diff options
Diffstat (limited to 'Documentation/video4linux/v4l2-framework.txt')
-rw-r--r-- | Documentation/video4linux/v4l2-framework.txt | 107 |
1 files changed, 11 insertions, 96 deletions
diff --git a/Documentation/video4linux/v4l2-framework.txt b/Documentation/video4linux/v4l2-framework.txt index 74d677c..90b0a08 100644 --- a/Documentation/video4linux/v4l2-framework.txt +++ b/Documentation/video4linux/v4l2-framework.txt @@ -599,99 +599,14 @@ video_device::minor fields. video buffer helper functions ----------------------------- -The v4l2 core API provides a standard method for dealing with video -buffers. Those methods allow a driver to implement read(), mmap() and -overlay() on a consistent way. - -There are currently methods for using video buffers on devices that -supports DMA with scatter/gather method (videobuf-dma-sg), DMA with -linear access (videobuf-dma-contig), and vmalloced buffers, mostly -used on USB drivers (videobuf-vmalloc). - -Any driver using videobuf should provide operations (callbacks) for -four handlers: - -ops->buf_setup - calculates the size of the video buffers and avoid they - to waste more than some maximum limit of RAM; -ops->buf_prepare - fills the video buffer structs and calls - videobuf_iolock() to alloc and prepare mmaped memory; -ops->buf_queue - advices the driver that another buffer were - requested (by read() or by QBUF); -ops->buf_release - frees any buffer that were allocated. - -In order to use it, the driver need to have a code (generally called at -interrupt context) that will properly handle the buffer request lists, -announcing that a new buffer were filled. - -The irq handling code should handle the videobuf task lists, in order -to advice videobuf that a new frame were filled, in order to honor to a -request. The code is generally like this one: - if (list_empty(&dma_q->active)) - return; - - buf = list_entry(dma_q->active.next, struct vbuffer, vb.queue); - - if (!waitqueue_active(&buf->vb.done)) - return; - - /* Some logic to handle the buf may be needed here */ - - list_del(&buf->vb.queue); - do_gettimeofday(&buf->vb.ts); - wake_up(&buf->vb.done); - -Those are the videobuffer functions used on drivers, implemented on -videobuf-core: - -- Videobuf init functions - videobuf_queue_sg_init() - Initializes the videobuf infrastructure. This function should be - called before any other videobuf function on drivers that uses DMA - Scatter/Gather buffers. - - videobuf_queue_dma_contig_init - Initializes the videobuf infrastructure. This function should be - called before any other videobuf function on drivers that need DMA - contiguous buffers. - - videobuf_queue_vmalloc_init() - Initializes the videobuf infrastructure. This function should be - called before any other videobuf function on USB (and other drivers) - that need a vmalloced type of videobuf. - -- videobuf_iolock() - Prepares the videobuf memory for the proper method (read, mmap, overlay). - -- videobuf_queue_is_busy() - Checks if a videobuf is streaming. - -- videobuf_queue_cancel() - Stops video handling. - -- videobuf_mmap_free() - frees mmap buffers. - -- videobuf_stop() - Stops video handling, ends mmap and frees mmap and other buffers. - -- V4L2 api functions. Those functions correspond to VIDIOC_foo ioctls: - videobuf_reqbufs(), videobuf_querybuf(), videobuf_qbuf(), - videobuf_dqbuf(), videobuf_streamon(), videobuf_streamoff(). - -- V4L1 api function (corresponds to VIDIOCMBUF ioctl): - videobuf_cgmbuf() - This function is used to provide backward compatibility with V4L1 - API. - -- Some help functions for read()/poll() operations: - videobuf_read_stream() - For continuous stream read() - videobuf_read_one() - For snapshot read() - videobuf_poll_stream() - polling help function - -The better way to understand it is to take a look at vivi driver. One -of the main reasons for vivi is to be a videobuf usage example. the -vivi_thread_tick() does the task that the IRQ callback would do on PCI -drivers (or the irq callback on USB). +The v4l2 core API provides a set of standard methods (called "videobuf") +for dealing with video buffers. Those methods allow a driver to implement +read(), mmap() and overlay() in a consistent way. There are currently +methods for using video buffers on devices that supports DMA with +scatter/gather method (videobuf-dma-sg), DMA with linear access +(videobuf-dma-contig), and vmalloced buffers, mostly used on USB drivers +(videobuf-vmalloc). + +Please see Documentation/video4linux/videobuf for more information on how +to use the videobuf layer. + |