diff options
Diffstat (limited to 'Documentation/networking')
-rw-r--r-- | Documentation/networking/NAPI_HOWTO.txt | 766 | ||||
-rw-r--r-- | Documentation/networking/netdevices.txt | 12 |
2 files changed, 8 insertions, 770 deletions
diff --git a/Documentation/networking/NAPI_HOWTO.txt b/Documentation/networking/NAPI_HOWTO.txt deleted file mode 100644 index 7907435..0000000 --- a/Documentation/networking/NAPI_HOWTO.txt +++ /dev/null @@ -1,766 +0,0 @@ -HISTORY: -February 16/2002 -- revision 0.2.1: -COR typo corrected -February 10/2002 -- revision 0.2: -some spell checking ;-> -January 12/2002 -- revision 0.1 -This is still work in progress so may change. -To keep up to date please watch this space. - -Introduction to NAPI -==================== - -NAPI is a proven (www.cyberus.ca/~hadi/usenix-paper.tgz) technique -to improve network performance on Linux. For more details please -read that paper. -NAPI provides a "inherent mitigation" which is bound by system capacity -as can be seen from the following data collected by Robert on Gigabit -ethernet (e1000): - - Psize Ipps Tput Rxint Txint Done Ndone - --------------------------------------------------------------- - 60 890000 409362 17 27622 7 6823 - 128 758150 464364 21 9301 10 7738 - 256 445632 774646 42 15507 21 12906 - 512 232666 994445 241292 19147 241192 1062 - 1024 119061 1000003 872519 19258 872511 0 - 1440 85193 1000003 946576 19505 946569 0 - - -Legend: -"Ipps" stands for input packets per second. -"Tput" == packets out of total 1M that made it out. -"txint" == transmit completion interrupts seen -"Done" == The number of times that the poll() managed to pull all -packets out of the rx ring. Note from this that the lower the -load the more we could clean up the rxring -"Ndone" == is the converse of "Done". Note again, that the higher -the load the more times we couldn't clean up the rxring. - -Observe that: -when the NIC receives 890Kpackets/sec only 17 rx interrupts are generated. -The system cant handle the processing at 1 interrupt/packet at that load level. -At lower rates on the other hand, rx interrupts go up and therefore the -interrupt/packet ratio goes up (as observable from that table). So there is -possibility that under low enough input, you get one poll call for each -input packet caused by a single interrupt each time. And if the system -cant handle interrupt per packet ratio of 1, then it will just have to -chug along .... - - -0) Prerequisites: -================== -A driver MAY continue using the old 2.4 technique for interfacing -to the network stack and not benefit from the NAPI changes. -NAPI additions to the kernel do not break backward compatibility. -NAPI, however, requires the following features to be available: - -A) DMA ring or enough RAM to store packets in software devices. - -B) Ability to turn off interrupts or maybe events that send packets up -the stack. - -NAPI processes packet events in what is known as dev->poll() method. -Typically, only packet receive events are processed in dev->poll(). -The rest of the events MAY be processed by the regular interrupt handler -to reduce processing latency (justified also because there are not that -many of them). -Note, however, NAPI does not enforce that dev->poll() only processes -receive events. -Tests with the tulip driver indicated slightly increased latency if -all of the interrupt handler is moved to dev->poll(). Also MII handling -gets a little trickier. -The example used in this document is to move the receive processing only -to dev->poll(); this is shown with the patch for the tulip driver. -For an example of code that moves all the interrupt driver to -dev->poll() look at the ported e1000 code. - -There are caveats that might force you to go with moving everything to -dev->poll(). Different NICs work differently depending on their status/event -acknowledgement setup. -There are two types of event register ACK mechanisms. - I) what is known as Clear-on-read (COR). - when you read the status/event register, it clears everything! - The natsemi and sunbmac NICs are known to do this. - In this case your only choice is to move all to dev->poll() - - II) Clear-on-write (COW) - i) you clear the status by writing a 1 in the bit-location you want. - These are the majority of the NICs and work the best with NAPI. - Put only receive events in dev->poll(); leave the rest in - the old interrupt handler. - ii) whatever you write in the status register clears every thing ;-> - Cant seem to find any supported by Linux which do this. If - someone knows such a chip email us please. - Move all to dev->poll() - -C) Ability to detect new work correctly. -NAPI works by shutting down event interrupts when