diff options
Diffstat (limited to 'Documentation/input/ff.txt')
-rw-r--r-- | Documentation/input/ff.txt | 227 |
1 files changed, 227 insertions, 0 deletions
diff --git a/Documentation/input/ff.txt b/Documentation/input/ff.txt new file mode 100644 index 0000000..efa7dd6 --- /dev/null +++ b/Documentation/input/ff.txt @@ -0,0 +1,227 @@ +Force feedback for Linux. +By Johann Deneux <deneux@ifrance.com> on 2001/04/22. +You may redistribute this file. Please remember to include shape.fig and +interactive.fig as well. +---------------------------------------------------------------------------- + +0. Introduction +~~~~~~~~~~~~~~~ +This document describes how to use force feedback devices under Linux. The +goal is not to support these devices as if they were simple input-only devices +(as it is already the case), but to really enable the rendering of force +effects. +At the moment, only I-Force devices are supported, and not officially. That +means I had to find out how the protocol works on my own. Of course, the +information I managed to grasp is far from being complete, and I can not +guarranty that this driver will work for you. +This document only describes the force feedback part of the driver for I-Force +devices. Please read joystick.txt before reading further this document. + +2. Instructions to the user +~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Here are instructions on how to compile and use the driver. In fact, this +driver is the normal iforce, input and evdev drivers written by Vojtech +Pavlik, plus additions to support force feedback. + +Before you start, let me WARN you that some devices shake violently during the +initialisation phase. This happens for example with my "AVB Top Shot Pegasus". +To stop this annoying behaviour, move you joystick to its limits. Anyway, you +should keep a hand on your device, in order to avoid it to brake down if +something goes wrong. + +At the kernel's compilation: + - Enable IForce/Serial + - Enable Event interface + +Compile the modules, install them. + +You also need inputattach. + +You then need to insert the modules into the following order: +% modprobe joydev +% modprobe serport # Only for serial +% modprobe iforce +% modprobe evdev +% ./inputattach -ifor $2 & # Only for serial +If you are using USB, you don't need the inputattach step. + +Please check that you have all the /dev/input entries needed: +cd /dev +rm js* +mkdir input +mknod input/js0 c 13 0 +mknod input/js1 c 13 1 +mknod input/js2 c 13 2 +mknod input/js3 c 13 3 +ln -s input/js0 js0 +ln -s input/js1 js1 +ln -s input/js2 js2 +ln -s input/js3 js3 + +mknod input/event0 c 13 64 +mknod input/event1 c 13 65 +mknod input/event2 c 13 66 +mknod input/event3 c 13 67 + +2.1 Does it work ? +~~~~~~~~~~~~~~~~~~ +There is an utility called fftest that will allow you to test the driver. +% fftest /dev/input/eventXX + +3. Instructions to the developper +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + All interactions are done using the event API. That is, you can use ioctl() +and write() on /dev/input/eventXX. + This information is subject to change. + +3.1 Querying device capabilities +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +#include <linux/input.h> +#include <sys/ioctl.h> + +unsigned long features[1 + FF_MAX/sizeof(unsigned long)]; +int ioctl(int file_descriptor, int request, unsigned long *features); + +"request" must be EVIOCGBIT(EV_FF, size of features array in bytes ) + +Returns the features supported by the device. features is a bitfield with the +following bits: +- FF_X has an X axis (usually joysticks) +- FF_Y has an Y axis (usually joysticks) +- FF_WHEEL has a wheel (usually sterring wheels) +- FF_CONSTANT can render constant force effects +- FF_PERIODIC can render periodic effects (sine, triangle, square...) +- FF_RAMP can render ramp effects +- FF_SPRING can simulate the presence of a spring +- FF_FRICTION can simulate friction +- FF_DAMPER can simulate damper effects +- FF_RUMBLE rumble effects (normally the only effect supported by rumble + pads) +- FF_INERTIA can simulate inertia + + +int ioctl(int fd, EVIOCGEFFECTS, int *n); + +Returns the number of effects the device can keep in its memory. + +3.2 Uploading effects to the device +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +#include <linux/input.h> +#include <sys/ioctl.h> + +int ioctl(int file_descriptor, int request, struct ff_effect *effect); + +"request" must be EVIOCSFF. + +"effect" points to a structure describing the effect to upload. The effect is +uploaded, but not played. +The content of effect may be modified. In particular, its field "id" is set +to the unique id assigned by the driver. This data is required for performing +some operations (removing an effect, controlling the playback). +This if field must be set to -1 by the user in order to tell the driver to +allocate a new effect. +See <linux/input.h> for a description of the ff_effect stuct. You should also +find help in a few sketches, contained in files shape.fig and interactive.fig. +You need xfig to visualize these files. + +3.3 Removing an effect from the device +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +int ioctl(int fd, EVIOCRMFF, effect.id); + +This makes room for new effects in the device's memory. Please note this won't +stop the effect if it was playing. + +3.4 Controlling the playback of effects +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Control of playing is done with write(). Below is an example: + +#include <linux/input.h> +#include <unistd.h> + + struct input_event play; + struct input_event stop; + struct ff_effect effect; + int fd; +... + fd = open("/dev/input/eventXX", O_RDWR); +... + /* Play three times */ + play.type = EV_FF; + play.code = effect.id; + play.value = 3; + + write(fd, (const void*) &play, sizeof(play)); +... + /* Stop an effect */ + stop.type = EV_FF; + stop.code = effect.id; + stop.value = 0; + + write(fd, (const void*) &play, sizeof(stop)); + +3.5 Setting the gain +~~~~~~~~~~~~~~~~~~~~ +Not all devices have the same strength. Therefore, users should set a gain +factor depending on how strong they want effects to be. This setting is +persistent across access to the driver, so you should not care about it if +you are writing games, as another utility probably already set this for you. + +/* Set the gain of the device +int gain; /* between 0 and 100 */ +struct input_event ie; /* structure used to communicate with the driver */ + +ie.type = EV_FF; +ie.code = FF_GAIN; +ie.value = 0xFFFFUL * gain / 100; + +if (write(fd, &ie, sizeof(ie)) == -1) + perror("set gain"); + +3.6 Enabling/Disabling autocenter +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The autocenter feature quite disturbs the rendering of effects in my opinion, +and I think it should be an effect, which computation depends on the game +type. But you can enable it if you want. + +int autocenter; /* between 0 and 100 */ +struct input_event ie; + +ie.type = EV_FF; +ie.code = FF_AUTOCENTER; +ie.value = 0xFFFFUL * autocenter / 100; + +if (write(fd, &ie, sizeof(ie)) == -1) + perror("set auto-center"); + +A value of 0 means "no auto-center". + +3.7 Dynamic update of an effect +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Proceed as if you wanted to upload a new effect, except that instead of +setting the id field to -1, you set it to the wanted effect id. +Normally, the effect is not stopped and restarted. However, depending on the +type of device, not all parameters can be dynamically updated. For example, +the direction of an effect cannot be updated with iforce devices. In this +case, the driver stops the effect, up-load it, and restart it. + + +3.8 Information about the status of effects +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Every time the status of an effect is changed, an event is sent. The values +and meanings of the fields of the event are as follows: +struct input_event { +/* When the status of the effect changed */ + struct timeval time; + +/* Set to EV_FF_STATUS */ + unsigned short type; + +/* Contains the id of the effect */ + unsigned short code; + +/* Indicates the status */ + unsigned int value; +}; + +FF_STATUS_STOPPED The effect stopped playing +FF_STATUS_PLAYING The effect started to play |