diff options
55 files changed, 4655 insertions, 648 deletions
diff --git a/arch/arm/plat-omap/include/plat/onenand.h b/arch/arm/plat-omap/include/plat/onenand.h index cbe897c..2858667 100644 --- a/arch/arm/plat-omap/include/plat/onenand.h +++ b/arch/arm/plat-omap/include/plat/onenand.h @@ -32,6 +32,7 @@ struct omap_onenand_platform_data { int dma_channel; u8 flags; u8 regulator_can_sleep; + u8 skip_initial_unlocking; }; #define ONENAND_MAX_PARTITIONS 8 diff --git a/arch/arm/plat-pxa/include/plat/pxa3xx_nand.h b/arch/arm/plat-pxa/include/plat/pxa3xx_nand.h index 01a8448..442301f 100644 --- a/arch/arm/plat-pxa/include/plat/pxa3xx_nand.h +++ b/arch/arm/plat-pxa/include/plat/pxa3xx_nand.h @@ -30,6 +30,7 @@ struct pxa3xx_nand_cmdset { }; struct pxa3xx_nand_flash { + char *name; uint32_t chip_id; unsigned int page_per_block; /* Pages per block (PG_PER_BLK) */ unsigned int page_size; /* Page size in bytes (PAGE_SZ) */ @@ -37,7 +38,6 @@ struct pxa3xx_nand_flash { unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */ unsigned int num_blocks; /* Number of physical blocks in Flash */ - struct pxa3xx_nand_cmdset *cmdset; /* NAND command set */ struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ }; diff --git a/arch/cris/Kconfig b/arch/cris/Kconfig index 4db5b46..04a7fc5 100644 --- a/arch/cris/Kconfig +++ b/arch/cris/Kconfig @@ -276,7 +276,6 @@ config ETRAX_AXISFLASHMAP select MTD_CHAR select MTD_BLOCK select MTD_PARTITIONS - select MTD_CONCAT select MTD_COMPLEX_MAPPINGS help This option enables MTD mapping of flash devices. Needed to use diff --git a/arch/cris/arch-v10/drivers/axisflashmap.c b/arch/cris/arch-v10/drivers/axisflashmap.c index b207970..ed708e1 100644 --- a/arch/cris/arch-v10/drivers/axisflashmap.c +++ b/arch/cris/arch-v10/drivers/axisflashmap.c @@ -234,7 +234,6 @@ static struct mtd_info *flash_probe(void) } if (mtd_cse0 && mtd_cse1) { -#ifdef CONFIG_MTD_CONCAT struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 }; /* Since the concatenation layer adds a small overhead we @@ -246,11 +245,6 @@ static struct mtd_info *flash_probe(void) */ mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds), "cse0+cse1"); -#else - printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel " - "(mis)configuration!\n", map_cse0.name, map_cse1.name); - mtd_cse = NULL; -#endif if (!mtd_cse) { printk(KERN_ERR "%s and %s: Concatenation failed!\n", map_cse0.name, map_cse1.name); diff --git a/arch/cris/arch-v32/drivers/Kconfig b/arch/cris/arch-v32/drivers/Kconfig index a2dd740..1633b12 100644 --- a/arch/cris/arch-v32/drivers/Kconfig +++ b/arch/cris/arch-v32/drivers/Kconfig @@ -406,7 +406,6 @@ config ETRAX_AXISFLASHMAP select MTD_CHAR select MTD_BLOCK select MTD_PARTITIONS - select MTD_CONCAT select MTD_COMPLEX_MAPPINGS help This option enables MTD mapping of flash devices. Needed to use diff --git a/arch/cris/arch-v32/drivers/axisflashmap.c b/arch/cris/arch-v32/drivers/axisflashmap.c index 51e1e85..3d75125 100644 --- a/arch/cris/arch-v32/drivers/axisflashmap.c +++ b/arch/cris/arch-v32/drivers/axisflashmap.c @@ -275,7 +275,6 @@ static struct mtd_info *flash_probe(void) } if (count > 1) { -#ifdef CONFIG_MTD_CONCAT /* Since the concatenation layer adds a small overhead we * could try to figure out if the chips in cse0 and cse1 are * identical and reprobe the whole cse0+cse1 window. But since @@ -284,11 +283,6 @@ static struct mtd_info *flash_probe(void) * complicating the probing procedure. */ mtd_total = mtd_concat_create(mtds, count, "cse0+cse1"); -#else - printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel " - "(mis)configuration!\n", map_cse0.name, map_cse1.name); - mtd_toal = NULL; -#endif if (!mtd_total) { printk(KERN_ERR "%s and %s: Concatenation failed!\n", map_cse0.name, map_cse1.name); diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index 7741470..b4567c35 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig @@ -33,14 +33,6 @@ config MTD_TESTS should normally be compiled as kernel modules. The modules perform various checks and verifications when loaded. -config MTD_CONCAT - tristate "MTD concatenating support" - help - Support for concatenating several MTD devices into a single - (virtual) one. This allows you to have -for example- a JFFS(2) - file system spanning multiple physical flash chips. If unsure, - say 'Y'. - config MTD_PARTITIONS bool "MTD partitioning support" help @@ -333,6 +325,16 @@ config MTD_OOPS To use, add console=ttyMTDx to the kernel command line, where x is the MTD device number to use. +config MTD_SWAP + tristate "Swap on MTD device support" + depends on MTD && SWAP + select MTD_BLKDEVS + help + Provides volatile block device driver on top of mtd partition + suitable for swapping. The mapping of written blocks is not saved. + The driver provides wear leveling by storing erase counter into the + OOB. + source "drivers/mtd/chips/Kconfig" source "drivers/mtd/maps/Kconfig" diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile index d4e7f25..d578095 100644 --- a/drivers/mtd/Makefile +++ b/drivers/mtd/Makefile @@ -4,11 +4,10 @@ # Core functionality. obj-$(CONFIG_MTD) += mtd.o -mtd-y := mtdcore.o mtdsuper.o +mtd-y := mtdcore.o mtdsuper.o mtdconcat.o mtd-$(CONFIG_MTD_PARTITIONS) += mtdpart.o mtd-$(CONFIG_MTD_OF_PARTS) += ofpart.o -obj-$(CONFIG_MTD_CONCAT) += mtdconcat.o obj-$(CONFIG_MTD_REDBOOT_PARTS) += redboot.o obj-$(CONFIG_MTD_CMDLINE_PARTS) += cmdlinepart.o obj-$(CONFIG_MTD_AFS_PARTS) += afs.o @@ -26,6 +25,7 @@ obj-$(CONFIG_RFD_FTL) += rfd_ftl.o obj-$(CONFIG_SSFDC) += ssfdc.o obj-$(CONFIG_SM_FTL) += sm_ftl.o obj-$(CONFIG_MTD_OOPS) += mtdoops.o +obj-$(CONFIG_MTD_SWAP) += mtdswap.o nftl-objs := nftlcore.o nftlmount.o inftl-objs := inftlcore.o inftlmount.o diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index 4aaa88f..092aef1 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -455,7 +455,7 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) mtd->flags = MTD_CAP_NORFLASH; mtd->name = map->name; mtd->writesize = 1; - mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c index f072fcf..f9a5331 100644 --- a/drivers/mtd/chips/cfi_cmdset_0002.c +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -349,6 +349,7 @@ static struct cfi_fixup cfi_fixup_table[] = { { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, #ifdef AMD_BOOTLOC_BUG { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, + { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, #endif { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, @@ -440,7 +441,7 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) mtd->flags = MTD_CAP_NORFLASH; mtd->name = map->name; mtd->writesize = 1; - mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n", __func__, mtd->writebufsize); diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c index c04b765..ed56ad3 100644 --- a/drivers/mtd/chips/cfi_cmdset_0020.c +++ b/drivers/mtd/chips/cfi_cmdset_0020.c @@ -238,7 +238,7 @@ static struct mtd_info *cfi_staa_setup(struct map_info *map) mtd->resume = cfi_staa_resume; mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ - mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; map->fldrv = &cfi_staa_chipdrv; __module_get(THIS_MODULE); mtd->name = map->name; diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c index e4eba6c..3fb981d 100644 --- a/drivers/mtd/devices/m25p80.c +++ b/drivers/mtd/devices/m25p80.c @@ -655,7 +655,8 @@ static const struct spi_device_id m25p_ids[] = { { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, - /* EON -- en25pxx */ + /* EON -- en25xxx */ + { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, @@ -728,6 +729,8 @@ static const struct spi_device_id m25p_ids[] = { { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, + { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, diff --git a/drivers/mtd/devices/mtdram.c b/drivers/mtd/devices/mtdram.c index 26a6e80..1483e18 100644 --- a/drivers/mtd/devices/mtdram.c +++ b/drivers/mtd/devices/mtdram.c @@ -121,6 +121,7 @@ int mtdram_init_device(struct mtd_info *mtd, void *mapped_address, mtd->flags = MTD_CAP_RAM; mtd->size = size; mtd->writesize = 1; + mtd->writebufsize = 64; /* Mimic CFI NOR flashes */ mtd->erasesize = MTDRAM_ERASE_SIZE; mtd->priv = mapped_address; diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c index 5239328..8d28fa0 100644 --- a/drivers/mtd/devices/phram.c +++ b/drivers/mtd/devices/phram.c @@ -117,6 +117,7 @@ static void unregister_devices(void) list_for_each_entry_safe(this, safe, &phram_list, list) { del_mtd_device(&this->mtd); iounmap(this->mtd.priv); + kfree(this->mtd.name); kfree(this); } } @@ -275,6 +276,8 @@ static int phram_setup(const char *val, struct kernel_param *kp) ret = register_device(name, start, len); if (!ret) pr_info("%s device: %#x at %#x\n", name, len, start); + else + kfree(name); return ret; } diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index 5d37d31..44b1f46 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig @@ -114,7 +114,7 @@ config MTD_SUN_UFLASH config MTD_SC520CDP tristate "CFI Flash device mapped on AMD SC520 CDP" - depends on X86 && MTD_CFI && MTD_CONCAT + depends on X86 && MTD_CFI help The SC520 CDP board has two banks of CFI-compliant chips and one Dual-in-line JEDEC chip. This 'mapping' driver supports that @@ -262,7 +262,7 @@ config MTD_BCM963XX config MTD_DILNETPC tristate "CFI Flash device mapped on DIL/Net PC" - depends on X86 && MTD_CONCAT && MTD_PARTITIONS && MTD_CFI_INTELEXT && BROKEN + depends on X86 && MTD_PARTITIONS && MTD_CFI_INTELEXT && BROKEN help MTD map driver for SSV DIL/Net PC Boards "DNP" and "ADNP". For details, see <http://www.ssv-embedded.de/ssv/pc104/p169.htm> @@ -552,4 +552,13 @@ config MTD_PISMO When built as a module, it will be called pismo.ko +config MTD_LATCH_ADDR + tristate "Latch-assisted Flash Chip Support" + depends on MTD_COMPLEX_MAPPINGS + help + Map driver which allows flashes to be partially physically addressed + and have the upper address lines set by a board specific code. + + If compiled as a module, it will be called latch-addr-flash. + endmenu diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index c7869c7..08533bd 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile @@ -59,3 +59,4 @@ obj-$(CONFIG_MTD_RBTX4939) += rbtx4939-flash.o obj-$(CONFIG_MTD_VMU) += vmu-flash.o obj-$(CONFIG_MTD_GPIO_ADDR) += gpio-addr-flash.o obj-$(CONFIG_MTD_BCM963XX) += bcm963xx-flash.o +obj-$(CONFIG_MTD_LATCH_ADDR) += latch-addr-flash.o diff --git a/drivers/mtd/maps/ceiva.c b/drivers/mtd/maps/ceiva.c index c09f4f5..e5f645b 100644 --- a/drivers/mtd/maps/ceiva.c +++ b/drivers/mtd/maps/ceiva.c @@ -194,16 +194,10 @@ static int __init clps_setup_mtd(struct clps_info *clps, int nr, struct mtd_info * We detected multiple devices. Concatenate * them together. */ -#ifdef CONFIG_MTD_CONCAT *rmtd = mtd_concat_create(subdev, found, "clps flash"); if (*rmtd == NULL) ret = -ENXIO; -#else - printk(KERN_ERR "clps flash: multiple devices " - "found but MTD concat support disabled.\n"); - ret = -ENXIO; -#endif } } diff --git a/drivers/mtd/maps/integrator-flash.c b/drivers/mtd/maps/integrator-flash.c index 2aac41b..e22ff5a 100644 --- a/drivers/mtd/maps/integrator-flash.c +++ b/drivers/mtd/maps/integrator-flash.c @@ -202,7 +202,6 @@ static int armflash_probe(struct platform_device *dev) if (info->nr_subdev == 1) info->mtd = info->subdev[0].mtd; else if (info->nr_subdev > 1) { -#ifdef CONFIG_MTD_CONCAT struct mtd_info *cdev[info->nr_subdev]; /* @@ -215,11 +214,6 @@ static int armflash_probe(struct platform_device *dev) dev_name(&dev->dev)); if (info->mtd == NULL) err = -ENXIO; -#else - printk(KERN_ERR "armflash: multiple devices found but " - "MTD concat support disabled.\n"); - err = -ENXIO; -#endif } if (err < 0) @@ -244,10 +238,8 @@ static int armflash_probe(struct platform_device *dev) cleanup: if (info->mtd) { del_mtd_partitions(info->mtd); -#ifdef CONFIG_MTD_CONCAT if (info->mtd != info->subdev[0].mtd) mtd_concat_destroy(info->mtd); -#endif } kfree(info->parts); subdev_err: @@ -272,10 +264,8 @@ static int armflash_remove(struct platform_device *dev) if (info) { if (info->mtd) { del_mtd_partitions(info->mtd); -#ifdef CONFIG_MTD_CONCAT if (info->mtd != info->subdev[0].mtd) mtd_concat_destroy(info->mtd); -#endif } kfree(info->parts); diff --git a/drivers/mtd/maps/latch-addr-flash.c b/drivers/mtd/maps/latch-addr-flash.c new file mode 100644 index 0000000..ee25480 --- /dev/null +++ b/drivers/mtd/maps/latch-addr-flash.c @@ -0,0 +1,272 @@ +/* + * Interface for NOR flash driver whose high address lines are latched + * + * Copyright © 2000 Nicolas Pitre <nico@cam.org> + * Copyright © 2005-2008 Analog Devices Inc. + * Copyright © 2008 MontaVista Software, Inc. <source@mvista.com> + * + * This file is licensed under the terms of the GNU General Public License + * version 2. This program is licensed "as is" without any warranty of any + * kind, whether express or implied. + */ + +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/platform_device.h> +#include <linux/mtd/latch-addr-flash.h> +#include <linux/slab.h> + +#define DRIVER_NAME "latch-addr-flash" + +struct latch_addr_flash_info { + struct mtd_info *mtd; + struct map_info map; + struct resource *res; + + void (*set_window)(unsigned long offset, void *data); + void *data; + + /* cache; could be found out of res */ + unsigned long win_mask; + + int nr_parts; + struct mtd_partition *parts; + + spinlock_t lock; +}; + +static map_word lf_read(struct map_info *map, unsigned long ofs) +{ + struct latch_addr_flash_info *info; + map_word datum; + + info = (struct latch_addr_flash_info *)map->map_priv_1; + + spin_lock(&info->lock); + + info->set_window(ofs, info->data); + datum = inline_map_read(map, info->win_mask & ofs); + + spin_unlock(&info->lock); + + return datum; +} + +static void lf_write(struct map_info *map, map_word datum, unsigned long ofs) +{ + struct latch_addr_flash_info *info; + + info = (struct latch_addr_flash_info *)map->map_priv_1; + + spin_lock(&info->lock); + + info->set_window(ofs, info->data); + inline_map_write(map, datum, info->win_mask & ofs); + + spin_unlock(&info->lock); +} + +static void lf_copy_from(struct map_info *map, void *to, + unsigned long from, ssize_t len) +{ + struct latch_addr_flash_info *info = + (struct latch_addr_flash_info *) map->map_priv_1; + unsigned n; + + while (len > 0) { + n = info->win_mask + 1 - (from & info->win_mask); + if (n > len) + n = len; + + spin_lock(&info->lock); + + info->set_window(from, info->data); + memcpy_fromio(to, map->virt + (from & info->win_mask), n); + + spin_unlock(&info->lock); + + to += n; + from += n; + len -= n; + } +} + +static char *rom_probe_types[] = { "cfi_probe", NULL }; + +static char *part_probe_types[] = { "cmdlinepart", NULL }; + +static int latch_addr_flash_remove(struct platform_device *dev) +{ + struct latch_addr_flash_info *info; + struct latch_addr_flash_data *latch_addr_data; + + info = platform_get_drvdata(dev); + if (info == NULL) + return 0; + platform_set_drvdata(dev, NULL); + + latch_addr_data = dev->dev.platform_data; + + if (info->mtd != NULL) { + if (mtd_has_partitions()) { + if (info->nr_parts) { + del_mtd_partitions(info->mtd); + kfree(info->parts); + } else if (latch_addr_data->nr_parts) { + del_mtd_partitions(info->mtd); + } else { + del_mtd_device(info->mtd); + } + } else { + del_mtd_device(info->mtd); + } + map_destroy(info->mtd); + } + + if (info->map.virt != NULL) + iounmap(info->map.virt); + + if (info->res != NULL) + release_mem_region(info->res->start, resource_size(info->res)); + + kfree(info); + + if (latch_addr_data->done) + latch_addr_data->done(latch_addr_data->data); + + return 0; +} + +static int __devinit latch_addr_flash_probe(struct platform_device *dev) +{ + struct latch_addr_flash_data *latch_addr_data; + struct latch_addr_flash_info *info; + resource_size_t win_base = dev->resource->start; + resource_size_t win_size = resource_size(dev->resource); + char **probe_type; + int chipsel; + int err; + + latch_addr_data = dev->dev.platform_data; + if (latch_addr_data == NULL) + return -ENODEV; + + pr_notice("latch-addr platform flash device: %#llx byte " + "window at %#.8llx\n", + (unsigned long long)win_size, (unsigned long long)win_base); + + chipsel = dev->id; + + if (latch_addr_data->init) { + err = latch_addr_data->init(latch_addr_data->data, chipsel); + if (err != 0) + return err; + } + + info = kzalloc(sizeof(struct latch_addr_flash_info), GFP_KERNEL); + if (info == NULL) { + err = -ENOMEM; + goto done; + } + + platform_set_drvdata(dev, info); + + info->res = request_mem_region(win_base, win_size, DRIVER_NAME); + if (info->res == NULL) { + dev_err(&dev->dev, "Could not reserve memory region\n"); + err = -EBUSY; + goto free_info; + } + + info->map.name = DRIVER_NAME; + info->map.size = latch_addr_data->size; + info->map.bankwidth = latch_addr_data->width; + + info->map.phys = NO_XIP; + info->map.virt = ioremap(win_base, win_size); + if (!info->map.virt) { + err = -ENOMEM; + goto free_res; + } + + info->map.map_priv_1 = (unsigned long)info; + + info->map.read = lf_read; + info->map.copy_from = lf_copy_from; + info->map.write = lf_write; + info->set_window = latch_addr_data->set_window; + info->data = latch_addr_data->data; + info->win_mask = win_size - 1; + + spin_lock_init(&info->lock); + + for (probe_type = rom_probe_types; !info->mtd && *probe_type; + probe_type++) + info->mtd = do_map_probe(*probe_type, &info->map); + + if (info->mtd == NULL) { + dev_err(&dev->dev, "map_probe failed\n"); + err = -ENODEV; + goto iounmap; + } + info->mtd->owner = THIS_MODULE; + + if (mtd_has_partitions()) { + + err = parse_mtd_partitions(info->mtd, + (const char **)part_probe_types, + &info->parts, 0); + if (err > 0) { + add_mtd_partitions(info->mtd, info->parts, err); + return 0; + } + if (latch_addr_data->nr_parts) { + pr_notice("Using latch-addr-flash partition information\n"); + add_mtd_partitions(info->mtd, latch_addr_data->parts, + latch_addr_data->nr_parts); + return 0; + } + } + add_mtd_device(info->mtd); + return 0; + +iounmap: + iounmap(info->map.virt); +free_res: + release_mem_region(info->res->start, resource_size(info->res)); +free_info: + kfree(info); +done: + if (latch_addr_data->done) + latch_addr_data->done(latch_addr_data->data); + return err; +} + +static struct platform_driver latch_addr_flash_driver = { + .probe = latch_addr_flash_probe, + .remove = __devexit_p(latch_addr_flash_remove), + .driver = { + .name = DRIVER_NAME, + }, +}; + +static int __init latch_addr_flash_init(void) +{ + return platform_driver_register(&latch_addr_flash_driver); +} +module_init(latch_addr_flash_init); + +static void __exit latch_addr_flash_exit(void) +{ + platform_driver_unregister(&latch_addr_flash_driver); +} +module_exit(latch_addr_flash_exit); + +MODULE_AUTHOR("David Griego <dgriego@mvista.com>"); +MODULE_DESCRIPTION("MTD map driver for flashes addressed physically with upper " + "address lines being set board specifically"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/maps/physmap.c b/drivers/mtd/maps/physmap.c index 4c18b98..7522df4 100644 --- a/drivers/mtd/maps/physmap.c +++ b/drivers/mtd/maps/physmap.c @@ -59,10 +59,8 @@ static int physmap_flash_remove(struct platform_device *dev) #else del_mtd_device(info->cmtd); #endif -#ifdef CONFIG_MTD_CONCAT if (info->cmtd != info->mtd[0]) mtd_concat_destroy(info->cmtd); -#endif } for (i = 0; i < MAX_RESOURCES; i++) { @@ -159,15 +157,9 @@ static int physmap_flash_probe(struct platform_device *dev) /* * We detected multiple devices. Concatenate them together. */ -#ifdef CONFIG_MTD_CONCAT info->cmtd = mtd_concat_create(info->mtd, devices_found, dev_name(&dev->dev)); if (info->cmtd == NULL) err = -ENXIO; -#else - printk(KERN_ERR "physmap-flash: multiple devices " - "found but MTD concat support disabled.\n"); - err = -ENXIO; -#endif } if (err) goto err_out; diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c index 3db0cb0..bd483f0 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of.c @@ -104,12 +104,10 @@ static int of_flash_remove(struct platform_device *dev) return 0; dev_set_drvdata(&dev->dev, NULL); -#ifdef CONFIG_MTD_CONCAT if (info->cmtd != info->list[0].mtd) { del_mtd_device(info->cmtd); mtd_concat_destroy(info->cmtd); } -#endif if (info->cmtd) { if (OF_FLASH_PARTS(info)) { @@ -337,16 +335,10 @@ static int __devinit of_flash_probe(struct platform_device *dev) /* * We detected multiple devices. Concatenate them together. */ -#ifdef CONFIG_MTD_CONCAT info->cmtd = mtd_concat_create(mtd_list, info->list_size, dev_name(&dev->dev)); if (info->cmtd == NULL) err = -ENXIO; -#else - printk(KERN_ERR "physmap_of: multiple devices " - "found but MTD concat support disabled.\n"); - err = -ENXIO; -#endif } if (err) goto err_out; diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c index f3af87e..da875908 100644 --- a/drivers/mtd/maps/sa1100-flash.c +++ b/drivers/mtd/maps/sa1100-flash.c @@ -232,10 +232,8 @@ static void sa1100_destroy(struct sa_info *info, struct flash_platform_data *pla else del_mtd_partitions(info->mtd); #endif -#ifdef CONFIG_MTD_CONCAT if (info->mtd != info->subdev[0].mtd) mtd_concat_destroy(info->mtd); -#endif } kfree(info->parts); @@ -321,7 +319,6 @@ sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) info->mtd = info->subdev[0].mtd; ret = 0; } else if (info->num_subdev > 1) { -#ifdef CONFIG_MTD_CONCAT struct mtd_info *cdev[nr]; /* * We detected multiple devices. Concatenate them together. @@ -333,11 +330,6 @@ sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) plat->name); if (info->mtd == NULL) ret = -ENXIO; -#else - printk(KERN_ERR "SA1100 flash: multiple devices " - "found but MTD concat support disabled.