summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/Locking12
-rw-r--r--Documentation/filesystems/btrfs.txt91
-rw-r--r--Documentation/filesystems/devpts.txt132
-rw-r--r--Documentation/filesystems/ext4.txt85
-rw-r--r--Documentation/filesystems/files.txt6
-rw-r--r--Documentation/filesystems/ocfs2.txt3
-rw-r--r--Documentation/filesystems/proc.txt27
-rw-r--r--Documentation/filesystems/squashfs.txt225
-rw-r--r--Documentation/filesystems/ubifs.txt3
-rw-r--r--Documentation/filesystems/vfs.txt13
10 files changed, 559 insertions, 38 deletions
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index 23d2f44..ec6a939 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -97,8 +97,8 @@ prototypes:
void (*put_super) (struct super_block *);
void (*write_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
- void (*write_super_lockfs) (struct super_block *);
- void (*unlockfs) (struct super_block *);
+ int (*freeze_fs) (struct super_block *);
+ int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_inode) (struct inode *);
@@ -119,8 +119,8 @@ delete_inode: no
put_super: yes yes no
write_super: no yes read
sync_fs: no no read
-write_super_lockfs: ?
-unlockfs: ?
+freeze_fs: ?
+unfreeze_fs: ?
statfs: no no no
remount_fs: yes yes maybe (see below)
clear_inode: no
@@ -394,11 +394,10 @@ prototypes:
unsigned long (*get_unmapped_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
- int (*dir_notify)(struct file *, unsigned long);
};
locking rules:
- All except ->poll() may block.
+ All may block.
BKL
llseek: no (see below)
read: no
@@ -424,7 +423,6 @@ sendfile: no
sendpage: no
get_unmapped_area: no
check_flags: no
-dir_notify: no
->llseek() locking has moved from llseek to the individual llseek
implementations. If your fs is not using generic_file_llseek, you
diff --git a/Documentation/filesystems/btrfs.txt b/Documentation/filesystems/btrfs.txt
new file mode 100644
index 0000000..64087c3
--- /dev/null
+++ b/Documentation/filesystems/btrfs.txt
@@ -0,0 +1,91 @@
+
+ BTRFS
+ =====
+
+Btrfs is a new copy on write filesystem for Linux aimed at
+implementing advanced features while focusing on fault tolerance,
+repair and easy administration. Initially developed by Oracle, Btrfs
+is licensed under the GPL and open for contribution from anyone.
+
+Linux has a wealth of filesystems to choose from, but we are facing a
+number of challenges with scaling to the large storage subsystems that
+are becoming common in today's data centers. Filesystems need to scale
+in their ability to address and manage large storage, and also in
+their ability to detect, repair and tolerate errors in the data stored
+on disk. Btrfs is under heavy development, and is not suitable for
+any uses other than benchmarking and review. The Btrfs disk format is
+not yet finalized.
+
+The main Btrfs features include:
+
+ * Extent based file storage (2^64 max file size)
+ * Space efficient packing of small files
+ * Space efficient indexed directories
+ * Dynamic inode allocation
+ * Writable snapshots
+ * Subvolumes (separate internal filesystem roots)
+ * Object level mirroring and striping
+ * Checksums on data and metadata (multiple algorithms available)
+ * Compression
+ * Integrated multiple device support, with several raid algorithms
+ * Online filesystem check (not yet implemented)
+ * Very fast offline filesystem check
+ * Efficient incremental backup and FS mirroring (not yet implemented)
+ * Online filesystem defragmentation
+
+
+
+ MAILING LIST
+ ============
+
+There is a Btrfs mailing list hosted on vger.kernel.org. You can
+find details on how to subscribe here:
+
+http://vger.kernel.org/vger-lists.html#linux-btrfs
+
+Mailing list archives are available from gmane:
+
+http://dir.gmane.org/gmane.comp.file-systems.btrfs
+
+
+
+ IRC
+ ===
+
+Discussion of Btrfs also occurs on the #btrfs channel of the Freenode
+IRC network.