there's work and -turning them on when there's none. -New packets might show up in the small window while interrupts were being -re-enabled (refer to appendix 2). A packet might sneak in during the period -we are enabling interrupts. We only get to know about such a packet when the -next new packet arrives and generates an interrupt. -Essentially, there is a small window of opportunity for a race condition -which for clarity we'll refer to as the "rotting packet". - -This is a very important topic and appendix 2 is dedicated for more -discussion. - -Locking rules and environmental guarantees -========================================== - --Guarantee: Only one CPU at any time can call dev->poll(); this is because -only one CPU can pick the initial interrupt and hence the initial -netif_rx_schedule(dev); -- The core layer invokes devices to send packets in a round robin format. -This implies receive is totally lockless because of the guarantee that only -one CPU is executing it. -- contention can only be the result of some other CPU accessing the rx -ring. This happens only in close() and suspend() (when these methods -try to clean the rx ring); -****guarantee: driver authors need not worry about this; synchronization -is taken care for them by the top net layer. --local interrupts are enabled (if you dont move all to dev->poll()). For -example link/MII and txcomplete continue functioning just same old way. -This improves the latency of processing these events. It is also assumed that -the receive interrupt is the largest cause of noise. Note this might not -always be true. -[according to Manfred Spraul, the winbond insists on sending one -txmitcomplete interrupt for each packet (although this can be mitigated)]. -For these broken drivers, move all to dev->poll(). - -For the rest of this text, we'll assume that dev->poll() only -processes receive events. - -new methods introduce by NAPI -============================= - -a) netif_rx_schedule(dev) -Called by an IRQ handler to schedule a poll for device - -b) netif_rx_schedule_prep(dev) -puts the device in a state which allows for it to be added to the -CPU polling list if it is up and running. You can look at this as -the first half of netif_rx_schedule(dev) above; the second half -being c) below. - -c) __netif_rx_schedule(dev) -Add device to the poll list for this CPU; assuming that _prep above -has already been called and returned 1. - -d) netif_rx_reschedule(dev, undo) -Called to reschedule polling for device specifically for some -deficient hardware. Read Appendix 2 for more details. - -e) netif_rx_complete(dev) - -Remove interface from the CPU poll list: it must be in the poll list -on current cpu. This primitive is called by dev->poll(), when -it completes its work. The device cannot be out of poll list at this -call, if it is then clearly it is a BUG(). You'll know ;-> - -All of the above methods are used below, so keep reading for clarity. - -Device driver changes to be made when porting NAPI -================================================== - -Below we describe what kind of changes are required for NAPI to work. - -1) introduction of dev->poll() method -===================================== - -This is the method that is invoked by the network core when it requests -for new packets from the driver. A driver is allowed to send upto -dev->quota packets by the current CPU before yielding to the network -subsystem (so other devices can also get opportunity to send to the stack). - -dev->poll() prototype looks as follows: -int my_poll(struct net_device *dev, int *budget) - -budget is the remaining number of packets the network subsystem on the -current CPU can send up the stack before yielding to other system tasks. -*Each driver is responsible for decrementing budget by the total number of -packets sent. - Total number of packets cannot exceed dev->quota. - -dev->poll() method is invoked by the top layer, the driver just sends if it -can to the stack the packet quantity requested. - -more on dev->poll() below after the interrupt changes are explained. - -2) registering dev->poll() method -=================================== - -dev->poll should be set in the dev->probe() method. -e.g: -dev->open = my_open; -. -. -/* two new additions */ -/* first register my poll method */ -dev->poll = my_poll; -/* next register my weight/quanta; can be overridden in /proc */ -dev->weight = 16; -. -. -dev->stop = my_close; - - - -3) scheduling dev->poll() -============================= -This involves modifying the interrupt handler and the code -path which takes the packet off the NIC and sends them to the -stack. - -it's important at this point to introduce the classical D Becker -interrupt