\n"); - ret = -ENXIO; -#endif } if (ret == 0) diff --git a/drivers/mtd/maps/ts5500_flash.c b/drivers/mtd/maps/ts5500_flash.c index e2147bf..e02dfa9 100644 --- a/drivers/mtd/maps/ts5500_flash.c +++ b/drivers/mtd/maps/ts5500_flash.c @@ -94,7 +94,6 @@ static int __init init_ts5500_map(void) return 0; err1: - map_destroy(mymtd); iounmap(ts5500_map.virt); err2: return rc; diff --git a/drivers/mtd/mtd_blkdevs.c b/drivers/mtd/mtd_blkdevs.c index e0a2373..a534e1f 100644 --- a/drivers/mtd/mtd_blkdevs.c +++ b/drivers/mtd/mtd_blkdevs.c @@ -40,7 +40,7 @@ static LIST_HEAD(blktrans_majors); static DEFINE_MUTEX(blktrans_ref_mutex); -void blktrans_dev_release(struct kref *kref) +static void blktrans_dev_release(struct kref *kref) { struct mtd_blktrans_dev *dev = container_of(kref, struct mtd_blktrans_dev, ref); @@ -67,7 +67,7 @@ unlock: return dev; } -void blktrans_dev_put(struct mtd_blktrans_dev *dev) +static void blktrans_dev_put(struct mtd_blktrans_dev *dev) { mutex_lock(&blktrans_ref_mutex); kref_put(&dev->ref, blktrans_dev_release); @@ -119,18 +119,43 @@ static int do_blktrans_request(struct mtd_blktrans_ops *tr, } } +int mtd_blktrans_cease_background(struct mtd_blktrans_dev *dev) +{ + if (kthread_should_stop()) + return 1; + + return dev->bg_stop; +} +EXPORT_SYMBOL_GPL(mtd_blktrans_cease_background); + static int mtd_blktrans_thread(void *arg) { struct mtd_blktrans_dev *dev = arg; + struct mtd_blktrans_ops *tr = dev->tr; struct request_queue *rq = dev->rq; struct request *req = NULL; + int background_done = 0; spin_lock_irq(rq->queue_lock); while (!kthread_should_stop()) { int res; + dev->bg_stop = false; if (!req && !(req = blk_fetch_request(rq))) { + if (tr->background && !background_done) { + spin_unlock_irq(rq->queue_lock); + mutex_lock(&dev->lock); + tr->background(dev); + mutex_unlock(&dev->lock); + spin_lock_irq(rq->queue_lock); + /* + * Do background processing just once per idle + * period. + */ + background_done = !dev->bg_stop; + continue; + } set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) @@ -152,6 +177,8 @@ static int mtd_blktrans_thread(void *arg) if (!__blk_end_request_cur(req, res)) req = NULL; + + background_done = 0; } if (req) @@ -172,8 +199,10 @@ static void mtd_blktrans_request(struct request_queue *rq) if (!dev) while ((req = blk_fetch_request(rq)) != NULL) __blk_end_request_all(req, -ENODEV); - else + else { + dev->bg_stop = true; wake_up_process(dev->thread); + } } static int blktrans_open(struct block_device *bdev, fmode_t mode) @@ -379,9 +408,10 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) new->rq->queuedata = new; blk_queue_logical_block_size(new->rq, tr->blksize); - if (tr->discard) - queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, - new->rq); + if (tr->discard) { + queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, new->rq); + new->rq->limits.max_discard_sectors = UINT_MAX; + } gd->queue = new->rq; diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c index 5f5777b..5060e60 100644 --- a/drivers/mtd/mtdconcat.c +++ b/drivers/mtd/mtdconcat.c @@ -750,6 +750,7 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c struct mtd_concat *concat; uint32_t max_erasesize, curr_erasesize; int num_erase_region; + int max_writebufsize = 0; printk(KERN_NOTICE "Concatenating MTD devices:\n"); for (i = 0; i < num_devs; i++) @@ -776,7 +777,12 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c concat->mtd.size = subdev[0]->size; concat->mtd.erasesize = subdev[0]->erasesize; concat->mtd.writesize = subdev[0]->writesize; - concat->mtd.writebufsize = subdev[0]->writebufsize; + + for (i = 0; i < num_devs; i++) + if (max_writebufsize < subdev[i]->writebufsize) + max_writebufsize = subdev[i]->writebufsize; + concat->mtd.writebufsize = max_writebufsize; + concat->mtd.subpage_sft = subdev[0]->subpage_sft; concat->mtd.oobsize = subdev[0]->oobsize; concat->mtd.oobavail = subdev[0]->oobavail; diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index 527cebf..da69bc8 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -43,7 +43,7 @@ * backing device capabilities for non-mappable devices (such as NAND flash) * - permits private mappings, copies are taken of the data */ -struct backing_dev_info mtd_bdi_unmappable = { +static struct backing_dev_info mtd_bdi_unmappable = { .capabilities = BDI_CAP_MAP_COPY, }; @@ -52,7 +52,7 @@ struct backing_dev_info mtd_bdi_unmappable = { * - permits private mappings, copies are taken of the data * - permits non-writable shared mappings */ -struct backing_dev_info mtd_bdi_ro_mappable = { +static struct backing_dev_info mtd_bdi_ro_mappable = { .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), }; @@ -62,7 +62,7 @@ struct backing_dev_info mtd_bdi_ro_mappable = { * - permits private mappings, copies are taken of the data * - permits non-writable shared mappings */ -struct backing_dev_info mtd_bdi_rw_mappable = { +static struct backing_dev_info mtd_bdi_rw_mappable = { .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP), diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c new file mode 100644 index 0000000..237913c --- /dev/null +++ b/drivers/mtd/mtdswap.c @@ -0,0 +1,1587 @@ +/* + * Swap block device support for MTDs + * Turns an MTD device into a swap device with block wear leveling + * + * Copyright © 2007,2011 Nokia Corporation. All rights reserved. + * + * Authors: Jarkko Lavinen <jarkko.lavinen@nokia.com> + * + * Based on Richard Purdie's earlier implementation in 2007. Background + * support and lock-less operation written by Adrian Hunter. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA + * 02110-1301 USA + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/blktrans.h> +#include <linux/rbtree.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/genhd.h> +#include <linux/swap.h> +#include <linux/debugfs.h> +#include <linux/seq_file.h> +#include <linux/device.h> +#include <linux/math64.h> + +#define MTDSWAP_PREFIX "mtdswap" + +/* + * The number of free eraseblocks when GC should stop + */ +#define CLEAN_BLOCK_THRESHOLD 20 + +/* + * Number of free eraseblocks below which GC can also collect low frag + * blocks. + */ +#define LOW_FRAG_GC_TRESHOLD 5 + +/* + * Wear level cost amortization. We want to do wear leveling on the background + * without disturbing gc too much. This is made by defining max GC frequency. + * Frequency value 6 means 1/6 of the GC passes will pick an erase block based + * on the biggest wear difference rather than the biggest dirtiness. + * + * The lower freq2 should be chosen so that it makes sure the maximum erase + * difference will decrease even if a malicious application is deliberately + * trying to make erase differences large. + */ +#define MAX_ERASE_DIFF 4000 +#define COLLECT_NONDIRTY_BASE MAX_ERASE_DIFF +#define COLLECT_NONDIRTY_FREQ1 6 +#define COLLECT_NONDIRTY_FREQ2 4 + +#define PAGE_UNDEF UINT_MAX +#define BLOCK_UNDEF UINT_MAX +#define BLOCK_ERROR (UINT_MAX - 1) +#define BLOCK_MAX (UINT_MAX - 2) + +#define EBLOCK_BAD (1 << 0) +#define EBLOCK_NOMAGIC (1 << 1) +#define EBLOCK_BITFLIP (1 << 2) +#define EBLOCK_FAILED (1 << 3) +#define EBLOCK_READERR (1 << 4) +#define EBLOCK_IDX_SHIFT 5 + +struct swap_eb { + struct rb_node rb; + struct rb_root *root; + + unsigned int flags; + unsigned int active_count; + unsigned int erase_count; + unsigned int pad; /* speeds up pointer decremtnt */ +}; + +#define MTDSWAP_ECNT_MIN(rbroot) (rb_entry(rb_first(rbroot), struct swap_eb, \ + rb)->erase_count) +#define MTDSWAP_ECNT_MAX(rbroot) (rb_entry(rb_last(rbroot), struct swap_eb, \ + rb)->erase_count) + +struct mtdswap_tree { + struct rb_root root; + unsigned int count; +}; + +enum { + MTDSWAP_CLEAN, + MTDSWAP_USED, + MTDSWAP_LOWFRAG, + MTDSWAP_HIFRAG, + MTDSWAP_DIRTY, + MTDSWAP_BITFLIP, + MTDSWAP_FAILING, + MTDSWAP_TREE_CNT, +}; + +struct mtdswap_dev { + struct mtd_blktrans_dev *mbd_dev; + struct mtd_info *mtd; + struct device *dev; + + unsigned int *page_data; + unsigned int *revmap; + + unsigned int eblks; + unsigned int spare_eblks; + unsigned int pages_per_eblk; + unsigned int max_erase_count; + struct swap_eb *eb_data; + + struct mtdswap_tree trees[MTDSWAP_TREE_CNT]; + + unsigned long long sect_read_count; + unsigned long long sect_write_count; + unsigned long long mtd_write_count; + unsigned long long mtd_read_count; + unsigned long long discard_count; + unsigned long long discard_page_count; + + unsigned int curr_write_pos; + struct swap_eb *curr_write; + + char *page_buf; + char *oob_buf; + + struct dentry *debugfs_root; +}; + +struct mtdswap_oobdata { + __le16 magic; + __le32 count; +} __attribute__((packed)); + +#define MTDSWAP_MAGIC_CLEAN 0x2095 +#define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1) +#define MTDSWAP_TYPE_CLEAN 0 +#define MTDSWAP_TYPE_DIRTY 1 +#define MTDSWAP_OOBSIZE sizeof(struct mtdswap_oobdata) + +#define MTDSWAP_ERASE_RETRIES 3 /* Before marking erase block bad */ +#define MTDSWAP_IO_RETRIES 3 + +enum { + MTDSWAP_SCANNED_CLEAN, + MTDSWAP_SCANNED_DIRTY, + MTDSWAP_SCANNED_BITFLIP, + MTDSWAP_SCANNED_BAD, +}; + +/* + * In the worst case mtdswap_writesect() has allocated the last clean + * page from the current block and is then pre-empted by the GC + * thread. The thread can consume a full erase block when moving a + * block. + */ +#define MIN_SPARE_EBLOCKS 2 +#define MIN_ERASE_BLOCKS (MIN_SPARE_EBLOCKS + 1) + +#define TREE_ROOT(d, name) (&d->trees[MTDSWAP_ ## name].root) +#define TREE_EMPTY(d, name) (TREE_ROOT(d, name)->rb_node == NULL) +#define TREE_NONEMPTY(d, name) (!TREE_EMPTY(d, name)) +#define TREE_COUNT(d, name) (d->trees[MTDSWAP_ ## name].count) + +#define MTDSWAP_MBD_TO_MTDSWAP(dev) ((struct mtdswap_dev *)dev->priv) + +static char partitions[128] = ""; +module_param_string(partitions, partitions, sizeof(partitions), 0444); +MODULE_PARM_DESC(partitions, "MTD partition numbers to use as swap " + "partitions=\"1,3,5\""); + +static unsigned int spare_eblocks = 10; +module_param(spare_eblocks, uint, 0444); +MODULE_PARM_DESC(spare_eblocks, "Percentage of spare erase blocks for " + "garbage collection (default 10%)"); + +static bool header; /* false */ +module_param(header, bool, 0444); +MODULE_PARM_DESC(header, + "Include builtin swap header (default 0, without header)"); + +static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background); + +static loff_t mtdswap_eb_offset(struct mtdswap_dev *d, struct swap_eb *eb) +{ + return (loff_t)(eb - d->eb_data) * d->mtd->erasesize; +} + +static void mtdswap_eb_detach(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int oldidx; + struct mtdswap_tree *tp; + + if (eb->root) { + tp = container_of(eb->root, struct mtdswap_tree, root); + oldidx = tp - &d->trees[0]; + + d->trees[oldidx].count--; + rb_erase(&eb->rb, eb->root); + } +} + +static void __mtdswap_rb_add(struct rb_root *root, struct swap_eb *eb) +{ + struct rb_node **p, *parent = NULL; + struct swap_eb *cur; + + p = &root->rb_node; + while (*p) { + parent = *p; + cur = rb_entry(parent, struct swap_eb, rb); + if (eb->erase_count > cur->erase_count) + p = &(*p)->rb_right; + else + p = &(*p)->rb_left; + } + + rb_link_node(&eb->rb, parent, p); + rb_insert_color(&eb->rb, root); +} + +static void mtdswap_rb_add(struct mtdswap_dev *d, struct swap_eb *eb, int idx) +{ + struct rb_root *root; + + if (eb->root == &d->trees[idx].root) + return; + + mtdswap_eb_detach(d, eb); + root = &d->trees[idx].root; + __mtdswap_rb_add(root, eb); + eb->root = root; + d->trees[idx].count++; +} + +static struct rb_node *mtdswap_rb_index(struct rb_root *root, unsigned int idx) +{ + struct rb_node *p; + unsigned int i; + + p = rb_first(root); + i = 0; + while (i < idx && p) { + p = rb_next(p); + i++; + } + + return p; +} + +static int mtdswap_handle_badblock(struct mtdswap_dev *d, struct swap_eb *eb) +{ + int ret; + loff_t offset; + + d->spare_eblks--; + eb->flags |= EBLOCK_BAD; + mtdswap_eb_detach(d, eb); + eb->root = NULL; + + /* badblocks not supported */ + if (!d->mtd->block_markbad) + return 1; + + offset = mtdswap_eb_offset(d, eb); + dev_warn(d->dev, "Marking bad block at %08llx\n", offset); + ret = d->mtd->block_markbad(d->mtd, offset); + + if (ret) { + dev_warn(d->dev, "Mark block bad failed for block at %08llx " + "error %d\n", offset, ret); + return ret; + } + + return 1; + +} + +static int mtdswap_handle_write_error(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int marked = eb->flags & EBLOCK_FAILED; + struct swap_eb *curr_write = d->curr_write; + + eb->flags |= EBLOCK_FAILED; + if (curr_write == eb) { + d->curr_write = NULL; + + if (!marked && d->curr_write_pos != 0) { + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + return 0; + } + } + + return mtdswap_handle_badblock(d, eb); +} + +static int mtdswap_read_oob(struct mtdswap_dev *d, loff_t from, + struct mtd_oob_ops *ops) +{ + int ret = d->mtd->read_oob(d->mtd, from, ops); + + if (ret == -EUCLEAN) + return ret; + + if (ret) { + dev_warn(d->dev, "Read OOB failed %d for block at %08llx\n", + ret, from); + return ret; + } + + if (ops->oobretlen < ops->ooblen) { + dev_warn(d->dev, "Read OOB return short read (%zd bytes not " + "%zd) for block at %08llx\n", + ops->oobretlen, ops->ooblen, from); + return -EIO; + } + + return 0; +} + +static int mtdswap_read_markers(struct mtdswap_dev *d, struct swap_eb *eb) +{ + struct mtdswap_oobdata *data, *data2; + int ret; + loff_t offset; + struct mtd_oob_ops ops; + + offset = mtdswap_eb_offset(d, eb); + + /* Check first if the block is bad. */ + if (d->mtd->block_isbad && d->mtd->block_isbad(d->mtd, offset)) + return MTDSWAP_SCANNED_BAD; + + ops.ooblen = 2 * d->mtd->ecclayout->oobavail; + ops.oobbuf = d->oob_buf; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OOB_AUTO; + + ret = mtdswap_read_oob(d, offset, &ops); + + if (ret && ret != -EUCLEAN) + return ret; + + data = (struct mtdswap_oobdata *)d->oob_buf; + data2 = (struct mtdswap_oobdata *) + (d->oob_buf + d->mtd->ecclayout->oobavail); + + if (le16_to_cpu(data->magic) == MTDSWAP_MAGIC_CLEAN) { + eb->erase_count = le32_to_cpu(data->count); + if (ret == -EUCLEAN) + ret = MTDSWAP_SCANNED_BITFLIP; + else { + if (le16_to_cpu(data2->magic) == MTDSWAP_MAGIC_DIRTY) + ret = MTDSWAP_SCANNED_DIRTY; + else + ret = MTDSWAP_SCANNED_CLEAN; + } + } else { + eb->flags |= EBLOCK_NOMAGIC; + ret = MTDSWAP_SCANNED_DIRTY; + } + + return ret; +} + +static int mtdswap_write_marker(struct mtdswap_dev *d, struct swap_eb *eb, + u16 marker) +{ + struct mtdswap_oobdata n; + int ret; + loff_t offset; + struct mtd_oob_ops ops; + + ops.ooboffs = 0; + ops.oobbuf = (uint8_t *)&n; + ops.mode = MTD_OOB_AUTO; + ops.datbuf = NULL; + + if (marker == MTDSWAP_TYPE_CLEAN) { + n.magic = cpu_to_le16(MTDSWAP_MAGIC_CLEAN); + n.count = cpu_to_le32(eb->erase_count); + ops.ooblen = MTDSWAP_OOBSIZE; + offset = mtdswap_eb_offset(d, eb); + } else { + n.magic = cpu_to_le16(MTDSWAP_MAGIC_DIRTY); + ops.ooblen = sizeof(n.magic); + offset = mtdswap_eb_offset(d, eb) + d->mtd->writesize; + } + + ret = d->mtd->write_oob(d->mtd, offset , &ops); + + if (ret) { + dev_warn(d->dev, "Write OOB failed for block at %08llx " + "error %d\n", offset, ret); + if (ret == -EIO || ret == -EBADMSG) + mtdswap_handle_write_error(d, eb); + return ret; + } + + if (ops.oobretlen != ops.ooblen) { + dev_warn(d->dev, "Short OOB write for block at %08llx: " + "%zd not %zd\n", + offset, ops.oobretlen, ops.ooblen); + return ret; + } + + return 0; +} + +/* + * Are there any erase blocks without MAGIC_CLEAN header, presumably + * because power was cut off after erase but before header write? We + * need to guestimate the erase count. + */ +static void mtdswap_check_counts(struct mtdswap_dev *d) +{ + struct rb_root hist_root = RB_ROOT; + struct rb_node *medrb; + struct swap_eb *eb; + unsigned int i, cnt, median; + + cnt = 0; + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR)) + continue; + + __mtdswap_rb_add(&hist_root, eb); + cnt++; + } + + if (cnt == 0) + return; + + medrb = mtdswap_rb_index(&hist_root, cnt / 2); + median = rb_entry(medrb, struct swap_eb, rb)->erase_count; + + d->max_erase_count = MTDSWAP_ECNT_MAX(&hist_root); + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_READERR)) + eb->erase_count = median; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR)) + continue; + + rb_erase(&eb->rb, &hist_root); + } +} + +static void mtdswap_scan_eblks(struct mtdswap_dev *d) +{ + int status; + unsigned int i, idx; + struct swap_eb *eb; + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + status = mtdswap_read_markers(d, eb); + if (status < 0) + eb->flags |= EBLOCK_READERR; + else if (status == MTDSWAP_SCANNED_BAD) { + eb->flags |= EBLOCK_BAD; + continue; + } + + switch (status) { + case MTDSWAP_SCANNED_CLEAN: + idx = MTDSWAP_CLEAN; + break; + case MTDSWAP_SCANNED_DIRTY: + case MTDSWAP_SCANNED_BITFLIP: + idx = MTDSWAP_DIRTY; + break; + default: + idx = MTDSWAP_FAILING; + } + + eb->flags |= (idx << EBLOCK_IDX_SHIFT); + } + + mtdswap_check_counts(d); + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & EBLOCK_BAD) + continue; + + idx = eb->flags >> EBLOCK_IDX_SHIFT; + mtdswap_rb_add(d, eb, idx); + } +} + +/* + * Place eblk into a tree corresponding to its number of active blocks + * it contains. + */ +static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int weight = eb->active_count; + unsigned int maxweight = d->pages_per_eblk; + + if (eb == d->curr_write) + return; + + if (eb->flags & EBLOCK_BITFLIP) + mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP); + else if (eb->flags & (EBLOCK_READERR | EBLOCK_FAILED)) + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + if (weight == maxweight) + mtdswap_rb_add(d, eb, MTDSWAP_USED); + else if (weight == 0) + mtdswap_rb_add(d, eb, MTDSWAP_DIRTY); + else if (weight > (maxweight/2)) + mtdswap_rb_add(d, eb, MTDSWAP_LOWFRAG); + else + mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG); +} + + +static void mtdswap_erase_callback(struct erase_info *done) +{ + wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv; + wake_up(wait_q); +} + +static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb) +{ + struct mtd_info *mtd = d->mtd; + struct erase_info erase; + wait_queue_head_t wq; + unsigned int retries = 0; + int ret; + + eb->erase_count++; + if (eb->erase_count > d->max_erase_count) + d->max_erase_count = eb->erase_count; + +retry: + init_waitqueue_head(&wq); + memset(&erase, 0, sizeof(struct erase_info)); + + erase.mtd = mtd; + erase.callback = mtdswap_erase_callback; + erase.addr = mtdswap_eb_offset(d, eb); + erase.len = mtd->erasesize; + erase.priv = (u_long)&wq; + + ret = mtd->erase(mtd, &erase); + if (ret) { + if (retries++ < MTDSWAP_ERASE_RETRIES) { + dev_warn(d->dev, + "erase of erase block %#llx on %s failed", + erase.addr, mtd->name); + yield(); + goto retry; + } + + dev_err(d->dev, "Cannot erase erase block %#llx on %s\n", + erase.addr, mtd->name); + + mtdswap_handle_badblock(d, eb); + return -EIO; + } + + ret = wait_event_interruptible(wq, erase.state == MTD_ERASE_DONE || + erase.state == MTD_ERASE_FAILED); + if (ret) { + dev_err(d->dev, "Interrupted erase block %#llx erassure on %s", + erase.addr, mtd->name); + return -EINTR; + } + + if (erase.state == MTD_ERASE_FAILED) { + if (retries++ < MTDSWAP_ERASE_RETRIES) { + dev_warn(d->dev, + "erase of erase block %#llx on %s failed", + erase.addr, mtd->name); + yield(); + goto retry; + } + + mtdswap_handle_badblock(d, eb); + return -EIO; + } + + return 0; +} + +static int mtdswap_map_free_block(struct mtdswap_dev *d, unsigned int page, + unsigned int *block) +{ + int ret; + struct swap_eb *old_eb = d->curr_write; + struct rb_root *clean_root; + struct swap_eb *eb; + + if (old_eb == NULL || d->curr_write_pos >= d->pages_per_eblk) { + do { + if (TREE_EMPTY(d, CLEAN)) + return -ENOSPC; + + clean_root = TREE_ROOT(d, CLEAN); + eb = rb_entry(rb_first(clean_root), struct swap_eb, rb); + rb_erase(&eb->rb, clean_root); + eb->root = NULL; + TREE_COUNT(d, CLEAN)--; + + ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_DIRTY); + } while (ret == -EIO || ret == -EBADMSG); + + if (ret) + return ret; + + d->curr_write_pos = 0; + d->curr_write = eb; + if (old_eb) + mtdswap_store_eb(d, old_eb); + } + + *block = (d->curr_write - d->eb_data) * d->pages_per_eblk + + d->curr_write_pos; + + d->curr_write->active_count++; + d->revmap[*block] = page; + d->curr_write_pos++; + + return 0; +} + +static unsigned int mtdswap_free_page_cnt(struct mtdswap_dev *d) +{ + return TREE_COUNT(d, CLEAN) * d->pages_per_eblk + + d->pages_per_eblk - d->curr_write_pos; +} + +static unsigned int mtdswap_enough_free_pages(struct mtdswap_dev *d) +{ + return mtdswap_free_page_cnt(d) > d->pages_per_eblk; +} + +static int mtdswap_write_block(struct mtdswap_dev *d, char *buf, + unsigned int page, unsigned int *bp, int gc_context) +{ + struct mtd_info *mtd = d->mtd; + struct swap_eb *eb; + size_t retlen; + loff_t writepos; + int ret; + +retry: + if (!gc_context) + while (!mtdswap_enough_free_pages(d)) + if (mtdswap_gc(d, 0) > 0) + return -ENOSPC; + + ret = mtdswap_map_free_block(d, page, bp); + eb = d->eb_data + (*bp / d->pages_per_eblk); + + if (ret == -EIO || ret == -EBADMSG) { + d->curr_write = NULL; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + goto retry; + } + + if (ret < 0) + return ret; + + writepos = (loff_t)*bp << PAGE_SHIFT; + ret = mtd->write(mtd, writepos, PAGE_SIZE, &retlen, buf); + if (ret == -EIO || ret == -EBADMSG) { + d->curr_write_pos--; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + mtdswap_handle_write_error(d, eb); + goto retry; + } + + if (ret < 0) { + dev_err(d->dev, "Write to MTD device failed: %d (%zd written)", + ret, retlen); + goto err; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short write to MTD device: %zd written", + retlen); + ret = -EIO; + goto err; + } + + return ret; + +err: + d->curr_write_pos--; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + + return ret; +} + +static int mtdswap_move_block(struct mtdswap_dev *d, unsigned int oldblock, + unsigned int *newblock) +{ + struct mtd_info *mtd = d->mtd; + struct swap_eb *eb, *oldeb; + int ret; + size_t retlen; + unsigned int page, retries; + loff_t readpos; + + page = d->revmap[oldblock]; + readpos = (loff_t) oldblock << PAGE_SHIFT; + retries = 0; + +retry: + ret = mtd->read(mtd, readpos, PAGE_SIZE, &retlen, d->page_buf); + + if (ret < 0 && ret != -EUCLEAN) { + oldeb = d->eb_data + oldblock / d->pages_per_eblk; + oldeb->flags |= EBLOCK_READERR; + + dev_err(d->dev, "Read Error: %d (block %u)\n", ret, + oldblock); + retries++; + if (retries < MTDSWAP_IO_RETRIES) + goto retry; + + goto read_error; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short read: %zd (block %u)\n", retlen, + oldblock); + ret = -EIO; + goto read_error; + } + + ret = mtdswap_write_block(d, d->page_buf, page, newblock, 1); + if (ret < 0) { + d->page_data[page] = BLOCK_ERROR; + dev_err(d->dev, "Write error: %d\n", ret); + return ret; + } + + eb = d->eb_data + *newblock / d->pages_per_eblk; + d->page_data[page] = *newblock; + d->revmap[oldblock] = PAGE_UNDEF; + eb = d->eb_data + oldblock / d->pages_per_eblk; + eb->active_count--; + + return 0; + +read_error: + d->page_data[page] = BLOCK_ERROR; + d->revmap[oldblock] = PAGE_UNDEF; + return ret; +} + +static int mtdswap_gc_eblock(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int i, block, eblk_base, newblock; + int ret, errcode; + + errcode = 0; + eblk_base = (eb - d->eb_data) * d->pages_per_eblk; + + for (i = 0; i < d->pages_per_eblk; i++) { + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return -ENOSPC; + + block = eblk_base + i; + if (d->revmap[block] == PAGE_UNDEF) + continue; + + ret = mtdswap_move_block(d, block, &newblock); + if (ret < 0 && !errcode) + errcode = ret; + } + + return errcode; +} + +static int __mtdswap_choose_gc_tree(struct mtdswap_dev *d) +{ + int idx, stopat; + + if (TREE_COUNT(d, CLEAN) < LOW_FRAG_GC_TRESHOLD) + stopat = MTDSWAP_LOWFRAG; + else + stopat = MTDSWAP_HIFRAG; + + for (idx = MTDSWAP_BITFLIP; idx >= stopat; idx--) + if (d->trees[idx].root.rb_node != NULL) + return idx; + + return -1; +} + +static int mtdswap_wlfreq(unsigned int maxdiff) +{ + unsigned int h, x, y, dist, base; + + /* + * Calculate linear ramp down from f1 to f2 when maxdiff goes from + * MAX_ERASE_DIFF to MAX_ERASE_DIFF + COLLECT_NONDIRTY_BASE. Similar + * to triangle with height f1 - f1 and width COLLECT_NONDIRTY_BASE. + */ + + dist = maxdiff - MAX_ERASE_DIFF; + if (dist > COLLECT_NONDIRTY_BASE) + dist = COLLECT_NONDIRTY_BASE; + + /* + * Modelling the slop as right angular triangle with base + * COLLECT_NONDIRTY_BASE and height freq1 - freq2. The ratio y/x is + * equal to the ratio h/base. + */ + h = COLLECT_NONDIRTY_FREQ1 - COLLECT_NONDIRTY_FREQ2; + base = COLLECT_NONDIRTY_BASE; + + x = dist - base; + y = (x * h + base / 2) / base; + + return COLLECT_NONDIRTY_FREQ2 + y; +} + +static int mtdswap_choose_wl_tree(struct mtdswap_dev *d) +{ + static unsigned int pick_cnt; + unsigned int i, idx = -1, wear, max; + struct rb_root *root; + + max = 0; + for (i = 0; i <= MTDSWAP_DIRTY; i++) { + root = &d->trees[i].root; + if (root->rb_node == NULL) + continue; + + wear = d->max_erase_count - MTDSWAP_ECNT_MIN(root); + if (wear > max) { + max = wear; + idx = i; + } + } + + if (max > MAX_ERASE_DIFF && pick_cnt >= mtdswap_wlfreq(max) - 1) { + pick_cnt = 0; + return idx; + } + + pick_cnt++; + return -1; +} + +static int mtdswap_choose_gc_tree(struct mtdswap_dev *d, + unsigned int background) +{ + int idx; + + if (TREE_NONEMPTY(d, FAILING) && + (background || (TREE_EMPTY(d, CLEAN) && TREE_EMPTY(d, DIRTY)))) + return MTDSWAP_FAILING; + + idx = mtdswap_choose_wl_tree(d); + if (idx >= MTDSWAP_CLEAN) + return idx; + + return __mtdswap_choose_gc_tree(d); +} + +static struct swap_eb *mtdswap_pick_gc_eblk(struct mtdswap_dev *d, + unsigned int background) +{ + struct rb_root *rp = NULL; + struct swap_eb *eb = NULL; + int idx; + + if (background && TREE_COUNT(d, CLEAN) > CLEAN_BLOCK_THRESHOLD && + TREE_EMPTY(d, DIRTY) && TREE_EMPTY(d, FAILING)) + return NULL; + + idx = mtdswap_choose_gc_tree(d, background); + if (idx < 0) + return NULL; + + rp = &d->trees[idx].root; + eb = rb_entry(rb_first(rp), struct swap_eb, rb); + + rb_erase(&eb->rb, rp); + eb->root = NULL; + d->trees[idx].count--; + return eb; +} + +static unsigned int mtdswap_test_patt(unsigned int i) +{ + return i % 2 ? 0x55555555 : 0xAAAAAAAA; +} + +static unsigned int mtdswap_eblk_passes(struct mtdswap_dev *d, + struct swap_eb *eb) +{ + struct mtd_info *mtd = d->mtd; + unsigned int test, i, j, patt, mtd_pages; + loff_t base, pos; + unsigned int *p1 = (unsigned int *)d->page_buf; + unsigned char *p2 = (unsigned char *)d->oob_buf; + struct mtd_oob_ops ops; + int ret; + + ops.mode = MTD_OOB_AUTO; + ops.len = mtd->writesize; + ops.ooblen = mtd->ecclayout->oobavail; + ops.ooboffs = 0; + ops.datbuf = d->page_buf; + ops.oobbuf = d->oob_buf; + base = mtdswap_eb_offset(d, eb); + mtd_pages = d->pages_per_eblk * PAGE_SIZE / mtd->writesize; + + for (test = 0; test < 2; test++) { + pos = base; + for (i = 0; i < mtd_pages; i++) { + patt = mtdswap_test_patt(test + i); + memset(d->page_buf, patt, mtd->writesize); + memset(d->oob_buf, patt, mtd->ecclayout->oobavail); + ret = mtd->write_oob(mtd, pos, &ops); + if (ret) + goto error; + + pos += mtd->writesize; + } + + pos = base; + for (i = 0; i < mtd_pages; i++) { + ret = mtd->read_oob(mtd, pos, &ops); + if (ret) + goto error; + + patt = mtdswap_test_patt(test + i); + for (j = 0; j < mtd->writesize/sizeof(int); j++) + if (p1[j] != patt) + goto error; + + for (j = 0; j < mtd->ecclayout->oobavail; j++) + if (p2[j] != (unsigned char)patt) + goto error; + + pos += mtd->writesize; + } + + ret = mtdswap_erase_block(d, eb); + if (ret) + goto error; + } + + eb->flags &= ~EBLOCK_READERR; + return 1; + +error: + mtdswap_handle_badblock(d, eb); + return 0; +} + +static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background) +{ + struct swap_eb *eb; + int ret; + + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return 1; + + eb = mtdswap_pick_gc_eblk(d, background); + if (!eb) + return 1; + + ret = mtdswap_gc_eblock(d, eb); + if (ret == -ENOSPC) + return 1; + + if (eb->flags & EBLOCK_FAILED) { + mtdswap_handle_badblock(d, eb); + return 0; + } + + eb->flags &= ~EBLOCK_BITFLIP; + ret = mtdswap_erase_block(d, eb); + if ((eb->flags & EBLOCK_READERR) && + (ret || !mtdswap_eblk_passes(d, eb))) + return 0; + + if (ret == 0) + ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_CLEAN); + + if (ret == 0) + mtdswap_rb_add(d, eb, MTDSWAP_CLEAN); + else if (ret != -EIO && ret != -EBADMSG) + mtdswap_rb_add(d, eb, MTDSWAP_DIRTY); + + return 0; +} + +static void mtdswap_background(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + int ret; + + while (1) { + ret = mtdswap_gc(d, 1); + if (ret || mtd_blktrans_cease_background(dev)) + return; + } +} + +static void mtdswap_cleanup(struct mtdswap_dev *d) +{ + vfree(d->eb_data); + vfree(d->revmap); + vfree(d->page_data); + kfree(d->oob_buf); + kfree(d->page_buf); +} + +static int mtdswap_flush(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + + if (d->mtd->sync) + d->mtd->sync(d->mtd); + return 0; +} + +static unsigned int mtdswap_badblocks(struct mtd_info *mtd, uint64_t size) +{ + loff_t offset; + unsigned int badcnt; + + badcnt = 0; + + if (mtd->block_isbad) + for (offset = 0; offset < size; offset += mtd->erasesize) + if (mtd->block_isbad(mtd, offset)) + badcnt++; + + return badcnt; +} + +static int mtdswap_writesect(struct mtd_blktrans_dev *dev, + unsigned long page, char *buf) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + unsigned int newblock, mapped; + struct swap_eb *eb; + int ret; + + d->sect_write_count++; + + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return -ENOSPC; + + if (header) { + /* Ignore writes to the header page */ + if (unlikely(page == 0)) + return 0; + + page--; + } + + mapped = d->page_data[page]; + if (mapped <= BLOCK_MAX) { + eb = d->eb_data + (mapped / d->pages_per_eblk); + eb->active_count--; + mtdswap_store_eb(d, eb); + d->page_data[page] = BLOCK_UNDEF; + d->revmap[mapped] = PAGE_UNDEF; + } + + ret = mtdswap_write_block(d, buf, page, &newblock, 0); + d->mtd_write_count++; + + if (ret < 0) + return ret; + + eb = d->eb_data + (newblock / d->pages_per_eblk); + d->page_data[page] = newblock; + + return 0; +} + +/* Provide a dummy swap header for the kernel */ +static int mtdswap_auto_header(struct mtdswap_dev *d, char *buf) +{ + union swap_header *hd = (union swap_header *)(buf); + + memset(buf, 0, PAGE_SIZE - 10); + + hd->info.version = 1; + hd->info.last_page = d->mbd_dev->size - 1; + hd->info.nr_badpages = 0; + + memcpy(buf + PAGE_SIZE - 10, "SWAPSPACE2", 10); + + return 0; +} + +static int mtdswap_readsect(struct mtd_blktrans_dev *dev, + unsigned long page, char *buf) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + struct mtd_info *mtd = d->mtd; + unsigned int realblock, retries; + loff_t readpos; + struct swap_eb *eb; + size_t retlen; + int ret; + + d->sect_read_count++; + + if (header) { + if (unlikely(page == 0)) + return mtdswap_auto_header(d, buf); + + page--; + } + + realblock = d->page_data[page]; + if (realblock > BLOCK_MAX) { + memset(buf, 0x0, PAGE_SIZE); + if (realblock == BLOCK_UNDEF) + return 0; + else + return -EIO; + } + + eb = d->eb_data + (realblock / d->pages_per_eblk); + BUG_ON(d->revmap[realblock] == PAGE_UNDEF); + + readpos = (loff_t)realblock << PAGE_SHIFT; + retries = 0; + +retry: + ret = mtd->read(mtd, readpos, PAGE_SIZE, &retlen, buf); + + d->mtd_read_count++; + if (ret == -EUCLEAN) { + eb->flags |= EBLOCK_BITFLIP; + mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP); + ret = 0; + } + + if (ret < 0) { + dev_err(d->dev, "Read error %d\n", ret); + eb->flags |= EBLOCK_READERR; + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + retries++; + if (retries < MTDSWAP_IO_RETRIES) + goto retry; + + return ret; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short read %zd\n", retlen); + return -EIO; + } + + return 0; +} + +static int mtdswap_discard(struct mtd_blktrans_dev *dev, unsigned long first, + unsigned nr_pages) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + unsigned long page; + struct swap_eb *eb; + unsigned int mapped; + + d->discard_count++; + + for (page = first; page < first + nr_pages; page++) { + mapped = d->page_data[page]; + if (mapped <= BLOCK_MAX) { + eb = d->eb_data + (mapped / d->pages_per_eblk); + eb->active_count--; + mtdswap_store_eb(d, eb); + d->page_data[page] = BLOCK_UNDEF; + d->revmap[mapped] = PAGE_UNDEF; + d->discard_page_count++; + } else if (mapped == BLOCK_ERROR) { + d->page_data[page] = BLOCK_UNDEF; + d->discard_page_count++; + } + } + + return 0; +} + +static int mtdswap_show(struct seq_file *s, void *data) +{ + struct mtdswap_dev *d = (struct mtdswap_dev *) s->private; + unsigned long sum; + unsigned int count[MTDSWAP_TREE_CNT]; + unsigned int min[MTDSWAP_TREE_CNT]; + unsigned int max[MTDSWAP_TREE_CNT]; + unsigned int i, cw = 0, cwp = 0, cwecount = 0, bb_cnt, mapped, pages; + uint64_t use_size; + char *name[] = {"clean", "used", "low", "high", "dirty", "bitflip", + "failing"}; + + mutex_lock(&d->mbd_dev->lock); + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) { + struct rb_root *root = &d->trees[i].root; + + if (root->rb_node) { + count[i] = d->trees[i].count; + min[i] = rb_entry(rb_first(root), struct swap_eb, + rb)->erase_count; + max[i] = rb_entry(rb_last(root), struct swap_eb, + rb)->erase_count; + } else + count[i] = 0; + } + + if (d->curr_write) { + cw = 1; + cwp = d->curr_write_pos; + cwecount = d->curr_write->erase_count; + } + + sum = 0; + for (i = 0; i < d->eblks; i++) + sum += d->eb_data[i].erase_count; + + use_size = (uint64_t)d->eblks * d->mtd->erasesize; + bb_cnt = mtdswap_badblocks(d->mtd, use_size); + + mapped = 0; + pages = d->mbd_dev->size; + for (i = 0; i < pages; i++) + if (d->page_data[i] != BLOCK_UNDEF) + mapped++; + + mutex_unlock(&d->mbd_dev->lock); + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) { + if (!count[i]) + continue; + + if (min[i] != max[i]) + seq_printf(s, "%s:\t%5d erase blocks, erased min %d, " + "max %d times\n", + name[i], count[i], min[i], max[i]); + else + seq_printf(s, "%s:\t%5d erase blocks, all erased %d " + "times\n", name[i], count[i], min[i]); + } + + if (bb_cnt) + seq_printf(s, "bad:\t%5u erase blocks\n", bb_cnt); + + if (cw) + seq_printf(s, "current erase block: %u pages used, %u free, " + "erased %u times\n", + cwp, d->pages_per_eblk - cwp, cwecount); + + seq_printf(s, "total erasures: %lu\n", sum); + + seq_printf(s, "\n"); + + seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count); + seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count); + seq_printf(s, "mtdswap_discard count: %llu\n", d->discard_count); + seq_printf(s, "mtd read count: %llu\n", d->mtd_read_count); + seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count); + seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count); + + seq_printf(s, "\n"); + seq_printf(s, "total pages: %u\n", pages); + seq_printf(s, "pages mapped: %u\n", mapped); + + return 0; +} + +static int mtdswap_open(struct inode *inode, struct file *file) +{ + return single_open(file, mtdswap_show, inode->i_private); +} + +static const struct file_operations mtdswap_fops = { + .open = mtdswap_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int mtdswap_add_debugfs(struct mtdswap_dev *d) +{ + struct gendisk *gd = d->mbd_dev->disk; + struct device *dev = disk_to_dev(gd); + + struct dentry *root; + struct dentry *dent; + + root = debugfs_create_dir(gd->disk_name, NULL); + if (IS_ERR(root)) + return 0; + + if (!root) { + dev_err(dev, "failed to initialize debugfs\n"); + return -1; + } + + d->debugfs_root = root; + + dent = debugfs_create_file("stats", S_IRUSR, root, d, + &mtdswap_fops); + if (!dent) { + dev_err(d->dev, "debugfs_create_file failed\n"); + debugfs_remove_recursive(root); + d->debugfs_root = NULL; + return -1; + } + + return 0; +} + +static int mtdswap_init(struct mtdswap_dev *d, unsigned int eblocks, + unsigned int spare_cnt) +{ + struct mtd_info *mtd = d->mbd_dev->mtd; + unsigned int i, eblk_bytes, pages, blocks; + int ret = -ENOMEM; + + d->mtd = mtd; + d->eblks = eblocks; + d->spare_eblks = spare_cnt; + d->pages_per_eblk = mtd->erasesize >> PAGE_SHIFT; + + pages = d->mbd_dev->size; + blocks = eblocks * d->pages_per_eblk; + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) + d->trees[i].root = RB_ROOT; + + d->page_data = vmalloc(sizeof(int)*pages); + if (!d->page_data) + goto page_data_fail; + + d->revmap = vmalloc(sizeof(int)*blocks); + if (!d->revmap) + goto revmap_fail; + + eblk_bytes = sizeof(struct swap_eb)*d->eblks; + d->eb_data = vmalloc(eblk_bytes); + if (!d->eb_data) + goto eb_data_fail; + + memset(d->eb_data, 0, eblk_bytes); + for (i = 0; i < pages; i++) + d->page_data[i] = BLOCK_UNDEF; + + for (i = 0; i < blocks; i++) + d->revmap[i] = PAGE_UNDEF; + + d->page_buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + if (!d->page_buf) + goto page_buf_fail; + + d->oob_buf = kmalloc(2 * mtd->ecclayout->oobavail, GFP_KERNEL); + if (!d->oob_buf) + goto oob_buf_fail; + + mtdswap_scan_eblks(d); + + return 0; + +oob_buf_fail: + kfree(d->page_buf); +page_buf_fail: + vfree(d->eb_data); +eb_data_fail: + vfree(d->revmap); +revmap_fail: + vfree(d->page_data); +page_data_fail: + printk(KERN_ERR "%s: init failed (%d)\n", MTDSWAP_PREFIX, ret); + return ret; +} + +static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct mtdswap_dev *d; + struct mtd_blktrans_dev *mbd_dev; + char *parts; + char *this_opt; + unsigned long part; + unsigned int eblocks, eavailable, bad_blocks, spare_cnt; + uint64_t swap_size, use_size, size_limit; + struct nand_ecclayout *oinfo; + int ret; + + parts = &partitions[0]; + if (!*parts) + return; + + while ((this_opt = strsep(&parts, ",")) != NULL) { + if (strict_strtoul(this_opt, 0, &part) < 0) + return; + + if (mtd->index == part) + break; + } + + if (mtd->index != part) + return; + + if (mtd->erasesize < PAGE_SIZE || mtd->erasesize % PAGE_SIZE) { + printk(KERN_ERR "%s: Erase size %u not multiple of PAGE_SIZE " + "%lu\n", MTDSWAP_PREFIX, mtd->erasesize, PAGE_SIZE); + return; + } + + if (PAGE_SIZE % mtd->writesize || mtd->writesize > PAGE_SIZE) { + printk(KERN_ERR "%s: PAGE_SIZE %lu not multiple of write size" + " %u\n", MTDSWAP_PREFIX, PAGE_SIZE, mtd->writesize); + return; + } + + oinfo = mtd->ecclayout; + if (!mtd->oobsize || !oinfo || oinfo->oobavail < MTDSWAP_OOBSIZE) { + printk(KERN_ERR "%s: Not enough free bytes in OOB, " + "%d available, %lu needed.\n", + MTDSWAP_PREFIX, oinfo->oobavail, MTDSWAP_OOBSIZE); + return; + } + + if (spare_eblocks > 100) + spare_eblocks = 100; + + use_size = mtd->size; + size_limit = (uint64_t) BLOCK_MAX * PAGE_SIZE; + + if (mtd->size > size_limit) { + printk(KERN_WARNING "%s: Device too large. Limiting size to " + "%llu bytes\n", MTDSWAP_PREFIX, size_limit); + use_size = size_limit; + } + + eblocks = mtd_div_by_eb(use_size, mtd); + use_size = eblocks * mtd->erasesize; + bad_blocks = mtdswap_badblocks(mtd, use_size); + eavailable = eblocks - bad_blocks; + + if (eavailable < MIN_ERASE_BLOCKS) { + printk(KERN_ERR "%s: Not enough erase blocks. %u available, " + "%d needed\n", MTDSWAP_PREFIX, eavailable, + MIN_ERASE_BLOCKS); + return; + } + + spare_cnt = div_u64((uint64_t)eavailable * spare_eblocks, 100); + + if (spare_cnt < MIN_SPARE_EBLOCKS) + spare_cnt = MIN_SPARE_EBLOCKS; + + if (spare_cnt > eavailable - 1) + spare_cnt = eavailable - 1; + + swap_size = (uint64_t)(eavailable - spare_cnt) * mtd->erasesize + + (header ? PAGE_SIZE : 0); + + printk(KERN_INFO "%s: Enabling MTD swap on device %lu, size %llu KB, " + "%u spare, %u bad blocks\n", + MTDSWAP_PREFIX, part, swap_size / 1024, spare_cnt, bad_blocks); + + d = kzalloc(sizeof(struct mtdswap_dev), GFP_KERNEL); + if (!d) + return; + + mbd_dev = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL); + if (!mbd_dev) { + kfree(d); + return; + } + + d->mbd_dev = mbd_dev; + mbd_dev->priv = d; + + mbd_dev->mtd = mtd; + mbd_dev->devnum = mtd->index; + mbd_dev->size = swap_size >> PAGE_SHIFT; + mbd_dev->tr = tr; + + if (!(mtd->flags & MTD_WRITEABLE)) + mbd_dev->readonly = 1; + + if (mtdswap_init(d, eblocks, spare_cnt) < 0) + goto init_failed; + + if (add_mtd_blktrans_dev(mbd_dev) < 0) + goto cleanup; + + d->dev = disk_to_dev(mbd_dev->disk); + + ret = mtdswap_add_debugfs(d); + if (ret < 0) + goto debugfs_failed; + + return; + +debugfs_failed: + del_mtd_blktrans_dev(mbd_dev); + +cleanup: + mtdswap_cleanup(d); + +init_failed: + kfree(mbd_dev); + kfree(d); +} + +static void mtdswap_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + + debugfs_remove_recursive(d->debugfs_root); + del_mtd_blktrans_dev(dev); + mtdswap_cleanup(d); + kfree(d); +} + +static struct mtd_blktrans_ops mtdswap_ops = { + .name = "mtdswap", + .major = 0, + .part_bits = 0, + .blksize = PAGE_SIZE, + .flush = mtdswap_flush, + .readsect = mtdswap_readsect, + .writesect = mtdswap_writesect, + .discard = mtdswap_discard, + .background = mtdswap_background, + .add_mtd = mtdswap_add_mtd, + .remove_dev = mtdswap_remove_dev, + .owner = THIS_MODULE, +}; + +static int __init mtdswap_modinit(void) +{ + return register_mtd_blktrans(&mtdswap_ops); +} + +static void __exit mtdswap_modexit(void) +{ + deregister_mtd_blktrans(&mtdswap_ops); +} + +module_init(mtdswap_modinit); +module_exit(mtdswap_modexit); + + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); +MODULE_DESCRIPTION("Block device access to an MTD suitable for using as " + "swap space"); diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 4f6c06f..a92054e 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -31,6 +31,21 @@ config MTD_NAND_VERIFY_WRITE device thinks the write was successful, a bit could have been flipped accidentally due to device wear or something else. +config MTD_NAND_BCH + tristate + select BCH + depends on MTD_NAND_ECC_BCH + default MTD_NAND + +config MTD_NAND_ECC_BCH + bool "Support software BCH ECC" + default n + help + This enables support for software BCH error correction. Binary BCH + codes are more powerful and cpu intensive than traditional Hamming + ECC codes. They are used with NAND devices requiring more than 1 bit + of error correction. + config MTD_SM_COMMON tristate default n diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 8ad6fae..5745d83 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -4,6 +4,7 @@ obj-$(CONFIG_MTD_NAND) += nand.o obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o +obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index ccce0f0..6fae04b 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c @@ -48,6 +48,9 @@ #define no_ecc 0 #endif +static int use_dma = 1; +module_param(use_dma, int, 0); + static int on_flash_bbt = 0; module_param(on_flash_bbt, int, 0); @@ -89,11 +92,20 @@ struct atmel_nand_host { struct nand_chip nand_chip; struct mtd_info mtd; void __iomem *io_base; + dma_addr_t io_phys; struct atmel_nand_data *board; struct device *dev; void __iomem *ecc; + + struct completion comp; + struct dma_chan *dma_chan; }; +static int cpu_has_dma(void) +{ + return cpu_is_at91sam9rl() || cpu_is_at91sam9g45(); +} + /* * Enable NAND. */ @@ -150,7 +162,7 @@ static int atmel_nand_device_ready(struct mtd_info *mtd) /* * Minimal-overhead PIO for data access. */ -static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) +static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; @@ -164,7 +176,7 @@ static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); } -static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; @@ -178,6 +190,121 @@ static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2); } +static void dma_complete_func(void *completion) +{ + complete(completion); +} + +static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, + int is_read) +{ + struct dma_device *dma_dev; + enum