+
+
+
+ UTILITIES
+ =========
+
+Userspace tools for creating and manipulating Btrfs file systems are
+available from the git repository at the following location:
+
+ http://git.kernel.org/?p=linux/kernel/git/mason/btrfs-progs-unstable.git
+ git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-progs-unstable.git
+
+These include the following tools:
+
+mkfs.btrfs: create a filesystem
+
+btrfsctl: control program to create snapshots and subvolumes:
+
+ mount /dev/sda2 /mnt
+ btrfsctl -s new_subvol_name /mnt
+ btrfsctl -s snapshot_of_default /mnt/default
+ btrfsctl -s snapshot_of_new_subvol /mnt/new_subvol_name
+ btrfsctl -s snapshot_of_a_snapshot /mnt/snapshot_of_new_subvol
+ ls /mnt
+ default snapshot_of_a_snapshot snapshot_of_new_subvol
+ new_subvol_name snapshot_of_default
+
+ Snapshots and subvolumes cannot be deleted right now, but you can
+ rm -rf all the files and directories inside them.
+
+btrfsck: do a limited check of the FS extent trees.
+
+btrfs-debug-tree: print all of the FS metadata in text form. Example:
+
+ btrfs-debug-tree /dev/sda2 >& big_output_file
diff --git a/Documentation/filesystems/devpts.txt b/Documentation/filesystems/devpts.txt
new file mode 100644
index 0000000..68dffd8
--- /dev/null
+++ b/Documentation/filesystems/devpts.txt
@@ -0,0 +1,132 @@
+
+To support containers, we now allow multiple instances of devpts filesystem,
+such that indices of ptys allocated in one instance are independent of indices
+allocated in other instances of devpts.
+
+To preserve backward compatibility, this support for multiple instances is
+enabled only if:
+
+ - CONFIG_DEVPTS_MULTIPLE_INSTANCES=y, and
+ - '-o newinstance' mount option is specified while mounting devpts
+
+IOW, devpts now supports both single-instance and multi-instance semantics.
+
+If CONFIG_DEVPTS_MULTIPLE_INSTANCES=n, there is no change in behavior and
+this referred to as the "legacy" mode. In this mode, the new mount options
+(-o newinstance and -o ptmxmode) will be ignored with a 'bogus option' message
+on console.
+
+If CONFIG_DEVPTS_MULTIPLE_INSTANCES=y and devpts is mounted without the
+'newinstance' option (as in current start-up scripts) the new mount binds
+to the initial kernel mount of devpts. This mode is referred to as the
+'single-instance' mode and the current, single-instance semantics are
+preserved, i.e PTYs are common across the system.
+
+The only difference between this single-instance mode and the legacy mode
+is the presence of new, '/dev/pts/ptmx' node with permissions 0000, which
+can safely be ignored.
+
+If CONFIG_DEVPTS_MULTIPLE_INSTANCES=y and 'newinstance' option is specified,
+the mount is considered to be in the multi-instance mode and a new instance
+of the devpts fs is created. Any ptys created in this instance are independent
+of ptys in other instances of devpts. Like in the single-instance mode, the
+/dev/pts/ptmx node is present. To effectively use the multi-instance mode,
+open of /dev/ptmx must be a redirected to '/dev/pts/ptmx' using a symlink or
+bind-mount.
+
+Eg: A container startup script could do the following:
+
+ $ chmod 0666 /dev/pts/ptmx
+ $ rm /dev/ptmx
+ $ ln -s pts/ptmx /dev/ptmx
+ $ ns_exec -cm /bin/bash
+
+ # We are now in new container
+
+ $ umount /dev/pts
+ $ mount -t devpts -o newinstance lxcpts /dev/pts
+ $ sshd -p 1234
+
+where 'ns_exec -cm /bin/bash' calls clone() with CLONE_NEWNS flag and execs
+/bin/bash in the child process. A pty created by the sshd is not visible in
+the original mount of /dev/pts.