processor: - ------------------- -static irqreturn_t -netdevice_interrupt(int irq, void *dev_id, struct pt_regs *regs) -{ - - struct net_device *dev = (struct net_device *)dev_instance; - struct my_private *tp = (struct my_private *)dev->priv; - - int work_count = my_work_count; - status = read_interrupt_status_reg(); - if (status == 0) - return IRQ_NONE; /* Shared IRQ: not us */ - if (status == 0xffff) - return IRQ_HANDLED; /* Hot unplug */ - if (status & error) - do_some_error_handling() - - do { - acknowledge_ints_ASAP(); - - if (status & link_interrupt) { - spin_lock(&tp->link_lock); - do_some_link_stat_stuff(); - spin_lock(&tp->link_lock); - } - - if (status & rx_interrupt) { - receive_packets(dev); - } - - if (status & rx_nobufs) { - make_rx_buffs_avail(); - } - - if (status & tx_related) { - spin_lock(&tp->lock); - tx_ring_free(dev); - if (tx_died) - restart_tx(); - spin_unlock(&tp->lock); - } - - status = read_interrupt_status_reg(); - - } while (!(status & error) || more_work_to_be_done); - return IRQ_HANDLED; -} - ----------------------------------------------------------------------- - -We now change this to what is shown below to NAPI-enable it: - ----------------------------------------------------------------------- -static irqreturn_t -netdevice_interrupt(int irq, void *dev_id, struct pt_regs *regs) -{ - struct net_device *dev = (struct net_device *)dev_instance; - struct my_private *tp = (struct my_private *)dev->priv; - - status = read_interrupt_status_reg(); - if (status == 0) - return IRQ_NONE; /* Shared IRQ: not us */ - if (status == 0xffff) - return IRQ_HANDLED; /* Hot unplug */ - if (status & error) - do_some_error_handling(); - - do { -/************************ start note *********************************/ - acknowledge_ints_ASAP(); // dont ack rx and rxnobuff here -/************************ end note *********************************/ - - if (status & link_interrupt) { - spin_lock(&tp->link_lock); - do_some_link_stat_stuff(); - spin_unlock(&tp->link_lock); - } -/************************ start note *********************************/ - if (status & rx_interrupt || (status & rx_nobuffs)) { - if (netif_rx_schedule_prep(dev)) { - - /* disable interrupts caused - * by arriving packets */ - disable_rx_and_rxnobuff_ints(); - /* tell system we have work to be done. */ - __netif_rx_schedule(dev); - } else { - printk("driver bug! interrupt while in poll\n"); - /* FIX by disabling interrupts */ - disable_rx_and_rxnobuff_ints(); - } - } -/************************ end note note *********************************/ - - if (status & tx_related) { - spin_lock(&tp->lock); - tx_ring_free(dev); - - if (tx_died) - restart_tx(); - spin_unlock(&tp->lock); - } - - status = read_interrupt_status_reg(); - -/************************ start note *********************************/ - } while (!(status & error) || more_work_to_be_done(status)); -/************************ end note note *********************************/ - return IRQ_HANDLED; -} - ---------------------------------------------------------------------- - - -We note several things from above: - -I) Any interrupt source which is caused by arriving packets is now -turned off when it occurs. Depending on the hardware, there could be -several reasons that arriving packets would cause interrupts; these are the -interrupt sources we wish to avoid. The two common ones are a) a packet -arriving (rxint) b) a packet arriving and finding no DMA buffers available -(rxnobuff) . -This means also acknowledge_ints_ASAP() will not clear the status -register for those two items above; clearing is done in the place where -proper work is done within NAPI; at the poll() and refill_rx_ring() -discussed further below. -netif_rx_schedule_prep() returns 1 if device is in running state and -gets successfully added to the core poll list. If we get a zero value -we can _almost_ assume are already added to the list (instead of not running. -Logic based on the fact that you shouldn't get interrupt if not running) -We rectify this by disabling rx and rxnobuf interrupts. - -II) that receive_packets(dev) and make_rx_buffs_avail() may have disappeared. -These functionalities are still around actually...... - -infact, receive_packets(dev) is very close to my_poll() and -make_rx_buffs_avail() is invoked from my_poll() - -4) converting receive_packets() to dev->poll() -=============================================== - -We need to convert the classical D Becker receive_packets(dev) to my_poll() - -First the typical receive_packets() below: -------------------------------------------------------------------- - -/* this is called by interrupt handler */ -static void receive_packets (struct net_device *dev) -{ - - struct my_private *tp = (struct my_private *)dev->priv; - rx_ring = tp->rx_ring; - cur_rx = tp->cur_rx; - int entry = cur_rx % RX_RING_SIZE; - int received = 0; - int rx_work_limit = tp->dirty_rx + RX_RING_SIZE - tp->cur_rx; - - while (rx_ring_not_empty) { - u32 rx_status; - unsigned int rx_size; - unsigned int pkt_size; - struct sk_buff *skb; - /* read size+status of next frame from DMA ring buffer */ - /* the number 16 and 4 are just examples */ - rx_status = le32_to_cpu (*(u32 *) (rx_ring + ring_offset)); - rx_size = rx_status >> 16; - pkt_size = rx_size - 4; - - /* process errors */ - if ((rx_size > (MAX_ETH_FRAME_SIZE+4)) || - (!