dma_ctrl_flags flags; + dma_addr_t dma_src_addr, dma_dst_addr, phys_addr; + struct dma_async_tx_descriptor *tx = NULL; + dma_cookie_t cookie; + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + void *p = buf; + int err = -EIO; + enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; + + if (buf >= high_memory) { + struct page *pg; + + if (((size_t)buf & PAGE_MASK) != + ((size_t)(buf + len - 1) & PAGE_MASK)) { + dev_warn(host->dev, "Buffer not fit in one page\n"); + goto err_buf; + } + + pg = vmalloc_to_page(buf); + if (pg == 0) { + dev_err(host->dev, "Failed to vmalloc_to_page\n"); + goto err_buf; + } + p = page_address(pg) + ((size_t)buf & ~PAGE_MASK); + } + + dma_dev = host->dma_chan->device; + + flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP | + DMA_COMPL_SKIP_DEST_UNMAP; + + phys_addr = dma_map_single(dma_dev->dev, p, len, dir); + if (dma_mapping_error(dma_dev->dev, phys_addr)) { + dev_err(host->dev, "Failed to dma_map_single\n"); + goto err_buf; + } + + if (is_read) { + dma_src_addr = host->io_phys; + dma_dst_addr = phys_addr; + } else { + dma_src_addr = phys_addr; + dma_dst_addr = host->io_phys; + } + + tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr, + dma_src_addr, len, flags); + if (!tx) { + dev_err(host->dev, "Failed to prepare DMA memcpy\n"); + goto err_dma; + } + + init_completion(&host->comp); + tx->callback = dma_complete_func; + tx->callback_param = &host->comp; + + cookie = tx->tx_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(host->dev, "Failed to do DMA tx_submit\n"); + goto err_dma; + } + + dma_async_issue_pending(host->dma_chan); + wait_for_completion(&host->comp); + + err = 0; + +err_dma: + dma_unmap_single(dma_dev->dev, phys_addr, len, dir); +err_buf: + if (err != 0) + dev_warn(host->dev, "Fall back to CPU I/O\n"); + return err; +} + +static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + + if (use_dma && len >= mtd->oobsize) + if (atmel_nand_dma_op(mtd, buf, len, 1) == 0) + return; + + if (host->board->bus_width_16) + atmel_read_buf16(mtd, buf, len); + else + atmel_read_buf8(mtd, buf, len); +} + +static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + + if (use_dma && len >= mtd->oobsize) + if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0) + return; + + if (host->board->bus_width_16) + atmel_write_buf16(mtd, buf, len); + else + atmel_write_buf8(mtd, buf, len); +} + /* * Calculate HW ECC * @@ -398,6 +525,8 @@ static int __init atmel_nand_probe(struct platform_device *pdev) return -ENOMEM; } + host->io_phys = (dma_addr_t)mem->start; + host->io_base = ioremap(mem->start, mem->end - mem->start + 1); if (host->io_base == NULL) { printk(KERN_ERR "atmel_nand: ioremap failed\n"); @@ -448,14 +577,11 @@ static int __init atmel_nand_probe(struct platform_device *pdev) nand_chip->chip_delay = 20; /* 20us command delay time */ - if (host->board->bus_width_16) { /* 16-bit bus width */ + if (host->board->bus_width_16) /* 16-bit bus width */ nand_chip->options |= NAND_BUSWIDTH_16; - nand_chip->read_buf = atmel_read_buf16; - nand_chip->write_buf = atmel_write_buf16; - } else { - nand_chip->read_buf = atmel_read_buf; - nand_chip->write_buf = atmel_write_buf; - } + + nand_chip->read_buf = atmel_read_buf; + nand_chip->write_buf = atmel_write_buf; platform_set_drvdata(pdev, host); atmel_nand_enable(host); @@ -473,6 +599,22 @@ static int __init atmel_nand_probe(struct platform_device *pdev) nand_chip->options |= NAND_USE_FLASH_BBT; } + if (cpu_has_dma() && use_dma) { + dma_cap_mask_t mask; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + host->dma_chan = dma_request_channel(mask, 0, NULL); + if (!host->dma_chan) { + dev_err(host->dev, "Failed to request DMA channel\n"); + use_dma = 0; + } + } + if (use_dma) + dev_info(host->dev, "Using DMA for NAND access.\n"); + else + dev_info(host->dev, "No DMA support for NAND access.\n"); + /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, 1, NULL)) { res = -ENXIO; @@ -555,6 +697,8 @@ err_scan_ident: err_no_card: atmel_nand_disable(host); platform_set_drvdata(pdev, NULL); + if (host->dma_chan) + dma_release_channel(host->dma_chan); if (host->ecc) iounmap(host->ecc); err_ecc_ioremap: @@ -578,6 +722,10 @@ static int __exit atmel_nand_remove(struct platform_device *pdev) if (host->ecc) iounmap(host->ecc); + + if (host->dma_chan) + dma_release_channel(host->dma_chan); + iounmap(host->io_base); kfree(host); diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c index a90fde3..aff3468 100644 --- a/drivers/mtd/nand/davinci_nand.c +++ b/drivers/mtd/nand/davinci_nand.c @@ -37,9 +37,6 @@ #include <mach/nand.h> #include <mach/aemif.h> -#include <asm/mach-types.h> - - /* * This is a device driver for the NAND flash controller found on the * various DaVinci family chips. It handles up to four SoC chipselects, diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/mpc5121_nfc.c index c2f9543..0b81b5b 100644 --- a/drivers/mtd/nand/mpc5121_nfc.c +++ b/drivers/mtd/nand/mpc5121_nfc.c @@ -29,6 +29,7 @@ #include <linux/clk.h> #include <linux/gfp.h> #include <linux/delay.h> +#include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> @@ -757,9 +758,9 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) /* Enable NFC clock */ prv->clk = clk_get(dev, "nfc_clk"); - if (!prv->clk) { + if (IS_ERR(prv->clk)) { dev_err(dev, "Unable to acquire NFC clock!\n"); - retval = -ENODEV; + retval = PTR_ERR(prv->clk); goto error; } diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 5ae1d9e..42a95fb 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -211,6 +211,31 @@ static struct nand_ecclayout nandv2_hw_eccoob_largepage = { } }; +/* OOB description for 4096 byte pages with 128 byte OOB */ +static struct nand_ecclayout nandv2_hw_eccoob_4k = { + .eccbytes = 8 * 9, + .eccpos = { + 7, 8, 9, 10, 11, 12, 13, 14, 15, + 23, 24, 25, 26, 27, 28, 29, 30, 31, + 39, 40, 41, 42, 43, 44, 45, 46, 47, + 55, 56, 57, 58, 59, 60, 61, 62, 63, + 71, 72, 73, 74, 75, 76, 77, 78, 79, + 87, 88, 89, 90, 91, 92, 93, 94, 95, + 103, 104, 105, 106, 107, 108, 109, 110, 111, + 119, 120, 121, 122, 123, 124, 125, 126, 127, + }, + .oobfree = { + {.offset = 2, .length = 4}, + {.offset = 16, .length = 7}, + {.offset = 32, .length = 7}, + {.offset = 48, .length = 7}, + {.offset = 64, .length = 7}, + {.offset = 80, .length = 7}, + {.offset = 96, .length = 7}, + {.offset = 112, .length = 7}, + } +}; + #ifdef CONFIG_MTD_PARTITIONS static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; #endif @@ -641,9 +666,9 @@ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) n = min(n, len); - memcpy(buf, host->data_buf + col, len); + memcpy(buf, host->data_buf + col, n); - host->buf_start += len; + host->buf_start += n; } /* Used by the upper layer to verify the data in NAND Flash @@ -1185,6 +1210,8 @@ static int __init mxcnd_probe(struct platform_device *pdev) if (mtd->writesize == 2048) this->ecc.layout = oob_largepage; + if (nfc_is_v21() && mtd->writesize == 4096) + this->ecc.layout = &nandv2_hw_eccoob_4k; /* second phase scan */ if (nand_scan_tail(mtd)) { diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index a9c6ce7..85cfc06 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -42,6 +42,7 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> +#include <linux/mtd/nand_bch.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/leds.h> @@ -2377,7 +2378,7 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, return -EINVAL; } - /* Do not allow reads past end of device */ + /* Do not allow write past end of device */ if (unlikely(to >= mtd->size || ops->ooboffs + ops->ooblen > ((mtd->size >> chip->page_shift) - @@ -3248,7 +3249,7 @@ int nand_scan_tail(struct mtd_info *mtd) /* * If no default placement scheme is given, select an appropriate one */ - if (!chip->ecc.layout) { + if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) { switch (mtd->oobsize) { case 8: chip->ecc.layout = &nand_oob_8; @@ -3351,6 +3352,40 @@ int nand_scan_tail(struct mtd_info *mtd) chip->ecc.bytes = 3; break; + case NAND_ECC_SOFT_BCH: + if (!mtd_nand_has_bch()) { + printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n"); + BUG(); + } + chip->ecc.calculate = nand_bch_calculate_ecc; + chip->ecc.correct = nand_bch_correct_data; + chip->ecc.read_page = nand_read_page_swecc; + chip->ecc.read_subpage = nand_read_subpage; + chip->ecc.write_page = nand_write_page_swecc; + chip->ecc.read_page_raw = nand_read_page_raw; + chip->ecc.write_page_raw = nand_write_page_raw; + chip->ecc.read_oob = nand_read_oob_std; + chip->ecc.write_oob = nand_write_oob_std; + /* + * Board driver should supply ecc.size and ecc.bytes values to + * select how many bits are correctable; see nand_bch_init() + * for details. + * Otherwise, default to 4 bits for large page devices + */ + if (!chip->ecc.size && (mtd->oobsize >= 64)) { + chip->ecc.size = 512; + chip->ecc.bytes = 7; + } + chip->ecc.priv = nand_bch_init(mtd, + chip->ecc.size, + chip->ecc.bytes, + &chip->ecc.layout); + if (!chip->ecc.priv) { + printk(KERN_WARNING "BCH ECC initialization failed!\n"); + BUG(); + } + break; + case NAND_ECC_NONE: printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. " "This is not recommended !!\n"); @@ -3501,6 +3536,9 @@ void nand_release(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; + if (chip->ecc.mode == NAND_ECC_SOFT_BCH) + nand_bch_free((struct nand_bch_control *)chip->ecc.priv); + #ifdef CONFIG_MTD_PARTITIONS /* Deregister partitions */ del_mtd_partitions(mtd); diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c index 6ebd869..a1e8b300 100644 --- a/drivers/mtd/nand/nand_bbt.c +++ b/drivers/mtd/nand/nand_bbt.c @@ -1101,12 +1101,16 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; - u32 pattern_len = bd->len; - u32 bits = bd->options & NAND_BBT_NRBITS_MSK; + u32 pattern_len; + u32 bits; u32 table_size; if (!bd) return; + + pattern_len = bd->len; + bits = bd->options & NAND_BBT_NRBITS_MSK; + BUG_ON((this->options & NAND_USE_FLASH_BBT_NO_OOB) && !(this->options & NAND_USE_FLASH_BBT)); BUG_ON(!bits); diff --git a/drivers/mtd/nand/nand_bch.c b/drivers/mtd/nand/nand_bch.c new file mode 100644 index 0000000..0f931e7 --- /dev/null +++ b/drivers/mtd/nand/nand_bch.c @@ -0,0 +1,243 @@ +/* + * This file provides ECC correction for more than 1 bit per block of data, + * using binary BCH codes. It relies on the generic BCH library lib/bch.c. + * + * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com> + * + * This file is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 or (at your option) any + * later version. + * + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this file; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + */ + +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/bitops.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_bch.h> +#include <linux/bch.h> + +/** + * struct nand_bch_control - private NAND BCH control structure + * @bch: BCH control structure + * @ecclayout: private ecc layout for this BCH configuration + * @errloc: error location array + * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid + */ +struct nand_bch_control { + struct bch_control *bch; + struct nand_ecclayout ecclayout; + unsigned int *errloc; + unsigned char *eccmask; +}; + +/** + * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block + * @mtd: MTD block structure + * @buf: input buffer with raw data + * @code: output buffer with ECC + */ +int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, + unsigned char *code) +{ + const struct nand_chip *chip = mtd->priv; + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int i; + + memset(code, 0, chip->ecc.bytes); + encode_bch(nbc->bch, buf, chip->ecc.size, code); + + /* apply mask so that an erased page is a valid codeword */ + for (i = 0; i < chip->ecc.bytes; i++) + code[i] ^= nbc->eccmask[i]; + + return 0; +} +EXPORT_SYMBOL(nand_bch_calculate_ecc); + +/** + * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd: MTD block structure + * @buf: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * + * Detect and correct bit errors for a data byte block + */ +int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + const struct nand_chip *chip = mtd->priv; + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int *errloc = nbc->errloc; + int i, count; + + count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc, + NULL, errloc); + if (count > 0) { + for (i = 0; i < count; i++) { + if (errloc[i] < (chip->ecc.size*8)) + /* error is located in data, correct it */ + buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); + /* else error in ecc, no action needed */ + + DEBUG(MTD_DEBUG_LEVEL0, "%s: corrected bitflip %u\n", + __func__, errloc[i]); + } + } else if (count < 0) { + printk(KERN_ERR "ecc unrecoverable error\n"); + count = -1; + } + return count; +} +EXPORT_SYMBOL(nand_bch_correct_data); + +/** + * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction + * @mtd: MTD block structure + * @eccsize: ecc block size in bytes + * @eccbytes: ecc length in bytes + * @ecclayout: output default layout + * + * Returns: + * a pointer to a new NAND BCH control structure, or NULL upon failure + * + * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes + * are used to compute BCH parameters m (Galois field order) and t (error + * correction capability). @eccbytes should be equal to the number of bytes + * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8. + * + * Example: to configure 4 bit correction per 512 bytes, you should pass + * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8) + * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits) + */ +struct nand_bch_control * +nand_bch_init(struct mtd_info *mtd, unsigned int eccsize, unsigned int eccbytes, + struct nand_ecclayout **ecclayout) +{ + unsigned int m, t, eccsteps, i; + struct nand_ecclayout *layout; + struct nand_bch_control *nbc = NULL; + unsigned char *erased_page; + + if (!eccsize || !eccbytes) { + printk(KERN_WARNING "ecc parameters not supplied\n"); + goto fail; + } + + m = fls(1+8*eccsize); + t = (eccbytes*8)/m; + + nbc = kzalloc(sizeof(*nbc), GFP_KERNEL); + if (!nbc) + goto fail; + + nbc->bch = init_bch(m, t, 0); + if (!nbc->bch) + goto fail; + + /* verify that eccbytes has the expected value */ + if (nbc->bch->ecc_bytes != eccbytes) { + printk(KERN_WARNING "invalid eccbytes %u, should be %u\n", + eccbytes, nbc->bch->ecc_bytes); + goto fail; + } + + eccsteps = mtd->writesize/eccsize; + + /* if no ecc placement scheme was provided, build one */ + if (!*ecclayout) { + + /* handle large page devices only */ + if (mtd->oobsize < 64) { + printk(KERN_WARNING "must provide an oob scheme for " + "oobsize %d\n", mtd->oobsize); + goto fail; + } + + layout = &nbc->ecclayout; + layout->eccbytes = eccsteps*eccbytes; + + /* reserve 2 bytes for bad block marker */ + if (layout->eccbytes+2 > mtd->oobsize) { + printk(KERN_WARNING "no suitable oob scheme available " + "for oobsize %d eccbytes %u\n", mtd->oobsize, + eccbytes); + goto fail; + } + /* put ecc bytes at oob tail */ + for (i = 0; i < layout->eccbytes; i++) + layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; + + layout->oobfree[0].offset = 2; + layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; + + *ecclayout = layout; + } + + /* sanity checks */ + if (8*(eccsize+eccbytes) >= (1 << m)) { + printk(KERN_WARNING "eccsize %u is too large\n", eccsize); + goto fail; + } + if ((*ecclayout)->eccbytes != (eccsteps*eccbytes)) { + printk(KERN_WARNING "invalid ecc layout\n"); + goto fail; + } + + nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL); + nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL); + if (!nbc->eccmask || !nbc->errloc) + goto fail; + /* + * compute and store the inverted ecc of an erased ecc block + */ + erased_page = kmalloc(eccsize, GFP_KERNEL); + if (!erased_page) + goto fail; + + memset(erased_page, 0xff, eccsize); + memset(nbc->eccmask, 0, eccbytes); + encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask); + kfree(erased_page); + + for (i = 0; i < eccbytes; i++) + nbc->eccmask[i] ^= 0xff; + + return nbc; +fail: + nand_bch_free(nbc); + return NULL; +} +EXPORT_SYMBOL(nand_bch_init); + +/** + * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources + * @nbc: NAND BCH control structure + */ +void nand_bch_free(struct nand_bch_control *nbc) +{ + if (nbc) { + free_bch(nbc->bch); + kfree(nbc->errloc); + kfree(nbc->eccmask); + kfree(nbc); + } +} +EXPORT_SYMBOL(nand_bch_free); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); +MODULE_DESCRIPTION("NAND software BCH ECC support"); diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index a5aa99f..213181b 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c @@ -34,6 +34,7 @@ #include <linux/string.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> +#include <linux/mtd/nand_bch.h> #include <linux/mtd/partitions.h> #include <linux/delay.h> #include <linux/list.h> @@ -108,6 +109,7 @@ static unsigned int rptwear = 0; static unsigned int overridesize = 0; static char *cache_file = NULL; static unsigned int bbt; +static unsigned int bch; module_param(first_id_byte, uint, 0400); module_param(second_id_byte, uint, 0400); @@ -132,6 +134,7 @@ module_param(rptwear, uint, 0400); module_param(overridesize, uint, 0400); module_param(cache_file, charp, 0400); module_param(bbt, uint, 0400); +module_param(bch, uint, 0400); MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)"); MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)"); @@ -165,6 +168,8 @@ MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the I " e.g. 5 means a size of 32 erase blocks"); MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); +MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " + "be correctable in 512-byte blocks"); /* The largest possible page size */ #define NS_LARGEST_PAGE_SIZE 4096 @@ -2309,7 +2314,43 @@ static int __init ns_init_module(void) if ((retval = parse_gravepages()) != 0) goto error; - if ((retval = nand_scan(nsmtd, 1)) != 0) { + retval = nand_scan_ident(nsmtd, 1, NULL); + if (retval) { + NS_ERR("cannot scan NAND Simulator device\n"); + if (retval > 0) + retval = -ENXIO; + goto error; + } + + if (bch) { + unsigned int eccsteps, eccbytes; + if (!mtd_nand_has_bch()) { + NS_ERR("BCH ECC support is disabled\n"); + retval = -EINVAL; + goto error; + } + /* use 512-byte ecc blocks */ + eccsteps = nsmtd->writesize/512; + eccbytes = (bch*13+7)/8; + /* do not bother supporting small page devices */ + if ((nsmtd->oobsize < 64) || !eccsteps) { + NS_ERR("bch not available on small page devices\n"); + retval = -EINVAL; + goto error; + } + if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { + NS_ERR("invalid bch value %u\n", bch); + retval = -EINVAL; + goto error; + } + chip->ecc.mode = NAND_ECC_SOFT_BCH; + chip->ecc.size = 512; + chip->ecc.bytes = eccbytes; + NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); + } + + retval = nand_scan_tail(nsmtd); + if (retval) { NS_ERR("can't register NAND Simulator\n"); if (retval > 0) retval = -ENXIO; diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index 7b8f1ff..da9a351 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -668,6 +668,8 @@ static void gen_true_ecc(u8 *ecc_buf) * * This function compares two ECC's and indicates if there is an error. * If the error can be corrected it will be corrected to the buffer. + * If there is no error, %0 is returned. If there is an error but it + * was corrected, %1 is returned. Otherwise, %-1 is returned. */ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ u8 *ecc_data2, /* read from register */ @@ -773,7 +775,7 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ page_data[find_byte] ^= (1 << find_bit); - return 0; + return 1; default: if (isEccFF) { if (ecc_data2[0] == 0 && @@ -794,8 +796,11 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ * @calc_ecc: ecc read from HW ECC registers * * Compares the ecc read from nand spare area with ECC registers values - * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection - * and correction. + * and if ECC's mismatched, it will call 'omap_compare_ecc' for error + * detection and correction. If there are no errors, %0 is returned. If + * there were errors and all of the errors were corrected, the number of + * corrected errors is returned. If uncorrectable errors exist, %-1 is + * returned. */ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) @@ -803,6 +808,7 @@ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int blockCnt = 0, i = 0, ret = 0; + int stat = 0; /* Ex NAND_ECC_HW12_2048 */ if ((info->nand.ecc.mode == NAND_ECC_HW) && @@ -816,12 +822,14 @@ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, ret = omap_compare_ecc(read_ecc, calc_ecc, dat); if (ret < 0) return ret; + /* keep track of the number of corrected errors */ + stat += ret; } read_ecc += 3; calc_ecc += 3; dat += 512; } - return 0; + return stat; } /** diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index ea2c288..ab7f4c3 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c @@ -27,6 +27,8 @@ #include <plat/pxa3xx_nand.h> #define CHIP_DELAY_TIMEOUT (2 * HZ/10) +#define NAND_STOP_DELAY (2 * HZ/50) +#define PAGE_CHUNK_SIZE (2048) /* registers and bit definitions */ #define NDCR (0x00) /* Control register */ @@ -52,16 +54,18 @@ #define NDCR_ND_MODE (0x3 << 21) #define NDCR_NAND_MODE (0x0) #define NDCR_CLR_PG_CNT (0x1 << 20) -#define NDCR_CLR_ECC (0x1 << 19) +#define NDCR_STOP_ON_UNCOR (0x1 << 19) #define NDCR_RD_ID_CNT_MASK (0x7 << 16) #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) #define NDCR_RA_START (0x1 << 15) #define NDCR_PG_PER_BLK (0x1 << 14) #define NDCR_ND_ARB_EN (0x1 << 12) +#define NDCR_INT_MASK (0xFFF) #define NDSR_MASK (0xfff) -#define NDSR_RDY (0x1 << 11) +#define NDSR_RDY (0x1 << 12) +#define NDSR_FLASH_RDY (0x1 << 11) #define NDSR_CS0_PAGED (0x1 << 10) #define NDSR_CS1_PAGED (0x1 << 9) #define NDSR_CS0_CMDD (0x1 << 8) @@ -74,6 +78,7 @@ #define NDSR_RDDREQ (0x1 << 1) #define NDSR_WRCMDREQ (0x1) +#define NDCB0_ST_ROW_EN (0x1 << 26) #define NDCB0_AUTO_RS (0x1 << 25) #define NDCB0_CSEL (0x1 << 24) #define NDCB0_CMD_TYPE_MASK (0x7 << 21) @@ -104,18 +109,21 @@ enum { }; enum { - STATE_READY = 0, + STATE_IDLE = 0, STATE_CMD_HANDLE, STATE_DMA_READING, STATE_DMA_WRITING, STATE_DMA_DONE, STATE_PIO_READING, STATE_PIO_WRITING, + STATE_CMD_DONE, + STATE_READY, }; struct pxa3xx_nand_info { struct nand_chip nand_chip; + struct nand_hw_control controller; struct platform_device *pdev; struct pxa3xx_nand_cmdset *cmdset; @@ -126,6 +134,7 @@ struct pxa3xx_nand_info { unsigned int buf_start; unsigned int buf_count; + struct mtd_info *mtd; /* DMA information */ int drcmr_dat; int drcmr_cmd; @@ -149,6 +158,7 @@ struct pxa3xx_nand_info { int use_ecc; /* use HW ECC ? */ int use_dma; /* use DMA ? */ + int is_ready; unsigned int page_size; /* page size of attached chip */ unsigned int data_size; /* data size in FIFO */ @@ -201,20 +211,22 @@ static struct pxa3xx_nand_timing timing[] = { }; static struct pxa3xx_nand_flash builtin_flash_types[] = { - { 0, 0, 2048, 8, 8, 0, &default_cmdset, &timing[0] }, - { 0x46ec, 32, 512, 16, 16, 4096, &default_cmdset, &timing[1] }, - { 0xdaec, 64, 2048, 8, 8, 2048, &default_cmdset, &timing[1] }, - { 0xd7ec, 128, 4096, 8, 8, 8192, &default_cmdset, &timing[1] }, - { 0xa12c, 64, 2048, 8, 8, 1024, &default_cmdset, &timing[2] }, - { 0xb12c, 64, 2048, 16, 16, 1024, &default_cmdset, &timing[2] }, - { 0xdc2c, 64, 2048, 8, 8, 4096, &default_cmdset, &timing[2] }, - { 0xcc2c, 64, 2048, 16, 16, 4096, &default_cmdset, &timing[2] }, - { 0xba20, 64, 2048, 16, 16, 2048, &default_cmdset, &timing[3] }, +{ "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] }, +{ "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] }, +{ "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] }, +{ "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] }, +{ "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] }, +{ "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] }, +{ "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] }, +{ "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] }, +{ "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] }, }; /* Define a default flash type setting serve as flash detecting only */ #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0]) +const char *mtd_names[] = {"pxa3xx_nand-0", NULL}; + #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) #define NDTR0_tWH(c) (min((c), 7) << 11) @@ -252,25 +264,6 @@ static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, nand_writel(info, NDTR1CS0, ndtr1); } -#define WAIT_EVENT_TIMEOUT 10 - -static int wait_for_event(struct pxa3xx_nand_info *info, uint32_t event) -{ - int timeout = WAIT_EVENT_TIMEOUT; - uint32_t ndsr; - - while (timeout--) { - ndsr = nand_readl(info, NDSR) & NDSR_MASK; - if (ndsr & event) { - nand_writel(info, NDSR, ndsr); - return 0; - } - udelay(10); - } - - return -ETIMEDOUT; -} - static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info) { int oob_enable = info->reg_ndcr & NDCR_SPARE_EN; @@ -291,69 +284,45 @@ static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info) } } -static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, - uint16_t cmd, int column, int page_addr) +/** + * NOTE: it is a must to set ND_RUN firstly, then write + * command buffer, otherwise, it does not work. + * We enable all the interrupt at the same time, and + * let pxa3xx_nand_irq to handle all logic. + */ +static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) { - const struct pxa3xx_nand_cmdset *cmdset = info->cmdset; - pxa3xx_set_datasize(info); - - /* generate values for NDCBx registers */ - info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); - info->ndcb1 = 0; - info->ndcb2 = 0; - info->ndcb0 |= NDCB0_ADDR_CYC(info->row_addr_cycles + info->col_addr_cycles); - - if (info->col_addr_cycles == 2) { - /* large block, 2 cycles for column address - * row address starts from 3rd cycle - */ - info->ndcb1 |= page_addr << 16; - if (info->row_addr_cycles == 3) - info->ndcb2 = (page_addr >> 16) & 0xff; - } else - /* small block, 1 cycles for column address - * row address starts from 2nd cycle - */ - info->ndcb1 = page_addr << 8; - - if (cmd == cmdset->program) - info->ndcb0 |= NDCB0_CMD_TYPE(1) | NDCB0_AUTO_RS; + uint32_t ndcr; - return 0; -} + ndcr = info->reg_ndcr; + ndcr |= info->use_ecc ? NDCR_ECC_EN : 0; + ndcr |= info->use_dma ? NDCR_DMA_EN : 0; + ndcr |= NDCR_ND_RUN; -static int prepare_erase_cmd(struct pxa3xx_nand_info *info, - uint16_t cmd, int page_addr) -{ - info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); - info->ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS | NDCB0_ADDR_CYC(3); - info->ndcb1 = page_addr; - info->ndcb2 = 0; - return 0; + /* clear status bits and run */ + nand_writel(info, NDCR, 0); + nand_writel(info, NDSR, NDSR_MASK); + nand_writel(info, NDCR, ndcr); } -static int prepare_other_cmd(struct pxa3xx_nand_info *info, uint16_t cmd) +static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) { - const struct pxa3xx_nand_cmdset *cmdset = info->cmdset; - - info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); - info->ndcb1 = 0; - info->ndcb2 = 0; + uint32_t ndcr; + int timeout = NAND_STOP_DELAY; - info->oob_size = 0; - if (cmd == cmdset->read_id) { - info->ndcb0 |= NDCB0_CMD_TYPE(3); - info->data_size = 8; - } else if (cmd == cmdset->read_status) { - info->ndcb0 |= NDCB0_CMD_TYPE(4); - info->data_size = 8; - } else if (cmd == cmdset->reset || cmd == cmdset->lock || - cmd == cmdset->unlock) { - info->ndcb0 |= NDCB0_CMD_TYPE(5); - } else - return -EINVAL; + /* wait RUN bit in NDCR become 0 */ + ndcr = nand_readl(info, NDCR); + while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) { + ndcr = nand_readl(info, NDCR); + udelay(1); + } - return 0; + if (timeout <= 0) { + ndcr &= ~NDCR_ND_RUN; + nand_writel(info, NDCR, ndcr); + } + /* clear status bits */ + nand_writel(info, NDSR, NDSR_MASK); } static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) @@ -372,39 +341,8 @@ static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) nand_writel(info, NDCR, ndcr | int_mask); } -/* NOTE: it is a must to set ND_RUN firstly, then write command buffer - * otherwise, it does not work - */ -static int write_cmd(struct pxa3xx_nand_info *info) +static void handle_data_pio(struct pxa3xx_nand_info *info) { - uint32_t ndcr; - - /* clear status bits and run */ - nand_writel(info, NDSR, NDSR_MASK); - - ndcr = info->reg_ndcr; - - ndcr |= info->use_ecc ? NDCR_ECC_EN : 0; - ndcr |= info->use_dma ? NDCR_DMA_EN : 0; - ndcr |= NDCR_ND_RUN; - - nand_writel(info, NDCR, ndcr); - - if (wait_for_event(info, NDSR_WRCMDREQ)) { - printk(KERN_ERR "timed out writing command\n"); - return -ETIMEDOUT; - } - - nand_writel(info, NDCB0, info->ndcb0); - nand_writel(info, NDCB0, info->ndcb1); - nand_writel(info, NDCB0, info->ndcb2); - return 0; -} - -static int handle_data_pio(struct pxa3xx_nand_info *info) -{ - int ret, timeout = CHIP_DELAY_TIMEOUT; - switch (info->state) { case STATE_PIO_WRITING: __raw_writesl(info->mmio_base + NDDB, info->data_buff, @@ -412,14 +350,6 @@ static int handle_data_pio(struct pxa3xx_nand_info *info) if (info->oob_size > 0) __raw_writesl(info->mmio_base + NDDB, info->oob_buff, DIV_ROUND_UP(info->oob_size, 4)); - - enable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); - - ret = wait_for_completion_timeout(&info->cmd_complete, timeout); - if (!ret) { - printk(KERN_ERR "program command time out\n"); - return -1; - } break; case STATE_PIO_READING: __raw_readsl(info->mmio_base + NDDB, info->data_buff, @@ -431,14 +361,11 @@ static int handle_data_pio(struct pxa3xx_nand_info *info) default: printk(KERN_ERR "%s: invalid state %d\n", __func__, info->state); - return -EINVAL; + BUG(); } - - info->state = STATE_READY; - return 0; } -static void start_data_dma(struct pxa3xx_nand_info *info, int dir_out) +static void start_data_dma(struct pxa3xx_nand_info *info) { struct pxa_dma_desc *desc = info->data_desc; int dma_len = ALIGN(info->data_size + info->oob_size, 32); @@ -446,14 +373,21 @@ static void start_data_dma(struct pxa3xx_nand_info *info, int dir_out) desc->ddadr = DDADR_STOP; desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len; - if (dir_out) { + switch (info->state) { + case STATE_DMA_WRITING: desc->dsadr = info->data_buff_phys; desc->dtadr = info->mmio_phys + NDDB; desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG; - } else { + break; + case STATE_DMA_READING: desc->dtadr = info->data_buff_phys; desc->dsadr = info->mmio_phys + NDDB; desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC; + break; + default: + printk(KERN_ERR "%s: invalid state %d\n", __func__, + info->state); + BUG(); } DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch; @@ -471,93 +405,62 @@ static void pxa3xx_nand_data_dma_irq(int channel, void *data) if (dcsr & DCSR_BUSERR) { info->retcode = ERR_DMABUSERR; - complete(&info->cmd_complete); } - if (info->state == STATE_DMA_WRITING) { - info->state = STATE_DMA_DONE; - enable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); - } else { - info->state = STATE_READY; - complete(&info->cmd_complete); - } + info->state = STATE_DMA_DONE; + enable_int(info, NDCR_INT_MASK); + nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); } static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) { struct pxa3xx_nand_info *info = devid; - unsigned int status; + unsigned int status, is_completed = 0; status = nand_readl(info, NDSR); - if (status & (NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR)) { - if (status & NDSR_DBERR) - info->retcode = ERR_DBERR; - else if (status & NDSR_SBERR) - info->retcode = ERR_SBERR; - - disable_int(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); - - if (info->use_dma) { - info->state = STATE_DMA_READING; - start_data_dma(info, 0); - } else { - info->state = STATE_PIO_READING; - complete(&info->cmd_complete); - } - } else if (status & NDSR_WRDREQ) { - disable_int(info, NDSR_WRDREQ); + if (status & NDSR_DBERR) + info->retcode = ERR_DBERR; + if (status & NDSR_SBERR) + info->retcode = ERR_SBERR; + if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { + /* whether use dma to transfer data */ if (info->use_dma) { - info->state = STATE_DMA_WRITING; - start_data_dma(info, 1); + disable_int(info, NDCR_INT_MASK); + info->state = (status & NDSR_RDDREQ) ? + STATE_DMA_READING : STATE_DMA_WRITING; + start_data_dma(info); + goto NORMAL_IRQ_EXIT; } else { - info->state = STATE_PIO_WRITING; - complete(&info->cmd_complete); + info->state = (status & NDSR_RDDREQ) ? + STATE_PIO_READING : STATE_PIO_WRITING; + handle_data_pio(info); } - } else if (status & (NDSR_CS0_BBD | NDSR_CS0_CMDD)) { - if (status & NDSR_CS0_BBD) - info->retcode = ERR_BBERR; - - disable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); - info->state = STATE_READY; - complete(&info->cmd_complete); } - nand_writel(info, NDSR, status); - return IRQ_HANDLED; -} - -static int pxa3xx_nand_do_cmd(struct pxa3xx_nand_info *info, uint32_t event) -{ - uint32_t ndcr; - int ret, timeout = CHIP_DELAY_TIMEOUT; - - if (write_cmd(info)) { - info->retcode = ERR_SENDCMD; - goto fail_stop; + if (status & NDSR_CS0_CMDD) { + info->state = STATE_CMD_DONE; + is_completed = 1; } - - info->state = STATE_CMD_HANDLE; - - enable_int(info, event); - - ret = wait_for_completion_timeout(&info->cmd_complete, timeout); - if (!ret) { - printk(KERN_ERR "command execution timed out\n"); - info->retcode = ERR_SENDCMD; - goto fail_stop; + if (status & NDSR_FLASH_RDY) { + info->is_ready = 1; + info->state = STATE_READY; } - if (info->use_dma == 0 && info->data_size > 0) - if (handle_data_pio(info)) - goto fail_stop; - - return 0; + if (status & NDSR_WRCMDREQ) { + nand_writel(info, NDSR, NDSR_WRCMDREQ); + status &= ~NDSR_WRCMDREQ; + info->state = STATE_CMD_HANDLE; + nand_writel(info, NDCB0, info->ndcb0); + nand_writel(info, NDCB0, info->ndcb1); + nand_writel(info, NDCB0, info->ndcb2); + } -fail_stop: - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); - udelay(10); - return -ETIMEDOUT; + /* clear NDSR to let the controller exit the IRQ */ + nand_writel(info, NDSR, status); + if (is_completed) + complete(&info->cmd_complete); +NORMAL_IRQ_EXIT: + return IRQ_HANDLED; } static int pxa3xx_nand_dev_ready(struct mtd_info *mtd) @@ -574,125 +477,218 @@ static inline int is_buf_blank(uint8_t *buf, size_t len) return 1; } -static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, - int column, int page_addr) +static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, + uint16_t column, int page_addr) { - struct pxa3xx_nand_info *info = mtd->priv; - const struct pxa3xx_nand_cmdset *cmdset = info->cmdset; - int ret; + uint16_t cmd; + int addr_cycle, exec_cmd, ndcb0; + struct mtd_info *mtd = info->mtd; + + ndcb0 = 0; + addr_cycle = 0; + exec_cmd = 1; + + /* reset data and oob column point to handle data */ + info->buf_start = 0; + info->buf_count = 0; + info->oob_size = 0; + info->use_ecc = 0; + info->is_ready = 0; + info->retcode = ERR_NONE; - info->use_dma = (use_dma) ? 1 : 0; - info->use_ecc = 0; - info->data_size = 0; - info->state = STATE_READY; + switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_PAGEPROG: + info->use_ecc = 1; + case NAND_CMD_READOOB: + pxa3xx_set_datasize(info); + break; + case NAND_CMD_SEQIN: + exec_cmd = 0; + break; + default: + info->ndcb1 = 0; + info->ndcb2 = 0; + break; + } - init_completion(&info->cmd_complete); + info->ndcb0 = ndcb0; + addr_cycle = NDCB0_ADDR_CYC(info->row_addr_cycles + + info->col_addr_cycles); switch (command) { case NAND_CMD_READOOB: - /* disable HW ECC to get all the OOB data */ - info->buf_count = mtd->writesize + mtd->oobsize; - info->buf_start = mtd->writesize + column; - memset(info->data_buff, 0xFF, info->buf_count); + case NAND_CMD_READ0: + cmd = info->cmdset->read1; + if (command == NAND_CMD_READOOB) + info->buf_start = mtd->writesize + column; + else + info->buf_start = column; - if (prepare_read_prog_cmd(info, cmdset->read1, column, page_addr)) - break; + if (unlikely(info->page_size < PAGE_CHUNK_SIZE)) + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | addr_cycle + | (cmd & NDCB0_CMD1_MASK); + else + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | NDCB0_DBC + | addr_cycle + | cmd; - pxa3xx_nand_do_cmd(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); + case NAND_CMD_SEQIN: + /* small page addr setting */ + if (unlikely(info->page_size < PAGE_CHUNK_SIZE)) { + info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) + | (column & 0xFF); - /* We only are OOB, so if the data has error, does not matter */ - if (info->retcode == ERR_DBERR) - info->retcode = ERR_NONE; - break; + info->ndcb2 = 0; + } else { + info->ndcb1 = ((page_addr & 0xFFFF) << 16) + | (column & 0xFFFF); + + if (page_addr & 0xFF0000) + info->ndcb2 = (page_addr & 0xFF0000) >> 16; + else + info->ndcb2 = 0; + } - case NAND_CMD_READ0: - info->use_ecc = 1; - info->retcode = ERR_NONE; - info->buf_start = column; info->buf_count = mtd->writesize + mtd->oobsize; memset(info->data_buff, 0xFF, info->buf_count); - if (prepare_read_prog_cmd(info, cmdset->read1, column, page_addr)) + break; + + case NAND_CMD_PAGEPROG: + if (is_buf_blank(info->data_buff, + (mtd->writesize + mtd->oobsize))) { + exec_cmd = 0; break; + } - pxa3xx_nand_do_cmd(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); + cmd = info->cmdset->program; + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_AUTO_RS + | NDCB0_ST_ROW_EN + | NDCB0_DBC + | cmd + | addr_cycle; + break; - if (info->retcode == ERR_DBERR) { - /* for blank page (all 0xff), HW will calculate its ECC as - * 0, which is different from the ECC information within - * OOB, ignore such double bit errors - */ - if (is_buf_blank(info->data_buff, mtd->writesize)) - info->retcode = ERR_NONE; - } + case NAND_CMD_READID: + cmd = info->cmdset->read_id; + info->buf_count = info->read_id_bytes; + info->ndcb0 |= NDCB0_CMD_TYPE(3) + | NDCB0_ADDR_CYC(1) + | cmd; + + info->data_size = 8; break; - case NAND_CMD_SEQIN: - info->buf_start = column; - info->buf_count = mtd->writesize + mtd->oobsize; - memset(info->data_buff, 0xff, info->buf_count); + case NAND_CMD_STATUS: + cmd = info->cmdset->read_status; + info->buf_count = 1; + info->ndcb0 |= NDCB0_CMD_TYPE(4) + | NDCB0_ADDR_CYC(1) + | cmd; - /* save column/page_addr for next CMD_PAGEPROG */ - info->seqin_column = column; - info->seqin_page_addr = page_addr; + info->data_size = 8; break; - case NAND_CMD_PAGEPROG: - info->use_ecc = (info->seqin_column >= mtd->writesize) ? 0 : 1; - if (prepare_read_prog_cmd(info, cmdset->program, - info->seqin_column, info->seqin_page_addr)) - break; + case NAND_CMD_ERASE1: + cmd = info->cmdset->erase; + info->ndcb0 |= NDCB0_CMD_TYPE(2) + | NDCB0_AUTO_RS + | NDCB0_ADDR_CYC(3) + | NDCB0_DBC + | cmd; + info->ndcb1 = page_addr; + info->ndcb2 = 0; - pxa3xx_nand_do_cmd(info, NDSR_WRDREQ); break; - case NAND_CMD_ERASE1: - if (prepare_erase_cmd(info, cmdset->erase, page_addr)) - break; + case NAND_CMD_RESET: + cmd = info->cmdset->reset; + info->ndcb0 |= NDCB0_CMD_TYPE(5) + | cmd; - pxa3xx_nand_do_cmd(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); break; + case NAND_CMD_ERASE2: + exec_cmd = 0; break; - case NAND_CMD_READID: - case NAND_CMD_STATUS: - info->use_dma = 0; /* force PIO read */ - info->buf_start = 0; - info->buf_count = (command == NAND_CMD_READID) ? - info->read_id_bytes : 1; - - if (prepare_other_cmd(info, (command == NAND_CMD_READID) ? - cmdset->read_id : cmdset->read_status)) - break; - pxa3xx_nand_do_cmd(info, NDSR_RDDREQ); + default: + exec_cmd = 0; + printk(KERN_ERR "pxa3xx-nand: non-supported" + " command %x\n", command); break; - case NAND_CMD_RESET: - if (prepare_other_cmd(info, cmdset->reset)) - break; + } - ret = pxa3xx_nand_do_cmd(info, NDSR_CS0_CMDD); - if (ret == 0) { - int timeout = 2; - uint32_t ndcr; + return exec_cmd; +} - while (timeout--) { - if (nand_readl(info, NDSR) & NDSR_RDY) - break; - msleep(10); - } +static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct pxa3xx_nand_info *info = mtd->priv; + int ret, exec_cmd; - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); + /* + * if this is a x16 device ,then convert the input + * "byte" address into a "word" address appropriate + * for indexing a word-oriented device + */ + if (info->reg_ndcr & NDCR_DWIDTH_M) + column /= 2; + + exec_cmd = prepare_command_pool(info, command, column, page_addr); + if (exec_cmd) { + init_completion(&info->cmd_complete); + pxa3xx_nand_start(info); + + ret = wait_for_completion_timeout(&info->cmd_complete, + CHIP_DELAY_TIMEOUT); + if (!ret) { + printk(KERN_ERR "Wait time out!!!\n"); + /* Stop State Machine for next command cycle */ + pxa3xx_nand_stop(info); } - break; - default: - printk(KERN_ERR "non-supported command.\n"); - break; + info->state = STATE_IDLE; } +} + +static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf) +{ + chip->write_buf(mtd, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); +} - if (info->retcode == ERR_DBERR) { - printk(KERN_ERR "double bit error @ page %08x\n", page_addr); - info->retcode = ERR_NONE; +static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int page) +{ + struct pxa3xx_nand_info *info = mtd->priv; + + chip->read_buf(mtd, buf, mtd->writesize); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (info->retcode == ERR_SBERR) { + switch (info->use_ecc) { + case 1: + mtd->ecc_stats.corrected++; + break; + case 0: + default: + break; + } + } else if (info->retcode == ERR_DBERR) { + /* + * for blank page (all 0xff), HW will calculate its ECC as + * 0, which is different from the ECC information within + * OOB, ignore such double bit errors + */ + if (is_buf_blank(buf, mtd->writesize)) + mtd->ecc_stats.failed++; } + + return 0; } static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) @@ -769,73 +765,12 @@ static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) return 0; } -static void pxa3xx_nand_ecc_hwctl(struct mtd_info *mtd, int mode) -{ - return; -} - -static int pxa3xx_nand_ecc_calculate(struct mtd_info *mtd, - const uint8_t *dat, uint8_t *ecc_code) -{ - return 0; -} - -static int pxa3xx_nand_ecc_correct(struct mtd_info *mtd, - uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) -{ - struct pxa3xx_nand_info *info = mtd->priv; - /* - * Any error include ERR_SEND_CMD, ERR_DBERR, ERR_BUSERR, we - * consider it as a ecc error which will tell the caller the - * read fail We have distinguish all the errors, but the - * nand_read_ecc only check this function return value - * - * Corrected (single-bit) errors must also be noted. - */ - if (info->retcode == ERR_SBERR) - return 1; - else if (info->retcode != ERR_NONE) - return -1; - - return 0; -} - -static int __readid(struct pxa3xx_nand_info *info, uint32_t *id) -{ - const struct pxa3xx_nand_cmdset *cmdset = info->cmdset; - uint32_t ndcr; - uint8_t id_buff[8]; - - if (prepare_other_cmd(info, cmdset->read_id)) { - printk(KERN_ERR "failed to prepare command\n"); - return -EINVAL; - } - - /* Send command */ - if (write_cmd(info)) - goto fail_timeout; - - /* Wait for CMDDM(command done successfully) */ - if (wait_for_event(info, NDSR_RDDREQ)) - goto fail_timeout; - - __raw_readsl(info->mmio_base + NDDB, id_buff, 2); - *id = id_buff[0] | (id_buff[1] << 8); - return 0; - -fail_timeout: - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); - udelay(10); - return -ETIMEDOUT; -} - static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_flash *f) { struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; - uint32_t ndcr = 0x00000FFF; /* disable all interrupts */ + uint32_t ndcr = 0x0; /* enable all interrupts */ if (f->page_size != 2048 && f->page_size != 512) return -EINVAL; @@ -844,9 +779,8 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, return -EINVAL; /* calculate flash information */ - info->cmdset = f->cmdset; + info->cmdset = &default_cmdset; info->page_size = f->page_size; - info->oob_buff = info->data_buff + f->page_size; info->read_id_bytes = (f->page_size == 2048) ? 