summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/DocBook/Makefile2
-rw-r--r--Documentation/DocBook/kgdb.tmpl435
-rw-r--r--MAINTAINERS6
-rw-r--r--include/linux/kgdb.h52
4 files changed, 473 insertions, 22 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index 300e170..e471bc4 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -9,7 +9,7 @@
DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
procfs-guide.xml writing_usb_driver.xml networking.xml \
- kernel-api.xml filesystems.xml lsm.xml usb.xml \
+ kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml
diff --git a/Documentation/DocBook/kgdb.tmpl b/Documentation/DocBook/kgdb.tmpl
new file mode 100644
index 0000000..95e5f84
--- /dev/null
+++ b/Documentation/DocBook/kgdb.tmpl
@@ -0,0 +1,435 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+ "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="kgdbOnLinux">
+ <bookinfo>
+ <title>Using kgdb and the kgdb Internals</title>
+
+ <authorgroup>
+ <author>
+ <firstname>Jason</firstname>
+ <surname>Wessel</surname>
+ <affiliation>
+ <address>
+ <email>jason.wessel@windriver.com</email>
+ </address>
+ </affiliation>
+ </author>
+ </authorgroup>
+
+ <authorgroup>
+ <author>
+ <firstname>Tom</firstname>
+ <surname>Rini</surname>
+ <affiliation>
+ <address>
+ <email>trini@kernel.crashing.org</email>
+ </address>
+ </affiliation>
+ </author>
+ </authorgroup>
+
+ <authorgroup>
+ <author>
+ <firstname>Amit S.</firstname>
+ <surname>Kale</surname>
+ <affiliation>
+ <address>
+ <email>amitkale@linsyssoft.com</email>
+ </address>
+ </affiliation>
+ </author>
+ </authorgroup>
+
+ <copyright>
+ <year>2008</year>
+ <holder>Wind River Systems, Inc.</holder>
+ </copyright>
+ <copyright>
+ <year>2004-2005</year>
+ <holder>MontaVista Software, Inc.</holder>
+ </copyright>
+ <copyright>
+ <year>2004</year>
+ <holder>Amit S. Kale</holder>
+ </copyright>
+
+ <legalnotice>
+ <para>
+ This file is licensed under the terms of the GNU General Public License
+ version 2. This program is licensed "as is" without any warranty of any
+ kind, whether express or implied.
+ </para>
+
+ </legalnotice>
+ </bookinfo>
+
+<toc></toc>
+ <chapter id="Introduction">
+ <title>Introduction</title>
+ <para>
+ kgdb is a source level debugger for linux kernel. It is used along
+ with gdb to debug a linux kernel. The expectation is that gdb can
+ be used to "break in" to the kernel to inspect memory, variables
+ and look through a cal stack information similar to what an
+ application developer would use gdb for. It is possible to place
+ breakpoints in kernel code and perform some limited execution
+ stepping.
+ </para>
+ <para>
+ Two machines are required for using kgdb. One of these machines is a
+ development machine and the other is a test machine. The kernel
+ to be debugged runs on the test machine. The development machine
+ runs an instance of gdb against the vmlinux file which contains
+ the symbols (not boot image such as bzImage, zImage, uImage...).
+ In gdb the developer specifies the connection parameters and
+ connects to kgdb. Depending on which kgdb I/O modules exist in
+ the kernel for a given architecture, it may be possible to debug
+ the test machine's kernel with the development machine using a
+ rs232 or ethernet connection.
+ </para>
+ </chapter>
+ <chapter id="CompilingAKernel">
+ <title>Compiling a kernel</title>
+ <para>
+ To enable <symbol>CONFIG_KGDB</symbol>, look under the "Kernel debugging"
+ and then select "KGDB: kernel debugging with remote gdb".
+ </para>
+ <para>
+ Next you should choose one of more I/O drivers to interconnect debugging
+ host and debugged target. Early boot debugging requires a KGDB
+ I/O driver that supports early debugging and the driver must be
+ built into the kernel directly. Kgdb I/O driver configuration
+ takes place via kernel or module parameters, see following
+ chapter.
