summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/linux/sched.h17
-rw-r--r--kernel/sched/core.c3
-rw-r--r--kernel/sched/deadline.c269
-rw-r--r--kernel/sched/sched.h2
4 files changed, 276 insertions, 15 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 1abaa37..f1ead2e 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -445,16 +445,33 @@ struct sched_dl_entity {
*
* @dl_yielded tells if task gave up the CPU before consuming
* all its available runtime during the last job.
+ *
+ * @dl_non_contending tells if the task is inactive while still
+ * contributing to the active utilization. In other words, it
+ * indicates if the inactive timer has been armed and its handler
+ * has not been executed yet. This flag is useful to avoid race
+ * conditions between the inactive timer handler and the wakeup
+ * code.
*/
int dl_throttled;
int dl_boosted;
int dl_yielded;
+ int dl_non_contending;
/*
* Bandwidth enforcement timer. Each -deadline task has its
* own bandwidth to be enforced, thus we need one timer per task.
*/
struct hrtimer dl_timer;
+
+ /*
+ * Inactive timer, responsible for decreasing the active utilization
+ * at the "0-lag time". When a -deadline task blocks, it contributes
+ * to GRUB's active utilization until the "0-lag time", hence a
+ * timer is needed to decrease the active utilization at the correct
+ * time.
+ */
+ struct hrtimer inactive_timer;
};
union rcu_special {
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index c3e50ca..968c655 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -2153,6 +2153,7 @@ void __dl_clear_params(struct task_struct *p)
dl_se->dl_throttled = 0;
dl_se->dl_yielded = 0;
+ dl_se->dl_non_contending = 0;
}
/*
@@ -2184,6 +2185,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
RB_CLEAR_NODE(&p->dl.rb_node);
init_dl_task_timer(&p->dl);
+ init_dl_inactive_task_timer(&p->dl);
__dl_clear_params(p);
INIT_LIST_HEAD(&p->rt.run_list);
@@ -2506,6 +2508,7 @@ static int dl_overflow(struct task_struct *p, int policy,
!__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
__dl_clear(dl_b, p->dl.dl_bw);
__dl_add(dl_b, new_bw);
+ dl_change_utilization(p, new_bw);
err = 0;
} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
__dl_clear(dl_b, p->dl.dl_bw);
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index b36ecc2..6480a92 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -65,6 +65,161 @@ void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
dl_rq->running_bw = 0;
}
+void dl_change_utilization(struct task_struct *p, u64 new_bw)
+{
+ if (task_on_rq_queued(p))
+ return;
+
+ if (!p->dl.dl_non_contending)
+ return;
+
+ sub_running_bw(p->dl.dl_bw, &task_rq(p)->dl);
+ p->dl.dl_non_contending = 0;
+ /*
+ * If the timer handler is currently running and the
+ * timer cannot be cancelled, inactive_task_timer()
+ * will see that dl_not_contending is not set, and
+ * will not touch the rq's active utilization,
+ * so we are still safe.
+ */
+ if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+ put_task_struct(p);
+}
+
+/*
+ * The utilization of a task cannot be immediately removed from
+ * the rq active utilization (running_bw) when the task blocks.
+ * Instead, we have to wait for the so called "0-lag time".
+ *
+ * If a task blocks before the "0-lag time", a timer (the inactive
+ * timer) is armed, and running_bw is decreased when the timer
+ * fires.
+ *
+ * If the task wakes up again before the inactive timer fires,
+ * the timer is cancelled, whereas if the task wakes up after the
+ * inactive timer fired (and running_bw has been decreased) the
+ * task's utilization has to be added to running_bw again.
+ * A flag in the deadline scheduling entity (dl_non_contending)
+ * is used to avoid race conditions between the inactive timer handler
+ * and task wakeups.
+ *
+ * The following diagram shows how running_bw is updated. A task is
+ * "ACTIVE" when its utilization contributes to running_bw; an
+ * "ACTIVE contending" task is in the TASK_RUNNING state, while an
+ * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
+ * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
+ * time already passed, which does not contribute to running_bw anymore.