+
+User-space changes
+------------------
+
+In multi-instance mode (i.e '-o newinstance' mount option is specified at least
+once), following user-space issues should be noted.
+
+1. If -o newinstance mount option is never used, /dev/pts/ptmx can be ignored
+ and no change is needed to system-startup scripts.
+
+2. To effectively use multi-instance mode (i.e -o newinstance is specified)
+ administrators or startup scripts should "redirect" open of /dev/ptmx to
+ /dev/pts/ptmx using either a bind mount or symlink.
+
+ $ mount -t devpts -o newinstance devpts /dev/pts
+
+ followed by either
+
+ $ rm /dev/ptmx
+ $ ln -s pts/ptmx /dev/ptmx
+ $ chmod 666 /dev/pts/ptmx
+ or
+ $ mount -o bind /dev/pts/ptmx /dev/ptmx
+
+3. The '/dev/ptmx -> pts/ptmx' symlink is the preferred method since it
+ enables better error-reporting and treats both single-instance and
+ multi-instance mounts similarly.
+
+ But this method requires that system-startup scripts set the mode of
+ /dev/pts/ptmx correctly (default mode is 0000). The scripts can set the
+ mode by, either
+
+ - adding ptmxmode mount option to devpts entry in /etc/fstab, or
+ - using 'chmod 0666 /dev/pts/ptmx'
+
+4. If multi-instance mode mount is needed for containers, but the system
+ startup scripts have not yet been updated, container-startup scripts
+ should bind mount /dev/ptmx to /dev/pts/ptmx to avoid breaking single-
+ instance mounts.
+
+ Or, in general, container-startup scripts should use:
+
+ mount -t devpts -o newinstance -o ptmxmode=0666 devpts /dev/pts
+ if [ ! -L /dev/ptmx ]; then
+ mount -o bind /dev/pts/ptmx /dev/ptmx
+ fi
+
+ When all devpts mounts are multi-instance, /dev/ptmx can permanently be
+ a symlink to pts/ptmx and the bind mount can be ignored.
+
+5. A multi-instance mount that is not accompanied by the /dev/ptmx to
+ /dev/pts/ptmx redirection would result in an unusable/unreachable pty.
+
+ mount -t devpts -o newinstance lxcpts /dev/pts
+
+ immediately followed by:
+
+ open("/dev/ptmx")
+
+ would create a pty, say /dev/pts/7, in the initial kernel mount.
+ But /dev/pts/7 would be invisible in the new mount.
+
+6. The permissions for /dev/pts/ptmx node should be specified when mounting
+ /dev/pts, using the '-o ptmxmode=%o' mount option (default is 0000).
+
+ mount -t devpts -o newinstance -o ptmxmode=0644 devpts /dev/pts
+
+ The permissions can be later be changed as usual with 'chmod'.
+
+ chmod 666 /dev/pts/ptmx
+
+7. A mount of devpts without the 'newinstance' option results in binding to
+ initial kernel mount. This behavior while preserving legacy semantics,
+ does not provide strict isolation in a container environment. i.e by
+ mounting devpts without the 'newinstance' option, a container could
+ get visibility into the 'host' or root container's devpts.
+
+ To workaround this and have strict isolation, all mounts of devpts,
+ including the mount in the root container, should use the newinstance
+ option.
diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt
index 174eaff..cec829b 100644
--- a/Documentation/filesystems/ext4.txt
+++ b/Documentation/filesystems/ext4.txt
@@ -58,13 +58,22 @@ Note: More extensive information for getting started with ext4 can be
# mount -t ext4 /dev/hda1 /wherever
- - When comparing performance with other filesystems, remember that
- ext3/4 by default offers higher data integrity guarantees than most.
- So when comparing with a metadata-only journalling filesystem, such
- as ext3, use `mount -o data=writeback'. And you might as well use
- `mount -o nobh' too along with it. Making the journal larger than
- the mke2fs default often helps performance with metadata-intensive
- workloads.
