summaryrefslogtreecommitdiffstats
path: root/Documentation/networking
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking')
-rw-r--r--Documentation/networking/dctcp.txt43
-rw-r--r--Documentation/networking/filter.txt271
-rw-r--r--Documentation/networking/ip-sysctl.txt40
-rw-r--r--Documentation/networking/pktgen.txt3
-rw-r--r--Documentation/networking/timestamping.txt368
-rw-r--r--Documentation/networking/timestamping/Makefile8
-rw-r--r--Documentation/networking/timestamping/txtimestamp.c469
7 files changed, 1110 insertions, 92 deletions
diff --git a/Documentation/networking/dctcp.txt b/Documentation/networking/dctcp.txt
new file mode 100644
index 0000000..0d5dfbc
--- /dev/null
+++ b/Documentation/networking/dctcp.txt
@@ -0,0 +1,43 @@
+DCTCP (DataCenter TCP)
+----------------------
+
+DCTCP is an enhancement to the TCP congestion control algorithm for data
+center networks and leverages Explicit Congestion Notification (ECN) in
+the data center network to provide multi-bit feedback to the end hosts.
+
+To enable it on end hosts:
+
+ sysctl -w net.ipv4.tcp_congestion_control=dctcp
+
+All switches in the data center network running DCTCP must support ECN
+marking and be configured for marking when reaching defined switch buffer
+thresholds. The default ECN marking threshold heuristic for DCTCP on
+switches is 20 packets (30KB) at 1Gbps, and 65 packets (~100KB) at 10Gbps,
+but might need further careful tweaking.
+
+For more details, see below documents:
+
+Paper:
+
+The algorithm is further described in detail in the following two
+SIGCOMM/SIGMETRICS papers:
+
+ i) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
+ Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan:
+ "Data Center TCP (DCTCP)", Data Center Networks session
+ Proc. ACM SIGCOMM, New Delhi, 2010.
+ http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
+ http://www.sigcomm.org/ccr/papers/2010/October/1851275.1851192
+
+ii) Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar:
+ "Analysis of DCTCP: Stability, Convergence, and Fairness"
+ Proc. ACM SIGMETRICS, San Jose, 2011.
+ http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
+
+IETF informational draft:
+
+ http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-00
+
+DCTCP site:
+
+ http://simula.stanford.edu/~alizade/Site/DCTCP.html
diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt
index f4db097..b1935f9 100644
--- a/Documentation/networking/filter.txt
+++ b/Documentation/networking/filter.txt
@@ -951,7 +951,7 @@ Size modifier is one of ...
Mode modifier is one of:
- BPF_IMM 0x00 /* classic BPF only, reserved in eBPF */
+ BPF_IMM 0x00 /* used for 32-bit mov in classic BPF and 64-bit in eBPF */
BPF_ABS 0x20
BPF_IND 0x40
BPF_MEM 0x60
@@ -995,6 +995,275 @@ BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and
2 byte atomic increments are not supported.
+eBPF has one 16-byte instruction: BPF_LD | BPF_DW | BPF_IMM which consists
+of two consecutive 'struct bpf_insn' 8-byte blocks and interpreted as single
+instruction that loads 64-bit immediate value into a dst_reg.
+Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM which loads
+32-bit immediate value into a register.
+
+eBPF verifier
+-------------
+The safety of the eBPF program is determined in two steps.
+
+First step does DAG check to disallow loops and other CFG validation.
+In particular it will detect programs that have unreachable instructions.
+(though classic BPF checker allows them)
+
+Second step starts from the first insn and descends all possible paths.
+It simulates execution of every insn and observes the state change of
+registers and stack.
+
+At the start of the program the register R1 contains a pointer to context
+and has type PTR_TO_CTX.
+If verifier sees an insn that does R2=R1, then R2 has now type
+PTR_TO_CTX as well and can be used on the right hand side of expression.
+If R1=PTR_TO_CTX and insn is R2=R1+R1, then R2=UNKNOWN_VALUE,
+since addition of two valid pointers makes invalid pointer.
+(In 'secure' mode verifier will reject any type of pointer arithmetic to make
+sure that kernel addresses don't leak to unprivileged users)
+
+If register was never written to, it's not readable:
+ bpf_mov R0 = R2
+ bpf_exit
+will be rejected, since R2 is unreadable at the start of the program.
+
+After kernel function call, R1-R5 are reset to unreadable and
+R0 has a return type of the function.
+
+Since R6-R9 are callee saved, their state is preserved across the call.
+ bpf_mov R6 = 1
+ bpf_call foo
+ bpf_mov R0 = R6
+ bpf_exit
+is a correct program. If there was R1 instead of R6, it would have
+been rejected.
+
+load/store instructions are allowed only with registers of valid types, which
+are PTR_TO_CTX, PTR_TO_MAP, FRAME_PTR. They are bounds and alignment checked.
+For example:
+ bpf_mov R1 = 1
+ bpf_mov R2 = 2
+ bpf_xadd *(u32 *)(R1 + 3) += R2
+ bpf_exit
+will be rejected, since R1 doesn't have a valid pointer type at the time of
+execution of instruction bpf_xadd.
+
+At the start R1 type is PTR_TO_CTX (a pointer to generic 'struct bpf_context')
+A callback is used to customize verifier to restrict eBPF program access to only
+certain fields within ctx structure with specified size and alignment.
+
+For example, the following insn:
+ bpf_ld R0 = *(u32 *)(R6 + 8)
+intends to load a word from address R6 + 8 and store it into R0
+If R6=PTR_TO_CTX, via is_valid_access() callback the verifier will know
+that offset 8 of size 4 bytes can be accessed for reading, otherwise
+the verifier will reject the program.
+If R6=FRAME_PTR, then access should be aligned and be within
+stack bounds, which are [-MAX_BPF_STACK, 0). In this example offset is 8,
+so it will fail verification, since it's out of bounds.
+
+The verifier will allow eBPF program to read data from stack only after
+it wrote into it.
+Classic BPF verifier does similar check with M[0-15] memory slots.
+For example:
+ bpf_ld R0 = *(u32 *)(R10 - 4)
+ bpf_exit
+is invalid program.
+Though R10 is correct read-only register and has type FRAME_PTR
+and R10 - 4 is within stack bounds, there were no stores into that location.