+ * +------------------+
+ * wakeup | ACTIVE |
+ * +------------------>+ contending |
+ * | add_running_bw | |
+ * | +----+------+------+
+ * | | ^
+ * | dequeue | |
+ * +--------+-------+ | |
+ * | | t >= 0-lag | | wakeup
+ * | INACTIVE |<---------------+ |
+ * | | sub_running_bw | |
+ * +--------+-------+ | |
+ * ^ | |
+ * | t < 0-lag | |
+ * | | |
+ * | V |
+ * | +----+------+------+
+ * | sub_running_bw | ACTIVE |
+ * +-------------------+ |
+ * inactive timer | non contending |
+ * fired +------------------+
+ *
+ * The task_non_contending() function is invoked when a task
+ * blocks, and checks if the 0-lag time already passed or
+ * not (in the first case, it directly updates running_bw;
+ * in the second case, it arms the inactive timer).
+ *
+ * The task_contending() function is invoked when a task wakes
+ * up, and checks if the task is still in the "ACTIVE non contending"
+ * state or not (in the second case, it updates running_bw).
+ */
+static void task_non_contending(struct task_struct *p)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+ struct hrtimer *timer = &dl_se->inactive_timer;
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+ s64 zerolag_time;
+
+ /*
+ * If this is a non-deadline task that has been boosted,
+ * do nothing
+ */
+ if (dl_se->dl_runtime == 0)
+ return;
+
+ WARN_ON(hrtimer_active(&dl_se->inactive_timer));
+ WARN_ON(dl_se->dl_non_contending);
+
+ zerolag_time = dl_se->deadline -
+ div64_long((dl_se->runtime * dl_se->dl_period),
+ dl_se->dl_runtime);
+
+ /*
+ * Using relative times instead of the absolute "0-lag time"
+ * allows to simplify the code
+ */
+ zerolag_time -= rq_clock(rq);
+
+ /*
+ * If the "0-lag time" already passed, decrease the active
+ * utilization now, instead of starting a timer
+ */
+ if (zerolag_time < 0) {
+ if (dl_task(p))
+ sub_running_bw(dl_se->dl_bw, dl_rq);
+ if (!dl_task(p) || p->state == TASK_DEAD)
+ __dl_clear_params(p);
+
+ return;
+ }
+
+ dl_se->dl_non_contending = 1;
+ get_task_struct(p);
+ hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
+}
+
+static void task_contending(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+ /*
+ * If this is a non-deadline task that has been boosted,
+ * do nothing
+ */
+ if (dl_se->dl_runtime == 0)
+ return;
+
+ if (dl_se->dl_non_contending) {
+ dl_se->dl_non_contending = 0;
+ /*
+ * If the timer handler is currently running and the
+ * timer cannot be cancelled, inactive_task_timer()
+ * will see that dl_not_contending is not set, and
+ * will not touch the rq's active utilization,
+ * so we are still safe.
+ */
+ if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
+ put_task_struct(dl_task_of(dl_se));
+ } else {
+ /*
+ * Since "dl_non_contending" is not set, the
+ * task's utilization has already been removed from
+ * active utilization (either when the task blocked,
+ * when the "inactive timer" fired).
+ * So, add it back.
+ */
+ add_running_bw(dl_se->dl_bw, dl_rq);
+ }
+}
+
static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{
struct sched_dl_entity *dl_se = &p->dl;
@@ -617,10 +772,8 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
* The task might have changed its scheduling policy to something
* different than SCHED_DEADLINE (through switched_from_dl()).
*/
- if (!dl_task(p)) {
- __dl_clear_params(p);
+ if (!dl_task(p))
goto unlock;
- }
/*
* The task might have been boosted by someone else and might be in the
@@ -839,6 +992,49 @@ throttle:
}
}
+static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
+{
+ struct sched_dl_entity *dl_se = container_of(timer,
+ struct sched_dl_entity,
+ inactive_timer);
+ struct task_struct *p = dl_task_of(dl_se);
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+
+ if (!dl_task(p) || p->state == TASK_DEAD) {
+ if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
+ sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
+ dl_se->dl_non_contending = 0;
+ }
+ __dl_clear_params(p);
+
+ goto unlock;
+ }
+ if (dl_se->dl_non_contending == 0)
+ goto unlock;
+
+ sched_clock_tick();
+ update_rq_clock(rq);
+
+ sub_running_bw(dl_se->dl_bw, &rq->dl);
+ dl_se->dl_non_contending = 0;
+unlock:
+ task_rq_unlock(rq, p, &rf);
+ put_task_struct(p);
+
+ return HRTIMER_NORESTART;
+}
+
+void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
+{
+ struct hrtimer *timer = &dl_se->inactive_timer;
+
+ hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ timer->function = inactive_task_timer;
+}
+
#ifdef CONFIG_SMP
static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
@@ -971,9 +1167,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se,
* we want a replenishment of its runtime.