+ </para>
+ <para>
+ The kgdb test compile options are described in the kgdb test suite chapter.
+ </para>
+
+ </chapter>
+ <chapter id="EnableKGDB">
+ <title>Enable kgdb for debugging</title>
+ <para>
+ In order to use kgdb you must activate it by passing configuration
+ information to one of the kgdb I/O drivers. If you do not pass any
+ configuration information kgdb will not do anything at all. Kgdb
+ will only actively hook up to the kernel trap hooks if a kgdb I/O
+ driver is loaded and configured. If you unconfigure a kgdb I/O
+ driver, kgdb will unregister all the kernel hook points.
+ </para>
+ <para>
+ All drivers can be reconfigured at run time, if
+ <symbol>CONFIG_SYSFS</symbol> and <symbol>CONFIG_MODULES</symbol>
+ are enabled, by echo'ing a new config string to
+ <constant>/sys/module/&lt;driver&gt;/parameter/&lt;option&gt;</constant>.
+ The driver can be unconfigured by passing an empty string. You cannot
+ change the configuration while the debugger is attached. Make sure
+ to detach the debugger with the <constant>detach</constant> command
+ prior to trying unconfigure a kgdb I/O driver.
+ </para>
+ <sect1 id="kgdbwait">
+ <title>Kernel parameter: kgdbwait</title>
+ <para>
+ The Kernel command line option <constant>kgdbwait</constant> makes
+ kgdb wait for a debugger connection during booting of a kernel. You
+ can only use this option you compiled a kgdb I/O driver into the
+ kernel and you specified the I/O driver configuration as a kernel
+ command line option. The kgdbwait parameter should always follow the
+ configuration parameter for the kgdb I/O driver in the kernel
+ command line else the I/O driver will not be configured prior to
+ asking the kernel to use it to wait.
+ </para>
+ <para>
+ The kernel will stop and wait as early as the I/O driver and
+ architecture will allow when you use this option. If you build the
+ kgdb I/O driver as a kernel module kgdbwait will not do anything.
+ </para>
+ </sect1>
+ <sect1 id="kgdboc">
+ <title>Kernel parameter: kgdboc</title>
+ <para>
+ The kgdboc driver was originally an abbreviation meant to stand for
+ "kgdb over console". Kgdboc is designed to work with a single
+ serial port as example, and it was meant to cover the circumstance
+ where you wanted to use a serial console as your primary console as
+ well as using it to perform kernel debugging.
+ </para>
+ <sect2 id="UsingKgdboc">
+ <title>Using kgdboc</title>
+ <para>
+ You can configure kgdboc via sysfs or a module or kernel boot line
+ parameter depending on if you build with CONFIG_KGDBOC as a module
+ or built-in.
+ <orderedlist>
+ <listitem><para>From the module load or build-in</para>
+ <para><constant>kgdboc=&lt;tty-device&gt;,[baud]</constant></para>
+ <para>
+ The example here would be if your console port was typically ttyS0, you would use something like <constant>kgdboc=ttyS0,115200</constant> or on the ARM Versatile AB you would likely use <constant>kgdboc=ttyAMA0,115200</constant>
+ </para>
+ </listitem>
+ <listitem><para>From sysfs</para>
+ <para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para>
+ </listitem>
+ </orderedlist>
+ </para>
+ <para>
+ NOTE: Kgdboc does not support interrupting the target via the
+ gdb remote protocol. You must manually send a sysrq-g unless you
+ have a proxy that splits console output to a terminal problem and
+ has a separate port for the debugger to connect to that sends the
+ sysrq-g for you.