+
+Pointer register spill/fill is tracked as well, since four (R6-R9)
+callee saved registers may not be enough for some programs.
+
+Allowed function calls are customized with bpf_verifier_ops->get_func_proto()
+The eBPF verifier will check that registers match argument constraints.
+After the call register R0 will be set to return type of the function.
+
+Function calls is a main mechanism to extend functionality of eBPF programs.
+Socket filters may let programs to call one set of functions, whereas tracing
+filters may allow completely different set.
+
+If a function made accessible to eBPF program, it needs to be thought through
+from safety point of view. The verifier will guarantee that the function is
+called with valid arguments.
+
+seccomp vs socket filters have different security restrictions for classic BPF.
+Seccomp solves this by two stage verifier: classic BPF verifier is followed
+by seccomp verifier. In case of eBPF one configurable verifier is shared for
+all use cases.
+
+See details of eBPF verifier in kernel/bpf/verifier.c
+
+eBPF maps
+---------
+'maps' is a generic storage of different types for sharing data between kernel
+and userspace.
+
+The maps are accessed from user space via BPF syscall, which has commands:
+- create a map with given type and attributes
+ map_fd = bpf(BPF_MAP_CREATE, union bpf_attr *attr, u32 size)
+ using attr->map_type, attr->key_size, attr->value_size, attr->max_entries
+ returns process-local file descriptor or negative error
+
+- lookup key in a given map
+ err = bpf(BPF_MAP_LOOKUP_ELEM, union bpf_attr *attr, u32 size)
+ using attr->map_fd, attr->key, attr->value
+ returns zero and stores found elem into value or negative error
+
+- create or update key/value pair in a given map
+ err = bpf(BPF_MAP_UPDATE_ELEM, union bpf_attr *attr, u32 size)
+ using attr->map_fd, attr->key, attr->value
+ returns zero or negative error
+
+- find and delete element by key in a given map
+ err = bpf(BPF_MAP_DELETE_ELEM, union bpf_attr *attr, u32 size)
+ using attr->map_fd, attr->key
+
+- to delete map: close(fd)
+ Exiting process will delete maps automatically
+
+userspace programs use this syscall to create/access maps that eBPF programs
+are concurrently updating.
+
+maps can have different types: hash, array, bloom filter, radix-tree, etc.
+
+The map is defined by:
+ . type
+ . max number of elements
+ . key size in bytes
+ . value size in bytes
+
+Understanding eBPF verifier messages
+------------------------------------
+
+The following are few examples of invalid eBPF programs and verifier error
+messages as seen in the log:
+
+Program with unreachable instructions:
+static struct bpf_insn prog[] = {
+ BPF_EXIT_INSN(),
+ BPF_EXIT_INSN(),
+};
+Error:
+ unreachable insn 1
+
+Program that reads uninitialized register:
+ BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (bf) r0 = r2
+ R2 !read_ok
+
+Program that doesn't initialize R0 before exiting:
+ BPF_MOV64_REG(BPF_REG_2, BPF_REG_1),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (bf) r2 = r1
+ 1: (95) exit
+ R0 !read_ok
+
+Program that accesses stack out of bounds:
+ BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (7a) *(u64 *)(r10 +8) = 0
+ invalid stack off=8 size=8
+
+Program that doesn't initialize stack before passing its address into function:
+ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+ BPF_LD_MAP_FD(BPF_REG_1, 0),
+ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (bf) r2 = r10
+ 1: (07) r2 += -8
+ 2: (b7) r1 = 0x0
+ 3: (85) call 1
+ invalid indirect read from stack off -8+0 size 8
+
+Program that uses invalid map_fd=0 while calling to map_lookup_elem() function:
+ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+ BPF_LD_MAP_FD(BPF_REG_1, 0),
+ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (7a) *(u64 *)(r10 -8) = 0
+ 1: (bf) r2 = r10
+ 2: (07) r2 += -8
+ 3: (b7) r1 = 0x0
+ 4: (85) call 1
+ fd 0 is not pointing to valid bpf_map
+
+Program that doesn't check return value of map_lookup_elem() before accessing
+map element:
+ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+ BPF_LD_MAP_FD(BPF_REG_1, 0),
+ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
+ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (7a) *(u64 *)(r10 -8) = 0
+ 1: (bf) r2 = r10
+ 2: (07) r2 += -8
+ 3: (b7) r1 = 0x0
+ 4: (85) call 1
+ 5: (7a) *(u64 *)(r0 +0) = 0
+ R0 invalid mem access 'map_value_or_null'
+
+Program that correctly checks map_lookup_elem() returned value for NULL, but
+accesses the memory with incorrect alignment:
+ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+ BPF_LD_MAP_FD(BPF_REG_1, 0),
+ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
+ BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
+ BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (7a) *(u64 *)(r10 -8) = 0
+ 1: (bf) r2 = r10
+ 2: (07) r2 += -8
+ 3: (b7) r1 = 1
+ 4: (85) call 1
+ 5: (15) if r0 == 0x0 goto pc+1
+ R0=map_ptr R10=fp
+ 6: (7a) *(u64 *)(r0 +4) = 0
+ misaligned access off 4 size 8
+
+Program that correctly checks map_lookup_elem() returned value for NULL and
+accesses memory with correct alignment in one side of 'if' branch, but fails
+to do so in the other side of 'if' branch:
+ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+ BPF_LD_MAP_FD(BPF_REG_1, 0),
+ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
+ BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
+ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
+ BPF_EXIT_INSN(),
+ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1),
+ BPF_EXIT_INSN(),
+Error:
+ 0: (7a) *(u64 *)(r10 -8) = 0
+ 1: (bf) r2 = r10
+ 2: (07) r2 += -8
+ 3: (b7) r1 = 1
+ 4: (85) call 1
+ 5: (15) if r0 == 0x0 goto pc+2
+ R0=map_ptr R10=fp
+ 6: (7a) *(u64 *)(r0 +0) = 0
+ 7: (95) exit
+
+ from 5 to 8: R0=imm0 R10=fp
+ 8: (7a) *(u64 *)(r0 +0) = 1
+ R0 invalid mem access 'imm'
+
Testing
-------
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index caedb18..0307e28 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -65,6 +65,12 @@ neigh/default/gc_thresh1 - INTEGER
purge entries if there are fewer than this number.