+ - When comparing performance with other filesystems, it's always
+ important to try multiple workloads; very often a subtle change in a
+ workload parameter can completely change the ranking of which
+ filesystems do well compared to others. When comparing versus ext3,
+ note that ext4 enables write barriers by default, while ext3 does
+ not enable write barriers by default. So it is useful to use
+ explicitly specify whether barriers are enabled or not when via the
+ '-o barriers=[0|1]' mount option for both ext3 and ext4 filesystems
+ for a fair comparison. When tuning ext3 for best benchmark numbers,
+ it is often worthwhile to try changing the data journaling mode; '-o
+ data=writeback,nobh' can be faster for some workloads. (Note
+ however that running mounted with data=writeback can potentially
+ leave stale data exposed in recently written files in case of an
+ unclean shutdown, which could be a security exposure in some
+ situations.) Configuring the filesystem with a large journal can
+ also be helpful for metadata-intensive workloads.
2. Features
===========
@@ -74,7 +83,7 @@ Note: More extensive information for getting started with ext4 can be
* ability to use filesystems > 16TB (e2fsprogs support not available yet)
* extent format reduces metadata overhead (RAM, IO for access, transactions)
* extent format more robust in face of on-disk corruption due to magics,
-* internal redunancy in tree
+* internal redundancy in tree
* improved file allocation (multi-block alloc)
* fix 32000 subdirectory limit
* nsec timestamps for mtime, atime, ctime, create time
@@ -116,10 +125,11 @@ grouping of bitmaps and inode tables. Some test results available here:
When mounting an ext4 filesystem, the following option are accepted:
(*) == default
-extents (*) ext4 will use extents to address file data. The
- file system will no longer be mountable by ext3.
-
-noextents ext4 will not use extents for newly created files
+ro Mount filesystem read only. Note that ext4 will
+ replay the journal (and thus write to the
+ partition) even when mounted "read only". The
+ mount options "ro,noload" can be used to prevent
+ writes to the filesystem.
journal_checksum Enable checksumming of the journal transactions.
This will allow the recovery code in e2fsck and the
@@ -134,17 +144,17 @@ journal_async_commit Commit block can be written to disk without waiting
journal=update Update the ext4 file system's journal to the current
format.
-journal=inum When a journal already exists, this option is ignored.
- Otherwise, it specifies the number of the inode which
- will represent the ext4 file system's journal file.
-
journal_dev=devnum When the external journal device's major/minor numbers
have changed, this option allows the user to specify
the new journal location. The journal device is
identified through its new major/minor numbers encoded
in devnum.
-noload Don't load the journal on mounting.
+noload Don't load the journal on mounting. Note that
+ if the filesystem was not unmounted cleanly,
+ skipping the journal replay will lead to the
+ filesystem containing inconsistencies that can
+ lead to any number of problems.
data=journal All data are committed into the journal prior to being
written into the main file system.
@@ -219,9 +229,12 @@ minixdf Make 'df' act like Minix.
debug Extra debugging information is sent to syslog.
-errors=remount-ro(*) Remount the filesystem read-only on an error.
+errors=remount-ro Remount the filesystem read-only on an error.
errors=continue Keep going on a filesystem error.
errors=panic Panic and halt the machine if an error occurs.
+ (These mount options override the errors behavior
+ specified in the superblock, which can be configured
+ using tune2fs)
data_err=ignore(*) Just print an error message if an error occurs
in a file data buffer in ordered mode.
@@ -261,6 +274,42 @@ delalloc (*) Deferring block allocation until write-out time.
nodelalloc Disable delayed allocation. Blocks are allocation
when data is copied from user to page cache.
+max_batch_time=usec Maximum amount of time ext4 should wait for
+ additional filesystem operations to be batch
+ together with a synchronous write operation.