+ </para>
+ <para>When using kgdboc with no debugger proxy, you can end up
+ connecting the debugger for one of two entry points. If an
+ exception occurs after you have loaded kgdboc a message should print
+ on the console stating it is waiting for the debugger. In case you
+ disconnect your terminal program and then connect the debugger in
+ its place. If you want to interrupt the target system and forcibly
+ enter a debug session you have to issue a Sysrq sequence and then
+ type the letter <constant>g</constant>. Then you disconnect the
+ terminal session and connect gdb. Your options if you don't like
+ this are to hack gdb to send the sysrq-g for you as well as on the
+ initial connect, or to use a debugger proxy that allows an
+ unmodified gdb to do the debugging.
+ </para>
+ </sect2>
+ <sect2 id="kgdbocDesign">
+ <title>kgdboc internals</title>
+ <para>
+ The kgdboc driver is actually a very thin driver that relies on the
+ underlying low level to the hardware driver having "polling hooks"
+ which the to which the tty driver is attached. In the initial
+ implementation of kgdboc it the serial_core was changed to expose a
+ low level uart hook for doing polled mode reading and writing of a
+ single character while in an atomic context. When kgdb makes an I/O
+ request to the debugger, kgdboc invokes a call back in the serial
+ core which in turn uses the call back in the uart driver. It is
+ certainly possible to extend kgdboc to work with non-uart based
+ consoles in the future.
+ </para>
+ <para>
+ When using kgdboc with a uart, the uart driver must implement two callbacks in the <constant>struct uart_ops</constant>. Example from drivers/8250.c:<programlisting>
+#ifdef CONFIG_CONSOLE_POLL
+ .poll_get_char = serial8250_get_poll_char,
+ .poll_put_char = serial8250_put_poll_char,
+#endif
+ </programlisting>
+ Any implementation specifics around creating a polling driver use the
+ <constant>#ifdef CONFIG_CONSOLE_POLL</constant>, as shown above.
+ Keep in mind that polling hooks have to be implemented in such a way
+ that they can be called from an atomic context and have to restore
+ the state of the uart chip on return such that the system can return
+ to normal when the debugger detaches. You need to be very careful
+ with any kind of lock you consider, because failing here is most
+ going to mean pressing the reset button.
+ </para>
+ </sect2>
+ </sect1>
+ <sect1 id="kgdbcon">
+ <title>Kernel parameter: kgdbcon</title>
+ <para>
+ Kgdb supports using the gdb serial protocol to send console messages
+ to the debugger when the debugger is connected and running. There
+ are two ways to activate this feature.
+ <orderedlist>
+ <listitem><para>Activate with the kernel command line option:</para>
+ <para><constant>kgdbcon</constant></para>
+ </listitem>
+ <listitem><para>Use sysfs before configuring an io driver</para>
+ <para>
+ <constant>echo 1 &gt; /sys/module/kgdb/parameters/kgdb_use_con</constant>
+ </para>
+ <para>
+ NOTE: If you do this after you configure the kgdb I/O driver, the
+ setting will not take effect until the next point the I/O is
+ reconfigured.
+ </para>
+ </listitem>
+ </orderedlist>
+ </para>
+ <para>
+ IMPORTANT NOTE: Using this option with kgdb over the console
+ (kgdboc) or kgdb over ethernet (kgdboe) is not supported.
+ </para>
+ </sect1>
+ </chapter>
+ <chapter id="ConnectingGDB">
+ <title>Connecting gdb</title>
+ <para>
+ If you are using kgdboc, you need to have used kgdbwait as a boot
+ argument, issued a sysrq-g, or the system you are going to debug
+ has already taken an exception and is waiting for the debugger to
+ attach before you can connect gdb.
+ </para>
+ <para>
+ If you are not using different kgdb I/O driver other than kgdboc,
+ you should be able to connect and the target will automatically
+ respond.
+ </para>
+ <para>
+ Example (using a serial port):
+ </para>
+ <programlisting>
+ % gdb ./vmlinux
+ (gdb) set remotebaud 115200
+ (gdb) target remote /dev/ttyS0
+ </programlisting>
+ <para>
+ Example (kgdb to a terminal server):
+ </para>
+ <programlisting>
+ % gdb ./vmlinux
+ (gdb) target remote udp:192.168.2.2:6443
+ </programlisting>
+ <para>
+ Example (kgdb over ethernet):
+ </para>
+ <programlisting>
+ % gdb ./vmlinux
+ (gdb) target remote udp:192.168.2.2:6443
+ </programlisting>
+ <para>
+ Once connected, you can debug a kernel the way you would debug an
+ application program.