Default: 128
+neigh/default/gc_thresh2 - INTEGER
+ Threshold when garbage collector becomes more aggressive about
+ purging entries. Entries older than 5 seconds will be cleared
+ when over this number.
+ Default: 512
+
neigh/default/gc_thresh3 - INTEGER
Maximum number of neighbor entries allowed. Increase this
when using large numbers of interfaces and when communicating
@@ -757,8 +763,21 @@ icmp_ratelimit - INTEGER
icmp_ratemask (see below) to specific targets.
0 to disable any limiting,
otherwise the minimal space between responses in milliseconds.
+ Note that another sysctl, icmp_msgs_per_sec limits the number
+ of ICMP packets sent on all targets.
+ Default: 1000
+
+icmp_msgs_per_sec - INTEGER
+ Limit maximal number of ICMP packets sent per second from this host.
+ Only messages whose type matches icmp_ratemask (see below) are
+ controlled by this limit.
Default: 1000
+icmp_msgs_burst - INTEGER
+ icmp_msgs_per_sec controls number of ICMP packets sent per second,
+ while icmp_msgs_burst controls the burst size of these packets.
+ Default: 50
+
icmp_ratemask - INTEGER
Mask made of ICMP types for which rates are being limited.
Significant bits: IHGFEDCBA9876543210
@@ -832,6 +851,11 @@ igmp_max_memberships - INTEGER
conf/all/* is special, changes the settings for all interfaces
+igmp_qrv - INTEGER
+ Controls the IGMP query robustness variable (see RFC2236 8.1).
+ Default: 2 (as specified by RFC2236 8.1)
+ Minimum: 1 (as specified by RFC6636 4.5)
+
log_martians - BOOLEAN
Log packets with impossible addresses to kernel log.
log_martians for the interface will be enabled if at least one of
@@ -935,14 +959,9 @@ accept_source_route - BOOLEAN
FALSE (host)
accept_local - BOOLEAN
- Accept packets with local source addresses. In combination
- with suitable routing, this can be used to direct packets
- between two local interfaces over the wire and have them
- accepted properly.
-
- rp_filter must be set to a non-zero value in order for
- accept_local to have an effect.
-
+ Accept packets with local source addresses. In combination with
+ suitable routing, this can be used to direct packets between two
+ local interfaces over the wire and have them accepted properly.
default FALSE
route_localnet - BOOLEAN
@@ -1140,6 +1159,11 @@ anycast_src_echo_reply - BOOLEAN
FALSE: disabled
Default: FALSE
+mld_qrv - INTEGER
+ Controls the MLD query robustness variable (see RFC3810 9.1).
+ Default: 2 (as specified by RFC3810 9.1)
+ Minimum: 1 (as specified by RFC6636 4.5)
+
IPv6 Fragmentation:
ip6frag_high_thresh - INTEGER
diff --git a/Documentation/networking/pktgen.txt b/Documentation/networking/pktgen.txt
index 0dffc6e..6915c6b 100644
--- a/Documentation/networking/pktgen.txt
+++ b/Documentation/networking/pktgen.txt
@@ -99,6 +99,9 @@ Examples:
pgset "clone_skb 1" sets the number of copies of the same packet
pgset "clone_skb 0" use single SKB for all transmits
+ pgset "burst 8" uses xmit_more API to queue 8 copies of the same
+ packet and update HW tx queue tail pointer once.
+ "burst 1" is the default
pgset "pkt_size 9014" sets packet size to 9014
pgset "frags 5" packet will consist of 5 fragments
pgset "count 200000" sets number of packets to send, set to zero
diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt
index 897f942..412f45c 100644
--- a/Documentation/networking/timestamping.txt
+++ b/Documentation/networking/timestamping.txt
@@ -1,102 +1,307 @@
-The existing interfaces for getting network packages time stamped are:
+
+1. Control Interfaces
+
+The interfaces for receiving network packages timestamps are:
* SO_TIMESTAMP
- Generate time stamp for each incoming packet using the (not necessarily
- monotonous!) system time. Result is returned via recv_msg() in a
- control message as timeval (usec resolution).
+ Generates a timestamp for each incoming packet in (not necessarily
+ monotonic) system time. Reports the timestamp via recvmsg() in a
+ control message as struct timeval (usec resolution).
* SO_TIMESTAMPNS
- Same time stamping mechanism as SO_TIMESTAMP, but returns result as
- timespec (nsec resolution).
+ Same timestamping mechanism as SO_TIMESTAMP, but reports the
+ timestamp as struct timespec (nsec resolution).
* IP_MULTICAST_LOOP + SO_TIMESTAMP[NS]
- Only for multicasts: approximate send time stamp by receiving the looped
- packet and using its receive time stamp.
+ Only for multicast:approximate transmit timestamp obtained by
+ reading the looped packet receive timestamp.
-The following interface complements the existing ones: receive time
-stamps can be generated and returned for arbitrary packets and much
-closer to the point where the packet is really sent. Time stamps can
-be generated in software (as before) or in hardware (if the hardware
-has such a feature).
+* SO_TIMESTAMPING
+ Generates timestamps on reception, transmission or both. Supports
+ multiple timestamp sources, including hardware. Supports generating
+ timestamps for stream sockets.
-SO_TIMESTAMPING:
-Instructs the socket layer which kind of information should be collected
-and/or reported. The parameter is an integer with some of the following
-bits set. Setting other bits is an error and doesn't change the current
-state.
+1.1 SO_TIMESTAMP:
-Four of the bits are requests to the stack to try to generate
-timestamps. Any combination of them is valid.
+This socket option enables timestamping of datagrams on the reception
+path. Because the destination socket, if any, is not known early in
+the network stack, the feature has to be enabled for all packets. The
+same is true for all early receive timestamp options.
-SOF_TIMESTAMPING_TX_HARDWARE: try to obtain send time stamps in hardware
-SOF_TIMESTAMPING_TX_SOFTWARE: try to obtain send time stamps in software
-SOF_TIMESTAMPING_RX_HARDWARE: try to obtain receive time stamps in hardware
-SOF_TIMESTAMPING_RX_SOFTWARE: try to obtain receive time stamps in software
+For interface details, see `man 7 socket`.
+
+
+1.2 SO_TIMESTAMPNS:
+
+This option is identical to SO_TIMESTAMP except for the returned data type.