4 : 2; /* calculate addressing information */ @@ -876,87 +810,18 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) { uint32_t ndcr = nand_readl(info, NDCR); - struct nand_flash_dev *type = NULL; - uint32_t id = -1, page_per_block, num_blocks; - int i; - - page_per_block = ndcr & NDCR_PG_PER_BLK ? 64 : 32; info->page_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; - /* set info fields needed to __readid */ + /* set info fields needed to read id */ info->read_id_bytes = (info->page_size == 2048) ? 4 : 2; info->reg_ndcr = ndcr; info->cmdset = &default_cmdset; - if (__readid(info, &id)) - return -ENODEV; - - /* Lookup the flash id */ - id = (id >> 8) & 0xff; /* device id is byte 2 */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (id == nand_flash_ids[i].id) { - type = &nand_flash_ids[i]; - break; - } - } - - if (!type) - return -ENODEV; - - /* fill the missing flash information */ - i = __ffs(page_per_block * info->page_size); - num_blocks = type->chipsize << (20 - i); - - /* calculate addressing information */ - info->col_addr_cycles = (info->page_size == 2048) ? 2 : 1; - - if (num_blocks * page_per_block > 65536) - info->row_addr_cycles = 3; - else - info->row_addr_cycles = 2; - info->ndtr0cs0 = nand_readl(info, NDTR0CS0); info->ndtr1cs0 = nand_readl(info, NDTR1CS0); return 0; } -static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info, - const struct pxa3xx_nand_platform_data *pdata) -{ - const struct pxa3xx_nand_flash *f; - uint32_t id = -1; - int i; - - if (pdata->keep_config) - if (pxa3xx_nand_detect_config(info) == 0) - return 0; - - /* we use default timing to detect id */ - f = DEFAULT_FLASH_TYPE; - pxa3xx_nand_config_flash(info, f); - if (__readid(info, &id)) - goto fail_detect; - - for (i=0; i<ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1; i++) { - /* we first choose the flash definition from platfrom */ - if (i < pdata->num_flash) - f = pdata->flash + i; - else - f = &builtin_flash_types[i - pdata->num_flash + 1]; - if (f->chip_id == id) { - dev_info(&info->pdev->dev, "detect chip id: 0x%x\n", id); - pxa3xx_nand_config_flash(info, f); - return 0; - } - } - - dev_warn(&info->pdev->dev, - "failed to detect configured nand flash; found %04x instead of\n", - id); -fail_detect: - return -ENODEV; -} - /* the maximum possible buffer size for large page with OOB data * is: 2048 + 64 = 2112 bytes, allocate a page here for both the * data buffer and the DMA descriptor @@ -998,82 +863,144 @@ static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) return 0; } -static struct nand_ecclayout hw_smallpage_ecclayout = { - .eccbytes = 6, - .eccpos = {8, 9, 10, 11, 12, 13 }, - .oobfree = { {2, 6} } -}; +static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info) +{ + struct mtd_info *mtd = info->mtd; + struct nand_chip *chip = mtd->priv; -static struct nand_ecclayout hw_largepage_ecclayout = { - .eccbytes = 24, - .eccpos = { - 40, 41, 42, 43, 44, 45, 46, 47, - 48, 49, 50, 51, 52, 53, 54, 55, - 56, 57, 58, 59, 60, 61, 62, 63}, - .oobfree = { {2, 38} } -}; + /* use the common timing to make a try */ + pxa3xx_nand_config_flash(info, &builtin_flash_types[0]); + chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0); + if (info->is_ready) + return 1; + else + return 0; +} -static void pxa3xx_nand_init_mtd(struct mtd_info *mtd, - struct pxa3xx_nand_info *info) +static int pxa3xx_nand_scan(struct mtd_info *mtd) { - struct nand_chip *this = &info->nand_chip; - - this->options = (info->reg_ndcr & NDCR_DWIDTH_C) ? NAND_BUSWIDTH_16: 0; - - this->waitfunc = pxa3xx_nand_waitfunc; - this->select_chip = pxa3xx_nand_select_chip; - this->dev_ready = pxa3xx_nand_dev_ready; - this->cmdfunc = pxa3xx_nand_cmdfunc; - this->read_word = pxa3xx_nand_read_word; - this->read_byte = pxa3xx_nand_read_byte; - this->read_buf = pxa3xx_nand_read_buf; - this->write_buf = pxa3xx_nand_write_buf; - this->verify_buf = pxa3xx_nand_verify_buf; - - this->ecc.mode = NAND_ECC_HW; - this->ecc.hwctl = pxa3xx_nand_ecc_hwctl; - this->ecc.calculate = pxa3xx_nand_ecc_calculate; - this->ecc.correct = pxa3xx_nand_ecc_correct; - this->ecc.size = info->page_size; - - if (info->page_size == 2048) - this->ecc.layout = &hw_largepage_ecclayout; + struct pxa3xx_nand_info *info = mtd->priv; + struct platform_device *pdev = info->pdev; + struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; + struct nand_flash_dev pxa3xx_flash_ids[2] = { {NULL,}, {NULL,} }; + const struct pxa3xx_nand_flash *f = NULL; + struct nand_chip *chip = mtd->priv; + uint32_t id = -1; + uint64_t chipsize; + int i, ret, num; + + if (pdata->keep_config && !pxa3xx_nand_detect_config(info)) + goto KEEP_CONFIG; + + ret = pxa3xx_nand_sensing(info); + if (!ret) { + kfree(mtd); + info->mtd = NULL; + printk(KERN_INFO "There is no nand chip on cs 0!\n"); + + return -EINVAL; + } + + chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0); + id = *((uint16_t *)(info->data_buff)); + if (id != 0) + printk(KERN_INFO "Detect a flash id %x\n", id); + else { + kfree(mtd); + info->mtd = NULL; + printk(KERN_WARNING "Read out ID 0, potential timing set wrong!!\n"); + + return -EINVAL; + } + + num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1; + for (i = 0; i < num; i++) { + if (i < pdata->num_flash) + f = pdata->flash + i; + else + f = &builtin_flash_types[i - pdata->num_flash + 1]; + + /* find the chip in default list */ + if (f->chip_id == id) + break; + } + + if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) { + kfree(mtd); + info->mtd = NULL; + printk(KERN_ERR "ERROR!! flash not defined!!!\n"); + + return -EINVAL; + } + + pxa3xx_nand_config_flash(info, f); + pxa3xx_flash_ids[0].name = f->name; + pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff; + pxa3xx_flash_ids[0].pagesize = f->page_size; + chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size; + pxa3xx_flash_ids[0].chipsize = chipsize >> 20; + pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block; + if (f->flash_width == 16) + pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16; +KEEP_CONFIG: + if (nand_scan_ident(mtd, 1, pxa3xx_flash_ids)) + return -ENODEV; + /* calculate addressing information */ + info->col_addr_cycles = (mtd->writesize >= 2048) ? 2 : 1; + info->oob_buff = info->data_buff + mtd->writesize; + if ((mtd->size >> chip->page_shift) > 65536) + info->row_addr_cycles = 3; else - this->ecc.layout = &hw_smallpage_ecclayout; + info->row_addr_cycles = 2; + mtd->name = mtd_names[0]; + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = f->page_size; + + chip->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16 : 0; + chip->options |= NAND_NO_AUTOINCR; + chip->options |= NAND_NO_READRDY; - this->chip_delay = 25; + return nand_scan_tail(mtd); } -static int pxa3xx_nand_probe(struct platform_device *pdev) +static +struct pxa3xx_nand_info *alloc_nand_resource(struct platform_device *pdev) { - struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; - struct nand_chip *this; + struct nand_chip *chip; struct mtd_info *mtd; struct resource *r; - int ret = 0, irq; - - pdata = pdev->dev.platform_data; - - if (!pdata) { - dev_err(&pdev->dev, "no platform data defined\n"); - return -ENODEV; - } + int ret, irq; mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct pxa3xx_nand_info), GFP_KERNEL); if (!mtd) { dev_err(&pdev->dev, "failed to allocate memory\n"); - return -ENOMEM; + return NULL; } info = (struct pxa3xx_nand_info *)(&mtd[1]); + chip = (struct nand_chip *)(&mtd[1]); info->pdev = pdev; - - this = &info->nand_chip; + info->mtd = mtd; mtd->priv = info; mtd->owner = THIS_MODULE; + chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; + chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; + chip->controller = &info->controller; + chip->waitfunc = pxa3xx_nand_waitfunc; + chip->select_chip = pxa3xx_nand_select_chip; + chip->dev_ready = pxa3xx_nand_dev_ready; + chip->cmdfunc = pxa3xx_nand_cmdfunc; + chip->read_word = pxa3xx_nand_read_word; + chip->read_byte = pxa3xx_nand_read_byte; + chip->read_buf = pxa3xx_nand_read_buf; + chip->write_buf = pxa3xx_nand_write_buf; + chip->verify_buf = pxa3xx_nand_verify_buf; + + spin_lock_init(&chip->controller->lock); + init_waitqueue_head(&chip->controller->wq); info->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get nand clock\n"); @@ -1141,43 +1068,12 @@ static int pxa3xx_nand_probe(struct platform_device *pdev) goto fail_free_buf; } - ret = pxa3xx_nand_detect_flash(info, pdata); - if (ret) { - dev_err(&pdev->dev, "failed to detect flash\n"); - ret = -ENODEV; - goto fail_free_irq; - } - - pxa3xx_nand_init_mtd(mtd, info); - - platform_set_drvdata(pdev, mtd); - - if (nand_scan(mtd, 1)) { - dev_err(&pdev->dev, "failed to scan nand\n"); - ret = -ENXIO; - goto fail_free_irq; - } - -#ifdef CONFIG_MTD_PARTITIONS - if (mtd_has_cmdlinepart()) { - static const char *probes[] = { "cmdlinepart", NULL }; - struct mtd_partition *parts; - int nr_parts; - - nr_parts = parse_mtd_partitions(mtd, probes, &parts, 0); - - if (nr_parts) - return add_mtd_partitions(mtd, parts, nr_parts); - } + platform_set_drvdata(pdev, info); - return add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts); -#else - return 0; -#endif + return info; -fail_free_irq: - free_irq(irq, info); fail_free_buf: + free_irq(irq, info); if (use_dma) { pxa_free_dma(info->data_dma_ch); dma_free_coherent(&pdev->dev, info->data_buff_size, @@ -1193,22 +1089,18 @@ fail_put_clk: clk_put(info->clk); fail_free_mtd: kfree(mtd); - return ret; + return NULL; } static int pxa3xx_nand_remove(struct platform_device *pdev) { - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); + struct mtd_info *mtd = info->mtd; struct resource *r; int irq; platform_set_drvdata(pdev, NULL); - del_mtd_device(mtd); -#ifdef CONFIG_MTD_PARTITIONS - del_mtd_partitions(mtd); -#endif irq = platform_get_irq(pdev, 0); if (irq >= 0) free_irq(irq, info); @@ -1226,17 +1118,62 @@ static int pxa3xx_nand_remove(struct platform_device *pdev) clk_disable(info->clk); clk_put(info->clk); - kfree(mtd); + if (mtd) { + del_mtd_device(mtd); +#ifdef CONFIG_MTD_PARTITIONS + del_mtd_partitions(mtd); +#endif + kfree(mtd); + } return 0; } +static int pxa3xx_nand_probe(struct platform_device *pdev) +{ + struct pxa3xx_nand_platform_data *pdata; + struct pxa3xx_nand_info *info; + + pdata = pdev->dev.platform_data; + if (!pdata) { + dev_err(&pdev->dev, "no platform data defined\n"); + return -ENODEV; + } + + info = alloc_nand_resource(pdev); + if (info == NULL) + return -ENOMEM; + + if (pxa3xx_nand_scan(info->mtd)) { + dev_err(&pdev->dev, "failed to scan nand\n"); + pxa3xx_nand_remove(pdev); + return -ENODEV; + } + +#ifdef CONFIG_MTD_PARTITIONS + if (mtd_has_cmdlinepart()) { + const char *probes[] = { "cmdlinepart", NULL }; + struct mtd_partition *parts; + int nr_parts; + + nr_parts = parse_mtd_partitions(info->mtd, probes, &parts, 0); + + if (nr_parts) + return add_mtd_partitions(info->mtd, parts, nr_parts); + } + + return add_mtd_partitions(info->mtd, pdata->parts, pdata->nr_parts); +#else + return 0; +#endif +} + #ifdef CONFIG_PM static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state) { - struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(pdev); - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); + struct mtd_info *mtd = info->mtd; - if (info->state != STATE_READY) { + if (info->state) { dev_err(&pdev->dev, "driver busy, state = %d\n", info->state); return -EAGAIN; } @@ -1246,8 +1183,8 @@ static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state) static int pxa3xx_nand_resume(struct platform_device *pdev) { - struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(pdev); - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); + struct mtd_info *mtd = info->mtd; nand_writel(info, NDTR0CS0, info->ndtr0cs0); nand_writel(info, NDTR1CS0, info->ndtr1cs0); diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c index 14a49ab..f591f61 100644 --- a/drivers/mtd/onenand/omap2.c +++ b/drivers/mtd/onenand/omap2.c @@ -629,6 +629,7 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) { struct omap_onenand_platform_data *pdata; struct omap2_onenand *c; + struct onenand_chip *this; int r; pdata = pdev->dev.platform_data; @@ -726,9 +727,8 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) c->mtd.dev.parent = &pdev->dev; + this = &c->onenand; if (c->dma_channel >= 0) { - struct onenand_chip *this = &c->onenand; - this->wait = omap2_onenand_wait; if (cpu_is_omap34xx()) { this->read_bufferram = omap3_onenand_read_bufferram; @@ -749,6 +749,9 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) c->onenand.disable = omap2_onenand_disable; } + if (pdata->skip_initial_unlocking) + this->options |= ONENAND_SKIP_INITIAL_UNLOCKING; + if ((r = onenand_scan(&c->mtd, 1)) < 0) goto err_release_regulator; diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c index bac41ca..56a8b20 100644 --- a/drivers/mtd/onenand/onenand_base.c +++ b/drivers/mtd/onenand/onenand_base.c @@ -1132,6 +1132,8 @@ static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, onenand_update_bufferram(mtd, from, !ret); if (ret == -EBADMSG) ret = 0; + if (ret) + break; } this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); @@ -1646,11 +1648,10 @@ static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, int ret = 0; int thislen, column; + column = addr & (this->writesize - 1); + while (len != 0) { - thislen = min_t(int, this->writesize, len); - column = addr & (this->writesize - 1); - if (column + thislen > this->writesize) - thislen = this->writesize - column; + thislen = min_t(int, this->writesize - column, len); this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); @@ -1664,12 +1665,13 @@ static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); - if (memcmp(buf, this->verify_buf, thislen)) + if (memcmp(buf, this->verify_buf + column, thislen)) return -EBADMSG; len -= thislen; buf += thislen; addr += thislen; + column = 0; } return 0; @@ -4083,7 +4085,8 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) mtd->writebufsize = mtd->writesize; /* Unlock whole block */ - this->unlock_all(mtd); + if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) + this->unlock_all(mtd); ret = this->scan_bbt(mtd); if ((!FLEXONENAND(this)) || ret) diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c index ac0d6a8..2b0daae 100644 --- a/drivers/mtd/sm_ftl.c +++ b/drivers/mtd/sm_ftl.c @@ -64,12 +64,16 @@ struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) SM_SMALL_PAGE - SM_CIS_VENDOR_OFFSET); char *vendor = kmalloc(vendor_len, GFP_KERNEL); + if (!vendor) + goto error1; memcpy(vendor, ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, vendor_len); vendor[vendor_len] = 0; /* Initialize sysfs attributes */ vendor_attribute = kzalloc(sizeof(struct sm_sysfs_attribute), GFP_KERNEL); + if (!vendor_attribute) + goto error2; sysfs_attr_init(&vendor_attribute->dev_attr.attr); @@ -83,12 +87,24 @@ struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) /* Create array of pointers to the attributes */ attributes = kzalloc(sizeof(struct attribute *) * (NUM_ATTRIBUTES + 1), GFP_KERNEL); + if (!attributes) + goto error3; attributes[0] = &vendor_attribute->dev_attr.attr; /* Finally create the attribute group */ attr_group = kzalloc(sizeof(struct attribute_group), GFP_KERNEL); + if (!attr_group) + goto error4; attr_group->attrs = attributes; return attr_group; +error4: + kfree(attributes); +error3: + kfree(vendor_attribute); +error2: + kfree(vendor); +error1: + return NULL; } void sm_delete_sysfs_attributes(struct sm_ftl *ftl) @@ -1178,6 +1194,8 @@ static void sm_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) } ftl->disk_attributes = sm_create_sysfs_attributes(ftl); + if (!ftl->disk_attributes) + goto error6; trans->disk_attributes = ftl->disk_attributes; sm_printk("Found %d MiB xD/SmartMedia FTL on mtd%d", diff --git a/drivers/mtd/tests/mtd_speedtest.c b/drivers/mtd/tests/mtd_speedtest.c index 161feeb..627d4e2 100644 --- a/drivers/mtd/tests/mtd_speedtest.c +++ b/drivers/mtd/tests/mtd_speedtest.c @@ -16,7 +16,7 @@ * * Test read and write speed of a MTD device. * - * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + * Author: Adrian Hunter <adrian.hunter@nokia.com> */ #include <linux/init.h> @@ -33,6 +33,11 @@ static int dev; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); +static int count; +module_param(count, int, S_IRUGO); +MODULE_PARM_DESC(count, "Maximum number of eraseblocks to use " + "(0 means use all)"); + static struct mtd_info *mtd; static unsigned char *iobuf; static unsigned char *bbt; @@ -89,6 +94,33 @@ static int erase_eraseblock(int ebnum) return 0; } +static int multiblock_erase(int ebnum, int blocks) +{ + int err; + struct erase_info ei; + loff_t addr = ebnum * mtd->erasesize; + + memset(&ei, 0, sizeof(struct erase_info)); + ei.mtd = mtd; + ei.addr = addr; + ei.len = mtd->erasesize * blocks; + + err = mtd->erase(mtd, &ei); + if (err) { + printk(PRINT_PREF "error %d while erasing EB %d, blocks %d\n", + err, ebnum, blocks); + return err; + } + + if (ei.state == MTD_ERASE_FAILED) { + printk(PRINT_PREF "some erase error occurred at EB %d," + "blocks %d\n", ebnum, blocks); + return -EIO; + } + + return 0; +} + static int erase_whole_device(void) { int err; @@ -282,13 +314,16 @@ static inline void stop_timing(void) static long calc_speed(void) { - long ms, k, speed; + uint64_t k; + long ms; ms = (finish.tv_sec - start.tv_sec) * 1000 + (finish.tv_usec - start.tv_usec) / 1000; - k = goodebcnt * mtd->erasesize / 1024; - speed = (k * 1000) / ms; - return speed; + if (ms == 0) + return 0; + k = goodebcnt * (mtd->erasesize / 1024) * 1000; + do_div(k, ms); + return k; } static int scan_for_bad_eraseblocks(void) @@ -320,13 +355,16 @@ out: static int __init mtd_speedtest_init(void) { - int err, i; + int err, i, blocks, j, k; long speed; uint64_t tmp; printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); + if (count) + printk(PRINT_PREF "MTD device: %d count: %d\n", dev, count); + else + printk(PRINT_PREF "MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { @@ -353,6 +391,9 @@ static int __init mtd_speedtest_init(void) (unsigned long long)mtd->size, mtd->erasesize, pgsize, ebcnt, pgcnt, mtd->oobsize); + if (count > 0 && count < ebcnt) + ebcnt = count; + err = -ENOMEM; iobuf = kmalloc(mtd->erasesize, GFP_KERNEL); if (!iobuf) { @@ -484,6 +525,31 @@ static int __init mtd_speedtest_init(void) speed = calc_speed(); printk(PRINT_PREF "erase speed is %ld KiB/s\n", speed); + /* Multi-block erase all eraseblocks */ + for (k = 1; k < 7; k++) { + blocks = 1 << k; + printk(PRINT_PREF "Testing %dx multi-block erase speed\n", + blocks); + start_timing(); + for (i = 0; i < ebcnt; ) { + for (j = 0; j < blocks && (i + j) < ebcnt; j++) + if (bbt[i + j]) + break; + if (j < 1) { + i++; + continue; + } + err = multiblock_erase(i, j); + if (err) + goto out; + cond_resched(); + i += j; + } + stop_timing(); + speed = calc_speed(); + printk(PRINT_PREF "%dx multi-block erase speed is %ld KiB/s\n", + blocks, speed); + } printk(PRINT_PREF "finished\n"); out: kfree(iobuf); diff --git a/drivers/mtd/tests/mtd_subpagetest.c b/drivers/mtd/tests/mtd_subpagetest.c index 11204e8..334eae5 100644 --- a/drivers/mtd/tests/mtd_subpagetest.c +++ b/drivers/mtd/tests/mtd_subpagetest.c @@ -394,6 +394,11 @@ static int __init mtd_subpagetest_init(void) } subpgsize = mtd->writesize >> mtd->subpage_sft; + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / mtd->writesize; + printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " "page size %u, subpage size %u, count of eraseblocks %u, " "pages per eraseblock %u, OOB size %u\n", @@ -413,11 +418,6 @@ static int __init mtd_subpagetest_init(void) goto out; } - tmp = mtd->size; - do_div(tmp, mtd->erasesize); - ebcnt = tmp; - pgcnt = mtd->erasesize / mtd->writesize; - err = scan_for_bad_eraseblocks(); if (err) goto out; diff --git a/fs/jffs2/xattr.c b/fs/jffs2/xattr.c index 4f9cc04..3e93cdd 100644 --- a/fs/jffs2/xattr.c +++ b/fs/jffs2/xattr.c @@ -31,7 +31,7 @@ * is used to release xattr name/value pair and detach from c->xattrindex. * reclaim_xattr_datum(c) * is used to reclaim xattr name/value pairs on the xattr name/value pair cache when - * memory usage by cache is over c->xdatum_mem_threshold. Currently, this threshold + * memory usage by cache is over c->xdatum_mem_threshold. Currently, this threshold * is hard coded as 32KiB. * do_verify_xattr_datum(c, xd) * is used to load the xdatum informations without name/value pair from the medium. diff --git a/include/linux/bch.h b/include/linux/bch.h new file mode 100644 index 0000000..295b4ef --- /dev/null +++ b/include/linux/bch.h @@ -0,0 +1,79 @@ +/* + * Generic binary BCH encoding/decoding library + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Copyright © 2011 Parrot S.A. + * + * Author: Ivan Djelic <ivan.djelic@parrot.com> + * + * Description: + * + * This library provides runtime configurable encoding/decoding of binary + * Bose-Chaudhuri-Hocquenghem (BCH) codes. +*/ +#ifndef _BCH_H +#define _BCH_H + +#include <linux/types.h> + +/** + * struct bch_control - BCH control structure + * @m: Galois field order + * @n: maximum codeword size in bits (= 2^m-1) + * @t: error correction capability in bits + * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t) + * @ecc_bytes: ecc max size (m*t bits) in bytes + * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table + * @a_log_tab: Galois field GF(2^m) log lookup table + * @mod8_tab: remainder generator polynomial lookup tables + * @ecc_buf: ecc parity words