summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/linux/mm_types.h89
-rw-r--r--include/linux/page-flags.h5
-rw-r--r--include/linux/slub_def.h3
-rw-r--r--mm/slub.c764
-rw-r--r--tools/slub/slabinfo.c59
5 files changed, 616 insertions, 304 deletions
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index 027935c..774b895 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -30,23 +30,61 @@ struct address_space;
* moment. Note that we have no way to track which tasks are using
* a page, though if it is a pagecache page, rmap structures can tell us
* who is mapping it.
+ *
+ * The objects in struct page are organized in double word blocks in
+ * order to allows us to use atomic double word operations on portions
+ * of struct page. That is currently only used by slub but the arrangement
+ * allows the use of atomic double word operations on the flags/mapping
+ * and lru list pointers also.
*/
struct page {
+ /* First double word block */
unsigned long flags; /* Atomic flags, some possibly
* updated asynchronously */
- atomic_t _count; /* Usage count, see below. */
- union {
- atomic_t _mapcount; /* Count of ptes mapped in mms,
- * to show when page is mapped
- * & limit reverse map searches.
+ struct address_space *mapping; /* If low bit clear, points to
+ * inode address_space, or NULL.
+ * If page mapped as anonymous
+ * memory, low bit is set, and
+ * it points to anon_vma object:
+ * see PAGE_MAPPING_ANON below.
*/
- struct { /* SLUB */
- u16 inuse;
- u16 objects;
+ /* Second double word */
+ struct {
+ union {
+ pgoff_t index; /* Our offset within mapping. */
+ void *freelist; /* slub first free object */
+ };
+
+ union {
+ /* Used for cmpxchg_double in slub */
+ unsigned long counters;
+
+ struct {
+
+ union {
+ atomic_t _mapcount; /* Count of ptes mapped in mms,
+ * to show when page is mapped
+ * & limit reverse map searches.
+ */
+
+ struct {
+ unsigned inuse:16;
+ unsigned objects:15;
+ unsigned frozen:1;
+ };
+ };
+ atomic_t _count; /* Usage count, see below. */
+ };
};
};
+
+ /* Third double word block */
+ struct list_head lru; /* Pageout list, eg. active_list
+ * protected by zone->lru_lock !
+ */
+
+ /* Remainder is not double word aligned */
union {
- struct {
unsigned long private; /* Mapping-private opaque data:
* usually used for buffer_heads
* if PagePrivate set; used for
@@ -54,27 +92,13 @@ struct page {
* indicates order in the buddy
* system if PG_buddy is set.
*/
- struct address_space *mapping; /* If low bit clear, points to
- * inode address_space, or NULL.
- * If page mapped as anonymous
- * memory, low bit is set, and
- * it points to anon_vma object:
- * see PAGE_MAPPING_ANON below.
- */
- };
#if USE_SPLIT_PTLOCKS
- spinlock_t ptl;
+ spinlock_t ptl;
#endif
- struct kmem_cache *slab; /* SLUB: Pointer to slab */
- struct page *first_page; /* Compound tail pages */
- };
- union {
- pgoff_t index; /* Our offset within mapping. */
- void *freelist; /* SLUB: freelist req. slab lock */
+ struct kmem_cache *slab; /* SLUB: Pointer to slab */
+ struct page *first_page; /* Compound tail pages */
};
- struct list_head lru; /* Pageout list, eg. active_list
- * protected by zone->lru_lock !
- */
+
/*
* On machines where all RAM is mapped into kernel address space,
* we can simply calculate the virtual address. On machines with
@@ -100,7 +124,16 @@ struct page {
*/
void *shadow;
#endif
-};
+}
+/*
+ * If another subsystem starts using the double word pairing for atomic
+ * operations on struct page then it must change the #if to ensure
+ * proper alignment of the page struct.
+ */
+#if defined(CONFIG_SLUB) && defined(CONFIG_CMPXCHG_LOCAL)
+ __attribute__((__aligned__(2*sizeof(unsigned long))))
+#endif
+;
typedef unsigned long __nocast vm_flags_t;
diff --git a/include/linux/page-flags.h b/include/linux/page-flags.h
index 3e5a1b1..e90a673 100644
--- a/include/linux/page-flags.h
+++ b/include/linux/page-flags.h
@@ -124,9 +124,6 @@ enum pageflags {
/* SLOB */
PG_slob_free = PG_private,
-
- /* SLUB */
- PG_slub_frozen = PG_active,
};
#ifndef __GENERATING_BOUNDS_H
@@ -212,8 +209,6 @@ PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
__PAGEFLAG(SlobFree, slob_free)
-__PAGEFLAG(SlubFrozen, slub_frozen)
-
/*
* Private page markings that may be used by the filesystem that owns the page
* for its own purposes.
diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
index 4b35c06..f58d641 100644
--- a/include/linux/slub_def.h
+++ b/include/linux/slub_def.h
@@ -24,6 +24,7 @@ enum stat_item {
ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
ALLOC_SLAB, /* Cpu slab acquired from page allocator */
ALLOC_REFILL, /* Refill cpu slab from slab freelist */
+ ALLOC_NODE_MISMATCH, /* Switching cpu slab */
FREE_SLAB, /* Slab freed to the page allocator */
CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
@@ -31,8 +32,10 @@ enum stat_item {
DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
+ DEACTIVATE_BYPASS, /* Implicit deactivation */
ORDER_FALLBACK, /* Number of times fallback was necessary */
CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
+ CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
NR_SLUB_STAT_ITEMS };
struct kmem_cache_cpu {
diff --git a/mm/slub.c b/mm/slub.c
index f8f5e8e..eb5a8f9 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -2,10 +2,11 @@
* SLUB: A slab allocator that limits cache line use instead of queuing
* objects in per cpu and per node lists.
*
- * The allocator synchronizes using per slab locks and only
- * uses a centralized lock to manage a pool of partial slabs.