+Its struct timespec allows for higher resolution (ns) timestamps than the
+timeval of SO_TIMESTAMP (ms).
+
+
+1.3 SO_TIMESTAMPING:
+
+Supports multiple types of timestamp requests. As a result, this
+socket option takes a bitmap of flags, not a boolean. In
+
+ err = setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, (void *) val, &val);
+
+val is an integer with any of the following bits set. Setting other
+bit returns EINVAL and does not change the current state.
-The other three bits control which timestamps will be reported in a
-generated control message. If none of these bits are set or if none of
-the set bits correspond to data that is available, then the control
-message will not be generated:
-SOF_TIMESTAMPING_SOFTWARE: report systime if available
-SOF_TIMESTAMPING_SYS_HARDWARE: report hwtimetrans if available (deprecated)
-SOF_TIMESTAMPING_RAW_HARDWARE: report hwtimeraw if available
+1.3.1 Timestamp Generation
-It is worth noting that timestamps may be collected for reasons other
-than being requested by a particular socket with
-SOF_TIMESTAMPING_[TR]X_(HARD|SOFT)WARE. For example, most drivers that
-can generate hardware receive timestamps ignore
-SOF_TIMESTAMPING_RX_HARDWARE. It is still a good idea to set that flag
-in case future drivers pay attention.
+Some bits are requests to the stack to try to generate timestamps. Any
+combination of them is valid. Changes to these bits apply to newly
+created packets, not to packets already in the stack. As a result, it
+is possible to selectively request timestamps for a subset of packets
+(e.g., for sampling) by embedding an send() call within two setsockopt
+calls, one to enable timestamp generation and one to disable it.
+Timestamps may also be generated for reasons other than being
+requested by a particular socket, such as when receive timestamping is
+enabled system wide, as explained earlier.
-If timestamps are reported, they will appear in a control message with
-cmsg_level==SOL_SOCKET, cmsg_type==SO_TIMESTAMPING, and a payload like
-this:
+SOF_TIMESTAMPING_RX_HARDWARE:
+ Request rx timestamps generated by the network adapter.
+
+SOF_TIMESTAMPING_RX_SOFTWARE:
+ Request rx timestamps when data enters the kernel. These timestamps
+ are generated just after a device driver hands a packet to the
+ kernel receive stack.
+
+SOF_TIMESTAMPING_TX_HARDWARE:
+ Request tx timestamps generated by the network adapter.
+
+SOF_TIMESTAMPING_TX_SOFTWARE:
+ Request tx timestamps when data leaves the kernel. These timestamps
+ are generated in the device driver as close as possible, but always
+ prior to, passing the packet to the network interface. Hence, they
+ require driver support and may not be available for all devices.
+
+SOF_TIMESTAMPING_TX_SCHED:
+ Request tx timestamps prior to entering the packet scheduler. Kernel
+ transmit latency is, if long, often dominated by queuing delay. The
+ difference between this timestamp and one taken at
+ SOF_TIMESTAMPING_TX_SOFTWARE will expose this latency independent
+ of protocol processing. The latency incurred in protocol
+ processing, if any, can be computed by subtracting a userspace
+ timestamp taken immediately before send() from this timestamp. On
+ machines with virtual devices where a transmitted packet travels
+ through multiple devices and, hence, multiple packet schedulers,
+ a timestamp is generated at each layer. This allows for fine
+ grained measurement of queuing delay.
+
+SOF_TIMESTAMPING_TX_ACK:
+ Request tx timestamps when all data in the send buffer has been
+ acknowledged. This only makes sense for reliable protocols. It is
+ currently only implemented for TCP. For that protocol, it may
+ over-report measurement, because the timestamp is generated when all
+ data up to and including the buffer at send() was acknowledged: the
+ cumulative acknowledgment. The mechanism ignores SACK and FACK.
+
+
+1.3.2 Timestamp Reporting
+
+The other three bits control which timestamps will be reported in a
+generated control message. Changes to the bits take immediate
+effect at the timestamp reporting locations in the stack. Timestamps
+are only reported for packets that also have the relevant timestamp
+generation request set.
+
+SOF_TIMESTAMPING_SOFTWARE:
+ Report any software timestamps when available.
+
+SOF_TIMESTAMPING_SYS_HARDWARE:
+ This option is deprecated and ignored.
+
+SOF_TIMESTAMPING_RAW_HARDWARE:
+ Report hardware timestamps as generated by
+ SOF_TIMESTAMPING_TX_HARDWARE when available.
+
+
+1.3.3 Timestamp Options
+
+The interface supports one option
+
+SOF_TIMESTAMPING_OPT_ID:
+
+ Generate a unique identifier along with each packet. A process can
+ have multiple concurrent timestamping requests outstanding. Packets
+ can be reordered in the transmit path, for instance in the packet
+ scheduler. In that case timestamps will be queued onto the error
+ queue out of order from the original send() calls. This option
+ embeds a counter that is incremented at send() time, to order
+ timestamps within a flow.
+
+ This option is implemented only for transmit timestamps. There, the
+ timestamp is always looped along with a struct sock_extended_err.
+ The option modifies field ee_info to pass an id that is unique
+ among all possibly concurrently outstanding timestamp requests for
+ that socket. In practice, it is a monotonically increasing u32
+ (that wraps).
+
+ In datagram sockets, the counter increments on each send call. In
+ stream sockets, it increments with every byte.
+
+
+1.4 Bytestream Timestamps
+
+The SO_TIMESTAMPING interface supports timestamping of bytes in a
+bytestream. Each request is interpreted as a request for when the
+entire contents of the buffer has passed a timestamping point. That
+is, for streams option SOF_TIMESTAMPING_TX_SOFTWARE will record
+when all bytes have reached the device driver, regardless of how
+many packets the data has been converted into.
+
+In general, bytestreams have no natural delimiters and therefore
+correlating a timestamp with data is non-trivial. A range of bytes
+may be split across segments, any segments may be merged (possibly
+coalescing sections of previously segmented buffers associated with
+independent send() calls). Segments can be reordered and the same
+byte range can coexist in multiple segments for protocols that
+implement retransmissions.
+
+It is essential that all timestamps implement the same semantics,
+regardless of these possible transformations, as otherwise they are
+incomparable. Handling "rare" corner cases differently from the
+simple case (a 1:1 mapping from buffer to skb) is insufficient
+because performance debugging often needs to focus on such outliers.