+ Since a synchronous write operation is going to
+ force a commit and then a wait for the I/O
+ complete, it doesn't cost much, and can be a
+ huge throughput win, we wait for a small amount
+ of time to see if any other transactions can
+ piggyback on the synchronous write. The
+ algorithm used is designed to automatically tune
+ for the speed of the disk, by measuring the
+ amount of time (on average) that it takes to
+ finish committing a transaction. Call this time
+ the "commit time". If the time that the
+ transactoin has been running is less than the
+ commit time, ext4 will try sleeping for the
+ commit time to see if other operations will join
+ the transaction. The commit time is capped by
+ the max_batch_time, which defaults to 15000us
+ (15ms). This optimization can be turned off
+ entirely by setting max_batch_time to 0.
+
+min_batch_time=usec This parameter sets the commit time (as
+ described above) to be at least min_batch_time.
+ It defaults to zero microseconds. Increasing
+ this parameter may improve the throughput of
+ multi-threaded, synchronous workloads on very
+ fast disks, at the cost of increasing latency.
+
+journal_ioprio=prio The I/O priority (from 0 to 7, where 0 is the
+ highest priorty) which should be used for I/O
+ operations submitted by kjournald2 during a
+ commit operation. This defaults to 3, which is
+ a slightly higher priority than the default I/O
+ priority.
+
Data Mode
=========
There are 3 different data modes:
diff --git a/Documentation/filesystems/files.txt b/Documentation/filesystems/files.txt
index bb0142f..ac2facc 100644
--- a/Documentation/filesystems/files.txt
+++ b/Documentation/filesystems/files.txt
@@ -76,13 +76,13 @@ the fdtable structure -
5. Handling of the file structures is special. Since the look-up
of the fd (fget()/fget_light()) are lock-free, it is possible
that look-up may race with the last put() operation on the
- file structure. This is avoided using atomic_inc_not_zero()
+ file structure. This is avoided using atomic_long_inc_not_zero()
on ->f_count :
rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {
- if (atomic_inc_not_zero(&file->f_count))
+ if (atomic_long_inc_not_zero(&file->f_count))
*fput_needed = 1;
else
/* Didn't get the reference, someone's freed */
@@ -92,7 +92,7 @@ the fdtable structure -
....
return file;
- atomic_inc_not_zero() detects if refcounts is already zero or
+ atomic_long_inc_not_zero() detects if refcounts is already zero or
goes to zero during increment. If it does, we fail
fget()/fget_light().
diff --git a/Documentation/filesystems/ocfs2.txt b/Documentation/filesystems/ocfs2.txt
index 67310fb..c2a0871 100644
--- a/Documentation/filesystems/ocfs2.txt
+++ b/Documentation/filesystems/ocfs2.txt
@@ -31,7 +31,6 @@ Features which OCFS2 does not support yet:
- quotas
- Directory change notification (F_NOTIFY)
- Distributed Caching (F_SETLEASE/F_GETLEASE/break_lease)
- - POSIX ACLs
Mount options
=============
@@ -79,3 +78,5 @@ inode64 Indicates that Ocfs2 is allowed to create inodes at
bits of significance.
user_xattr (*) Enables Extended User Attributes.
nouser_xattr Disables Extended User Attributes.
+acl Enables POSIX Access Control Lists support.
+noacl (*) Disables POSIX Access Control Lists support.
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 71df353..d105eb4 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -140,6 +140,7 @@ Table 1-1: Process specific entries in /proc
statm Process memory status information
status Process status in human readable form
wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan
+ stack Report full stack trace, enable via CONFIG_STACKTRACE
smaps Extension based on maps, the rss size for each mapped file
..............................................................................
@@ -1385,6 +1386,15 @@ swapcache reclaim. Decreasing vfs_cache_pressure causes the kernel to prefer
to retain dentry and inode caches. Increasing vfs_cache_pressure beyond 100
causes the kernel to prefer to reclaim dentries and inodes.
+dirty_background_bytes
+----------------------
+
+Contains the amount of dirty memory at which the pdflush background writeback
+daemon will start writeback.
+
+If dirty_background_bytes is written, dirty_background_ratio becomes a function
+of its value (dirty_background_bytes / the amount of dirtyable system memory).
+
dirty_background_ratio
----------------------
@@ -1393,14 +1403,29 @@ pages + file cache, not including locked pages and HugePages), the number of
pages at which the pdflush background writeback daemon will start writing out
dirty data.
