diff options
Diffstat (limited to 'Documentation/filesystems/proc.txt')
-rw-r--r-- | Documentation/filesystems/proc.txt | 53 |
1 files changed, 52 insertions, 1 deletions
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index 0d07513..96a44dd 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -164,6 +164,7 @@ read the file /proc/PID/status: VmExe: 68 kB VmLib: 1412 kB VmPTE: 20 kb + VmSwap: 0 kB Threads: 1 SigQ: 0/28578 SigPnd: 0000000000000000 @@ -188,6 +189,12 @@ memory usage. Its seven fields are explained in Table 1-3. The stat file contains details information about the process itself. Its fields are explained in Table 1-4. +(for SMP CONFIG users) +For making accounting scalable, RSS related information are handled in +asynchronous manner and the vaule may not be very precise. To see a precise +snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table. +It's slow but very precise. + Table 1-2: Contents of the statm files (as of 2.6.30-rc7) .............................................................................. Field Content @@ -213,6 +220,7 @@ Table 1-2: Contents of the statm files (as of 2.6.30-rc7) VmExe size of text segment VmLib size of shared library code VmPTE size of page table entries + VmSwap size of swap usage (the number of referred swapents) Threads number of threads SigQ number of signals queued/max. number for queue SigPnd bitmap of pending signals for the thread @@ -430,6 +438,7 @@ Table 1-5: Kernel info in /proc modules List of loaded modules mounts Mounted filesystems net Networking info (see text) + pagetypeinfo Additional page allocator information (see text) (2.5) partitions Table of partitions known to the system pci Deprecated info of PCI bus (new way -> /proc/bus/pci/, decoupled by lspci (2.4) @@ -584,7 +593,7 @@ Node 0, zone DMA 0 4 5 4 4 3 ... Node 0, zone Normal 1 0 0 1 101 8 ... Node 0, zone HighMem 2 0 0 1 1 0 ... -Memory fragmentation is a problem under some workloads, and buddyinfo is a +External fragmentation is a problem under some workloads, and buddyinfo is a useful tool for helping diagnose these problems. Buddyinfo will give you a clue as to how big an area you can safely allocate, or why a previous allocation failed. @@ -594,6 +603,48 @@ available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE available in ZONE_NORMAL, etc... +More information relevant to external fragmentation can be found in +pagetypeinfo. + +> cat /proc/pagetypeinfo +Page block order: 9 +Pages per block: 512 + +Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10 +Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0 +Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0 +Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2 +Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0 +Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0 +Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9 +Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0 +Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452 +Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0 +Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0 + +Number of blocks type Unmovable Reclaimable Movable Reserve Isolate +Node 0, zone DMA 2 0 5 1 0 +Node 0, zone DMA32 41 6 967 2 0 + +Fragmentation avoidance in the kernel works by grouping pages of different +migrate types into the same contiguous regions of memory called page blocks. +A page block is typically the size of the default hugepage size e.g. 2MB on +X86-64. By keeping pages grouped based on their ability to move, the kernel +can reclaim pages within a page block to satisfy a high-order allocation. + +The pagetypinfo begins with information on the size of a page block. It +then gives the same type of information as buddyinfo except broken down +by migrate-type and finishes with details on how many page blocks of each +type exist. + +If min_free_kbytes has been tuned correctly (recommendations made by hugeadm +from libhugetlbfs http://sourceforge.net/projects/libhugetlbfs/), one can +make an estimate of the likely number of huge pages that can be allocated +at a given point in time. All the "Movable" blocks should be allocatable +unless memory has been mlock()'d. Some of the Reclaimable blocks should +also be allocatable although a lot of filesystem metadata may have to be +reclaimed to achieve this. + .............................................................................. meminfo: |