+
+In practice, timestamps can be correlated with segments of a
+bytestream consistently, if both semantics of the timestamp and the
+timing of measurement are chosen correctly. This challenge is no
+different from deciding on a strategy for IP fragmentation. There, the
+definition is that only the first fragment is timestamped. For
+bytestreams, we chose that a timestamp is generated only when all
+bytes have passed a point. SOF_TIMESTAMPING_TX_ACK as defined is easy to
+implement and reason about. An implementation that has to take into
+account SACK would be more complex due to possible transmission holes
+and out of order arrival.
+
+On the host, TCP can also break the simple 1:1 mapping from buffer to
+skbuff as a result of Nagle, cork, autocork, segmentation and GSO. The
+implementation ensures correctness in all cases by tracking the
+individual last byte passed to send(), even if it is no longer the
+last byte after an skbuff extend or merge operation. It stores the
+relevant sequence number in skb_shinfo(skb)->tskey. Because an skbuff
+has only one such field, only one timestamp can be generated.
+
+In rare cases, a timestamp request can be missed if two requests are
+collapsed onto the same skb. A process can detect this situation by
+enabling SOF_TIMESTAMPING_OPT_ID and comparing the byte offset at
+send time with the value returned for each timestamp. It can prevent
+the situation by always flushing the TCP stack in between requests,
+for instance by enabling TCP_NODELAY and disabling TCP_CORK and
+autocork.
+
+These precautions ensure that the timestamp is generated only when all
+bytes have passed a timestamp point, assuming that the network stack
+itself does not reorder the segments. The stack indeed tries to avoid
+reordering. The one exception is under administrator control: it is
+possible to construct a packet scheduler configuration that delays
+segments from the same stream differently. Such a setup would be
+unusual.
+
+
+2 Data Interfaces
+
+Timestamps are read using the ancillary data feature of recvmsg().
+See `man 3 cmsg` for details of this interface. The socket manual
+page (`man 7 socket`) describes how timestamps generated with
+SO_TIMESTAMP and SO_TIMESTAMPNS records can be retrieved.
+
+
+2.1 SCM_TIMESTAMPING records
+
+These timestamps are returned in a control message with cmsg_level
+SOL_SOCKET, cmsg_type SCM_TIMESTAMPING, and payload of type
struct scm_timestamping {
- struct timespec systime;
- struct timespec hwtimetrans;
- struct timespec hwtimeraw;
+ struct timespec ts[3];
};
-recvmsg() can be used to get this control message for regular incoming
-packets. For send time stamps the outgoing packet is looped back to
-the socket's error queue with the send time stamp(s) attached. It can
-be received with recvmsg(flags=MSG_ERRQUEUE). The call returns the
-original outgoing packet data including all headers preprended down to
-and including the link layer, the scm_timestamping control message and
-a sock_extended_err control message with ee_errno==ENOMSG and
-ee_origin==SO_EE_ORIGIN_TIMESTAMPING. A socket with such a pending
-bounced packet is ready for reading as far as select() is concerned.
-If the outgoing packet has to be fragmented, then only the first
-fragment is time stamped and returned to the sending socket.
-
-All three values correspond to the same event in time, but were
-generated in different ways. Each of these values may be empty (= all
-zero), in which case no such value was available. If the application
-is not interested in some of these values, they can be left blank to
-avoid the potential overhead of calculating them.
-
-systime is the value of the system time at that moment. This
-corresponds to the value also returned via SO_TIMESTAMP[NS]. If the
-time stamp was generated by hardware, then this field is
-empty. Otherwise it is filled in if SOF_TIMESTAMPING_SOFTWARE is
-set.
-
-hwtimeraw is the original hardware time stamp. Filled in if
-SOF_TIMESTAMPING_RAW_HARDWARE is set. No assumptions about its
-relation to system time should be made.
-
-hwtimetrans is always zero. This field is deprecated. It used to hold
-hw timestamps converted to system time. Instead, expose the hardware
-clock device on the NIC directly as a HW PTP clock source, to allow
-time conversion in userspace and optionally synchronize system time
-with a userspace PTP stack such as linuxptp. For the PTP clock API,
-see Documentation/ptp/ptp.txt.
-
-
-SIOCSHWTSTAMP, SIOCGHWTSTAMP:
+The structure can return up to three timestamps. This is a legacy
+feature. Only one field is non-zero at any time. Most timestamps
+are passed in ts[0]. Hardware timestamps are passed in ts[2].
+
+ts[1] used to hold hardware timestamps converted to system time.
+Instead, expose the hardware clock device on the NIC directly as
+a HW PTP clock source, to allow time conversion in userspace and
+optionally synchronize system time with a userspace PTP stack such
+as linuxptp. For the PTP clock API, see Documentation/ptp/ptp.txt.
+
+2.1.1 Transmit timestamps with MSG_ERRQUEUE
+
+For transmit timestamps the outgoing packet is looped back to the
+socket's error queue with the send timestamp(s) attached. A process
+receives the timestamps by calling recvmsg() with flag MSG_ERRQUEUE
+set and with a msg_control buffer sufficiently large to receive the
+relevant metadata structures. The recvmsg call returns the original
+outgoing data packet with two ancillary messages attached.
+
+A message of cm_level SOL_IP(V6) and cm_type IP(V6)_RECVERR
+embeds a struct sock_extended_err. This defines the error type. For
+timestamps, the ee_errno field is ENOMSG. The other ancillary message
+will have cm_level SOL_SOCKET and cm_type SCM_TIMESTAMPING. This
+embeds the struct scm_timestamping.
+
+
+2.1.1.2 Timestamp types
+
+The semantics of the three struct timespec are defined by field
+ee_info in the extended error structure. It contains a value of
+type SCM_TSTAMP_* to define the actual timestamp passed in
+scm_timestamping.
+
+The SCM_TSTAMP_* types are 1:1 matches to the SOF_TIMESTAMPING_*
+control fields discussed previously, with one exception. For legacy
+reasons, SCM_TSTAMP_SND is equal to zero and can be set for both
+SOF_TIMESTAMPING_TX_HARDWARE and SOF_TIMESTAMPING_TX_SOFTWARE. It
+is the first if ts[2] is non-zero, the second otherwise, in which
+case the timestamp is stored in ts[0].