(rx_status & RxStatusOK))) { - netdrv_rx_err (rx_status, dev, tp, ioaddr); - return; - } - - if (--rx_work_limit < 0) - break; - - /* grab a skb */ - skb = dev_alloc_skb (pkt_size + 2); - if (skb) { - . - . - netif_rx (skb); - . - . - } else { /* OOM */ - /*seems very driver specific ... some just pass - whatever is on the ring already. */ - } - - /* move to the next skb on the ring */ - entry = (++tp->cur_rx) % RX_RING_SIZE; - received++ ; - - } - - /* store current ring pointer state */ - tp->cur_rx = cur_rx; - - /* Refill the Rx ring buffers if they are needed */ - refill_rx_ring(); - . - . - -} -------------------------------------------------------------------- -We change it to a new one below; note the additional parameter in -the call. - -------------------------------------------------------------------- - -/* this is called by the network core */ -static int my_poll (struct net_device *dev, int *budget) -{ - - struct my_private *tp = (struct my_private *)dev->priv; - rx_ring = tp->rx_ring; - cur_rx = tp->cur_rx; - int entry = cur_rx % RX_BUF_LEN; - /* maximum packets to send to the stack */ -/************************ note note *********************************/ - int rx_work_limit = dev->quota; - -/************************ end note note *********************************/ - do { // outer beginning loop starts here - - clear_rx_status_register_bit(); - - while (rx_ring_not_empty) { - u32 rx_status; - unsigned int rx_size; - unsigned int pkt_size; - struct sk_buff *skb; - /* read size+status of next frame from DMA ring buffer */ - /* the number 16 and 4 are just examples */ - rx_status = le32_to_cpu (*(u32 *) (rx_ring + ring_offset)); - rx_size = rx_status >> 16; - pkt_size = rx_size - 4; - - /* process errors */ - if ((rx_size > (MAX_ETH_FRAME_SIZE+4)) || - (!(rx_status & RxStatusOK))) { - netdrv_rx_err (rx_status, dev, tp, ioaddr); - return 1; - } - -/************************ note note *********************************/ - if (--rx_work_limit < 0) { /* we got packets, but no quota */ - /* store current ring pointer state */ - tp->cur_rx = cur_rx; - - /* Refill the Rx ring buffers if they are needed */ - refill_rx_ring(dev); - goto not_done; - } -/********************** end note **********************************/ - - /* grab a skb */ - skb = dev_alloc_skb (pkt_size + 2); - if (skb) { - . - . -/************************ note note *********************************/ - netif_receive_skb (skb); -/********************** end note **********************************/ - . - . - } else { /* OOM */ - /*seems very driver specific ... common is just pass - whatever is on the ring already. */ - } - - /* move to the next skb on the ring */ - entry = (++tp->cur_rx) % RX_RING_SIZE; - received++ ; - - } - - /* store current ring pointer state */ - tp->cur_rx = cur_rx; - - /* Refill the Rx ring buffers if they are needed */ - refill_rx_ring(dev); - - /* no packets on ring; but new ones can arrive since we last - checked */ - status = read_interrupt_status_reg(); - if (rx status is not set) { - /* If something arrives in this narrow window, - an interrupt will be generated */ - goto done; - } - /* done! at least that's what it looks like ;-> - if new packets came in after our last check on status bits - they'll be caught by the while check and we go back and clear them - since we havent exceeded our quota */ - } while (rx_status_is_set); - -done: - -/************************ note note *********************************/ - dev->quota -= received; - *budget -= received; - - /* If RX ring is not full we are out of memory. */ - if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) - goto oom; - - /* we are happy/done, no more packets on ring; put us back - to where we can start processing interrupts again */ - netif_rx_complete(dev); - enable_rx_and_rxnobuf_ints(); - - /* The last op happens after poll completion. Which means the following: - * 1. it can race with disabling irqs in irq handler (which are done to - * schedule polls) - * 2. it can race with dis/enabling irqs in other poll threads - * 