+ </para>
+ <para>
+ If you are having problems connecting or something is going
+ seriously wrong while debugging, it will most often be the case
+ that you want to enable gdb to be verbose about its target
+ communications. You do this prior to issuing the <constant>target
+ remote</constant> command by typing in: <constant>set remote debug 1</constant>
+ </para>
+ </chapter>
+ <chapter id="KGDBTestSuite">
+ <title>kgdb Test Suite</title>
+ <para>
+ When kgdb is enabled in the kernel config you can also elect to
+ enable the config parameter KGDB_TESTS. Turning this on will
+ enable a special kgdb I/O module which is designed to test the
+ kgdb internal functions.
+ </para>
+ <para>
+ The kgdb tests are mainly intended for developers to test the kgdb
+ internals as well as a tool for developing a new kgdb architecture
+ specific implementation. These tests are not really for end users
+ of the Linux kernel. The primary source of documentation would be
+ to look in the drivers/misc/kgdbts.c file.
+ </para>
+ <para>
+ The kgdb test suite can also be configured at compile time to run
+ the core set of tests by setting the kernel config parameter
+ KGDB_TESTS_ON_BOOT. This particular option is aimed at automated
+ regression testing and does not require modifying the kernel boot
+ config arguments. If this is turned on, the kgdb test suite can
+ be disabled by specifying "kgdbts=" as a kernel boot argument.
+ </para>
+ </chapter>
+ <chapter id="CommonBackEndReq">
+ <title>Architecture Specifics</title>
+ <para>
+ Kgdb is organized into three basic components:
+ <orderedlist>
+ <listitem><para>kgdb core</para>
+ <para>
+ The kgdb core is found in kernel/kgdb.c. It contains:
+ <itemizedlist>
+ <listitem><para>All the logic to implement the gdb serial protocol</para></listitem>
+ <listitem><para>A generic OS exception handler which includes sync'ing the processors into a stopped state on an multi cpu system.</para></listitem>
+ <listitem><para>The API to talk to the kgdb I/O drivers</para></listitem>
+ <listitem><para>The API to make calls to the arch specific kgdb implementation</para></listitem>
+ <listitem><para>The logic to perform safe memory reads and writes to memory while using the debugger</para></listitem>
+ <listitem><para>A full implementation for software breakpoints unless overridden by the arch</para></listitem>
+ </itemizedlist>
+ </para>
+ </listitem>
+ <listitem><para>kgdb arch specific implementation</para>
+ <para>
+ This implementation is generally found in arch/*/kernel/kgdb.c.
+ As an example, arch/x86/kernel/kgdb.c contains the specifics to
+ implement HW breakpoint as well as the initialization to
+ dynamically register and unregister for the trap handlers on
+ this architecture. The arch specific portion implements:
+ <itemizedlist>
+ <listitem><para>contains an arch specific trap catcher which
+ invokes kgdb_handle_exception() to start kgdb about doing its
+ work</para></listitem>
+ <listitem><para>translation to and from gdb specific packet format to pt_regs</para></listitem>
+ <listitem><para>Registration and unregistration of architecture specific trap hooks</para></listitem>
+ <listitem><para>Any special exception handling and cleanup</para></listitem>
+ <listitem><para>NMI exception handling and cleanup</para></listitem>
+ <listitem><para>(optional)HW breakpoints</para></listitem>
+ </itemizedlist>
+ </para>
+ </listitem>
+ <listitem><para>kgdb I/O driver</para>
+ <para>
+ Each kgdb I/O driver has to provide an configuration
+ initialization, and cleanup handler for when it
+ unloads/unconfigures. Any given kgdb I/O driver has to operate
+ very closely with the hardware and must do it in such a way that
+ does not enable interrupts or change other parts of the system
+ context without completely restoring them. Every kgdb I/O
+ driver must provide a read and write character interface. The
+ kgdb core will repeatedly "poll" a kgdb I/O driver for characters
+ when it needs input. The I/O driver is expected to return
+ immediately if there is no data available. Doing so allows for
+ the future possibility to touch watch dog hardware in such a way
+ as to have a target system not reset when these are enabled.