+
+
+2.1.1.3 Fragmentation
+
+Fragmentation of outgoing datagrams is rare, but is possible, e.g., by
+explicitly disabling PMTU discovery. If an outgoing packet is fragmented,
+then only the first fragment is timestamped and returned to the sending
+socket.
+
+
+2.1.1.4 Packet Payload
+
+The calling application is often not interested in receiving the whole
+packet payload that it passed to the stack originally: the socket
+error queue mechanism is just a method to piggyback the timestamp on.
+In this case, the application can choose to read datagrams with a
+smaller buffer, possibly even of length 0. The payload is truncated
+accordingly. Until the process calls recvmsg() on the error queue,
+however, the full packet is queued, taking up budget from SO_RCVBUF.
+
+
+2.1.1.5 Blocking Read
+
+Reading from the error queue is always a non-blocking operation. To
+block waiting on a timestamp, use poll or select. poll() will return
+POLLERR in pollfd.revents if any data is ready on the error queue.
+There is no need to pass this flag in pollfd.events. This flag is
+ignored on request. See also `man 2 poll`.
+
+
+2.1.2 Receive timestamps
+
+On reception, there is no reason to read from the socket error queue.
+The SCM_TIMESTAMPING ancillary data is sent along with the packet data
+on a normal recvmsg(). Since this is not a socket error, it is not
+accompanied by a message SOL_IP(V6)/IP(V6)_RECVERROR. In this case,
+the meaning of the three fields in struct scm_timestamping is
+implicitly defined. ts[0] holds a software timestamp if set, ts[1]
+is again deprecated and ts[2] holds a hardware timestamp if set.
+
+
+3. Hardware Timestamping configuration: SIOCSHWTSTAMP and SIOCGHWTSTAMP
Hardware time stamping must also be initialized for each device driver
that is expected to do hardware time stamping. The parameter is defined in
@@ -167,8 +372,7 @@ enum {
*/
};
-
-DEVICE IMPLEMENTATION
+3.1 Hardware Timestamping Implementation: Device Drivers
A driver which supports hardware time stamping must support the
SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with
diff --git a/Documentation/networking/timestamping/Makefile b/Documentation/networking/timestamping/Makefile
index 52ac67d..8c20dfa 100644
--- a/Documentation/networking/timestamping/Makefile
+++ b/Documentation/networking/timestamping/Makefile
@@ -1,8 +1,14 @@
+# To compile, from the source root
+#
+# make headers_install
+# make M=documentation
+
# List of programs to build
-hostprogs-y := hwtstamp_config timestamping
+hostprogs-y := hwtstamp_config timestamping txtimestamp
# Tell kbuild to always build the programs
always := $(hostprogs-y)
HOSTCFLAGS_timestamping.o += -I$(objtree)/usr/include
+HOSTCFLAGS_txtimestamp.o += -I$(objtree)/usr/include
HOSTCFLAGS_hwtstamp_config.o += -I$(objtree)/usr/include
diff --git a/Documentation/networking/timestamping/txtimestamp.c b/Documentation/networking/timestamping/txtimestamp.c
new file mode 100644
index 0000000..b32fc2a
--- /dev/null
+++ b/Documentation/networking/timestamping/txtimestamp.c
@@ -0,0 +1,469 @@
+/*
+ * Copyright 2014 Google Inc.
+ * Author: willemb@google.com (Willem de Bruijn)
+ *
+ * Test software tx timestamping, including
+ *
+ * - SCHED, SND and ACK timestamps
+ * - RAW, UDP and TCP
+ * - IPv4 and IPv6
+ * - various packet sizes (to test GSO and TSO)
+ *
+ * Consult the command line arguments for help on running
+ * the various testcases.
+ *
+ * This test requires a dummy TCP server.
+ * A simple `nc6 [-u] -l -p $DESTPORT` will do
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <arpa/inet.h>
+#include <asm/types.h>
+#include <error.h>
+#include <errno.h>
+#include <linux/errqueue.h>
+#include <linux/if_ether.h>
+#include <linux/net_tstamp.h>
+#include <netdb.h>
+#include <net/if.h>
+#include <netinet/in.h>
+#include <netinet/ip.h>
+#include <netinet/udp.h>
+#include <netinet/tcp.h>
+#include <netpacket/packet.h>
+#include <poll.h>
+#include <stdarg.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/ioctl.h>
+#include <sys/select.h>
+#include <sys/socket.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <time.h>
+#include <unistd.h>
+
+/* command line parameters */
+static int cfg_proto = SOCK_STREAM;
+static int cfg_ipproto = IPPROTO_TCP;
+static int cfg_num_pkts = 4;
+static int do_ipv4 = 1;
+static int do_ipv6 = 1;
+static int cfg_payload_len = 10;
+static uint16_t dest_port = 9000;
+
+static struct sockaddr_in daddr;
+static struct sockaddr_in6 daddr6;
+static struct timespec ts_prev;
+
+static void __print_timestamp(const char *name, struct timespec *cur,