3. if an irq raised after the beginning of the outer beginning - * loop (marked in the code above), it will be immediately - * triggered here. - * - * Summarizing: the logic may result in some redundant irqs both - * due to races in masking and due to too late acking of already - * processed irqs. The good news: no events are ever lost. - */ - - return 0; /* done */ - -not_done: - if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/2 || - tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) - refill_rx_ring(dev); - - if (!received) { - printk("received==0\n"); - received = 1; - } - dev->quota -= received; - *budget -= received; - return 1; /* not_done */ - -oom: - /* Start timer, stop polling, but do not enable rx interrupts. */ - start_poll_timer(dev); - return 0; /* we'll take it from here so tell core "done"*/ - -/************************ End note note *********************************/ -} -------------------------------------------------------------------- - -From above we note that: -0) rx_work_limit = dev->quota -1) refill_rx_ring() is in charge of clearing the bit for rxnobuff when -it does the work. -2) We have a done and not_done state. -3) instead of netif_rx() we call netif_receive_skb() to pass the skb. -4) we have a new way of handling oom condition -5) A new outer for (;;) loop has been added. This serves the purpose of -ensuring that if a new packet has come in, after we are all set and done, -and we have not exceeded our quota that we continue sending packets up. - - ------------------------------------------------------------ -Poll timer code will need to do the following: - -a) - - if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/2 || - tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) - refill_rx_ring(dev); - - /* If RX ring is not full we are still out of memory. - Restart the timer again. Else we re-add ourselves - to the master poll list. - */ - - if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) - restart_timer(); - - else netif_rx_schedule(dev); /* we are back on the poll list */ - -5) dev->close() and dev->suspend() issues -========================================== -The driver writer needn't worry about this; the top net layer takes -care of it. - -6) Adding new Stats to /proc -============================= -In order to debug some of the new features, we introduce new stats -that need to be collected. -TODO: Fill this later. - -APPENDIX 1: discussion on using ethernet HW FC -============================================== -Most chips with FC only send a pause packet when they run out of Rx buffers. -Since packets are pulled off the DMA ring by a softirq in NAPI, -if the system is slow in grabbing them and we have a high input -rate (faster than the system's capacity to remove packets), then theoretically -there will only be one rx interrupt for all packets during a given packetstorm. -Under low load, we might have a single interrupt per packet. -FC should be programmed to apply in the case when the system cant pull out -packets fast enough i.e send a pause only when you run out of rx buffers. -Note FC in itself is a good solution but we have found it to not be -much of a commodity feature (both in NICs and switches) and hence falls -under the same category as using NIC based mitigation. Also, experiments -indicate that it's much harder to resolve the resource allocation -issue (aka lazy receiving that NAPI offers) and hence quantify its usefulness -proved harder. In any case, FC works even better with NAPI but is not -necessary. - - -APPENDIX 2: the "rotting packet" race-window avoidance scheme -============================================================= - -There are two types of associations seen here - -1) status/int which honors level triggered IRQ - -If a status bit for receive or rxnobuff is set and the corresponding -interrupt-enable bit is not on, then no interrupts will be generated. However, -as soon as the "interrupt-enable" bit is unmasked, an immediate interrupt is -generated. [assuming the status bit was not turned off]. -Generally the concept of level triggered IRQs in association with a status and -interrupt-enable CSR register set is used to avoid the race. - -If we take the example of the tulip: -"pending work" is indicated by the status bit(CSR5 in tulip). -the corresponding interrupt bit (CSR7 in tulip) might be turned off (but -the CSR5 will continue to be turned on with new packet arrivals even if -we clear it the first time) -Very important is the fact that if we turn on the interrupt bit on when -status is set that an immediate irq is triggered. - -If we cleared the rx ring and proclaimed there was "no more work -to be done" and then went on to