+ </para>
+ </listitem>
+ </orderedlist>
+ </para>
+ <para>
+ If you are intent on adding kgdb architecture specific support
+ for a new architecture, the architecture should define
+ <constant>HAVE_ARCH_KGDB</constant> in the architecture specific
+ Kconfig file. This will enable kgdb for the architecture, and
+ at that point you must create an architecture specific kgdb
+ implementation.
+ </para>
+ <para>
+ There are a few flags which must be set on every architecture in
+ their &lt;asm/kgdb.h&gt; file. These are:
+ <itemizedlist>
+ <listitem>
+ <para>
+ NUMREGBYTES: The size in bytes of all of the registers, so
+ that we can ensure they will all fit into a packet.
+ </para>
+ <para>
+ BUFMAX: The size in bytes of the buffer GDB will read into.
+ This must be larger than NUMREGBYTES.
+ </para>
+ <para>
+ CACHE_FLUSH_IS_SAFE: Set to 1 if it is always safe to call
+ flush_cache_range or flush_icache_range. On some architectures,
+ these functions may not be safe to call on SMP since we keep other
+ CPUs in a holding pattern.
+ </para>
+ </listitem>
+ </itemizedlist>
+ </para>
+ <para>
+ There are also the following functions for the common backend,
+ found in kernel/kgdb.c, that must be supplied by the
+ architecture-specific backend unless marked as (optional), in
+ which case a default function maybe used if the architecture
+ does not need to provide a specific implementation.
+ </para>
+!Iinclude/linux/kgdb.h
+ </chapter>
+ <chapter id="credits">
+ <title>Credits</title>
+ <para>
+ The following people have contributed to this document:
+ <orderedlist>
+ <listitem><para>Amit Kale<email>amitkale@linsyssoft.com</email></para></listitem>
+ <listitem><para>Tom Rini<email>trini@kernel.crashing.org</email></para></listitem>
+ <listitem><para>Jason Wessel<email>jason.wessel@windriver.com</email></para></listitem>
+ </orderedlist>
+ </para>
+ </chapter>
+</book>
+
diff --git a/MAINTAINERS b/MAINTAINERS
index e467758..3eceebb 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -2319,6 +2319,12 @@ L: linux-kernel@vger.kernel.org
L: kexec@lists.infradead.org
S: Maintained
+KGDB
+P: Jason Wessel
+M: jason.wessel@windriver.com
+L: kgdb-bugreport@lists.sourceforge.net
+S: Maintained
+
KPROBES
P: Ananth N Mavinakayanahalli
M: ananth@in.ibm.com
diff --git a/include/linux/kgdb.h b/include/linux/kgdb.h
index b0985b7..9757b1a 100644
--- a/include/linux/kgdb.h
+++ b/include/linux/kgdb.h
@@ -22,31 +22,34 @@
struct pt_regs;
-/*
- * kgdb_skipexception - Bail out of KGDB when we've been triggered.
+/**
+ * kgdb_skipexception - (optional) exit kgdb_handle_exception early
* @exception: Exception vector number
* @regs: Current &struct pt_regs.
*
- * On some architectures we need to skip a breakpoint exception when
- * it occurs after a breakpoint has been removed.
+ * On some architectures it is required to skip a breakpoint
+ * exception when it occurs after a breakpoint has been removed.
+ * This can be implemented in the architecture specific portion of
+ * for kgdb.
*/
extern int kgdb_skipexception(int exception, struct pt_regs *regs);
-/*
- * kgdb_post_primary_code - Save error vector/code numbers.