+If dirty_background_ratio is written, dirty_background_bytes becomes a function
+of its value (dirty_background_ratio * the amount of dirtyable system memory).
+
+dirty_bytes
+-----------
+
+Contains the amount of dirty memory at which a process generating disk writes
+will itself start writeback.
+
+If dirty_bytes is written, dirty_ratio becomes a function of its value
+(dirty_bytes / the amount of dirtyable system memory).
+
dirty_ratio
------------------
+-----------
Contains, as a percentage of the dirtyable system memory (free pages + mapped
pages + file cache, not including locked pages and HugePages), the number of
pages at which a process which is generating disk writes will itself start
writing out dirty data.
+If dirty_ratio is written, dirty_bytes becomes a function of its value
+(dirty_ratio * the amount of dirtyable system memory).
+
dirty_writeback_centisecs
-------------------------
diff --git a/Documentation/filesystems/squashfs.txt b/Documentation/filesystems/squashfs.txt
new file mode 100644
index 0000000..3e79e4a
--- /dev/null
+++ b/Documentation/filesystems/squashfs.txt
@@ -0,0 +1,225 @@
+SQUASHFS 4.0 FILESYSTEM
+=======================
+
+Squashfs is a compressed read-only filesystem for Linux.
+It uses zlib compression to compress files, inodes and directories.
+Inodes in the system are very small and all blocks are packed to minimise
+data overhead. Block sizes greater than 4K are supported up to a maximum
+of 1Mbytes (default block size 128K).
+
+Squashfs is intended for general read-only filesystem use, for archival
+use (i.e. in cases where a .tar.gz file may be used), and in constrained
+block device/memory systems (e.g. embedded systems) where low overhead is
+needed.
+
+Mailing list: squashfs-devel@lists.sourceforge.net
+Web site: www.squashfs.org
+
+1. FILESYSTEM FEATURES
+----------------------
+
+Squashfs filesystem features versus Cramfs:
+
+ Squashfs Cramfs
+
+Max filesystem size: 2^64 16 MiB
+Max file size: ~ 2 TiB 16 MiB
+Max files: unlimited unlimited
+Max directories: unlimited unlimited
+Max entries per directory: unlimited unlimited
+Max block size: 1 MiB 4 KiB
+Metadata compression: yes no
+Directory indexes: yes no
+Sparse file support: yes no
+Tail-end packing (fragments): yes no
+Exportable (NFS etc.): yes no
+Hard link support: yes no
+"." and ".." in readdir: yes no
+Real inode numbers: yes no
+32-bit uids/gids: yes no
+File creation time: yes no
+Xattr and ACL support: no no
+
+Squashfs compresses data, inodes and directories. In addition, inode and
+directory data are highly compacted, and packed on byte boundaries. Each
+compressed inode is on average 8 bytes in length (the exact length varies on
+file type, i.e. regular file, directory, symbolic link, and block/char device
+inodes have different sizes).
+
+2. USING SQUASHFS
+-----------------
+
+As squashfs is a read-only filesystem, the mksquashfs program must be used to
+create populated squashfs filesystems. This and other squashfs utilities
+can be obtained from http://www.squashfs.org. Usage instructions can be
+obtained from this site also.
+
+
+3. SQUASHFS FILESYSTEM DESIGN
+-----------------------------
+
+A squashfs filesystem consists of seven parts, packed together on a byte
+alignment:
+
+ ---------------
+ | superblock |
+ |---------------|
+ | datablocks |
+ | & fragments |
+ |---------------|
+ | inode table |
+ |---------------|
+ | directory |
+ | table |
+ |---------------|
+ | fragment |
+ | table |
+ |---------------|
+ | export |
+ | table |
+ |---------------|
+ | uid/gid |
+ | lookup table |
+ ---------------
+
+Compressed data blocks are written to the filesystem as files are read from
+the source directory, and checked for duplicates. Once all file data has been
+written the completed inode, directory, fragment, export and uid/gid lookup
+tables are written.
