vfio-mediated-device.txt b/Documentation/vfio-mediated-device.txt
index 1b39503..c3f69bc 100644
--- a/Documentation/vfio-mediated-device.txt
+++ b/Documentation/vfio-mediated-device.txt
@@ -145,6 +145,11 @@ The functions in the mdev_parent_ops structure are as follows:
* create: allocate basic resources in a driver for a mediated device
* remove: free resources in a driver when a mediated device is destroyed
+(Note that mdev-core provides no implicit serialization of create/remove
+callbacks per mdev parent device, per mdev type, or any other categorization.
+Vendor drivers are expected to be fully asynchronous in this respect or
+provide their own internal resource protection.)
+
The callbacks in the mdev_parent_ops structure are as follows:
* open: open callback of mediated device
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 758bf40..495b774 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -1269,12 +1269,18 @@ struct kvm_cpuid_entry2 {
__u32 padding[3];
};
-This ioctl returns x86 cpuid features which are supported by both the hardware
-and kvm. Userspace can use the information returned by this ioctl to
-construct cpuid information (for KVM_SET_CPUID2) that is consistent with
-hardware, kernel, and userspace capabilities, and with user requirements (for
-example, the user may wish to constrain cpuid to emulate older hardware,
-or for feature consistency across a cluster).
+This ioctl returns x86 cpuid features which are supported by both the
+hardware and kvm in its default configuration. Userspace can use the
+information returned by this ioctl to construct cpuid information (for
+KVM_SET_CPUID2) that is consistent with hardware, kernel, and
+userspace capabilities, and with user requirements (for example, the
+user may wish to constrain cpuid to emulate older hardware, or for
+feature consistency across a cluster).
+
+Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may
+expose cpuid features (e.g. MONITOR) which are not supported by kvm in
+its default configuration. If userspace enables such capabilities, it
+is responsible for modifying the results of this ioctl appropriately.
Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
with the 'nent' field indicating the number of entries in the variable-size
@@ -4603,3 +4609,12 @@ Architectures: s390
This capability indicates that kvm will implement the interfaces to handle
reset, migration and nested KVM for branch prediction blocking. The stfle
facility 82 should not be provided to the guest without this capability.
+
+8.14 KVM_CAP_HYPERV_TLBFLUSH
+
+Architectures: x86
+
+This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush
+hypercalls:
+HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx,
+HvFlushVirtualAddressList, HvFlushVirtualAddressListEx.
diff --git a/Documentation/virtual/kvm/devices/arm-vgic-v3.txt b/Documentation/virtual/kvm/devices/arm-vgic-v3.txt
index 9293b45..2408ab7 100644
--- a/Documentation/virtual/kvm/devices/arm-vgic-v3.txt
+++ b/Documentation/virtual/kvm/devices/arm-vgic-v3.txt
@@ -27,16 +27,42 @@ Groups:
VCPU and all of the redistributor pages are contiguous.
Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
This address needs to be 64K aligned.
+
+ KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION (rw, 64-bit)
+ The attribute data pointed to by kvm_device_attr.addr is a __u64 value:
+ bits: | 63 .... 52 | 51 .... 16 | 15 - 12 |11 - 0
+ values: | count | base | flags | index
+ - index encodes the unique redistributor region index
+ - flags: reserved for future use, currently 0
+ - base field encodes bits [51:16] of the guest physical base address
+ of the first redistributor in the region.
+ - count encodes the number of redistributors in the region. Must be
+ greater than 0.
+ There are two 64K pages for each redistributor in the region and
+ redistributors are laid out contiguously within the region. Regions
+ are filled with redistributors in the index order. The sum of all
+ region count fields must be greater than or equal to the number of
+ VCPUs. Redistributor regions must be registered in the incremental
+ index order, starting from index 0.
+ The characteristics of a specific redistributor region can be read
+ by presetting the index field in the attr data.
+ Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
+
+ It is invalid to mix calls with KVM_VGIC_V3_ADDR_TYPE_REDIST and
+ KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION attributes.
+
Errors:
-E2BIG: Address outside of addressable IPA range
- -EINVAL: Incorrectly aligned address
+ -EINVAL: Incorrectly aligned address, bad redistributor region
+ count/index, mixed redistributor region attribute usage
-EEXIST: Address already configured
+ -ENOENT: Attempt to read the characteristics of a non existing
+ redistributor region
-ENXIO: The group or attribute is unknown/unsupported for this device
or hardware support is missing.
-EFAULT: Invalid user pointer for attr->addr.
-
KVM_DEV_ARM_VGIC_GRP_DIST_REGS
KVM_DEV_ARM_VGIC_GRP_REDIST_REGS
Attributes:
diff --git a/Documentation/virtual/kvm/mmu.txt b/Documentation/virtual/kvm/mmu.txt
index f50d45b..e507a9e 100644
--- a/Documentation/virtual/kvm/mmu.txt
+++ b/Documentation/virtual/kvm/mmu.txt
@@ -49,8 +49,8 @@ The mmu supports first-generation mmu hardware, which allows an atomic switch
of the current paging mode and cr3 during guest entry, as well as
two-dimensional paging (AMD's NPT and Intel's EPT). The emulated hardware
it exposes is the traditional 2/3/4 level x86 mmu, with support for global
-pages, pae, pse, pse36, cr0.wp, and 1GB pages. Work is in progress to support
-exposing NPT capable hardware on NPT capable hosts.
+pages, pae, pse, pse36, cr0.wp, and 1GB pages. Emulated hardware also
+able to expose NPT capable hardware on NPT capable hosts.
Translation
===========
@@ -465,5 +465,5 @@ Further reading
===============
- NPT presentation from KVM Forum 2008
- http://www.linux-kvm.org/wiki/images/c/c8/KvmForum2008%24kdf2008_21.pdf
+ http://www.linux-kvm.org/images/c/c8/KvmForum2008%24kdf2008_21.pdf
diff --git a/Documentation/virtual/kvm/nested-vmx.txt b/Documentation/virtual/kvm/nested-vmx.txt
index 8ed937d..97eb135 100644
--- a/Documentation/virtual/kvm/nested-vmx.txt
+++ b/Documentation/virtual/kvm/nested-vmx.txt
@@ -31,17 +31,6 @@ L0, the guest hypervisor, which we call L1, and its nested guest, which we
call L2.
-Known limitations
------------------
-
-The current code supports running Linux guests under KVM guests.
-Only 64-bit guest hypervisors are supported.
-
-Additional patches for running Windows under guest KVM, and Linux under
-guest VMware server, and support for nested EPT, are currently running in
-the lab, and will be sent as follow-on patchsets.
-
-
Running nested VMX
------------------
OpenPOWER on IntegriCloud