+/**
+ * kgdb_post_primary_code - (optional) Save error vector/code numbers.
* @regs: Original pt_regs.
* @e_vector: Original error vector.
* @err_code: Original error code.
*
- * This is needed on architectures which support SMP and KGDB.
- * This function is called after all the secondary cpus have been put
- * to a know spin state and the primary CPU has control over KGDB.
+ * This is usually needed on architectures which support SMP and
+ * KGDB. This function is called after all the secondary cpus have
+ * been put to a know spin state and the primary CPU has control over
+ * KGDB.
*/
extern void kgdb_post_primary_code(struct pt_regs *regs, int e_vector,
int err_code);
-/*
- * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
+/**
+ * kgdb_disable_hw_debug - (optional) Disable hardware debugging hook
* @regs: Current &struct pt_regs.
*
* This function will be called if the particular architecture must
@@ -59,7 +62,14 @@ struct tasklet_struct;
struct task_struct;
struct uart_port;
-/* To enter the debugger explicitly. */
+/**
+ * kgdb_breakpoint - compiled in breakpoint
+ *
+ * This will be impelmented a static inline per architecture. This
+ * function is called by the kgdb core to execute an architecture
+ * specific trap to cause kgdb to enter the exception processing.
+ *
+ */
void kgdb_breakpoint(void);
extern int kgdb_connected;
@@ -102,7 +112,7 @@ struct kgdb_bkpt {
* Functions each KGDB-supporting architecture must provide:
*/
-/*
+/**
* kgdb_arch_init - Perform any architecture specific initalization.
*
* This function will handle the initalization of any architecture
@@ -110,7 +120,7 @@ struct kgdb_bkpt {
*/
extern int kgdb_arch_init(void);
-/*
+/**
* kgdb_arch_exit - Perform any architecture specific uninitalization.
*
* This function will handle the uninitalization of any architecture
@@ -118,7 +128,7 @@ extern int kgdb_arch_init(void);
*/
extern void kgdb_arch_exit(void);
-/*
+/**
* pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
* @gdb_regs: A pointer to hold the registers in the order GDB wants.
* @regs: The &struct pt_regs of the current process.
@@ -128,7 +138,7 @@ extern void kgdb_arch_exit(void);
*/
extern void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs);
-/*
+/**
* sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
* @gdb_regs: A pointer to hold the registers in the order GDB wants.
* @p: The &struct task_struct of the desired process.
@@ -143,7 +153,7 @@ extern void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs);
extern void
sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p);
-/*
+/**
* gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
* @gdb_regs: A pointer to hold the registers we've received from GDB.
* @regs: A pointer to a &struct pt_regs to hold these values in.
@@ -153,7 +163,7 @@ sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p);
*/
extern void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs);
-/*
+/**
* kgdb_arch_handle_exception - Handle architecture specific GDB packets.
* @vector: The error vector of the exception that happened.
* @signo: The signal number of the exception that happened.
@@ -175,7 +185,7 @@ kgdb_arch_handle_exception(int vector, int signo, int err_code,
char *remcom_out_buffer,
struct pt_regs *regs);
-/*
+/**
* kgdb_roundup_cpus - Get other CPUs into a holding pattern
* @flags: Current IRQ state
*
@@ -198,7 +208,7 @@ extern int kgdb_validate_break_address(unsigned long addr);
extern int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr);
extern int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle);
-/*
+/**
* struct kgdb_arch - Describe architecture specific values.
* @gdb_bpt_instr: The instruction to trigger a breakpoint.
* @flags: Flags for the breakpoint, currently just %KGDB_HW_BREAKPOINT.
@@ -227,7 +237,7 @@ struct kgdb_arch {
void (*correct_hw_break)(void);
};
-/*
+/**
* struct kgdb_io - Describe the interface for an I/O driver to talk with KGDB.
* @name: Name of the I/O driver.
* @read_char: Pointer to a function that will return one char.
OpenPOWER on IntegriCloud