+ uint32_t key, int payload_len)
+{
+ if (!(cur->tv_sec | cur->tv_nsec))
+ return;
+
+ fprintf(stderr, " %s: %lu s %lu us (seq=%u, len=%u)",
+ name, cur->tv_sec, cur->tv_nsec / 1000,
+ key, payload_len);
+
+ if ((ts_prev.tv_sec | ts_prev.tv_nsec)) {
+ int64_t cur_ms, prev_ms;
+
+ cur_ms = (long) cur->tv_sec * 1000 * 1000;
+ cur_ms += cur->tv_nsec / 1000;
+
+ prev_ms = (long) ts_prev.tv_sec * 1000 * 1000;
+ prev_ms += ts_prev.tv_nsec / 1000;
+
+ fprintf(stderr, " (%+ld us)", cur_ms - prev_ms);
+ }
+
+ ts_prev = *cur;
+ fprintf(stderr, "\n");
+}
+
+static void print_timestamp_usr(void)
+{
+ struct timespec ts;
+ struct timeval tv; /* avoid dependency on -lrt */
+
+ gettimeofday(&tv, NULL);
+ ts.tv_sec = tv.tv_sec;
+ ts.tv_nsec = tv.tv_usec * 1000;
+
+ __print_timestamp(" USR", &ts, 0, 0);
+}
+
+static void print_timestamp(struct scm_timestamping *tss, int tstype,
+ int tskey, int payload_len)
+{
+ const char *tsname;
+
+ switch (tstype) {
+ case SCM_TSTAMP_SCHED:
+ tsname = " ENQ";
+ break;
+ case SCM_TSTAMP_SND:
+ tsname = " SND";
+ break;
+ case SCM_TSTAMP_ACK:
+ tsname = " ACK";
+ break;
+ default:
+ error(1, 0, "unknown timestamp type: %u",
+ tstype);
+ }
+ __print_timestamp(tsname, &tss->ts[0], tskey, payload_len);
+}
+
+static void __poll(int fd)
+{
+ struct pollfd pollfd;
+ int ret;
+
+ memset(&pollfd, 0, sizeof(pollfd));
+ pollfd.fd = fd;
+ ret = poll(&pollfd, 1, 100);
+ if (ret != 1)
+ error(1, errno, "poll");
+}
+
+static void __recv_errmsg_cmsg(struct msghdr *msg, int payload_len)
+{
+ struct sock_extended_err *serr = NULL;
+ struct scm_timestamping *tss = NULL;
+ struct cmsghdr *cm;
+
+ for (cm = CMSG_FIRSTHDR(msg);
+ cm && cm->cmsg_len;
+ cm = CMSG_NXTHDR(msg, cm)) {
+ if (cm->cmsg_level == SOL_SOCKET &&
+ cm->cmsg_type == SCM_TIMESTAMPING) {
+ tss = (void *) CMSG_DATA(cm);
+ } else if ((cm->cmsg_level == SOL_IP &&
+ cm->cmsg_type == IP_RECVERR) ||
+ (cm->cmsg_level == SOL_IPV6 &&
+ cm->cmsg_type == IPV6_RECVERR)) {
+
+ serr = (void *) CMSG_DATA(cm);
+ if (serr->ee_errno != ENOMSG ||
+ serr->ee_origin != SO_EE_ORIGIN_TIMESTAMPING) {
+ fprintf(stderr, "unknown ip error %d %d\n",
+ serr->ee_errno,
+ serr->ee_origin);
+ serr = NULL;
+ }
+ } else
+ fprintf(stderr, "unknown cmsg %d,%d\n",
+ cm->cmsg_level, cm->cmsg_type);
+ }
+
+ if (serr && tss)
+ print_timestamp(tss, serr->ee_info, serr->ee_data, payload_len);
+}
+
+static int recv_errmsg(int fd)
+{
+ static char ctrl[1024 /* overprovision*/];
+ static struct msghdr msg;
+ struct iovec entry;
+ static char *data;
+ int ret = 0;
+
+ data = malloc(cfg_payload_len);
+ if (!data)
+ error(1, 0, "malloc");
+
+ memset(&msg, 0, sizeof(msg));
+ memset(&entry, 0, sizeof(entry));
+ memset(ctrl, 0, sizeof(ctrl));
+
+ entry.iov_base = data;
+ entry.iov_len = cfg_payload_len;
+ msg.msg_iov = &entry;
+ msg.msg_iovlen = 1;
+ msg.msg_name = NULL;
+ msg.msg_namelen = 0;
+ msg.msg_control = ctrl;
+ msg.msg_controllen = sizeof(ctrl);
+
+ ret = recvmsg(fd, &msg, MSG_ERRQUEUE);
+ if (ret == -1 && errno != EAGAIN)
+ error(1, errno, "recvmsg");
+
+ __recv_errmsg_cmsg(&msg, ret);
+
+ free(data);
+ return ret == -1;
+}
+
+static void do_test(int family, unsigned int opt)
+{
+ char *buf;
+ int fd, i, val, total_len;
+
+ if (family == IPPROTO_IPV6 && cfg_proto != SOCK_STREAM) {
+ /* due to lack of checksum generation code */
+ fprintf(stderr, "test: skipping datagram over IPv6\n");
+ return;
+ }
+
+ total_len = cfg_payload_len;
+ if (cfg_proto == SOCK_RAW) {
+ total_len += sizeof(struct udphdr);
+ if (cfg_ipproto == IPPROTO_RAW)
+ total_len += sizeof(struct iphdr);
+ }
+
+ buf = malloc(total_len);
+ if (!buf)
+ error(1, 0, "malloc");
+
+ fd = socket(family, cfg_proto, cfg_ipproto);
+ if (fd < 0)
+ error(1, errno, "socket");
+
+ if (cfg_proto == SOCK_STREAM) {
+ val = 1;
+ if (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY,
+ (char*) &val, sizeof(val)))
+ error(1, 0, "setsockopt no nagle");
+
+ if (family == PF_INET) {
+ if (connect(fd, (void *) &daddr, sizeof(daddr)))
+ error(1, errno, "connect ipv4");
+ } else {
+ if (connect(fd, (void *) &daddr6, sizeof(daddr6)))
+ error(1, errno, "connect ipv6");
+ }
+ }
+
+ opt |= SOF_TIMESTAMPING_SOFTWARE |
+ SOF_TIMESTAMPING_OPT_ID;
+ if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING,
+ (char *) &opt, sizeof(opt)))
+ error(1, 0, "setsockopt timestamping");
+
+ for (i = 0; i < cfg_num_pkts; i++) {
+ memset(&ts_prev, 0, sizeof(ts_prev));
+ memset(buf, 'a' + i, total_len);
+ buf[total_len - 2] = '\n';
+ buf[total_len - 1] = '\0';
+
+ if (cfg_proto == SOCK_RAW) {
+ struct udphdr *udph;
+ int off = 0;
+