do a few other things; then when we enable -interrupts, there is a possibility that a new packet might sneak in during -this phase. It helps to look at the pseudo code for the tulip poll -routine: - --------------------------- - do { - ACK; - while (ring_is_not_empty()) { - work-work-work - if quota is exceeded: exit, no touching irq status/mask - } - /* No packets, but new can arrive while we are doing this*/ - CSR5 := read - if (CSR5 is not set) { - /* If something arrives in this narrow window here, - * where the comments are ;-> irq will be generated */ - unmask irqs; - exit poll; - } - } while (rx_status_is_set); ------------------------- - -CSR5 bit of interest is only the rx status. -If you look at the last if statement: -you just finished grabbing all the packets from the rx ring .. you check if -status bit says there are more packets just in ... it says none; you then -enable rx interrupts again; if a new packet just came in during this check, -we are counting that CSR5 will be set in that small window of opportunity -and that by re-enabling interrupts, we would actually trigger an interrupt -to register the new packet for processing. - -[The above description nay be very verbose, if you have better wording -that will make this more understandable, please suggest it.] - -2) non-capable hardware - -These do not generally respect level triggered IRQs. Normally, -irqs may be lost while being masked and the only way to leave poll is to do -a double check for new input after netif_rx_complete() is invoked -and re-enable polling (after seeing this new input). - -Sample code: - ---------- - . - . -restart_poll: - while (ring_is_not_empty()) { - work-work-work - if quota is exceeded: exit, not touching irq status/mask - } - . - . - . - enable_rx_interrupts() - netif_rx_complete(dev); - if (ring_has_new_packet() && netif_rx_reschedule(dev, received)) { - disable_rx_and_rxnobufs() - goto restart_poll - } while (rx_status_is_set); ---------- - -Basically netif_rx_complete() removes us from the poll list, but because a -new packet which will never be caught due to the possibility of a race -might come in, we attempt to re-add ourselves to the poll list. - - - - -APPENDIX 3: Scheduling issues. -============================== -As seen NAPI moves processing to softirq level. Linux uses the ksoftirqd as the -general solution to schedule softirq's to run before next interrupt and by putting -them under scheduler control. Also this prevents consecutive softirq's from -monopolize the CPU. This also have the effect that the priority of ksoftirq needs -to be considered when running very CPU-intensive applications and networking to -get the proper balance of softirq/user balance. Increasing ksoftirq priority to 0 -(eventually more) is reported cure problems with low network performance at high -CPU load. - -Most used processes in a GIGE router: -USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND -root 3 0.2 0.0 0 0 ? RWN Aug 15 602:00 (ksoftirqd_CPU0) -root 232 0.0 7.9 41400 40884 ? S Aug 15 74:12 gated - --------------------------------------------------------------------- - -relevant sites: -================== -ftp://robur.slu.se/pub/Linux/net-development/NAPI/ - - --------------------------------------------------------------------- -TODO: Write net-skeleton.c driver. -------------------------------------------------------------- - -Authors: -======== -Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> -Jamal Hadi Salim <hadi@cyberus.ca> -Robert Olsson <Robert.Olsson@data.slu.se> - -Acknowledgements: -================ -People who made this document better: - -Lennert Buytenhek <buytenh@gnu.org> -Andrew Morton <akpm@zip.com.au> -Manfred Spraul <manfred@colorfullife.com> -Donald Becker <becker@scyld.com> -Jeff Garzik <jgarzik@pobox.com> diff --git a/Documentation/networking/netdevices.txt b/Documentation/networking/netdevices.txt index 3786929..9f7be9b 100644 --- a/Documentation/networking/netdevices.txt +++ b/Documentation/networking/netdevices.txt @@ -95,9 +95,13 @@ dev->set_multicast_list: Synchronization: netif_tx_lock spinlock. Context: BHs disabled -dev->poll: - Synchronization: __LINK_STATE_RX_SCHED bit in dev->state. See - dev_close code and comments in net/core/dev.c for more info. +struct napi_struct synchronization rules +======================================== +napi->poll: + Synchronization: NAPI_STATE_SCHED bit in napi->state. Device + driver's dev->close method will invoke napi_disable() on + all NAPI instances which will do a sleeping poll on the + NAPI_STATE_SCHED napi->state bit, waiting for all pending + NAPI activity to cease. Context: softirq will be called with interrupts disabled by netconsole. - |