*/
if (flags & ENQUEUE_WAKEUP) {
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
-
- add_running_bw(dl_se->dl_bw, dl_rq);
+ task_contending(dl_se);
update_dl_entity(dl_se, pi_se);
} else if (flags & ENQUEUE_REPLENISH) {
replenish_dl_entity(dl_se, pi_se);
@@ -1042,7 +1236,9 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
* add_running_bw().
*/
if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
- add_running_bw(p->dl.dl_bw, &rq->dl);
+ if (flags & ENQUEUE_WAKEUP)
+ task_contending(&p->dl);
+
return;
}
@@ -1067,7 +1263,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
sub_running_bw(p->dl.dl_bw, &rq->dl);
/*
- * This check allows to decrease the active utilization in two cases:
+ * This check allows to start the inactive timer (or to immediately
+ * decrease the active utilization, if needed) in two cases:
* when the task blocks and when it is terminating
* (p->state == TASK_DEAD). We can handle the two cases in the same
* way, because from GRUB's point of view the same thing is happening
@@ -1075,7 +1272,7 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
* or "inactive")
*/
if (flags & DEQUEUE_SLEEP)
- sub_running_bw(p->dl.dl_bw, &rq->dl);
+ task_non_contending(p);
}
/*
@@ -1153,6 +1350,35 @@ out:
return cpu;
}
+static void migrate_task_rq_dl(struct task_struct *p)
+{
+ struct rq *rq;
+
+ if (!(p->state == TASK_WAKING) || !(p->dl.dl_non_contending))
+ return;
+
+ rq = task_rq(p);
+ /*
+ * Since p->state == TASK_WAKING, set_task_cpu() has been called
+ * from try_to_wake_up(). Hence, p->pi_lock is locked, but
+ * rq->lock is not... So, lock it
+ */
+ raw_spin_lock(&rq->lock);
+ sub_running_bw(p->dl.dl_bw, &rq->dl);
+ p->dl.dl_non_contending = 0;
+ /*
+ * If the timer handler is currently running and the
+ * timer cannot be cancelled, inactive_task_timer()
+ * will see that dl_not_contending is not set, and
+ * will not touch the rq's active utilization,
+ * so we are still safe.
+ */
+ if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+ put_task_struct(p);
+
+ raw_spin_unlock(&rq->lock);
+}
+
static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
{
/*
@@ -1794,13 +2020,23 @@ void __init init_sched_dl_class(void)
static void switched_from_dl(struct rq *rq, struct task_struct *p)
{
/*
- * Start the deadline timer; if we switch back to dl before this we'll
- * continue consuming our current CBS slice. If we stay outside of
- * SCHED_DEADLINE until the deadline passes, the timer will reset the
- * task.
+ * task_non_contending() can start the "inactive timer" (if the 0-lag
+ * time is in the future). If the task switches back to dl before
+ * the "inactive timer" fires, it can continue to consume its current
+ * runtime using its current deadline. If it stays outside of
+ * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
+ * will reset the task parameters.
*/
- if (!start_dl_timer(p))
- __dl_clear_params(p);
+ if (task_on_rq_queued(p) && p->dl.dl_runtime)
+ task_non_contending(p);
+
+ /*
+ * We cannot use inactive_task_timer() to invoke sub_running_bw()
+ * at the 0-lag time, because the task could have been migrated
+ * while SCHED_OTHER in the meanwhile.
+ */
+ if (p->dl.dl_non_contending)
+ p->dl.dl_non_contending = 0;
/*
* Since this might be the only -deadline task on the rq,
@@ -1819,6 +2055,8 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
*/
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
+ if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+ put_task_struct(p);
/* If p is not queued we will update its parameters at next wakeup. */
if (!task_on_rq_queued(p))
@@ -1893,6 +2131,7 @@ const struct sched_class dl_sched_class = {
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_dl,
+ .migrate_task_rq = migrate_task_rq_dl,
.set_cpus_allowed = set_cpus_allowed_dl,
.rq_online = rq_online_dl,
.rq_offline = rq_offline_dl,
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index ee26867..c58f389 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -244,6 +244,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}
+void dl_change_utilization(struct task_struct *p, u64 new_bw);
extern void init_dl_bw(struct dl_bw *dl_b);
#ifdef CONFIG_CGROUP_SCHED
@@ -1493,6 +1494,7 @@ extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
+extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
unsigned long to_ratio(u64 period, u64 runtime);
OpenPOWER on IntegriCloud