+ * The allocator synchronizes using per slab locks or atomic operatios
+ * and only uses a centralized lock to manage a pool of partial slabs.
*
* (C) 2007 SGI, Christoph Lameter
+ * (C) 2011 Linux Foundation, Christoph Lameter
*/
#include <linux/mm.h>
@@ -33,15 +34,27 @@
/*
* Lock order:
- * 1. slab_lock(page)
- * 2. slab->list_lock
+ * 1. slub_lock (Global Semaphore)
+ * 2. node->list_lock
+ * 3. slab_lock(page) (Only on some arches and for debugging)
*
- * The slab_lock protects operations on the object of a particular
- * slab and its metadata in the page struct. If the slab lock
- * has been taken then no allocations nor frees can be performed
- * on the objects in the slab nor can the slab be added or removed
- * from the partial or full lists since this would mean modifying
- * the page_struct of the slab.
+ * slub_lock
+ *
+ * The role of the slub_lock is to protect the list of all the slabs
+ * and to synchronize major metadata changes to slab cache structures.
+ *
+ * The slab_lock is only used for debugging and on arches that do not
+ * have the ability to do a cmpxchg_double. It only protects the second
+ * double word in the page struct. Meaning
+ * A. page->freelist -> List of object free in a page
+ * B. page->counters -> Counters of objects
+ * C. page->frozen -> frozen state
+ *
+ * If a slab is frozen then it is exempt from list management. It is not
+ * on any list. The processor that froze the slab is the one who can
+ * perform list operations on the page. Other processors may put objects
+ * onto the freelist but the processor that froze the slab is the only
+ * one that can retrieve the objects from the page's freelist.
*
* The list_lock protects the partial and full list on each node and
* the partial slab counter. If taken then no new slabs may be added or
@@ -54,20 +67,6 @@
* slabs, operations can continue without any centralized lock. F.e.
* allocating a long series of objects that fill up slabs does not require
* the list lock.
- *
- * The lock order is sometimes inverted when we are trying to get a slab
- * off a list. We take the list_lock and then look for a page on the list
- * to use. While we do that objects in the slabs may be freed. We can
- * only operate on the slab if we have also taken the slab_lock. So we use
- * a slab_trylock() on the slab. If trylock was successful then no frees
- * can occur anymore and we can use the slab for allocations etc. If the
- * slab_trylock() does not succeed then frees are in progress in the slab and
- * we must stay away from it for a while since we may cause a bouncing
- * cacheline if we try to acquire the lock. So go onto the next slab.
- * If all pages are busy then we may allocate a new slab instead of reusing
- * a partial slab. A new slab has no one operating on it and thus there is
- * no danger of cacheline contention.
- *
* Interrupts are disabled during allocation and deallocation in order to
* make the slab allocator safe to use in the context of an irq. In addition
* interrupts are disabled to ensure that the processor does not change
@@ -132,6 +131,9 @@ static inline int kmem_cache_debug(struct kmem_cache *s)
/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST
+/* Enable to log cmpxchg failures */
+#undef SLUB_DEBUG_CMPXCHG
+
/*
* Mininum number of partial slabs. These will be left on the partial
* lists even if they are empty. kmem_cache_shrink may reclaim them.
@@ -167,10 +169,11 @@ static inline int kmem_cache_debug(struct kmem_cache *s)
#define OO_SHIFT 16
#define OO_MASK ((1 << OO_SHIFT) - 1)
-#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
+#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000UL /* Poison object */
+#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
static int kmem_size = sizeof(struct kmem_cache);
@@ -343,11 +346,99 @@ static inline int oo_objects(struct kmem_cache_order_objects x)
return x.x & OO_MASK;
}
+/*
+ * Per slab locking using the pagelock
+ */
+static __always_inline void slab_lock(struct page *page)
+{
+ bit_spin_lock(PG_locked, &page->flags);
+}
+
+static __always_inline void slab_unlock(struct page *page)
+{
+ __bit_spin_unlock(PG_locked, &page->flags);
+}
+
+/* Interrupts must be disabled (for the fallback code to work right) */
+static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
+ void *freelist_old, unsigned long counters_old,
+ void *freelist_new, unsigned long counters_new,
+ const char *n)
+{
+ VM_BUG_ON(!irqs_disabled());
+#ifdef CONFIG_CMPXCHG_DOUBLE
+ if (s->flags & __CMPXCHG_DOUBLE) {
+ if (cmpxchg_double(&page->freelist,
+ freelist_old, counters_old,
+ freelist_new, counters_new))
+ return 1;
+ } else
+#endif
+ {
+ slab_lock(page);
+ if (page->freelist == freelist_old && page->counters == counters_old) {
+ page->freelist = freelist_new;
+ page->counters = counters_new;
+ slab_unlock(page);
+ return 1;
+ }
+ slab_unlock(page);
+ }
+
+ cpu_relax();
+ stat(s, CMPXCHG_DOUBLE_FAIL);
+
+#ifdef SLUB_DEBUG_CMPXCHG
+ printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
+#endif
+
+ return 0;
+}
+
+static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
+ void *freelist_old, unsigned long counters_old,
+ void *freelist_new, unsigned long counters_new,
+ const char *n)
+{
+#ifdef CONFIG_CMPXCHG_DOUBLE
+ if (s->flags & __CMPXCHG_DOUBLE) {
+ if (cmpxchg_double(&page->freelist,
+ freelist_old, counters_old,
+ freelist_new, counters_new))
+ return 1;
+ } else
+#endif
+ {
+ unsigned long flags;
+
+ local_irq_save(flags);
+ slab_lock(page);
+ if (page->freelist == freelist_old && page->counters == counters_old) {
+ page->freelist = freelist_new;
+ page->counters = counters_new;
+ slab_unlock(page);
+ local_irq_restore(flags);
+ return 1;
+ }
+ slab_unlock(page);
+ local_irq_restore(flags);
+ }
+
+ cpu_relax();
+ stat(s, CMPXCHG_DOUBLE_FAIL);
+
+#ifdef SLUB_DEBUG_CMPXCHG
+ printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
+#endif
+
+ return 0;
+}
+
#ifdef CONFIG_SLUB_DEBUG
/*
* Determine a map of object in use on a page.
