diff options
Diffstat (limited to 'Documentation/cpusets.txt')
-rw-r--r-- | Documentation/cpusets.txt | 76 |
1 files changed, 74 insertions, 2 deletions
diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt index 30c4145..159e2a0 100644 --- a/Documentation/cpusets.txt +++ b/Documentation/cpusets.txt @@ -18,7 +18,8 @@ CONTENTS: 1.4 What are exclusive cpusets ? 1.5 What does notify_on_release do ? 1.6 What is memory_pressure ? - 1.7 How do I use cpusets ? + 1.7 What is memory spread ? + 1.8 How do I use cpusets ? 2. Usage Examples and Syntax 2.1 Basic Usage 2.2 Adding/removing cpus @@ -317,7 +318,78 @@ the tasks in the cpuset, in units of reclaims attempted per second, times 1000. -1.7 How do I use cpusets ? +1.7 What is memory spread ? +--------------------------- +There are two boolean flag files per cpuset that control where the +kernel allocates pages for the file system buffers and related in +kernel data structures. They are called 'memory_spread_page' and +'memory_spread_slab'. + +If the per-cpuset boolean flag file 'memory_spread_page' is set, then +the kernel will spread the file system buffers (page cache) evenly +over all the nodes that the faulting task is allowed to use, instead +of preferring to put those pages on the node where the task is running. + +If the per-cpuset boolean flag file 'memory_spread_slab' is set, +then the kernel will spread some file system related slab caches, +such as for inodes and dentries evenly over all the nodes that the +faulting task is allowed to use, instead of preferring to put those +pages on the node where the task is running. + +The setting of these flags does not affect anonymous data segment or +stack segment pages of a task. + +By default, both kinds of memory spreading are off, and memory +pages are allocated on the node local to where the task is running, +except perhaps as modified by the tasks NUMA mempolicy or cpuset +configuration, so long as sufficient free memory pages are available. + +When new cpusets are created, they inherit the memory spread settings +of their parent. + +Setting memory spreading causes allocations for the affected page +or slab caches to ignore the tasks NUMA mempolicy and be spread +instead. Tasks using mbind() or set_mempolicy() calls to set NUMA +mempolicies will not notice any change in these calls as a result of +their containing tasks memory spread settings. If memory spreading +is turned off, then the currently specified NUMA mempolicy once again +applies to memory page allocations. + +Both 'memory_spread_page' and 'memory_spread_slab' are boolean flag +files. By default they contain "0", meaning that the feature is off +for that cpuset. If a "1" is written to that file, then that turns +the named feature on. + +The implementation is simple. + +Setting the flag 'memory_spread_page' turns on a per-process flag +PF_SPREAD_PAGE for each task that is in that cpuset or subsequently +joins that cpuset. The page allocation calls for the page cache +is modified to perform an inline check for this PF_SPREAD_PAGE task +flag, and if set, a call to a new routine cpuset_mem_spread_node() +returns the node to prefer for the allocation. + +Similarly, setting 'memory_spread_cache' turns on the flag +PF_SPREAD_SLAB, and appropriately marked slab caches will allocate +pages from the node returned by cpuset_mem_spread_node(). + +The cpuset_mem_spread_node() routine is also simple. It uses the +value of a per-task rotor cpuset_mem_spread_rotor to select the next +node in the current tasks mems_allowed to prefer for the allocation. + +This memory placement policy is also known (in other contexts) as +round-robin or interleave. + +This policy can provide substantial improvements for jobs that need +to place thread local data on the corresponding node, but that need +to access large file system data sets that need to be spread across +the several nodes in the jobs cpuset in order to fit. Without this +policy, especially for jobs that might have one thread reading in the +data set, the memory allocation across the nodes in the jobs cpuset +can become very uneven. + + +1.8 How do I use cpusets ? -------------------------- In order to minimize the impact of cpusets on critical kernel |