diff options
-rw-r--r-- | kernel/hrtimer.c | 20 |
1 files changed, 9 insertions, 11 deletions
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index b68e98f..aa024f2 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c @@ -1143,9 +1143,9 @@ static void __run_hrtimer(struct hrtimer *timer) spin_lock(&cpu_base->lock); /* - * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid - * reprogramming of the event hardware. This happens at the end of this - * function anyway. + * Note: We clear the CALLBACK bit after enqueue_hrtimer and + * we do not reprogramm the event hardware. Happens either in + * hrtimer_start_range_ns() or in hrtimer_interrupt() */ if (restart != HRTIMER_NORESTART) { BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); @@ -1514,14 +1514,12 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); timer->base = new_base; /* - * Enqueue the timers on the new cpu, but do not reprogram - * the timer as that would enable a deadlock between - * hrtimer_enqueue_reprogramm() running the timer and us still - * holding a nested base lock. - * - * Instead we tickle the hrtimer interrupt after the migration - * is done, which will run all expired timers and re-programm - * the timer device. + * Enqueue the timers on the new cpu. This does not + * reprogram the event device in case the timer + * expires before the earliest on this CPU, but we run + * hrtimer_interrupt after we migrated everything to + * sort out already expired timers and reprogram the + * event device. */ enqueue_hrtimer(timer, new_base); |