*
- * Slab lock or node listlock must be held to guarantee that the page does
+ * Node listlock must be held to guarantee that the page does
* not vanish from under us.
*/
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
@@ -838,10 +929,11 @@ static int check_slab(struct kmem_cache *s, struct page *page)
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
int nr = 0;
- void *fp = page->freelist;
+ void *fp;
void *object = NULL;
unsigned long max_objects;
+ fp = page->freelist;
while (fp && nr <= page->objects) {
if (fp == search)
return 1;
@@ -946,26 +1038,27 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x)
/*
* Tracking of fully allocated slabs for debugging purposes.
+ *
+ * list_lock must be held.
*/
-static void add_full(struct kmem_cache_node *n, struct page *page)
+static void add_full(struct kmem_cache *s,
+ struct kmem_cache_node *n, struct page *page)
{
- spin_lock(&n->list_lock);
+ if (!(s->flags & SLAB_STORE_USER))
+ return;
+
list_add(&page->lru, &n->full);
- spin_unlock(&n->list_lock);
}
+/*
+ * list_lock must be held.
+ */
static void remove_full(struct kmem_cache *s, struct page *page)
{
- struct kmem_cache_node *n;
-
if (!(s->flags & SLAB_STORE_USER))
return;
- n = get_node(s, page_to_nid(page));
-
- spin_lock(&n->list_lock);
list_del(&page->lru);
- spin_unlock(&n->list_lock);
}
/* Tracking of the number of slabs for debugging purposes */
@@ -1021,11 +1114,6 @@ static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *pa
if (!check_slab(s, page))
goto bad;
- if (!on_freelist(s, page, object)) {
- object_err(s, page, object, "Object already allocated");
- goto bad;
- }
-
if (!check_valid_pointer(s, page, object)) {
object_err(s, page, object, "Freelist Pointer check fails");
goto bad;
@@ -1058,6 +1146,12 @@ bad:
static noinline int free_debug_processing(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr)
{
+ unsigned long flags;
+ int rc = 0;
+
+ local_irq_save(flags);
+ slab_lock(page);
+
if (!check_slab(s, page))
goto fail;
@@ -1072,7 +1166,7 @@ static noinline int free_debug_processing(struct kmem_cache *s,
}
if (!check_object(s, page, object, SLUB_RED_ACTIVE))
- return 0;
+ goto out;
if (unlikely(s != page->slab)) {
if (!PageSlab(page)) {
@@ -1089,18 +1183,19 @@ static noinline int free_debug_processing(struct kmem_cache *s,
goto fail;
}
- /* Special debug activities for freeing objects */
- if (!PageSlubFrozen(page) && !page->freelist)
- remove_full(s, page);
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_FREE, addr);
trace(s, page, object, 0);
init_object(s, object, SLUB_RED_INACTIVE);
- return 1;
+ rc = 1;
+out:
+ slab_unlock(page);
+ local_irq_restore(flags);
+ return rc;
fail:
slab_fix(s, "Object at 0x%p not freed", object);
- return 0;
+ goto out;
}
static int __init setup_slub_debug(char *str)
@@ -1200,7 +1295,9 @@ static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
void *object, u8 val) { return 1; }
-static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
+static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
+ struct page *page) {}
+static inline void remove_full(struct kmem_cache *s, struct page *page) {}
static inline unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name,
void (*ctor)(void *))
@@ -1252,6 +1349,11 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
struct kmem_cache_order_objects oo = s->oo;
gfp_t alloc_gfp;
+ flags &= gfp_allowed_mask;
+
+ if (flags & __GFP_WAIT)
+ local_irq_enable();
+
flags |= s->allocflags;
/*
@@ -1268,12 +1370,17 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
* Try a lower order alloc if possible
*/
page = alloc_slab_page(flags, node, oo);
- if (!page)
- return NULL;
- stat(s, ORDER_FALLBACK);
+ if (page)
+ stat(s, ORDER_FALLBACK);
}
+ if (flags & __GFP_WAIT)
+ local_irq_disable();
+
+ if (!page)
+ return NULL;
+
if (kmemcheck_enabled
&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
int pages = 1 << oo_order(oo);
@@ -1341,6 +1448,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
page->freelist = start;
page->inuse = 0;
+ page->frozen = 1;
out:
return page;
}
@@ -1418,77 +1526,87 @@ static void discard_slab(struct kmem_cache *s, struct page *page)
}
/*
- * Per slab locking using the pagelock
- */
-static __always_inline void slab_lock(struct page *page)
-{
- bit_spin_lock(PG_locked, &page->flags);
-}
-
-static __always_inline void slab_unlock(struct page *page)
-{
- __bit_spin_unlock(PG_locked, &page->flags);
-}
-
-static __always_inline int slab_trylock(struct page *page)
-{
- int rc = 1;
-
- rc = bit_spin_trylock(PG_locked, &page->flags);
- return rc;
-}
-
-/*
- * Management of partially allocated slabs
+ * Management of partially allocated slabs.
+ *
+ * list_lock must be held.
*/
-static void add_partial(struct kmem_cache_node *n,
+static inline void add_partial(struct kmem_cache_node *n,
struct page *page, int tail)
{
- spin_lock(&n->list_lock);
n->nr_partial++;
if (tail)
list_add_tail(&page->lru, &n->partial);
else
list_add(&page->lru, &n->partial);
- spin_unlock(&n->list_lock);
}
-static inline void __remove_partial(struct kmem_cache_node *n,
+/*
+ * list_lock must be held.