buffer + * @ecc_buf2: ecc parity words buffer + * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots + * @syn: syndrome buffer + * @cache: log-based polynomial representation buffer + * @elp: error locator polynomial + * @poly_2t: temporary polynomials of degree 2t + */ +struct bch_control { + unsigned int m; + unsigned int n; + unsigned int t; + unsigned int ecc_bits; + unsigned int ecc_bytes; +/* private: */ + uint16_t *a_pow_tab; + uint16_t *a_log_tab; + uint32_t *mod8_tab; + uint32_t *ecc_buf; + uint32_t *ecc_buf2; + unsigned int *xi_tab; + unsigned int *syn; + int *cache; + struct gf_poly *elp; + struct gf_poly *poly_2t[4]; +}; + +struct bch_control *init_bch(int m, int t, unsigned int prim_poly); + +void free_bch(struct bch_control *bch); + +void encode_bch(struct bch_control *bch, const uint8_t *data, + unsigned int len, uint8_t *ecc); + +int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, + const uint8_t *recv_ecc, const uint8_t *calc_ecc, + const unsigned int *syn, unsigned int *errloc); + +#endif /* _BCH_H */ diff --git a/include/linux/mtd/blktrans.h b/include/linux/mtd/blktrans.h index 26529eb..1bbd9f2 100644 --- a/include/linux/mtd/blktrans.h +++ b/include/linux/mtd/blktrans.h @@ -36,6 +36,7 @@ struct mtd_blktrans_dev { struct mtd_info *mtd; struct mutex lock; int devnum; + bool bg_stop; unsigned long size; int readonly; int open; @@ -62,6 +63,7 @@ struct mtd_blktrans_ops { unsigned long block, char *buffer); int (*discard)(struct mtd_blktrans_dev *dev, unsigned long block, unsigned nr_blocks); + void (*background)(struct mtd_blktrans_dev *dev); /* Block layer ioctls */ int (*getgeo)(struct mtd_blktrans_dev *dev, struct hd_geometry *geo); @@ -85,6 +87,7 @@ extern int register_mtd_blktrans(struct mtd_blktrans_ops *tr); extern int deregister_mtd_blktrans(struct mtd_blktrans_ops *tr); extern int add_mtd_blktrans_dev(struct mtd_blktrans_dev *dev); extern int del_mtd_blktrans_dev(struct mtd_blktrans_dev *dev); +extern int mtd_blktrans_cease_background(struct mtd_blktrans_dev *dev); #endif /* __MTD_TRANS_H__ */ diff --git a/include/linux/mtd/cfi.h b/include/linux/mtd/cfi.h index a9baee6..0d823f2 100644 --- a/include/linux/mtd/cfi.h +++ b/include/linux/mtd/cfi.h @@ -535,6 +535,7 @@ struct cfi_fixup { #define CFI_MFR_CONTINUATION 0x007F #define CFI_MFR_AMD 0x0001 +#define CFI_MFR_AMIC 0x0037 #define CFI_MFR_ATMEL 0x001F #define CFI_MFR_EON 0x001C #define CFI_MFR_FUJITSU 0x0004 diff --git a/include/linux/mtd/latch-addr-flash.h b/include/linux/mtd/latch-addr-flash.h new file mode 100644 index 0000000..e94b8e1 --- /dev/null +++ b/include/linux/mtd/latch-addr-flash.h @@ -0,0 +1,29 @@ +/* + * Interface for NOR flash driver whose high address lines are latched + * + * Copyright © 2008 MontaVista Software, Inc. <source@mvista.com> + * + * This file is licensed under the terms of the GNU General Public License + * version 2. This program is licensed "as is" without any warranty of any + * kind, whether express or implied. + */ +#ifndef __LATCH_ADDR_FLASH__ +#define __LATCH_ADDR_FLASH__ + +struct map_info; +struct mtd_partition; + +struct latch_addr_flash_data { + unsigned int width; + unsigned int size; + + int (*init)(void *data, int cs); + void (*done)(void *data); + void (*set_window)(unsigned long offset, void *data); + void *data; + + unsigned int nr_parts; + struct mtd_partition *parts; +}; + +#endif diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h index 1f489b2..ae67ef5 100644 --- a/include/linux/mtd/nand.h +++ b/include/linux/mtd/nand.h @@ -140,6 +140,7 @@ typedef enum { NAND_ECC_HW, NAND_ECC_HW_SYNDROME, NAND_ECC_HW_OOB_FIRST, + NAND_ECC_SOFT_BCH, } nand_ecc_modes_t; /* @@ -339,6 +340,7 @@ struct nand_hw_control { * @prepad: padding information for syndrome based ecc generators * @postpad: padding information for syndrome based ecc generators * @layout: ECC layout control struct pointer + * @priv: pointer to private ecc control data * @hwctl: function to control hardware ecc generator. Must only * be provided if an hardware ECC is available * @calculate: function for ecc calculation or readback from ecc hardware @@ -362,6 +364,7 @@ struct nand_ecc_ctrl { int prepad; int postpad; struct nand_ecclayout *layout; + void *priv; void (*hwctl)(struct mtd_info *mtd, int mode); int (*calculate)(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code); diff --git a/include/linux/mtd/nand_bch.h b/include/linux/mtd/nand_bch.h new file mode 100644 index 0000000..74acf53 --- /dev/null +++ b/include/linux/mtd/nand_bch.h @@ -0,0 +1,72 @@ +/* + * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This file is the header for the NAND BCH ECC implementation. + */ + +#ifndef __MTD_NAND_BCH_H__ +#define __MTD_NAND_BCH_H__ + +struct mtd_info; +struct nand_bch_control; + +#if defined(CONFIG_MTD_NAND_ECC_BCH) + +static inline int mtd_nand_has_bch(void) { return 1; } + +/* + * Calculate BCH ecc code + */ +int nand_bch_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code); + +/* + * Detect and correct bit errors + */ +int nand_bch_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, + u_char *calc_ecc); +/* + * Initialize BCH encoder/decoder + */ +struct nand_bch_control * +nand_bch_init(struct mtd_info *mtd, unsigned int eccsize, + unsigned int eccbytes, struct nand_ecclayout **ecclayout); +/* + * Release BCH encoder/decoder resources + */ +void nand_bch_free(struct nand_bch_control *nbc); + +#else /* !CONFIG_MTD_NAND_ECC_BCH */ + +static inline int mtd_nand_has_bch(void) { return 0; } + +static inline int +nand_bch_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + return -1; +} + +static inline int +nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + return -1; +} + +static inline struct nand_bch_control * +nand_bch_init(struct mtd_info *mtd, unsigned int eccsize, + unsigned int eccbytes, struct nand_ecclayout **ecclayout) +{ + return NULL; +} + +static inline void nand_bch_free(struct nand_bch_control *nbc) {} + +#endif /* CONFIG_MTD_NAND_ECC_BCH */ + +#endif /* __MTD_NAND_BCH_H__ */ diff --git a/include/linux/mtd/onenand.h b/include/linux/mtd/onenand.h index ae418e4..52b6f18 100644 --- a/include/linux/mtd/onenand.h +++ b/include/linux/mtd/onenand.h @@ -198,6 +198,7 @@ struct onenand_chip { #define ONENAND_SKIP_UNLOCK_CHECK (0x0100) #define ONENAND_PAGEBUF_ALLOC (0x1000) #define ONENAND_OOBBUF_ALLOC (0x2000) +#define ONENAND_SKIP_INITIAL_UNLOCKING (0x4000) #define ONENAND_IS_4KB_PAGE(this) \ (this->options & ONENAND_HAS_4KB_PAGE) diff --git a/lib/Kconfig b/lib/Kconfig index 23fa7a3..9c10e38 100644 --- a/lib/Kconfig +++ b/lib/Kconfig @@ -158,6 +158,45 @@ config REED_SOLOMON_DEC16 boolean # +# BCH support is selected if needed +# +config BCH + tristate + +config BCH_CONST_PARAMS + boolean + help + Drivers may select this option to force specific constant + values for parameters 'm' (Galois field order) and 't' + (error correction capability). Those specific values must + be set by declaring default values for symbols BCH_CONST_M + and BCH_CONST_T. + Doing so will enable extra compiler optimizations, + improving encoding and decoding performance up to 2x for + usual (m,t) values (typically such that m*t < 200). + When this option is selected, the BCH library supports + only a single (m,t) configuration. This is mainly useful + for NAND flash board drivers requiring known, fixed BCH + parameters. + +config BCH_CONST_M + int + range 5 15 + help + Constant value for Galois field order 'm'. If 'k' is the + number of data bits to protect, 'm' should be chosen such + that (k + m*t) <= 2**m - 1. + Drivers should declare a default value for this symbol if + they select option BCH_CONST_PARAMS. + +config BCH_CONST_T + int + help + Constant value for error correction capability in bits 't'. + Drivers should declare a default value for this symbol if + they select option BCH_CONST_PARAMS. + +# # Textsearch support is select'ed if needed # config TEXTSEARCH diff --git a/lib/Makefile b/lib/Makefile index d7872b5..ef0f285 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -69,6 +69,7 @@ obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o obj-$(CONFIG_ZLIB_INFLATE) += zlib_inflate/ obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate/ obj-$(CONFIG_REED_SOLOMON) += reed_solomon/ +obj-$(CONFIG_BCH) += bch.o obj-$(CONFIG_LZO_COMPRESS) += lzo/ obj-$(CONFIG_LZO_DECOMPRESS) += lzo/ obj-$(CONFIG_XZ_DEC) += xz/ diff --git a/lib/bch.c b/lib/bch.c new file mode 100644 index 0000000..bc89dfe4 --- /dev/null +++ b/lib/bch.c @@ -0,0 +1,1368 @@ +/* + * Generic binary BCH encoding/decoding library + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Copyright © 2011 Parrot S.A. + * + * Author: Ivan Djelic <ivan.djelic@parrot.com> + * + * Description: + * + * This library provides runtime configurable encoding/decoding of binary + * Bose-Chaudhuri-Hocquenghem (BCH) codes. + * + * Call init_bch to get a pointer to a newly allocated bch_control structure for + * the given m (Galois field order), t (error correction capability) and + * (optional) primitive polynomial parameters. + * + * Call encode_bch to compute and store ecc parity bytes to a given buffer. + * Call decode_bch to detect and locate errors in received data. + * + * On systems supporting hw BCH features, intermediate results may be provided + * to decode_bch in order to skip certain steps. See decode_bch() documentation + * for details. + * + * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of + * parameters m and t; thus allowing extra compiler optimizations and providing + * better (up to 2x) encoding performance. Using this option makes sense when + * (m,t) are fixed and known in advance, e.g. when using BCH error correction + * on a particular NAND flash device. + * + * Algorithmic details: + * + * Encoding is performed by processing 32 input bits in parallel, using 4 + * remainder lookup tables. + * + * The final stage of decoding involves the following internal steps: + * a. Syndrome computation + * b. Error locator polynomial computation using Berlekamp-Massey algorithm + * c. Error locator root finding (by far the most expensive step) + * + * In this implementation, step c is not performed using the usual Chien search. + * Instead, an alternative approach described in [1] is used. It consists in + * factoring the error locator polynomial using the Berlekamp Trace algorithm + * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial + * solving techniques [2] are used. The resulting algorithm, called BTZ, yields + * much better performance than Chien search for usual (m,t) values (typically + * m >= 13, t < 32, see [1]). + * + * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields + * of characteristic 2, in: Western European Workshop on Research in Cryptology + * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. + * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over + * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. + */ + +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/bitops.h> +#include <asm/byteorder.h> +#include <linux/bch.h> + +#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p) (CONFIG_BCH_CONST_M) +#define GF_T(_p) (CONFIG_BCH_CONST_T) +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p) ((_p)->m) +#define GF_T(_p) ((_p)->t) +#define GF_N(_p) ((_p)->n) +#endif + +#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) + +#ifndef dbg +#define dbg(_fmt, args...) do {} while (0) +#endif + +/* + * represent a polynomial over GF(2^m) + */ +struct gf_poly { + unsigned int deg; /* polynomial degree */ + unsigned int c[0]; /* polynomial terms */ +}; + +/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) + +/* polynomial of degree 1 */ +struct gf_poly_deg1 { + struct gf_poly poly; + unsigned int c[2]; +}; + +/* + * same as encode_bch(), but process input data one byte at a time + */ +static void encode_bch_unaligned(struct bch_control *bch, + const unsigned char *data, unsigned int len, + uint32_t *ecc) +{ + int i; + const uint32_t *p; + const int l = BCH_ECC_WORDS(bch)-1; + + while (len--) { + p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); + + for (i = 0; i < l; i++) + ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); + + ecc[l] = (ecc[l] << 8)^(*p); + } +} + +/* + * convert ecc bytes to aligned, zero-padded 32-bit ecc words + */ +static void load_ecc8(struct bch_control *bch, uint32_t *dst, + const uint8_t *src) +{ + uint8_t pad[4] = {0, 0, 0, 0}; + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + + for (i = 0; i < nwords; i++, src += 4) + dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; + + memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); + dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; +} + +/* + * convert 32-bit ecc words to ecc bytes + */ +static void store_ecc8(struct bch_control *bch, uint8_t *dst, + const uint32_t *src) +{ + uint8_t pad[4]; + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + + for (i = 0; i < nwords; i++) { + *dst++ = (src[i] >> 24); + *dst++ = (src[i] >> 16) & 0xff; + *dst++ = (src[i] >> 8) & 0xff; + *dst++ = (src[i] >> 0) & 0xff; + } + pad[0] = (src[nwords] >> 24); + pad[1] = (src[nwords] >> 16) & 0xff; + pad[2] = (src[nwords] >> 8) & 0xff; + pad[3] = (src[nwords] >> 0) & 0xff; + memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); +} + +/** + * encode_bch - calculate BCH ecc parity of data + * @bch: BCH control structure + * @data: data to encode + * @len: data length in bytes + * @ecc: ecc parity data, must be initialized by caller + * + * The @ecc parity array is used both as input and output parameter, in order to + * allow incremental computations. It should be of the size indicated by member + * @ecc_bytes of @bch, and should be initialized to 0 before the first call. + * + * The exact number of computed ecc parity bits is given by member @ecc_bits of + * @bch; it may be less than m*t for large values of t. + */ +void encode_bch(struct bch_control *bch, const uint8_t *data, + unsigned int len, uint8_t *ecc) +{ + const unsigned int l = BCH_ECC_WORDS(bch)-1; + unsigned int i, mlen; + unsigned long m; + uint32_t w, r[l+1]; + const uint32_t * const tab0 = bch->mod8_tab; + const uint32_t * const tab1 = tab0 + 256*(l+1); + const uint32_t * const tab2 = tab1 + 256*(l+1); + const uint32_t * const tab3 = tab2 + 256*(l+1); + const uint32_t *pdata, *p0, *p1, *p2, *p3; + + if (ecc) { + /* load ecc parity bytes into internal 32-bit buffer */ + load_ecc8(bch, bch->ecc_buf, ecc); + } else { + memset(bch->ecc_buf, 0, sizeof(r)); + } + + /* process first unaligned data bytes */ + m = ((unsigned long)data) & 3; + if (m) { + mlen = (len < (4-m)) ? len : 4-m; + encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); + data += mlen; + len -= mlen; + } + + /* process 32-bit aligned data words */ + pdata = (uint32_t *)data; + mlen = len/4; + data += 4*mlen; + len -= 4*mlen; + memcpy(r, bch->ecc_buf, sizeof(r)); + + /* + * split each 32-bit word into 4 polynomials of weight 8 as follows: + * + * 31 ...24 23 ...16 15 ... 8 7 ... 0 + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt + * tttttttt mod g = r0 (precomputed) + * zzzzzzzz 00000000 mod g = r1 (precomputed) + * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) + * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 + */ + while (mlen--) { + /* input data is read in big-endian format */ + w = r[0]^cpu_to_be32(*pdata++); + p0 = tab0 + (l+1)*((w >> 0) & 0xff); + p1 = tab1 + (l+1)*((w >> 8) & 0xff); + p2 = tab2 + (l+1)*((w >> 16) & 0xff); + p3 = tab3 + (l+1)*((w >> 24) & 0xff); + + for (i = 0; i < l; i++) + r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; + + r[l] = p0[l]^p1[l]^p2[l]^p3[l]; + } + memcpy(bch->ecc_buf, r, sizeof(r)); + + /* process last unaligned bytes */ + if (len) + encode_bch_unaligned(bch, data, len, bch->ecc_buf); + + /* store ecc parity bytes into original parity buffer */ + if (ecc) + store_ecc8(bch, ecc, bch->ecc_buf); +} +EXPORT_SYMBOL_GPL(encode_bch); + +static inline int modulo(struct bch_control *bch, unsigned int v) +{ + const unsigned int n = GF_N(bch); + while (v >= n) { + v -= n; + v = (v & n) + (v >> GF_M(bch)); + } + return v; +} + +/* + * shorter and faster modulo function, only works when v < 2N. + */ +static inline int mod_s(struct bch_control *bch, unsigned int v) +{ + const unsigned int n = GF_N(bch); + return (v < n) ? v : v-n; +} + +static inline int deg(unsigned int poly) +{ + /* polynomial degree is the most-significant bit index */ + return fls(poly)-1; +} + +static inline int parity(unsigned int x) +{ + /* + * public domain code snippet, lifted from + * http://www-graphics.stanford.edu/~seander/bithacks.html + */ + x ^= x >> 1; + x ^= x >> 2; + x = (x & 0x11111111U) * 0x11111111U; + return (x >> 28) & 1; +} + +/* Galois field basic operations: multiply, divide, inverse, etc. */ + +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, + unsigned int b) +{ + return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ + bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{ + return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; +} + +static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, + unsigned int b) +{ + return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ + GF_N(bch)-bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) +{ + return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; +} + +static inline unsigned int a_pow(struct bch_control *bch, int i) +{ + return bch->a_pow_tab[modulo(bch, i)]; +} + +static inline int a_log(struct bch_control *bch, unsigned int x) +{ + return bch->a_log_tab[x]; +} + +static inline int a_ilog(struct bch_control *bch, unsigned int x) +{ + return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); +} + +/* + * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t + */ +static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, + unsigned int *syn) +{ + int i, j, s; + unsigned int m; + uint32_t poly; + const int t = GF_T(bch); + + s = bch->ecc_bits; + + /* make sure extra bits in last ecc word are cleared */ + m = ((unsigned int)s) & 31; + if (m) + ecc[s/32] &= ~((1u << (32-m))-1); + memset(syn, 0, 2*t*sizeof(*syn)); + + /* compute v(a^j) for j=1 .. 2t-1 */ + do { + poly = *ecc++; + s -= 32; + while (poly) { + i = deg(poly); + for (j = 0; j < 2*t; j += 2) + syn[j] ^= a_pow(bch, (j+1)*(i+s)); + + poly ^= (1 << i); + } + } while (s > 0); + + /* v(a^(2j)) = v(a^j)^2 */ + for (j = 0; j < t; j++) + syn[2*j+1] = gf_sqr(bch, syn[j]); +} + +static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) +{ + memcpy(dst, src, GF_POLY_SZ(src->deg)); +} + +static int compute_error_locator_polynomial(struct bch_control *bch, + const unsigned int *syn) +{ + const unsigned int t = GF_T(bch); + const unsigned int n = GF_N(bch); + unsigned int i, j, tmp, l, pd = 1, d = syn[0]; + struct gf_poly *elp = bch->elp; + struct gf_poly *pelp = bch->poly_2t[0]; + struct gf_poly *elp_copy = bch->poly_2t[1]; + int k, pp = -1; + + memset(pelp, 0, GF_POLY_SZ(2*t)); + memset(elp, 0, GF_POLY_SZ(2*t)); + + pelp->deg = 0; + pelp->c[0] = 1; + elp->deg = 0; + elp->c[0] = 1; + + /* use simplified binary Berlekamp-Massey algorithm */ + for (i = 0; (i < t) && (elp->deg <= t); i++) { + if (d) { + k = 2*i-pp; + gf_poly_copy(elp_copy, elp); + /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ + tmp = a_log(bch, d)+n-a_log(bch, pd); + for (j = 0; j <= pelp->deg; j++) { + if (pelp->c[j]) { + l = a_log(bch, pelp->c[j]); + elp->c[j+k] ^= a_pow(bch, tmp+l); + } + } + /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ + tmp = pelp->deg+k; + if (tmp > elp->deg) { + elp->deg = tmp; + gf_poly_copy(pelp, elp_copy); + pd = d; + pp = 2*i; + } + } + /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ + if (i < t-1) { + d = syn[2*i+2]; + for (j = 1; j <= elp->deg; j++) + d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); + } + } + dbg("elp=%s\n", gf_poly_str(elp)); + return (elp->deg > t) ? -1 : (int)elp->deg; +} + +/* + * solve a m x m linear system in GF(2) with an expected number of solutions, + * and return the number of found solutions + */ +static int solve_linear_system(struct bch_control *bch, unsigned int *rows, + unsigned int *sol, int nsol) +{ + const int m = GF_M(bch); + unsigned int tmp, mask; + int rem, c, r, p, k, param[m]; + + k = 0; + mask = 1 << m; + + /* Gaussian elimination */ + for (c = 0; c < m; c++) { + rem = 0; + p = c-k; + /* find suitable row for elimination */ + for (r = p; r < m; r++) { + if (rows[r] & mask) { + if (r != p) { + tmp = rows[r]; + rows[r] = rows[p]; + rows[p] = tmp; + } + rem = r+1; + break; + } + } + if (rem) { + /* perform elimination on remaining rows */ + tmp = rows[p]; + for (r = rem; r < m; r++) { + if (rows[r] & mask) + rows[r] ^= tmp; + } + } else { + /* elimination not needed, store defective row index */ + param[k++] = c; + } + mask >>= 1; + } + /* rewrite system, inserting fake parameter rows */ + if (k > 0) { + p = k; + for (r = m-1; r >= 0; r--) { + if ((r > m-1-k) && rows[r]) + /* system has no solution */ + return 0; + + rows[r] = (p && (r == param[p-1])) ? + p--, 1u << (m-r) : rows[r-p]; + } + } + + if (nsol != (1 << k)) + /* unexpected number of solutions */ + return 0; + + for (p = 0; p < nsol; p++) { + /* set parameters for p-th solution */ + for (c = 0; c < k; c++) + rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); + + /* compute unique solution */ + tmp = 0; + for (r = m-1; r >= 0; r--) { + mask = rows[r] & (tmp|1); + tmp |= parity(mask) << (m-r); + } + sol[p] = tmp >> 1; + } + return nsol; +} + +/* + * this function builds and solves a linear system for finding roots of a degree + * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). + */ +static int find_affine4_roots(struct bch_control *bch, unsigned int a, + unsigned int b, unsigned int c, + unsigned int *roots) +{ + int i, j, k; + const int m = GF_M(bch); + unsigned int mask = 0xff, t, rows[16] = {0,}; + + j = a_log(bch, b); + k = a_log(bch, a); + rows[0] = c; + + /* buid linear system to solve X^4+aX^2+bX+c = 0 */ + for (i = 0; i < m; i++) { + rows[i+1] = bch->a_pow_tab[4*i]^ + (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ + (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); + j++; + k += 2; + } + /* + * transpose 16x16 matrix before passing it to linear solver + * warning: this code assumes m < 16 + */ + for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { + for (k = 0; k < 16; k = (k+j+1) & ~j) { + t = ((rows[k] >> j)^rows[k+j]) & mask; + rows[k] ^= (t << j); + rows[k+j] ^= t; + } + } + return solve_linear_system(bch, rows, roots, 4); +} + +/* + * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) + */ +static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, + unsigned int *roots) +{ + int n = 0; + + if (poly->c[0]) + /* poly[X] = bX+c with c!