+
+3.1 Inodes
+----------
+
+Metadata (inodes and directories) are compressed in 8Kbyte blocks. Each
+compressed block is prefixed by a two byte length, the top bit is set if the
+block is uncompressed. A block will be uncompressed if the -noI option is set,
+or if the compressed block was larger than the uncompressed block.
+
+Inodes are packed into the metadata blocks, and are not aligned to block
+boundaries, therefore inodes overlap compressed blocks. Inodes are identified
+by a 48-bit number which encodes the location of the compressed metadata block
+containing the inode, and the byte offset into that block where the inode is
+placed (<block, offset>).
+
+To maximise compression there are different inodes for each file type
+(regular file, directory, device, etc.), the inode contents and length
+varying with the type.
+
+To further maximise compression, two types of regular file inode and
+directory inode are defined: inodes optimised for frequently occurring
+regular files and directories, and extended types where extra
+information has to be stored.
+
+3.2 Directories
+---------------
+
+Like inodes, directories are packed into compressed metadata blocks, stored
+in a directory table. Directories are accessed using the start address of
+the metablock containing the directory and the offset into the
+decompressed block (<block, offset>).
+
+Directories are organised in a slightly complex way, and are not simply
+a list of file names. The organisation takes advantage of the
+fact that (in most cases) the inodes of the files will be in the same
+compressed metadata block, and therefore, can share the start block.
+Directories are therefore organised in a two level list, a directory
+header containing the shared start block value, and a sequence of directory
+entries, each of which share the shared start block. A new directory header
+is written once/if the inode start block changes. The directory
+header/directory entry list is repeated as many times as necessary.
+
+Directories are sorted, and can contain a directory index to speed up
+file lookup. Directory indexes store one entry per metablock, each entry
+storing the index/filename mapping to the first directory header
+in each metadata block. Directories are sorted in alphabetical order,
+and at lookup the index is scanned linearly looking for the first filename
+alphabetically larger than the filename being looked up. At this point the
+location of the metadata block the filename is in has been found.
+The general idea of the index is ensure only one metadata block needs to be
+decompressed to do a lookup irrespective of the length of the directory.
+This scheme has the advantage that it doesn't require extra memory overhead
+and doesn't require much extra storage on disk.
+
+3.3 File data
+-------------
+
+Regular files consist of a sequence of contiguous compressed blocks, and/or a
+compressed fragment block (tail-end packed block). The compressed size
+of each datablock is stored in a block list contained within the
+file inode.
+
+To speed up access to datablocks when reading 'large' files (256 Mbytes or
+larger), the code implements an index cache that caches the mapping from
+block index to datablock location on disk.
+
+The index cache allows Squashfs to handle large files (up to 1.75 TiB) while
+retaining a simple and space-efficient block list on disk. The cache
+is split into slots, caching up to eight 224 GiB files (128 KiB blocks).
+Larger files use multiple slots, with 1.75 TiB files using all 8 slots.
+The index cache is designed to be memory efficient, and by default uses
+16 KiB.
+
+3.4 Fragment lookup table
+-------------------------
+
+Regular files can contain a fragment index which is mapped to a fragment
+location on disk and compressed size using a fragment lookup table. This
+fragment lookup table is itself stored compressed into metadata blocks.
+A second index table is used to locate these. This second index table for
+speed of access (and because it is small) is read at mount time and cached
+in memory.
+
+3.5 Uid/gid lookup table
+------------------------
+
+For space efficiency regular files store uid and gid indexes, which are
+converted to 32-bit uids/gids using an id look up table. This table is
+stored compressed into metadata blocks. A second index table is used to
+locate these. This second index table for speed of access (and because it
+is small) is read at mount time and cached in memory.
+
+3.6 Export table
+----------------
+
+To enable Squashfs filesystems to be exportable (via NFS etc.) filesystems
+can optionally (disabled with the -no-exports Mksquashfs option) contain
+an inode number to inode disk location lookup table. This is required to
+enable Squashfs to map inode numbers passed in filehandles to the inode
+location on disk, which is necessary when the export code reinstantiates
+expired/flushed inodes.