+ */
+static inline void remove_partial(struct kmem_cache_node *n,
struct page *page)
{
list_del(&page->lru);
n->nr_partial--;
}
-static void remove_partial(struct kmem_cache *s, struct page *page)
-{
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
-
- spin_lock(&n->list_lock);
- __remove_partial(n, page);
- spin_unlock(&n->list_lock);
-}
-
/*
- * Lock slab and remove from the partial list.
+ * Lock slab, remove from the partial list and put the object into the
+ * per cpu freelist.
*
* Must hold list_lock.
*/
-static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
- struct page *page)
+static inline int acquire_slab(struct kmem_cache *s,
+ struct kmem_cache_node *n, struct page *page)
{
- if (slab_trylock(page)) {
- __remove_partial(n, page);
- __SetPageSlubFrozen(page);
+ void *freelist;
+ unsigned long counters;
+ struct page new;
+
+ /*
+ * Zap the freelist and set the frozen bit.
+ * The old freelist is the list of objects for the
+ * per cpu allocation list.
+ */
+ do {
+ freelist = page->freelist;
+ counters = page->counters;
+ new.counters = counters;
+ new.inuse = page->objects;
+
+ VM_BUG_ON(new.frozen);
+ new.frozen = 1;
+
+ } while (!__cmpxchg_double_slab(s, page,
+ freelist, counters,
+ NULL, new.counters,
+ "lock and freeze"));
+
+ remove_partial(n, page);
+
+ if (freelist) {
+ /* Populate the per cpu freelist */
+ this_cpu_write(s->cpu_slab->freelist, freelist);
+ this_cpu_write(s->cpu_slab->page, page);
+ this_cpu_write(s->cpu_slab->node, page_to_nid(page));
return 1;
+ } else {
+ /*
+ * Slab page came from the wrong list. No object to allocate
+ * from. Put it onto the correct list and continue partial
+ * scan.
+ */
+ printk(KERN_ERR "SLUB: %s : Page without available objects on"
+ " partial list\n", s->name);
+ return 0;
}
- return 0;
}
/*
* Try to allocate a partial slab from a specific node.
*/
-static struct page *get_partial_node(struct kmem_cache_node *n)
+static struct page *get_partial_node(struct kmem_cache *s,
+ struct kmem_cache_node *n)
{
struct page *page;
@@ -1503,7 +1621,7 @@ static struct page *get_partial_node(struct kmem_cache_node *n)
spin_lock(&n->list_lock);
list_for_each_entry(page, &n->partial, lru)
- if (lock_and_freeze_slab(n, page))
+ if (acquire_slab(s, n, page))
goto out;
page = NULL;
out:
@@ -1554,7 +1672,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
n->nr_partial > s->min_partial) {
- page = get_partial_node(n);
+ page = get_partial_node(s, n);
if (page) {
put_mems_allowed();
return page;
@@ -1574,60 +1692,13 @@ static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
struct page *page;
int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
- page = get_partial_node(get_node(s, searchnode));
+ page = get_partial_node(s, get_node(s, searchnode));
if (page || node != NUMA_NO_NODE)
return page;
return get_any_partial(s, flags);
}
-/*
- * Move a page back to the lists.
- *
- * Must be called with the slab lock held.
- *
- * On exit the slab lock will have been dropped.
- */
-static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
- __releases(bitlock)
-{
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
-
- __ClearPageSlubFrozen(page);
- if (page->inuse) {
-
- if (page->freelist) {
- add_partial(n, page, tail);
- stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
- } else {
- stat(s, DEACTIVATE_FULL);
- if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
- add_full(n, page);
- }
- slab_unlock(page);
- } else {
- stat(s, DEACTIVATE_EMPTY);
- if (n->nr_partial < s->min_partial) {
- /*
- * Adding an empty slab to the partial slabs in order
- * to avoid page allocator overhead. This slab needs
- * to come after the other slabs with objects in
- * so that the others get filled first. That way the
- * size of the partial list stays small.
- *
- * kmem_cache_shrink can reclaim any empty slabs from
- * the partial list.
- */
- add_partial(n, page, 1);
- slab_unlock(page);
- } else {
- slab_unlock(page);
- stat(s, FREE_SLAB);
- discard_slab(s, page);
- }
- }
-}
-
#ifdef CONFIG_PREEMPT
/*
* Calculate the next globally unique transaction for disambiguiation
@@ -1697,42 +1768,161 @@ void init_kmem_cache_cpus(struct kmem_cache *s)
/*
* Remove the cpu slab
*/
+
+/*
+ * Remove the cpu slab
+ */
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
- __releases(bitlock)
{
+ enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
struct page *page = c->page;
- int tail = 1;
-
- if (page->freelist)
+ struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+ int lock = 0;
+ enum slab_modes l = M_NONE, m = M_NONE;
+ void *freelist;
+ void *nextfree;
+ int tail = 0;
+ struct page new;
+ struct page old;
+
+ if (page->freelist) {
stat(s, DEACTIVATE_REMOTE_FREES);
+ tail = 1;
+ }
+
+ c->tid = next_tid(c->tid);
+ c->page = NULL;
+ freelist = c->freelist;
+ c->freelist = NULL;
+
+ /*
+ * Stage one: Free all available per cpu objects back
+ * to the page freelist while it is still frozen. Leave the
+ * last one.
+ *
+ * There is no need to take the list->lock because the page
+ * is still frozen.
+ */
+ while (freelist && (nextfree = get_freepointer(s, freelist))) {
+ void *prior;
+ unsigned long counters;
+
+ do {
+ prior = page->freelist;
+ counters = page->counters;
+ set_freepointer(s, freelist, prior);
+ new.counters = counters;
+ new.inuse--;
+ VM_BUG_ON(!new.frozen);
+
+ } while (!__cmpxchg_double_slab(s, page,
+ prior, counters,
+ freelist, new.counters,
+ "drain percpu freelist"));
+
+ freelist = nextfree;
+ }
+
/*
- * Merge cpu freelist into slab freelist. Typically we get here
- * because both freelists are empty. So this is unlikely
- * to occur.
+ * Stage two: Ensure that the page is unfrozen while the
+ * list presence reflects the actual number of objects
+ * during unfreeze.
+ *
+ * We setup the list membership and then perform a cmpxchg
+ * with the count. If there is a mismatch then the page
+ * is not unfrozen but the page is on the wrong list.
+ *
+ * Then we restart the process which may have to remove
+ * the page from the list that we just put it on again
+ * because the number of objects in the slab may have
+ * changed.
*/
- while (unlikely(c->freelist)) {
- void **object;
+redo:
- tail = 0; /* Hot objects. Put the slab first */
+ old.freelist = page->freelist;
+ old.counters = page->counters;
+ VM_BUG_ON(!old.frozen);
- /* Retrieve object from cpu_freelist */
- object = c->freelist;
- c->freelist = get_freepointer(s, c->freelist);
+ /* Determine target state of the slab */
+ new.counters = old.counters;
+ if (freelist) {
+ new.inuse--;
+ set_freepointer(s, freelist, old.freelist);
+ new.freelist = freelist;
+ } else
+ new.freelist = old.freelist;
+
+ new.frozen = 0;
+
+ if (!new.inuse && n->nr_partial < s->min_partial)
+ m = M_FREE;
+ else if (new.freelist) {
+ m = M_PARTIAL;
+ if (!lock) {
+ lock = 1;
+ /*
+ * Taking the spinlock removes the possiblity
+ * that acquire_slab() will see a slab page that
+ * is frozen
+ */
+ spin_lock(&n->list_lock);
+ }
+ } else {
+ m = M_FULL;
+ if (kmem_cache_debug(s) && !lock) {
+ lock = 1;
+ /*
+ * This also ensures that the scanning of full
+ * slabs from diagnostic functions will not see
+ * any frozen slabs.
+ */
+ spin_lock(&n->list_lock);
+ }
+ }
+
+ if (l != m) {
+
+ if (l == M_PARTIAL)
+
+ remove_partial(n, page);
+
+ else if (l == M_FULL)
+
+ remove_full(s, page);
+
+ if (m == M_PARTIAL) {
+
+ add_partial(n, page, tail);
+ stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
+
+ } else if (m == M_FULL) {
- /* And put onto the regular freelist */
- set_freepointer(s, object, page->freelist);
- page->freelist = object;
- page->inuse--;
+ stat(s, DEACTIVATE_FULL);
+ add_full(s, n, page);
+
+ }
+ }
+
+ l = m;
+ if (!__cmpxchg_double_slab(s, page,
+ old.freelist, old.counters,
+ new.freelist, new.counters,
+ "unfreezing slab"))
+ goto redo;
+
+ if (lock)
+ spin_unlock(&n->list_lock);
+
+ if (m == M_FREE) {
+ stat(s, DEACTIVATE_EMPTY);
+ discard_slab(s, page);
+ stat(s, FREE_SLAB);
}
- c->page = NULL;
- c->tid = next_tid(c->tid);
- unfreeze_slab(s, page, tail);
}
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
stat(s, CPUSLAB_FLUSH);
- slab_lock(c->page);
deactivate_slab(s, c);
}
@@ -1861,6 +2051,8 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
void **object;
struct page *page;
unsigned long flags;
+ struct page new;
+ unsigned long counters;
local_irq_save(flags);
#ifdef CONFIG_PREEMPT
@@ -1879,72 +2071,97 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
if (!page)
goto new_slab;
- slab_lock(page);
- if (unlikely(!node_match(c, node)))
- goto another_slab;
+ if (unlikely(!node_match(c, node))) {
+ stat(s, ALLOC_NODE_MISMATCH);
+ deactivate_slab(s, c);
+ goto new_slab;
+ }
+
+ stat(s, ALLOC_SLOWPATH);
+
+ do {
+ object = page->freelist;
+ counters = page->counters;
+ new.counters = counters;
+ VM_BUG_ON(!new.frozen);
+
+ /*
+ * If there is no object left then we use this loop to
+ * deactivate the slab which is simple since no objects
+ * are left in the slab and therefore we do not need to
+ * put the page back onto the partial list.
+ *
+ * If there are objects left then we retrieve them
+ * and use them to refill the per cpu queue.
+ */
+
+ new.inuse = page->objects;
+ new.frozen = object != NULL;
+
+ } while (!__cmpxchg_double_slab(s, page,
+ object, counters,
+ NULL, new.counters,
+ "__slab_alloc"));
+
+ if (unlikely(!object)) {
+ c->page = NULL;
+ stat(s, DEACTIVATE_BYPASS);
+ goto new_slab;
+ }
stat(s, ALLOC_REFILL);
load_freelist:
- object = page->freelist;
- if (unlikely(!object))
- goto another_slab;
- if (kmem_cache_debug(s))
- goto debug;
-
+ VM_BUG_ON(!page->frozen);
c->freelist = get_freepointer(s, object);
- page->inuse = page->objects;
- page->freelist = NULL;
-
- slab_unlock(page);
c->tid = next_tid(c->tid);
local_irq_restore(flags);
- stat(s, ALLOC_SLOWPATH);
return object;
-another_slab:
- deactivate_slab(s, c);
-
new_slab:
page = get_partial(s, gfpflags, node);
if (page) {
stat(s, ALLOC_FROM_PARTIAL);
- c->node = page_to_nid(page);
- c->page = page;
+ object = c->freelist;
+
+ if (kmem_cache_debug(s))
+ goto debug;
goto load_freelist;
}
- gfpflags &= gfp_allowed_mask;
- if (gfpflags & __GFP_WAIT)
- local_irq_enable();
-
page = new_slab(s, gfpflags, node);
- if (gfpflags & __GFP_WAIT)
- local_irq_disable();
-
if (page) {
c = __this_cpu_ptr(s->cpu_slab);
- stat(s, ALLOC_SLAB);
if (c->page)
flush_slab(s, c);
- slab_lock(page);
- __SetPageSlubFrozen(page);
+ /*
+ * No other reference to the page yet so we can
+ * muck around with it freely without cmpxchg
+ */
+ object = page->freelist;
+ page->freelist = NULL;
+ page->inuse = page->objects;
+
+ stat(s, ALLOC_SLAB);
c->node = page_to_nid(page);
c->page = page;
+
+ if (kmem_cache_debug(s))
+ goto debug;
goto load_freelist;
}
if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
slab_out_of_memory(s, gfpflags, node);
local_irq_restore(flags);
return NULL;
+
debug:
- if (!alloc_debug_processing(s, page, object, addr))
- goto another_slab;
+ if (!object || !alloc_debug_processing(s, page, object, addr))
+ goto new_slab;
- page->inuse++;
- page->freelist = get_freepointer(s, object);
+ c->freelist = get_freepointer(s, object);
deactivate_slab(s, c);
c->page = NULL;
c->node = NUMA_NO_NODE;
@@ -2096,40 +2313,75 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
{
void *prior;
void **object = (void *)x;
- unsigned long flags;
+ int was_frozen;
+ int inuse;
+ struct page new;
+ unsigned long counters;
+ struct kmem_cache_node *n = NULL;
+ unsigned long uninitialized_var(flags);
- local_irq_save(flags);
- slab_lock(page);
stat(s, FREE_SLOWPATH);
if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
- goto out_unlock;
+ return;
- prior = page->freelist;
- set_freepointer(s, object, prior);
- page->freelist = object;
- page->inuse--;
+ do {
+ prior = page->freelist;
+ counters = page->counters;
+ set_freepointer(s, object, prior);
+ new.counters = counters;
+ was_frozen = new.frozen;
+ new.inuse--;
+ if ((!new.inuse || !prior) && !was_frozen && !n) {
+ n = get_node(s, page_to_nid(page));
+ /*
+ * Speculatively acquire the list_lock.
+ * If the cmpxchg does not succeed then we may
+ * drop the list_lock without any processing.
+ *
+ * Otherwise the list_lock will synchronize with
+ * other processors updating the list of slabs.
+ */
+ spin_lock_irqsave(&n->list_lock, flags);
+ }
+ inuse = new.inuse;
- if (unlikely(PageSlubFrozen(page))) {
- stat(s, FREE_FROZEN);
- goto out_unlock;
- }
+ } while (!cmpxchg_double_slab(s, page,
+ prior, counters,
+ object, new.counters,
+ "__slab_free"));
- if (unlikely(!page->inuse))
- goto slab_empty;
+ if (likely(!n)) {
+ /*
+ * The list lock was not taken therefore no list
+ * activity can be necessary.
+ */
+ if (was_frozen)
+ stat(s, FREE_FROZEN);
+ return;
+ }
/*
- * Objects left in the slab. If it was not on the partial list before
- * then add it.
+ * was_frozen may have been set after we acquired the list_lock in
+ * an earlier loop. So we need to check it here again.
*/
- if (unlikely(!prior)) {
- add_partial(get_node(s, page_to_nid(page)), page, 1);
- stat(s, FREE_ADD_PARTIAL);
- }
+ if (was_frozen)
+ stat(s, FREE_FROZEN);
+ else {
+ if (unlikely(!inuse && n->nr_partial > s->min_partial))
+ goto slab_empty;
-out_unlock:
- slab_unlock(page);
- local_irq_restore(flags);
+ /*
+ * Objects left in the slab. If it was not on the partial list before
+ * then add it.
+ */
+ if (unlikely(!prior)) {
+ remove_full(s, page);
+ add_partial(n, page, 0);
+ stat(s, FREE_ADD_PARTIAL);
+ }
+ }
+ spin_unlock_irqrestore(&n->list_lock, flags);
return;
slab_empty:
@@ -2137,11 +2389,11 @@ slab_empty:
/*
* Slab still on the partial list.
*/
- remove_partial(s, page);
+ remove_partial(n, page);
stat(s, FREE_REMOVE_PARTIAL);
}
- slab_unlock(page);
- local_irq_restore(flags);
+
+ spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, FREE_SLAB);
discard_slab(s, page);
}
@@ -2415,7 +2667,6 @@ static void early_kmem_cache_node_alloc(int node)
{
struct page *page;
struct kmem_cache_node *n;
- unsigned long flags;
BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
@@ -2433,6 +2684,7 @@ static void early_kmem_cache_node_alloc(int node)
BUG_ON(!n);
page->freelist = get_freepointer(kmem_cache_node, n);
page->inuse++;
+ page->frozen = 0;
kmem_cache_node->node[node] = n;
#ifdef CONFIG_SLUB_DEBUG
init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
@@ -2441,14 +2693,7 @@ static void early_kmem_cache_node_alloc(int node)
init_kmem_cache_node(n, kmem_cache_node);
inc_slabs_node(kmem_cache_node, node, page->objects);
- /*
- * lockdep requires consistent irq usage for each lock
- * so even though there cannot be a race this early in
- * the boot sequence, we still disable irqs.
- */
- local_irq_save(flags);
add_partial(n, page, 0);
- local_irq_restore(flags);
}
static void free_kmem_cache_nodes(struct kmem_cache *s)
@@ -2654,6 +2899,12 @@ static int kmem_cache_open(struct kmem_cache *s,
}
}
+#ifdef CONFIG_CMPXCHG_DOUBLE
+ if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
+ /* Enable fast mode */
+ s->flags |= __CMPXCHG_DOUBLE;
+#endif
+
/*
* The larger the object size is, the more pages we want on the partial
* list to avoid pounding the page allocator excessively.
@@ -2726,7 +2977,7 @@ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry_safe(page, h, &n->partial, lru) {
if (!page->inuse) {
- __remove_partial(n, page);
+ remove_partial(n, page);
discard_slab(s, page);
} else {
list_slab_objects(s, page,
@@ -3094,14 +3345,8 @@ int kmem_cache_shrink(struct kmem_cache *s)
* list_lock. page->inuse here is the upper limit.
*/
list_for_each_entry_safe(page, t, &n->partial, lru) {
- if (!page->inuse && slab_trylock(page)) {
- /*
- * Must hold slab lock here because slab_free
- * may have freed the last object and be
- * waiting to release the slab.
- */
- __remove_partial(n, page);
- slab_unlock(page);
+ if (!page->inuse) {
+ remove_partial(n, page);
discard_slab(s, page);
} else {
list_move(&page->lru,
@@ -3689,12 +3934,9 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
unsigned long *map)
{
- if (slab_trylock(page)) {
- validate_slab(s, page, map);
- slab_unlock(page);
- } else
- printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
- s->name, page);
+ slab_lock(page);
+ validate_slab(s, page, map);
+ slab_unlock(page);
}
static int validate_slab_node(struct kmem_cache *s,
@@ -4342,8 +4584,10 @@ static ssize_t sanity_checks_store(struct kmem_cache *s,
const char *buf, size_t length)
{
s->flags &= ~SLAB_DEBUG_FREE;
- if (buf[0] == '1')
+ if (buf[0] == '1') {
+ s->flags &= ~__CMPXCHG_DOUBLE;
s->flags |= SLAB_DEBUG_FREE;
+ }
return length;
}
SLAB_ATTR(sanity_checks);
@@ -4357,8 +4601,10 @@ static ssize_t trace_store(struct kmem_cache *s, const char *buf,
size_t length)
{
s->flags &= ~SLAB_TRACE;
- if (buf[0] == '1')
+ if (buf[0] == '1') {
+ s->flags &= ~__CMPXCHG_DOUBLE;
s->flags |= SLAB_TRACE;
+ }
return length;
}
SLAB_ATTR(trace);
@@ -4375,8 +4621,10 @@ static ssize_t red_zone_store(struct kmem_cache *s,
return -EBUSY;
s->flags &= ~SLAB_RED_ZONE;
- if (buf[0] == '1')
+ if (buf[0] == '1') {
+ s->flags &= ~__CMPXCHG_DOUBLE;
s->flags |= SLAB_RED_ZONE;
+ }
calculate_sizes(s, -1);
return length;
}
@@ -4394,8 +4642,10 @@ static ssize_t poison_store(struct kmem_cache *s,
return -EBUSY;
s->flags &= ~SLAB_POISON;
- if (buf[0] == '1')
+ if (buf[0] == '1') {
+ s->flags &= ~__CMPXCHG_DOUBLE;
s->flags |= SLAB_POISON;
+ }
calculate_sizes(s, -1);
return length;
}
@@ -4413,8 +4663,10 @@ static ssize_t store_user_store(struct kmem_cache *s,
return -EBUSY;
s->flags &= ~SLAB_STORE_USER;
- if (buf[0] == '1')
+ if (buf[0] == '1') {
+ s->flags &= ~__CMPXCHG_DOUBLE;
s->flags |= SLAB_STORE_USER;
+ }
calculate_sizes(s, -1);
return length;
}
@@ -4579,6 +4831,7 @@ STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
+STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
@@ -4586,7 +4839,10 @@ STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
+STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
STAT_ATTR(ORDER_FALLBACK, order_fallback);
+STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
+STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
#endif
static struct attribute *slab_attrs[] = {
@@ -4636,6 +4892,7 @@ static struct attribute *slab_attrs[] = {
&alloc_from_partial_attr.attr,
&alloc_slab_attr.attr,
&alloc_refill_attr.attr,
+ &alloc_node_mismatch_attr.attr,
&free_slab_attr.attr,
&cpuslab_flush_attr.attr,
&deactivate_full_attr.attr,
@@ -4643,7 +4900,10 @@ static struct attribute *slab_attrs[] = {
&deactivate_to_head_attr.attr,
&deactivate_to_tail_attr.attr,
&deactivate_remote_frees_attr.attr,
+ &deactivate_bypass_attr.attr,
&order_fallback_attr.attr,
+ &cmpxchg_double_fail_attr.attr,
+ &cmpxchg_double_cpu_fail_attr.attr,
#endif
#ifdef CONFIG_FAILSLAB
&failslab_attr.attr,
diff --git a/tools/slub/slabinfo.c b/tools/slub/slabinfo.c
index 516551c..868cc93 100644
--- a/tools/slub/slabinfo.c
+++ b/tools/slub/slabinfo.c
@@ -2,8 +2,9 @@
* Slabinfo: Tool to get reports about slabs
*
* (C) 2007 sgi, Christoph Lameter
+ * (C) 2011 Linux Foundation, Christoph Lameter
*
- * Compile by:
+ * Compile with:
*
* gcc -o slabinfo slabinfo.c
*/
@@ -39,6 +40,8 @@ struct slabinfo {
unsigned long cpuslab_flush, deactivate_full, deactivate_empty;
unsigned long deactivate_to_head, deactivate_to_tail;
unsigned long deactivate_remote_frees, order_fallback;
+ unsigned long cmpxchg_double_cpu_fail, cmpxchg_double_fail;
+ unsigned long alloc_node_mismatch, deactivate_bypass;
int numa[MAX_NODES];
int numa_partial[MAX_NODES];
} slabinfo[MAX_SLABS];
@@ -99,7 +102,7 @@ static void fatal(const char *x, ...)
static void usage(void)
{
- printf("slabinfo 5/7/2007. (c) 2007 sgi.\n\n"
+ printf("slabinfo 4/15/2011. (c) 2007 sgi/(c) 2011 Linux Foundation.\n\n"
"slabinfo [-ahnpvtsz] [-d debugopts] [slab-regexp]\n"
"-a|--aliases Show aliases\n"
"-A|--activity Most active slabs first\n"
@@ -293,7 +296,7 @@ int line = 0;
static void first_line(void)
{
if (show_activity)
- printf("Name Objects Alloc Free %%Fast Fallb O\n");
+ printf("Name Objects Alloc Free %%Fast Fallb O CmpX UL\n");
else
printf("Name Objects Objsize Space "
"Slabs/Part/Cpu O/S O %%Fr %%Ef Flg\n");
@@ -379,14 +382,14 @@ static void show_tracking(struct slabinfo *s)
printf("\n%s: Kernel object allocation\n", s->name);
printf("-----------------------------------------------------------------------\n");
if (read_slab_obj(s, "alloc_calls"))
- printf(buffer);
+ printf("%s", buffer);
else
printf("No Data\n");
printf("\n%s: Kernel object freeing\n", s->name);
printf("------------------------------------------------------------------------\n");
if (read_slab_obj(s, "free_calls"))
- printf(buffer);
+ printf("%s", buffer);
else
printf("No Data\n");
@@ -400,7 +403,7 @@ static void ops(struct slabinfo *s)
if (read_slab_obj(s, "ops")) {
printf("\n%s: kmem_cache operations\n", s->name);
printf("--------------------------------------------\n");
- printf(buffer);
+ printf("%s", buffer);
} else
printf("\n%s has no kmem_cache operations\n", s->name);
}
@@ -462,19 +465,32 @@ static void slab_stats(struct slabinfo *s)
if (s->cpuslab_flush)
printf("Flushes %8lu\n", s->cpuslab_flush);
- if (s->alloc_refill)
- printf("Refill %8lu\n", s->alloc_refill);
-
total = s->deactivate_full + s->deactivate_empty +
- s->deactivate_to_head + s->deactivate_to_tail;
-
- if (total)
- printf("Deactivate Full=%lu(%lu%%) Empty=%lu(%lu%%) "
- "ToHead=%lu(%lu%%) ToTail=%lu(%lu%%)\n",
- s->deactivate_full, (s->deactivate_full * 100) / total,
- s->deactivate_empty, (s->deactivate_empty * 100) / total,
- s->deactivate_to_head, (s->deactivate_to_head * 100) / total,
+ s->deactivate_to_head + s->deactivate_to_tail + s->deactivate_bypass;
+
+ if (total) {
+ printf("\nSlab Deactivation Ocurrences %%\n");
+ printf("-------------------------------------------------\n");
+ printf("Slab full %7lu %3lu%%\n",
+ s->deactivate_full, (s->deactivate_full * 100) / total);
+ printf("Slab empty %7lu %3lu%%\n",
+ s->deactivate_empty, (s->deactivate_empty * 100) / total);
+ printf("Moved to head of partial list %7lu %3lu%%\n",
+ s->deactivate_to_head, (s->deactivate_to_head * 100) / total);
+ printf("Moved to tail of partial list %7lu %3lu%%\n",
s->deactivate_to_tail, (s->deactivate_to_tail * 100) / total);
+ printf("Deactivation bypass %7lu %3lu%%\n",
+ s->deactivate_bypass, (s->deactivate_bypass * 100) / total);
+ printf("Refilled from foreign frees %7lu %3lu%%\n",
+ s->alloc_refill, (s->alloc_refill * 100) / total);
+ printf("Node mismatch %7lu %3lu%%\n",
+ s->alloc_node_mismatch, (s->alloc_node_mismatch * 100) / total);
+ }
+
+ if (s->cmpxchg_double_fail || s->cmpxchg_double_cpu_fail)
+ printf("\nCmpxchg_double Looping\n------------------------\n");
+ printf("Locked Cmpxchg Double redos %lu\nUnlocked Cmpxchg Double redos %lu\n",
+ s->cmpxchg_double_fail, s->cmpxchg_double_cpu_fail);
}
static void report(struct slabinfo *s)
@@ -573,12 +589,13 @@ static void slabcache(struct slabinfo *s)
total_alloc = s->alloc_fastpath + s->alloc_slowpath;
total_free = s->free_fastpath + s->free_slowpath;
- printf("%-21s %8ld %10ld %10ld %3ld %3ld %5ld %1d\n",
+ printf("%-21s %8ld %10ld %10ld %3ld %3ld %5ld %1d %4ld %4ld\n",
s->name, s->objects,
total_alloc, total_free,
total_alloc ? (s->alloc_fastpath * 100 / total_alloc) : 0,
total_free ? (s->free_fastpath * 100 / total_free) : 0,
- s->order_fallback, s->order);
+ s->order_fallback, s->order, s->cmpxchg_double_fail,
+ s->cmpxchg_double_cpu_fail);
}
else
printf("%-21s %8ld %7d %8s %14s %4d %1d %3ld %3ld %s\n",
@@ -1190,6 +1207,10 @@ static void read_slab_dir(void)
slab->deactivate_to_tail = get_obj("deactivate_to_tail");
slab->deactivate_remote_frees = get_obj("deactivate_remote_frees");
slab->order_fallback = get_obj("order_fallback");
+ slab->cmpxchg_double_cpu_fail = get_obj("cmpxchg_double_cpu_fail");
+ slab->cmpxchg_double_fail = get_obj("cmpxchg_double_fail");
+ slab->alloc_node_mismatch = get_obj("alloc_node_mismatch");
+ slab->deactivate_bypass = get_obj("deactivate_bypass");
chdir("..");
if (slab->name[0] == ':')
alias_targets++;
OpenPOWER on IntegriCloud