+ if (cfg_ipproto == IPPROTO_RAW) {
+ struct iphdr *iph = (void *) buf;
+
+ memset(iph, 0, sizeof(*iph));
+ iph->ihl = 5;
+ iph->version = 4;
+ iph->ttl = 2;
+ iph->daddr = daddr.sin_addr.s_addr;
+ iph->protocol = IPPROTO_UDP;
+ /* kernel writes saddr, csum, len */
+
+ off = sizeof(*iph);
+ }
+
+ udph = (void *) buf + off;
+ udph->source = ntohs(9000); /* random spoof */
+ udph->dest = ntohs(dest_port);
+ udph->len = ntohs(sizeof(*udph) + cfg_payload_len);
+ udph->check = 0; /* not allowed for IPv6 */
+ }
+
+ print_timestamp_usr();
+ if (cfg_proto != SOCK_STREAM) {
+ if (family == PF_INET)
+ val = sendto(fd, buf, total_len, 0, (void *) &daddr, sizeof(daddr));
+ else
+ val = sendto(fd, buf, total_len, 0, (void *) &daddr6, sizeof(daddr6));
+ } else {
+ val = send(fd, buf, cfg_payload_len, 0);
+ }
+ if (val != total_len)
+ error(1, errno, "send");
+
+ /* wait for all errors to be queued, else ACKs arrive OOO */
+ usleep(50 * 1000);
+
+ __poll(fd);
+
+ while (!recv_errmsg(fd)) {}
+ }
+
+ if (close(fd))
+ error(1, errno, "close");
+
+ free(buf);
+ usleep(400 * 1000);
+}
+
+static void __attribute__((noreturn)) usage(const char *filepath)
+{
+ fprintf(stderr, "\nUsage: %s [options] hostname\n"
+ "\nwhere options are:\n"
+ " -4: only IPv4\n"
+ " -6: only IPv6\n"
+ " -h: show this message\n"
+ " -l N: send N bytes at a time\n"
+ " -r: use raw\n"
+ " -R: use raw (IP_HDRINCL)\n"
+ " -p N: connect to port N\n"
+ " -u: use udp\n",
+ filepath);
+ exit(1);
+}
+
+static void parse_opt(int argc, char **argv)
+{
+ int proto_count = 0;
+ char c;
+
+ while ((c = getopt(argc, argv, "46hl:p:rRu")) != -1) {
+ switch (c) {
+ case '4':
+ do_ipv6 = 0;
+ break;
+ case '6':
+ do_ipv4 = 0;
+ break;
+ case 'r':
+ proto_count++;
+ cfg_proto = SOCK_RAW;
+ cfg_ipproto = IPPROTO_UDP;
+ break;
+ case 'R':
+ proto_count++;
+ cfg_proto = SOCK_RAW;
+ cfg_ipproto = IPPROTO_RAW;
+ break;
+ case 'u':
+ proto_count++;
+ cfg_proto = SOCK_DGRAM;
+ cfg_ipproto = IPPROTO_UDP;
+ break;
+ case 'l':
+ cfg_payload_len = strtoul(optarg, NULL, 10);
+ break;
+ case 'p':
+ dest_port = strtoul(optarg, NULL, 10);
+ break;
+ case 'h':
+ default:
+ usage(argv[0]);
+ }
+ }
+
+ if (!cfg_payload_len)
+ error(1, 0, "payload may not be nonzero");
+ if (cfg_proto != SOCK_STREAM && cfg_payload_len > 1472)
+ error(1, 0, "udp packet might exceed expected MTU");
+ if (!do_ipv4 && !do_ipv6)
+ error(1, 0, "pass -4 or -6, not both");
+ if (proto_count > 1)
+ error(1, 0, "pass -r, -R or -u, not multiple");
+
+ if (optind != argc - 1)
+ error(1, 0, "missing required hostname argument");
+}
+
+static void resolve_hostname(const char *hostname)
+{
+ struct addrinfo *addrs, *cur;
+ int have_ipv4 = 0, have_ipv6 = 0;
+
+ if (getaddrinfo(hostname, NULL, NULL, &addrs))
+ error(1, errno, "getaddrinfo");
+
+ cur = addrs;
+ while (cur && !have_ipv4 && !have_ipv6) {
+ if (!have_ipv4 && cur->ai_family == AF_INET) {
+ memcpy(&daddr, cur->ai_addr, sizeof(daddr));
+ daddr.sin_port = htons(dest_port);
+ have_ipv4 = 1;
+ }
+ else if (!have_ipv6 && cur->ai_family == AF_INET6) {
+ memcpy(&daddr6, cur->ai_addr, sizeof(daddr6));
+ daddr6.sin6_port = htons(dest_port);
+ have_ipv6 = 1;
+ }
+ cur = cur->ai_next;
+ }
+ if (addrs)
+ freeaddrinfo(addrs);
+
+ do_ipv4 &= have_ipv4;
+ do_ipv6 &= have_ipv6;
+}
+
+static void do_main(int family)
+{
+ fprintf(stderr, "family: %s\n",
+ family == PF_INET ? "INET" : "INET6");
+
+ fprintf(stderr, "test SND\n");
+ do_test(family, SOF_TIMESTAMPING_TX_SOFTWARE);
+
+ fprintf(stderr, "test ENQ\n");
+ do_test(family, SOF_TIMESTAMPING_TX_SCHED);
+
+ fprintf(stderr, "test ENQ + SND\n");
+ do_test(family, SOF_TIMESTAMPING_TX_SCHED |
+ SOF_TIMESTAMPING_TX_SOFTWARE);
+
+ if (cfg_proto == SOCK_STREAM) {
+ fprintf(stderr, "\ntest ACK\n");
+ do_test(family, SOF_TIMESTAMPING_TX_ACK);
+
+ fprintf(stderr, "\ntest SND + ACK\n");
+ do_test(family, SOF_TIMESTAMPING_TX_SOFTWARE |
+ SOF_TIMESTAMPING_TX_ACK);
+
+ fprintf(stderr, "\ntest ENQ + SND + ACK\n");
+ do_test(family, SOF_TIMESTAMPING_TX_SCHED |
+ SOF_TIMESTAMPING_TX_SOFTWARE |
+ SOF_TIMESTAMPING_TX_ACK);
+ }
+}
+
+const char *sock_names[] = { NULL, "TCP", "UDP", "RAW" };
+
+int main(int argc, char **argv)
+{
+ if (argc == 1)
+ usage(argv[0]);
+
+ parse_opt(argc, argv);
+ resolve_hostname(argv[argc - 1]);
+
+ fprintf(stderr, "protocol: %s\n", sock_names[cfg_proto]);
+ fprintf(stderr, "payload: %u\n", cfg_payload_len);
+ fprintf(stderr, "server port: %u\n", dest_port);
+ fprintf(stderr, "\n");
+
+ if (do_ipv4)
+ do_main(PF_INET);
+ if (do_ipv6)
+ do_main(PF_INET6);
+
+ return 0;
+}
OpenPOWER on IntegriCloud