+
+This table is stored compressed into metadata blocks. A second index table is
+used to locate these. This second index table for speed of access (and because
+it is small) is read at mount time and cached in memory.
+
+
+4. TODOS AND OUTSTANDING ISSUES
+-------------------------------
+
+4.1 Todo list
+-------------
+
+Implement Xattr and ACL support. The Squashfs 4.0 filesystem layout has hooks
+for these but the code has not been written. Once the code has been written
+the existing layout should not require modification.
+
+4.2 Squashfs internal cache
+---------------------------
+
+Blocks in Squashfs are compressed. To avoid repeatedly decompressing
+recently accessed data Squashfs uses two small metadata and fragment caches.
+
+The cache is not used for file datablocks, these are decompressed and cached in
+the page-cache in the normal way. The cache is used to temporarily cache
+fragment and metadata blocks which have been read as a result of a metadata
+(i.e. inode or directory) or fragment access. Because metadata and fragments
+are packed together into blocks (to gain greater compression) the read of a
+particular piece of metadata or fragment will retrieve other metadata/fragments
+which have been packed with it, these because of locality-of-reference may be
+read in the near future. Temporarily caching them ensures they are available
+for near future access without requiring an additional read and decompress.
+
+In the future this internal cache may be replaced with an implementation which
+uses the kernel page cache. Because the page cache operates on page sized
+units this may introduce additional complexity in terms of locking and
+associated race conditions.
diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.txt
index dd84ea3..84da2a4 100644
--- a/Documentation/filesystems/ubifs.txt
+++ b/Documentation/filesystems/ubifs.txt
@@ -95,6 +95,9 @@ no_chk_data_crc skip checking of CRCs on data nodes in order to
of this option is that corruption of the contents
of a file can go unnoticed.
chk_data_crc (*) do not skip checking CRCs on data nodes
+compr=none override default compressor and set it to "none"
+compr=lzo override default compressor and set it to "lzo"
+compr=zlib override default compressor and set it to "zlib"
Quick usage instructions
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index 5579bda..deeeed0 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -210,8 +210,8 @@ struct super_operations {
void (*put_super) (struct super_block *);
void (*write_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
- void (*write_super_lockfs) (struct super_block *);
- void (*unlockfs) (struct super_block *);
+ int (*freeze_fs) (struct super_block *);
+ int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_inode) (struct inode *);
@@ -270,11 +270,11 @@ or bottom half).
a superblock. The second parameter indicates whether the method
should wait until the write out has been completed. Optional.
- write_super_lockfs: called when VFS is locking a filesystem and
+ freeze_fs: called when VFS is locking a filesystem and
forcing it into a consistent state. This method is currently
used by the Logical Volume Manager (LVM).
- unlockfs: called when VFS is unlocking a filesystem and making it writable
+ unfreeze_fs: called when VFS is unlocking a filesystem and making it writable
again.
statfs: called when the VFS needs to get filesystem statistics. This
@@ -733,7 +733,6 @@ struct file_operations {
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
- int (*dir_notify)(struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, size_t, unsigned int);
ssize_t (*splice_read)(struct file *, struct pipe_inode_info *, size_t, unsigned int);
@@ -800,8 +799,6 @@ otherwise noted.
check_flags: called by the fcntl(2) system call for F_SETFL command
- dir_notify: called by the fcntl(2) system call for F_NOTIFY command
-
flock: called by the flock(2) system call
splice_write: called by the VFS to splice data from a pipe to a file. This
@@ -931,7 +928,7 @@ manipulate dentries:
d_lookup: look up a dentry given its parent and path name component
It looks up the child of that given name from the dcache
hash table. If it is found, the reference count is incremented
- and the dentry is returned. The caller must use d_put()
+ and the dentry is returned. The caller must use dput()
to free the dentry when it finishes using it.
For further information on dentry locking, please refer to the document
OpenPOWER on IntegriCloud