=0, root=c/b */ + roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ + bch->a_log_tab[poly->c[1]]); + return n; +} + +/* + * compute roots of a degree 2 polynomial over GF(2^m) + */ +static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, + unsigned int *roots) +{ + int n = 0, i, l0, l1, l2; + unsigned int u, v, r; + + if (poly->c[0] && poly->c[1]) { + + l0 = bch->a_log_tab[poly->c[0]]; + l1 = bch->a_log_tab[poly->c[1]]; + l2 = bch->a_log_tab[poly->c[2]]; + + /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ + u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); + /* + * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): + * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = + * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) + * i.e. r and r+1 are roots iff Tr(u)=0 + */ + r = 0; + v = u; + while (v) { + i = deg(v); + r ^= bch->xi_tab[i]; + v ^= (1 << i); + } + /* verify root */ + if ((gf_sqr(bch, r)^r) == u) { + /* reverse z=a/bX transformation and compute log(1/r) */ + roots[n++] = modulo(bch, 2*GF_N(bch)-l1- + bch->a_log_tab[r]+l2); + roots[n++] = modulo(bch, 2*GF_N(bch)-l1- + bch->a_log_tab[r^1]+l2); + } + } + return n; +} + +/* + * compute roots of a degree 3 polynomial over GF(2^m) + */ +static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, + unsigned int *roots) +{ + int i, n = 0; + unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; + + if (poly->c[0]) { + /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ + e3 = poly->c[3]; + c2 = gf_div(bch, poly->c[0], e3); + b2 = gf_div(bch, poly->c[1], e3); + a2 = gf_div(bch, poly->c[2], e3); + + /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ + c = gf_mul(bch, a2, c2); /* c = a2c2 */ + b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ + a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ + + /* find the 4 roots of this affine polynomial */ + if (find_affine4_roots(bch, a, b, c, tmp) == 4) { + /* remove a2 from final list of roots */ + for (i = 0; i < 4; i++) { + if (tmp[i] != a2) + roots[n++] = a_ilog(bch, tmp[i]); + } + } + } + return n; +} + +/* + * compute roots of a degree 4 polynomial over GF(2^m) + */ +static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, + unsigned int *roots) +{ + int i, l, n = 0; + unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; + + if (poly->c[0] == 0) + return 0; + + /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ + e4 = poly->c[4]; + d = gf_div(bch, poly->c[0], e4); + c = gf_div(bch, poly->c[1], e4); + b = gf_div(bch, poly->c[2], e4); + a = gf_div(bch, poly->c[3], e4); + + /* use Y=1/X transformation to get an affine polynomial */ + if (a) { + /* first, eliminate cX by using z=X+e with ae^2+c=0 */ + if (c) { + /* compute e such that e^2 = c/a */ + f = gf_div(bch, c, a); + l = a_log(bch, f); + l += (l & 1) ? GF_N(bch) : 0; + e = a_pow(bch, l/2); + /* + * use transformation z=X+e: + * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d + * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d + * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d + * z^4 + az^3 + b'z^2 + d' + */ + d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; + b = gf_mul(bch, a, e)^b; + } + /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ + if (d == 0) + /* assume all roots have multiplicity 1 */ + return 0; + + c2 = gf_inv(bch, d); + b2 = gf_div(bch, a, d); + a2 = gf_div(bch, b, d); + } else { + /* polynomial is already affine */ + c2 = d; + b2 = c; + a2 = b; + } + /* find the 4 roots of this affine polynomial */ + if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { + for (i = 0; i < 4; i++) { + /* post-process roots (reverse transformations) */ + f = a ? gf_inv(bch, roots[i]) : roots[i]; + roots[i] = a_ilog(bch, f^e); + } + n = 4; + } + return n; +} + +/* + * build monic, log-based representation of a polynomial + */ +static void gf_poly_logrep(struct bch_control *bch, + const struct gf_poly *a, int *rep) +{ + int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); + + /* represent 0 values with -1; warning, rep[d] is not set to 1 */ + for (i = 0; i < d; i++) + rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; +} + +/* + * compute polynomial Euclidean division remainder in GF(2^m)[X] + */ +static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, + const struct gf_poly *b, int *rep) +{ + int la, p, m; + unsigned int i, j, *c = a->c; + const unsigned int d = b->deg; + + if (a->deg < d) + return; + + /* reuse or compute log representation of denominator */ + if (!rep) { + rep = bch->cache; + gf_poly_logrep(bch, b, rep); + } + + for (j = a->deg; j >= d; j--) { + if (c[j]) { + la = a_log(bch, c[j]); + p = j-d; + for (i = 0; i < d; i++, p++) { + m = rep[i]; + if (m >= 0) + c[p] ^= bch->a_pow_tab[mod_s(bch, + m+la)]; + } + } + } + a->deg = d-1; + while (!c[a->deg] && a->deg) + a->deg--; +} + +/* + * compute polynomial Euclidean division quotient in GF(2^m)[X] + */ +static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, + const struct gf_poly *b, struct gf_poly *q) +{ + if (a->deg >= b->deg) { + q->deg = a->deg-b->deg; + /* compute a mod b (modifies a) */ + gf_poly_mod(bch, a, b, NULL); + /* quotient is stored in upper part of polynomial a */ + memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); + } else { + q->deg = 0; + q->c[0] = 0; + } +} + +/* + * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] + */ +static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, + struct gf_poly *b) +{ + struct gf_poly *tmp; + + dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); + + if (a->deg < b->deg) { + tmp = b; + b = a; + a = tmp; + } + + while (b->deg > 0) { + gf_poly_mod(bch, a, b, NULL); + tmp = b; + b = a; + a = tmp; + } + + dbg("%s\n", gf_poly_str(a)); + + return a; +} + +/* + * Given a polynomial f and an integer k, compute Tr(a^kX) mod f + * This is used in Berlekamp Trace algorithm for splitting polynomials + */ +static void compute_trace_bk_mod(struct bch_control *bch, int k, + const struct gf_poly *f, struct gf_poly *z, + struct gf_poly *out) +{ + const int m = GF_M(bch); + int i, j; + + /* z contains z^2j mod f */ + z->deg = 1; + z->c[0] = 0; + z->c[1] = bch->a_pow_tab[k]; + + out->deg = 0; + memset(out, 0, GF_POLY_SZ(f->deg)); + + /* compute f log representation only once */ + gf_poly_logrep(bch, f, bch->cache); + + for (i = 0; i < m; i++) { + /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ + for (j = z->deg; j >= 0; j--) { + out->c[j] ^= z->c[j]; + z->c[2*j] = gf_sqr(bch, z->c[j]); + z->c[2*j+1] = 0; + } + if (z->deg > out->deg) + out->deg = z->deg; + + if (i < m-1) { + z->deg *= 2; + /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ + gf_poly_mod(bch, z, f, bch->cache); + } + } + while (!out->c[out->deg] && out->deg) + out->deg--; + + dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); +} + +/* + * factor a polynomial using Berlekamp Trace algorithm (BTA) + */ +static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, + struct gf_poly **g, struct gf_poly **h) +{ + struct gf_poly *f2 = bch->poly_2t[0]; + struct gf_poly *q = bch->poly_2t[1]; + struct gf_poly *tk = bch->poly_2t[2]; + struct gf_poly *z = bch->poly_2t[3]; + struct gf_poly *gcd; + + dbg("factoring %s...\n", gf_poly_str(f)); + + *g = f; + *h = NULL; + + /* tk = Tr(a^k.X) mod f */ + compute_trace_bk_mod(bch, k, f, z, tk); + + if (tk->deg > 0) { + /* compute g = gcd(f, tk) (destructive operation) */ + gf_poly_copy(f2, f); + gcd = gf_poly_gcd(bch, f2, tk); + if (gcd->deg < f->deg) { + /* compute h=f/gcd(f,tk); this will modify f and q */ + gf_poly_div(bch, f, gcd, q); + /* store g and h in-place (clobbering f) */ + *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; + gf_poly_copy(*g, gcd); + gf_poly_copy(*h, q); + } + } +} + +/* + * find roots of a polynomial, using BTZ algorithm; see the beginning of this + * file for details + */ +static int find_poly_roots(struct bch_control *bch, unsigned int k, + struct gf_poly *poly, unsigned int *roots) +{ + int cnt; + struct gf_poly *f1, *f2; + + switch (poly->deg) { + /* handle low degree polynomials with ad hoc techniques */ + case 1: + cnt = find_poly_deg1_roots(bch, poly, roots); + break; + case 2: + cnt = find_poly_deg2_roots(bch, poly, roots); + break; + case 3: + cnt = find_poly_deg3_roots(bch, poly, roots); + break; + case 4: + cnt = find_poly_deg4_roots(bch, poly, roots); + break; + default: + /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ + cnt = 0; + if (poly->deg && (k <= GF_M(bch))) { + factor_polynomial(bch, k, poly, &f1, &f2); + if (f1) + cnt += find_poly_roots(bch, k+1, f1, roots); + if (f2) + cnt += find_poly_roots(bch, k+1, f2, roots+cnt); + } + break; + } + return cnt; +} + +#if defined(USE_CHIEN_SEARCH) +/* + * exhaustive root search (Chien) implementation - not used, included only for + * reference/comparison tests + */ +static int chien_search(struct bch_control *bch, unsigned int len, + struct gf_poly *p, unsigned int *roots) +{ + int m; + unsigned int i, j, syn, syn0, count = 0; + const unsigned int k = 8*len+bch->ecc_bits; + + /* use a log-based representation of polynomial */ + gf_poly_logrep(bch, p, bch->cache); + bch->cache[p->deg] = 0; + syn0 = gf_div(bch, p->c[0], p->c[p->deg]); + + for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { + /* compute elp(a^i) */ + for (j = 1, syn = syn0; j <= p->deg; j++) { + m = bch->cache[j]; + if (m >= 0) + syn ^= a_pow(bch, m+j*i); + } + if (syn == 0) { + roots[count++] = GF_N(bch)-i; + if (count == p->deg) + break; + } + } + return (count == p->deg) ? count : 0; +} +#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) +#endif /* USE_CHIEN_SEARCH */ + +/** + * decode_bch - decode received codeword and find bit error locations + * @bch: BCH control structure + * @data: received data, ignored if @calc_ecc is provided + * @len: data length in bytes, must always be provided + * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc + * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data + * @syn: hw computed syndrome data (if NULL, syndrome is calculated) + * @errloc: output array of error locations + * + * Returns: + * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if + * invalid parameters were provided + * + * Depending on the available hw BCH support and the need to compute @calc_ecc + * separately (using encode_bch()), this function should be called with one of + * the following parameter configurations - + * + * by providing @data and @recv_ecc only: + * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) + * + * by providing @recv_ecc and @calc_ecc: + * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) + * + * by providing ecc = recv_ecc XOR calc_ecc: + * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) + * + * by providing syndrome results @syn: + * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) + * + * Once decode_bch() has successfully returned with a positive value, error + * locations returned in array @errloc should be interpreted as follows - + * + * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for + * data correction) + * + * if (errloc[n] < 8*len), then n-th error is located in data and can be + * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); + * + * Note that this function does not perform any data correction by itself, it + * merely indicates error locations. + */ +int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, + const uint8_t *recv_ecc, const uint8_t *calc_ecc, + const unsigned int *syn, unsigned int *errloc) +{ + const unsigned int ecc_words = BCH_ECC_WORDS(bch); + unsigned int nbits; + int i, err, nroots; + uint32_t sum; + + /* sanity check: make sure data length can be handled */ + if (8*len > (bch->n-bch->ecc_bits)) + return -EINVAL; + + /* if caller does not provide syndromes, compute them */ + if (!syn) { + if (!calc_ecc) { + /* compute received data ecc into an internal buffer */ + if (!data || !recv_ecc) + return -EINVAL; + encode_bch(bch, data, len, NULL); + } else { + /* load provided calculated ecc */ + load_ecc8(bch, bch->ecc_buf, calc_ecc); + } + /* load received ecc or assume it was XORed in calc_ecc */ + if (recv_ecc) { + load_ecc8(bch, bch->ecc_buf2, recv_ecc); + /* XOR received and calculated ecc */ + for (i = 0, sum = 0; i < (int)ecc_words; i++) { + bch->ecc_buf[i] ^= bch->ecc_buf2[i]; + sum |= bch->ecc_buf[i]; + } + if (!sum) + /* no error found */ + return 0; + } + compute_syndromes(bch, bch->ecc_buf, bch->syn); + syn = bch->syn; + } + + err = compute_error_locator_polynomial(bch, syn); + if (err > 0) { + nroots = find_poly_roots(bch, 1, bch->elp, errloc); + if (err != nroots) + err = -1; + } + if (err > 0) { + /* post-process raw error locations for easier correction */ + nbits = (len*8)+bch->ecc_bits; + for (i = 0; i < err; i++) { + if (errloc[i] >= nbits) { + err = -1; + break; + } + errloc[i] = nbits-1-errloc[i]; + errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); + } + } + return (err >= 0) ? err : -EBADMSG; +} +EXPORT_SYMBOL_GPL(decode_bch); + +/* + * generate Galois field lookup tables + */ +static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{ + unsigned int i, x = 1; + const unsigned int k = 1 << deg(poly); + + /* primitive polynomial must be of degree m */ + if (k != (1u << GF_M(bch))) + return -1; + + for (i = 0; i < GF_N(bch); i++) { + bch->a_pow_tab[i] = x; + bch->a_log_tab[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ + return -1; + x <<= 1; + if (x & k) + x ^= poly; + } + bch->a_pow_tab[GF_N(bch)] = 1; + bch->a_log_tab[0] = 0; + + return 0; +} + +/* + * compute generator polynomial remainder tables for fast encoding + */ +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{ + int i, j, b, d; + uint32_t data, hi, lo, *tab; + const int l = BCH_ECC_WORDS(bch); + const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); + const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); + + memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); + + for (i = 0; i < 256; i++) { + /* p(X)=i is a small polynomial of weight <= 8 */ + for (b = 0; b < 4; b++) { + /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ + tab = bch->mod8_tab + (b*256+i)*l; + data = i << (8*b); + while (data) { + d = deg(data); + /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ + data ^= g[0] >> (31-d); + for (j = 0; j < ecclen; j++) { + hi = (d < 31) ? g[j] << (d+1) : 0; + lo = (j+1 < plen) ? + g[j+1] >> (31-d) : 0; + tab[j] ^= hi|lo; + } + } + } + } +} + +/* + * build a base for factoring degree 2 polynomials + */ +static int build_deg2_base(struct bch_control *bch) +{ + const int m = GF_M(bch); + int i, j, r; + unsigned int sum, x, y, remaining, ak = 0, xi[m]; + + /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ + for (i = 0; i < m; i++) { + for (j = 0, sum = 0; j < m; j++) + sum ^= a_pow(bch, i*(1 << j)); + + if (sum) { + ak = bch->a_pow_tab[i]; + break; + } + } + /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ + remaining = m; + memset(xi, 0, sizeof(xi)); + + for (x = 0; (x <= GF_N(bch)) && remaining; x++) { + y = gf_sqr(bch, x)^x; + for (i = 0; i < 2; i++) { + r = a_log(bch, y); + if (y && (r < m) && !xi[r]) { + bch->xi_tab[r] = x; + xi[r] = 1; + remaining--; + dbg("x%d = %x\n", r, x); + break; + } + y ^= ak; + } + } + /* should not happen but check anyway */ + return remaining ? -1 : 0; +} + +static void *bch_alloc(size_t size, int *err) +{ + void *ptr; + + ptr = kmalloc(size, GFP_KERNEL); + if (ptr == NULL) + *err = 1; + return ptr; +} + +/* + * compute generator polynomial for given (m,t) parameters. + */ +static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{ + const unsigned int m = GF_M(bch); + const unsigned int t = GF_T(bch); + int n, err = 0; + unsigned int i, j, nbits, r, word, *roots; + struct gf_poly *g; + uint32_t *genpoly; + + g = bch_alloc(GF_POLY_SZ(m*t), &err); + roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); + genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); + + if (err) { + kfree(genpoly); + genpoly = NULL; + goto finish; + } + + /* enumerate all roots of g(X) */ + memset(roots , 0, (bch->n+1)*sizeof(*roots)); + for (i = 0; i < t; i++) { + for (j = 0, r = 2*i+1; j < m; j++) { + roots[r] = 1; + r = mod_s(bch, 2*r); + } + } + /* build generator polynomial g(X) */ + g->deg = 0; + g->c[0] = 1; + for (i = 0; i < GF_N(bch); i++) { + if (roots[i]) { + /* multiply g(X) by (X+root) */ + r = bch->a_pow_tab[i]; + g->c[g->deg+1] = 1; + for (j = g->deg; j > 0; j--) + g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; + + g->c[0] = gf_mul(bch, g->c[0], r); + g->deg++; + } + } + /* store left-justified binary representation of g(X) */ + n = g->deg+1; + i = 0; + + while (n > 0) { + nbits = (n > 32) ? 32 : n; + for (j = 0, word = 0; j < nbits; j++) { + if (g->c[n-1-j]) + word |= 1u << (31-j); + } + genpoly[i++] = word; + n -= nbits; + } + bch->ecc_bits = g->deg; + +finish: + kfree(g); + kfree(roots); + + return genpoly; +} + +/** + * init_bch - initialize a BCH encoder/decoder + * @m: Galois field order, should be in the range 5-15 + * @t: maximum error correction capability, in bits + * @prim_poly: user-provided primitive polynomial (or 0 to use default) + * + * Returns: + * a newly allocated BCH control structure if successful, NULL otherwise + * + * This initialization can take some time, as lookup tables are built for fast + * encoding/decoding; make sure not to call this function from a time critical + * path. Usually, init_bch() should be called on module/driver init and + * free_bch() should be called to release memory on exit. + * + * You may provide your own primitive polynomial of degree @m in argument + * @prim_poly, or let init_bch() use its default polynomial. + * + * Once init_bch() has successfully returned a pointer to a newly allocated + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of + * the structure. + */ +struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{ + int err = 0; + unsigned int i, words; + uint32_t *genpoly; + struct bch_control *bch = NULL; + + const int min_m = 5; + const int max_m = 15; + + /* default primitive polynomials */ + static const unsigned int prim_poly_tab[] = { + 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, + 0x402b, 0x8003, + }; + +#if defined(CONFIG_BCH_CONST_PARAMS) + if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { + printk(KERN_ERR "bch encoder/decoder was configured to support " + "parameters m=%d, t=%d only!\n", + CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); + goto fail; + } +#endif + if ((m < min_m) || (m > max_m)) + /* + * values of m greater than 15 are not currently supported; + * supporting m > 15 would require changing table base type + * (uint16_t) and a small patch in matrix transposition + */ + goto fail; + + /* sanity checks */ + if ((t < 1) || (m*t >= ((1 << m)-1))) + /* invalid t value */ + goto fail; + + /* select a primitive polynomial for generating GF(2^m) */ + if (prim_poly == 0) + prim_poly = prim_poly_tab[m-min_m]; + + bch = kzalloc(sizeof(*bch), GFP_KERNEL); + if (bch == NULL) + goto fail; + + bch->m = m; + bch->t = t; + bch->n = (1 << m)-1; + words = DIV_ROUND_UP(m*t, 32); + bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); + bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); + bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); + bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); + bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); + bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); + bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); + bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); + bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); + bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); + + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) + bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); + + if (err) + goto fail; + + err = build_gf_tables(bch, prim_poly); + if (err) + goto fail; + + /* use generator polynomial for computing encoding tables */ + genpoly = compute_generator_polynomial(bch); + if (genpoly == NULL) + goto fail; + + build_mod8_tables(bch, genpoly); + kfree(genpoly); + + err = build_deg2_base(bch); + if (err) + goto fail; + + return bch; + +fail: + free_bch(bch); + return NULL; +} +EXPORT_SYMBOL_GPL(init_bch); + +/** + * free_bch - free the BCH control structure + * @bch: BCH control structure to release + */ +void free_bch(struct bch_control *bch) +{ + unsigned int i; + + if (bch) { + kfree(bch->a_pow_tab); + kfree(bch->a_log_tab); + kfree(bch->mod8_tab); + kfree(bch->ecc_buf); + kfree(bch->ecc_buf2); + kfree(bch->xi_tab); + kfree(bch->syn); + kfree(bch->cache); + kfree(bch->elp); + + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) + kfree(bch->poly_2t[i]); + + kfree(bch); + } +} +EXPORT_SYMBOL_GPL(free_bch); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); +MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |