summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/core-api/atomic_ops.rst13
-rw-r--r--Documentation/memory-barriers.txt17
-rw-r--r--Documentation/translations/ko_KR/memory-barriers.txt50
-rw-r--r--MAINTAINERS3
-rw-r--r--arch/arm64/include/asm/spinlock.h5
-rw-r--r--arch/x86/include/asm/qspinlock.h21
-rw-r--r--arch/x86/include/asm/qspinlock_paravirt.h3
-rw-r--r--include/asm-generic/atomic-long.h19
-rw-r--r--include/asm-generic/barrier.h27
-rw-r--r--include/asm-generic/qspinlock.h4
-rw-r--r--include/asm-generic/qspinlock_types.h32
-rw-r--r--include/linux/atomic.h2
-rw-r--r--include/linux/delayacct.h2
-rw-r--r--include/linux/mutex.h3
-rw-r--r--include/linux/spinlock.h18
-rw-r--r--kernel/delayacct.c17
-rw-r--r--kernel/locking/lockdep.c70
-rw-r--r--kernel/locking/mcs_spinlock.h10
-rw-r--r--kernel/locking/mutex.c3
-rw-r--r--kernel/locking/qspinlock.c247
-rw-r--r--kernel/locking/qspinlock_paravirt.h49
-rw-r--r--kernel/locking/qspinlock_stat.h9
-rw-r--r--kernel/locking/rwsem-xadd.c25
-rw-r--r--kernel/stop_machine.c24
-rw-r--r--tools/memory-model/Documentation/cheatsheet.txt7
-rw-r--r--tools/memory-model/Documentation/explanation.txt221
-rw-r--r--tools/memory-model/Documentation/references.txt17
-rw-r--r--tools/memory-model/README2
-rw-r--r--tools/memory-model/linux-kernel.bell4
-rw-r--r--tools/memory-model/linux-kernel.cat41
-rw-r--r--tools/memory-model/linux-kernel.def34
-rw-r--r--tools/memory-model/litmus-tests/.gitignore1
-rw-r--r--tools/memory-model/litmus-tests/IRIW+mbonceonces+OnceOnce.litmus2
-rw-r--r--tools/memory-model/litmus-tests/MP+polockmbonce+poacquiresilsil.litmus35
-rw-r--r--tools/memory-model/litmus-tests/MP+polockonce+poacquiresilsil.litmus34
-rw-r--r--tools/memory-model/litmus-tests/README19
-rw-r--r--tools/memory-model/litmus-tests/WRC+pooncerelease+rmbonceonce+Once.litmus4
-rw-r--r--tools/memory-model/lock.cat107
-rw-r--r--tools/memory-model/scripts/checkalllitmus.sh73
-rw-r--r--tools/memory-model/scripts/checklitmus.sh86
40 files changed, 875 insertions, 485 deletions
diff --git a/Documentation/core-api/atomic_ops.rst b/Documentation/core-api/atomic_ops.rst
index fce9291..2e7165f 100644
--- a/Documentation/core-api/atomic_ops.rst
+++ b/Documentation/core-api/atomic_ops.rst
@@ -111,7 +111,6 @@ If the compiler can prove that do_something() does not store to the
variable a, then the compiler is within its rights transforming this to
the following::
- tmp = a;
if (a > 0)
for (;;)
do_something();
@@ -119,7 +118,7 @@ the following::
If you don't want the compiler to do this (and you probably don't), then
you should use something like the following::
- while (READ_ONCE(a) < 0)
+ while (READ_ONCE(a) > 0)
do_something();
Alternatively, you could place a barrier() call in the loop.
@@ -467,10 +466,12 @@ Like the above, except that these routines return a boolean which
indicates whether the changed bit was set _BEFORE_ the atomic bit
operation.
-WARNING! It is incredibly important that the value be a boolean,
-ie. "0" or "1". Do not try to be fancy and save a few instructions by
-declaring the above to return "long" and just returning something like
-"old_val & mask" because that will not work.
+
+.. warning::
+ It is incredibly important that the value be a boolean, ie. "0" or "1".
+ Do not try to be fancy and save a few instructions by declaring the
+ above to return "long" and just returning something like "old_val &
+ mask" because that will not work.
For one thing, this return value gets truncated to int in many code
paths using these interfaces, so on 64-bit if the bit is set in the
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index 33b8bc9..a02d6bb 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -1920,9 +1920,6 @@ There are some more advanced barrier functions:
/* assign ownership */
desc->status = DEVICE_OWN;
- /* force memory to sync before notifying device via MMIO */
- wmb();
-
/* notify device of new descriptors */
writel(DESC_NOTIFY, doorbell);
}
@@ -1930,11 +1927,15 @@ There are some more advanced barrier functions:
The dma_rmb() allows us guarantee the device has released ownership
before we read the data from the descriptor, and the dma_wmb() allows
us to guarantee the data is written to the descriptor before the device
- can see it now has ownership. The wmb() is needed to guarantee that the
- cache coherent memory writes have completed before attempting a write to
- the cache incoherent MMIO region.
-
- See Documentation/DMA-API.txt for more information on consistent memory.
+ can see it now has ownership. Note that, when using writel(), a prior
+ wmb() is not needed to guarantee that the cache coherent memory writes
+ have completed before writing to the MMIO region. The cheaper
+ writel_relaxed() does not provide this guarantee and must not be used
+ here.
+
+ See the subsection "Kernel I/O barrier effects" for more information on
+ relaxed I/O accessors and the Documentation/DMA-API.txt file for more
+ information on consistent memory.
MMIO WRITE BARRIER
diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt
index 2ec5fe0..921739d 100644
--- a/Documentation/translations/ko_KR/memory-barriers.txt
+++ b/Documentation/translations/ko_KR/memory-barriers.txt
@@ -36,6 +36,9 @@ Documentation/memory-barriers.txt
부분도 있고, 의도하진 않았지만 사람에 의해 쓰였다보니 불완전한 부분도 있습니다.
이 문서는 리눅스에서 제공하는 다양한 메모리 배리어들을 사용하기 위한
안내서입니다만, 뭔가 이상하다 싶으면 (그런게 많을 겁니다) 질문을 부탁드립니다.
+일부 이상한 점들은 공식적인 메모리 일관성 모델과 tools/memory-model/ 에 있는
+관련 문서를 참고해서 해결될 수 있을 겁니다. 그러나, 이 메모리 모델조차도 그
+관리자들의 의견의 집합으로 봐야지, 절대 옳은 예언자로 신봉해선 안될 겁니다.
다시 말하지만, 이 문서는 리눅스가 하드웨어에 기대하는 사항에 대한 명세서가
아닙니다.
@@ -77,7 +80,7 @@ Documentation/memory-barriers.txt
- 메모리 배리어의 종류.
- 메모리 배리어에 대해 가정해선 안될 것.
- - 데이터 의존성 배리어.
+ - 데이터 의존성 배리어 (역사적).
- 컨트롤 의존성.
- SMP 배리어 짝맞추기.
- 메모리 배리어 시퀀스의 예.
@@ -255,17 +258,20 @@ CPU 에게 기대할 수 있는 최소한의 보장사항 몇가지가 있습니
(*) 어떤 CPU 든, 의존성이 존재하는 메모리 액세스들은 해당 CPU 자신에게
있어서는 순서대로 메모리 시스템에 수행 요청됩니다. 즉, 다음에 대해서:
- Q = READ_ONCE(P); smp_read_barrier_depends(); D = READ_ONCE(*Q);
+ Q = READ_ONCE(P); D = READ_ONCE(*Q);
CPU 는 다음과 같은 메모리 오퍼레이션 시퀀스를 수행 요청합니다:
Q = LOAD P, D = LOAD *Q
- 그리고 그 시퀀스 내에서의 순서는 항상 지켜집니다. 대부분의 시스템에서
- smp_read_barrier_depends() 는 아무일도 안하지만 DEC Alpha 에서는
- 명시적으로 사용되어야 합니다. 보통의 경우에는 smp_read_barrier_depends()
- 를 직접 사용하는 대신 rcu_dereference() 같은 것들을 사용해야 함을
- 알아두세요.
+ 그리고 그 시퀀스 내에서의 순서는 항상 지켜집니다. 하지만, DEC Alpha 에서
+ READ_ONCE() 는 메모리 배리어 명령도 내게 되어 있어서, DEC Alpha CPU 는
+ 다음과 같은 메모리 오퍼레이션들을 내놓게 됩니다:
+
+ Q = LOAD P, MEMORY_BARRIER, D = LOAD *Q, MEMORY_BARRIER
+
+ DEC Alpha 에서 수행되든 아니든, READ_ONCE() 는 컴파일러로부터의 악영향
+ 또한 제거합니다.
(*) 특정 CPU 내에서 겹치는 영역의 메모리에 행해지는 로드와 스토어 들은 해당
CPU 안에서는 순서가 바뀌지 않은 것으로 보여집니다. 즉, 다음에 대해서:
@@ -421,8 +427,8 @@ CPU 에게 기대할 수 있는 최소한의 보장사항 몇가지가 있습니
데이터 의존성 배리어는 읽기 배리어의 보다 완화된 형태입니다. 두개의 로드
오퍼레이션이 있고 두번째 것이 첫번째 것의 결과에 의존하고 있을 때(예:
두번째 로드가 참조할 주소를 첫번째 로드가 읽는 경우), 두번째 로드가 읽어올
- 데이터는 첫번째 로드에 의해 그 주소가 얻어지기 전에 업데이트 되어 있음을
- 보장하기 위해서 데이터 의존성 배리어가 필요할 수 있습니다.
+ 데이터는 첫번째 로드에 의해 그 주소가 얻어진 뒤에 업데이트 됨을 보장하기
+ 위해서 데이터 의존성 배리어가 필요할 수 있습니다.
데이터 의존성 배리어는 상호 의존적인 로드 오퍼레이션들 사이의 부분적 순서
세우기입니다; 스토어 오퍼레이션들이나 독립적인 로드들, 또는 중복되는
@@ -570,8 +576,14 @@ ACQUIRE 는 해당 오퍼레이션의 로드 부분에만 적용되고 RELEASE
Documentation/DMA-API.txt
-데이터 의존성 배리어
---------------------
+데이터 의존성 배리어 (역사적)
+-----------------------------
+
+리눅스 커널 v4.15 기준으로, smp_read_barrier_depends() 가 READ_ONCE() 에
+추가되었는데, 이는 이 섹션에 주의를 기울여야 하는 사람들은 DEC Alpha 아키텍쳐
+전용 코드를 만드는 사람들과 READ_ONCE() 자체를 만드는 사람들 뿐임을 의미합니다.
+그런 분들을 위해, 그리고 역사에 관심 있는 분들을 위해, 여기 데이터 의존성
+배리어에 대한 이야기를 적습니다.
데이터 의존성 배리어의 사용에 있어 지켜야 하는 사항들은 약간 미묘하고, 데이터
의존성 배리어가 사용되어야 하는 상황도 항상 명백하지는 않습니다. 설명을 위해
@@ -1787,7 +1799,7 @@ CPU 메모리 배리어
범용 mb() smp_mb()
쓰기 wmb() smp_wmb()
읽기 rmb() smp_rmb()
- 데이터 의존성 read_barrier_depends() smp_read_barrier_depends()
+ 데이터 의존성 READ_ONCE()
데이터 의존성 배리어를 제외한 모든 메모리 배리어는 컴파일러 배리어를
@@ -2796,8 +2808,9 @@ CPU 2 는 C/D 를 갖습니다)가 병렬로 연결되어 있는 시스템을
여기에 개입하기 위해선, 데이터 의존성 배리어나 읽기 배리어를 로드 오퍼레이션들
-사이에 넣어야 합니다. 이렇게 함으로써 캐시가 다음 요청을 처리하기 전에 일관성
-큐를 처리하도록 강제하게 됩니다.
+사이에 넣어야 합니다 (v4.15 부터는 READ_ONCE() 매크로에 의해 무조건적으로
+그렇게 됩니다). 이렇게 함으로써 캐시가 다음 요청을 처리하기 전에 일관성 큐를
+처리하도록 강제하게 됩니다.
CPU 1 CPU 2 COMMENT
=============== =============== =======================================
@@ -2826,7 +2839,10 @@ CPU 2 는 C/D 를 갖습니다)가 병렬로 연결되어 있는 시스템을
다른 CPU 들도 분할된 캐시를 가지고 있을 수 있지만, 그런 CPU 들은 평범한 메모리
액세스를 위해서도 이 분할된 캐시들 사이의 조정을 해야만 합니다. Alpha 는 가장
약한 메모리 순서 시맨틱 (semantic) 을 선택함으로써 메모리 배리어가 명시적으로
-사용되지 않았을 때에는 그런 조정이 필요하지 않게 했습니다.
+사용되지 않았을 때에는 그런 조정이 필요하지 않게 했으며, 이는 Alpha 가 당시에
+더 높은 CPU 클락 속도를 가질 수 있게 했습니다. 하지만, (다시 말하건대, v4.15
+이후부터는) Alpha 아키텍쳐 전용 코드와 READ_ONCE() 매크로 내부에서를 제외하고는
+smp_read_barrier_depends() 가 사용되지 않아야 함을 알아두시기 바랍니다.
캐시 일관성 VS DMA
@@ -2988,7 +3004,9 @@ Alpha CPU 의 일부 버전은 분할된 데이터 캐시를 가지고 있어서
메모리 일관성 시스템과 함께 두개의 캐시를 동기화 시켜서, 포인터 변경과 새로운
데이터의 발견을 올바른 순서로 일어나게 하기 때문입니다.
-리눅스 커널의 메모리 배리어 모델은 Alpha 에 기초해서 정의되었습니다.
+리눅스 커널의 메모리 배리어 모델은 Alpha 에 기초해서 정의되었습니다만, v4.15
+부터는 리눅스 커널이 READ_ONCE() 내에 smp_read_barrier_depends() 를 추가해서
+Alpha 의 메모리 모델로의 영향력이 크게 줄어들긴 했습니다.
위의 "캐시 일관성" 서브섹션을 참고하세요.
diff --git a/MAINTAINERS b/MAINTAINERS
index fdf15f3..aa63583 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -8212,7 +8212,7 @@ F: drivers/misc/lkdtm/*
LINUX KERNEL MEMORY CONSISTENCY MODEL (LKMM)
M: Alan Stern <stern@rowland.harvard.edu>
-M: Andrea Parri <parri.andrea@gmail.com>
+M: Andrea Parri <andrea.parri@amarulasolutions.com>
M: Will Deacon <will.deacon@arm.com>
M: Peter Zijlstra <peterz@infradead.org>
M: Boqun Feng <boqun.feng@gmail.com>
@@ -8319,6 +8319,7 @@ F: Documentation/admin-guide/LSM/LoadPin.rst
LOCKING PRIMITIVES
M: Peter Zijlstra <peterz@infradead.org>
M: Ingo Molnar <mingo@redhat.com>
+M: Will Deacon <will.deacon@arm.com>
L: linux-kernel@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git locking/core
S: Maintained
diff --git a/arch/arm64/include/asm/spinlock.h b/arch/arm64/include/asm/spinlock.h
index ebdae15..26c5bd7 100644
--- a/arch/arm64/include/asm/spinlock.h
+++ b/arch/arm64/include/asm/spinlock.h
@@ -122,11 +122,6 @@ static inline int arch_spin_value_unlocked(arch_spinlock_t lock)
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
- /*
- * Ensure prior spin_lock operations to other locks have completed
- * on this CPU before we test whether "lock" is locked.
- */
- smp_mb(); /* ^^^ */
return !arch_spin_value_unlocked(READ_ONCE(*lock));
}
diff --git a/arch/x86/include/asm/qspinlock.h b/arch/x86/include/asm/qspinlock.h
index 5e16b5d..3e70bed 100644
--- a/arch/x86/include/asm/qspinlock.h
+++ b/arch/x86/include/asm/qspinlock.h
@@ -7,6 +7,14 @@
#include <asm-generic/qspinlock_types.h>
#include <asm/paravirt.h>
+#define _Q_PENDING_LOOPS (1 << 9)
+
+#ifdef CONFIG_PARAVIRT_SPINLOCKS
+extern void native_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val);
+extern void __pv_init_lock_hash(void);
+extern void __pv_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val);
+extern void __raw_callee_save___pv_queued_spin_unlock(struct qspinlock *lock);
+
#define queued_spin_unlock queued_spin_unlock
/**
* queued_spin_unlock - release a queued spinlock
@@ -16,15 +24,9 @@
*/
static inline void native_queued_spin_unlock(struct qspinlock *lock)
{
- smp_store_release((u8 *)lock, 0);
+ smp_store_release(&lock->locked, 0);
}
-#ifdef CONFIG_PARAVIRT_SPINLOCKS
-extern void native_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val);
-extern void __pv_init_lock_hash(void);
-extern void __pv_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val);
-extern void __raw_callee_save___pv_queued_spin_unlock(struct qspinlock *lock);
-
static inline void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
pv_queued_spin_lock_slowpath(lock, val);
@@ -40,11 +42,6 @@ static inline bool vcpu_is_preempted(long cpu)
{
return pv_vcpu_is_preempted(cpu);
}
-#else
-static inline void queued_spin_unlock(struct qspinlock *lock)
-{
- native_queued_spin_unlock(lock);
-}
#endif
#ifdef CONFIG_PARAVIRT
diff --git a/arch/x86/include/asm/qspinlock_paravirt.h b/arch/x86/include/asm/qspinlock_paravirt.h
index 923307e..9ef5ee0 100644
--- a/arch/x86/include/asm/qspinlock_paravirt.h
+++ b/arch/x86/include/asm/qspinlock_paravirt.h
@@ -22,8 +22,7 @@ PV_CALLEE_SAVE_REGS_THUNK(__pv_queued_spin_unlock_slowpath);
*
* void __pv_queued_spin_unlock(struct qspinlock *lock)
* {
- * struct __qspinlock *l = (void *)lock;
- * u8 lockval = cmpxchg(&l->locked, _Q_LOCKED_VAL, 0);
+ * u8 lockval = cmpxchg(&lock->locked, _Q_LOCKED_VAL, 0);
*
* if (likely(lockval == _Q_LOCKED_VAL))
* return;
diff --git a/include/asm-generic/atomic-long.h b/include/asm-generic/atomic-long.h
index 34a028a..87d14476 100644
--- a/include/asm-generic/atomic-long.h
+++ b/include/asm-generic/atomic-long.h
@@ -25,6 +25,7 @@ typedef atomic64_t atomic_long_t;
#define ATOMIC_LONG_INIT(i) ATOMIC64_INIT(i)
#define ATOMIC_LONG_PFX(x) atomic64 ## x
+#define ATOMIC_LONG_TYPE s64
#else
@@ -32,6 +33,7 @@ typedef atomic_t atomic_long_t;
#define ATOMIC_LONG_INIT(i) ATOMIC_INIT(i)
#define ATOMIC_LONG_PFX(x) atomic ## x
+#define ATOMIC_LONG_TYPE int
#endif
@@ -90,6 +92,21 @@ ATOMIC_LONG_ADD_SUB_OP(sub, _release)
#define atomic_long_cmpxchg(l, old, new) \
(ATOMIC_LONG_PFX(_cmpxchg)((ATOMIC_LONG_PFX(_t) *)(l), (old), (new)))
+
+#define atomic_long_try_cmpxchg_relaxed(l, old, new) \
+ (ATOMIC_LONG_PFX(_try_cmpxchg_relaxed)((ATOMIC_LONG_PFX(_t) *)(l), \
+ (ATOMIC_LONG_TYPE *)(old), (ATOMIC_LONG_TYPE)(new)))
+#define atomic_long_try_cmpxchg_acquire(l, old, new) \
+ (ATOMIC_LONG_PFX(_try_cmpxchg_acquire)((ATOMIC_LONG_PFX(_t) *)(l), \
+ (ATOMIC_LONG_TYPE *)(old), (ATOMIC_LONG_TYPE)(new)))
+#define atomic_long_try_cmpxchg_release(l, old, new) \
+ (ATOMIC_LONG_PFX(_try_cmpxchg_release)((ATOMIC_LONG_PFX(_t) *)(l), \
+ (ATOMIC_LONG_TYPE *)(old), (ATOMIC_LONG_TYPE)(new)))
+#define atomic_long_try_cmpxchg(l, old, new) \
+ (ATOMIC_LONG_PFX(_try_cmpxchg)((ATOMIC_LONG_PFX(_t) *)(l), \
+ (ATOMIC_LONG_TYPE *)(old), (ATOMIC_LONG_TYPE)(new)))
+
+
#define atomic_long_xchg_relaxed(v, new) \
(ATOMIC_LONG_PFX(_xchg_relaxed)((ATOMIC_LONG_PFX(_t) *)(v), (new)))
#define atomic_long_xchg_acquire(v, new) \
@@ -244,6 +261,8 @@ static inline long atomic_long_add_unless(atomic_long_t *l, long a, long u)
#define atomic_long_inc_not_zero(l) \
ATOMIC_LONG_PFX(_inc_not_zero)((ATOMIC_LONG_PFX(_t) *)(l))
+#define atomic_long_cond_read_relaxed(v, c) \
+ ATOMIC_LONG_PFX(_cond_read_relaxed)((ATOMIC_LONG_PFX(_t) *)(v), (c))
#define atomic_long_cond_read_acquire(v, c) \
ATOMIC_LONG_PFX(_cond_read_acquire)((ATOMIC_LONG_PFX(_t) *)(v), (c))
diff --git a/include/asm-generic/barrier.h b/include/asm-generic/barrier.h
index 29458bb..2cafdbb 100644
--- a/include/asm-generic/barrier.h
+++ b/include/asm-generic/barrier.h
@@ -221,18 +221,17 @@ do { \
#endif
/**
- * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering
+ * smp_cond_load_relaxed() - (Spin) wait for cond with no ordering guarantees
* @ptr: pointer to the variable to wait on
* @cond: boolean expression to wait for
*
- * Equivalent to using smp_load_acquire() on the condition variable but employs
- * the control dependency of the wait to reduce the barrier on many platforms.
+ * Equivalent to using READ_ONCE() on the condition variable.
*
* Due to C lacking lambda expressions we load the value of *ptr into a
* pre-named variable @VAL to be used in @cond.
*/
-#ifndef smp_cond_load_acquire
-#define smp_cond_load_acquire(ptr, cond_expr) ({ \
+#ifndef smp_cond_load_relaxed
+#define smp_cond_load_relaxed(ptr, cond_expr) ({ \
typeof(ptr) __PTR = (ptr); \
typeof(*ptr) VAL; \
for (;;) { \
@@ -241,10 +240,26 @@ do { \
break; \
cpu_relax(); \
} \
- smp_acquire__after_ctrl_dep(); \
VAL; \
})
#endif
+/**
+ * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering
+ * @ptr: pointer to the variable to wait on
+ * @cond: boolean expression to wait for
+ *
+ * Equivalent to using smp_load_acquire() on the condition variable but employs
+ * the control dependency of the wait to reduce the barrier on many platforms.
+ */
+#ifndef smp_cond_load_acquire
+#define smp_cond_load_acquire(ptr, cond_expr) ({ \
+ typeof(*ptr) _val; \
+ _val = smp_cond_load_relaxed(ptr, cond_expr); \
+ smp_acquire__after_ctrl_dep(); \
+ _val; \
+})
+#endif
+
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_GENERIC_BARRIER_H */
diff --git a/include/asm-generic/qspinlock.h b/include/asm-generic/qspinlock.h
index b37b4ad..9cc4575 100644
--- a/include/asm-generic/qspinlock.h
+++ b/include/asm-generic/qspinlock.h
@@ -26,7 +26,6 @@
* @lock: Pointer to queued spinlock structure
* Return: 1 if it is locked, 0 otherwise
*/
-#ifndef queued_spin_is_locked
static __always_inline int queued_spin_is_locked(struct qspinlock *lock)
{
/*
@@ -35,7 +34,6 @@ static __always_inline int queued_spin_is_locked(struct qspinlock *lock)
*/
return atomic_read(&lock->val);
}
-#endif
/**
* queued_spin_value_unlocked - is the spinlock structure unlocked?
@@ -100,7 +98,7 @@ static __always_inline void queued_spin_unlock(struct qspinlock *lock)
/*
* unlock() needs release semantics:
*/
- (void)atomic_sub_return_release(_Q_LOCKED_VAL, &lock->val);
+ smp_store_release(&lock->locked, 0);
}
#endif
diff --git a/include/asm-generic/qspinlock_types.h b/include/asm-generic/qspinlock_types.h
index 034acd0..0763f06 100644
--- a/include/asm-generic/qspinlock_types.h
+++ b/include/asm-generic/qspinlock_types.h
@@ -29,13 +29,41 @@
#endif
typedef struct qspinlock {
- atomic_t val;
+ union {
+ atomic_t val;
+
+ /*
+ * By using the whole 2nd least significant byte for the
+ * pending bit, we can allow better optimization of the lock
+ * acquisition for the pending bit holder.
+ */
+#ifdef __LITTLE_ENDIAN
+ struct {
+ u8 locked;
+ u8 pending;
+ };
+ struct {
+ u16 locked_pending;
+ u16 tail;
+ };
+#else
+ struct {
+ u16 tail;
+ u16 locked_pending;
+ };
+ struct {
+ u8 reserved[2];
+ u8 pending;
+ u8 locked;
+ };
+#endif
+ };
} arch_spinlock_t;
/*
* Initializier
*/
-#define __ARCH_SPIN_LOCK_UNLOCKED { ATOMIC_INIT(0) }
+#define __ARCH_SPIN_LOCK_UNLOCKED { .val = ATOMIC_INIT(0) }
/*
* Bitfields in the atomic value:
diff --git a/include/linux/atomic.h b/include/linux/atomic.h
index 8b276fd..01ce399 100644
--- a/include/linux/atomic.h
+++ b/include/linux/atomic.h
@@ -654,6 +654,7 @@ static inline int atomic_dec_if_positive(atomic_t *v)
}
#endif
+#define atomic_cond_read_relaxed(v, c) smp_cond_load_relaxed(&(v)->counter, (c))
#define atomic_cond_read_acquire(v, c) smp_cond_load_acquire(&(v)->counter, (c))
#ifdef CONFIG_GENERIC_ATOMIC64
@@ -1075,6 +1076,7 @@ static inline long long atomic64_fetch_andnot_release(long long i, atomic64_t *v
}
#endif
+#define atomic64_cond_read_relaxed(v, c) smp_cond_load_relaxed(&(v)->counter, (c))
#define atomic64_cond_read_acquire(v, c) smp_cond_load_acquire(&(v)->counter, (c))
#include <asm-generic/atomic-long.h>
diff --git a/include/linux/delayacct.h b/include/linux/delayacct.h
index 5e335b6..e6c0448 100644
--- a/include/linux/delayacct.h
+++ b/include/linux/delayacct.h
@@ -29,7 +29,7 @@
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info {
- spinlock_t lock;
+ raw_spinlock_t lock;
unsigned int flags; /* Private per-task flags */
/* For each stat XXX, add following, aligned appropriately
diff --git a/include/linux/mutex.h b/include/linux/mutex.h
index 14bc0d5..3093dd1 100644
--- a/include/linux/mutex.h
+++ b/include/linux/mutex.h
@@ -146,9 +146,6 @@ extern void __mutex_init(struct mutex *lock, const char *name,
*/
static inline bool mutex_is_locked(struct mutex *lock)
{
- /*
- * XXX think about spin_is_locked
- */
return __mutex_owner(lock) != NULL;
}
diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h
index 4894d32..1e8a464 100644
--- a/include/linux/spinlock.h
+++ b/include/linux/spinlock.h
@@ -380,6 +380,24 @@ static __always_inline int spin_trylock_irq(spinlock_t *lock)
raw_spin_trylock_irqsave(spinlock_check(lock), flags); \
})
+/**
+ * spin_is_locked() - Check whether a spinlock is locked.
+ * @lock: Pointer to the spinlock.
+ *
+ * This function is NOT required to provide any memory ordering
+ * guarantees; it could be used for debugging purposes or, when
+ * additional synchronization is needed, accompanied with other
+ * constructs (memory barriers) enforcing the synchronization.
+ *
+ * Returns: 1 if @lock is locked, 0 otherwise.
+ *
+ * Note that the function only tells you that the spinlock is
+ * seen to be locked, not that it is locked on your CPU.
+ *
+ * Further, on CONFIG_SMP=n builds with CONFIG_DEBUG_SPINLOCK=n,
+ * the return value is always 0 (see include/linux/spinlock_up.h).
+ * Therefore you should not rely heavily on the return value.
+ */
static __always_inline int spin_is_locked(spinlock_t *lock)
{
return raw_spin_is_locked(&lock->rlock);
diff --git a/kernel/delayacct.c b/kernel/delayacct.c
index e2764d7..ca8ac28 100644
--- a/kernel/delayacct.c
+++ b/kernel/delayacct.c
@@ -44,23 +44,24 @@ void __delayacct_tsk_init(struct task_struct *tsk)
{
tsk->delays = kmem_cache_zalloc(delayacct_cache, GFP_KERNEL);
if (tsk->delays)
- spin_lock_init(&tsk->delays->lock);
+ raw_spin_lock_init(&tsk->delays->lock);
}
/*
* Finish delay accounting for a statistic using its timestamps (@start),
* accumalator (@total) and @count
*/
-static void delayacct_end(spinlock_t *lock, u64 *start, u64 *total, u32 *count)
+static void delayacct_end(raw_spinlock_t *lock, u64 *start, u64 *total,
+ u32 *count)
{
s64 ns = ktime_get_ns() - *start;
unsigned long flags;
if (ns > 0) {
- spin_lock_irqsave(lock, flags);
+ raw_spin_lock_irqsave(lock, flags);
*total += ns;
(*count)++;
- spin_unlock_irqrestore(lock, flags);
+ raw_spin_unlock_irqrestore(lock, flags);
}
}
@@ -127,7 +128,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
/* zero XXX_total, non-zero XXX_count implies XXX stat overflowed */
- spin_lock_irqsave(&tsk->delays->lock, flags);
+ raw_spin_lock_irqsave(&tsk->delays->lock, flags);
tmp = d->blkio_delay_total + tsk->delays->blkio_delay;
d->blkio_delay_total = (tmp < d->blkio_delay_total) ? 0 : tmp;
tmp = d->swapin_delay_total + tsk->delays->swapin_delay;
@@ -137,7 +138,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
d->blkio_count += tsk->delays->blkio_count;
d->swapin_count += tsk->delays->swapin_count;
d->freepages_count += tsk->delays->freepages_count;
- spin_unlock_irqrestore(&tsk->delays->lock, flags);
+ raw_spin_unlock_irqrestore(&tsk->delays->lock, flags);
return 0;
}
@@ -147,10 +148,10 @@ __u64 __delayacct_blkio_ticks(struct task_struct *tsk)
__u64 ret;
unsigned long flags;
- spin_lock_irqsave(&tsk->delays->lock, flags);
+ raw_spin_lock_irqsave(&tsk->delays->lock, flags);
ret = nsec_to_clock_t(tsk->delays->blkio_delay +
tsk->delays->swapin_delay);
- spin_unlock_irqrestore(&tsk->delays->lock, flags);
+ raw_spin_unlock_irqrestore(&tsk->delays->lock, flags);
return ret;
}
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index 0233863..edcac5d 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -561,20 +561,24 @@ static void print_lock(struct held_lock *hlock)
printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
}
-static void lockdep_print_held_locks(struct task_struct *curr)
+static void lockdep_print_held_locks(struct task_struct *p)
{
- int i, depth = curr->lockdep_depth;
+ int i, depth = READ_ONCE(p->lockdep_depth);
- if (!depth) {
- printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
+ if (!depth)
+ printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
+ else
+ printk("%d lock%s held by %s/%d:\n", depth,
+ depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
+ /*
+ * It's not reliable to print a task's held locks if it's not sleeping
+ * and it's not the current task.
+ */
+ if (p->state == TASK_RUNNING && p != current)
return;
- }
- printk("%d lock%s held by %s/%d:\n",
- depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
-
for (i = 0; i < depth; i++) {
printk(" #%d: ", i);
- print_lock(curr->held_locks + i);
+ print_lock(p->held_locks + i);
}
}
@@ -4451,8 +4455,6 @@ EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
void debug_show_all_locks(void)
{
struct task_struct *g, *p;
- int count = 10;
- int unlock = 1;
if (unlikely(!debug_locks)) {
pr_warn("INFO: lockdep is turned off.\n");
@@ -4460,50 +4462,18 @@ void debug_show_all_locks(void)
}
pr_warn("\nShowing all locks held in the system:\n");
- /*
- * Here we try to get the tasklist_lock as hard as possible,
- * if not successful after 2 seconds we ignore it (but keep
- * trying). This is to enable a debug printout even if a
- * tasklist_lock-holding task deadlocks or crashes.
- */
-retry:
- if (!read_trylock(&tasklist_lock)) {
- if (count == 10)
- pr_warn("hm, tasklist_lock locked, retrying... ");
- if (count) {
- count--;
- pr_cont(" #%d", 10-count);
- mdelay(200);
- goto retry;
- }
- pr_cont(" ignoring it.\n");
- unlock = 0;
- } else {
- if (count != 10)
- pr_cont(" locked it.\n");
- }
-
- do_each_thread(g, p) {
- /*
- * It's not reliable to print a task's held locks
- * if it's not sleeping (or if it's not the current
- * task):
- */
- if (p->state == TASK_RUNNING && p != current)
+ rcu_read_lock();
+ for_each_process_thread(g, p) {
+ if (!p->lockdep_depth)
continue;
- if (p->lockdep_depth)
- lockdep_print_held_locks(p);
- if (!unlock)
- if (read_trylock(&tasklist_lock))
- unlock = 1;
+ lockdep_print_held_locks(p);
touch_nmi_watchdog();
- } while_each_thread(g, p);
+ touch_all_softlockup_watchdogs();
+ }
+ rcu_read_unlock();
pr_warn("\n");
pr_warn("=============================================\n\n");
-
- if (unlock)
- read_unlock(&tasklist_lock);
}
EXPORT_SYMBOL_GPL(debug_show_all_locks);
#endif
diff --git a/kernel/locking/mcs_spinlock.h b/kernel/locking/mcs_spinlock.h
index f046b7c..5e10153 100644
--- a/kernel/locking/mcs_spinlock.h
+++ b/kernel/locking/mcs_spinlock.h
@@ -23,13 +23,15 @@ struct mcs_spinlock {
#ifndef arch_mcs_spin_lock_contended
/*
- * Using smp_load_acquire() provides a memory barrier that ensures
- * subsequent operations happen after the lock is acquired.
+ * Using smp_cond_load_acquire() provides the acquire semantics
+ * required so that subsequent operations happen after the
+ * lock is acquired. Additionally, some architectures such as
+ * ARM64 would like to do spin-waiting instead of purely
+ * spinning, and smp_cond_load_acquire() provides that behavior.
*/
#define arch_mcs_spin_lock_contended(l) \
do { \
- while (!(smp_load_acquire(l))) \
- cpu_relax(); \
+ smp_cond_load_acquire(l, VAL); \
} while (0)
#endif
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index 2048359..f44f658 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -139,8 +139,9 @@ static inline bool __mutex_trylock(struct mutex *lock)
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
{
unsigned long curr = (unsigned long)current;
+ unsigned long zero = 0UL;
- if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
+ if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
return true;
return false;
diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c
index d880296..bfaeb05 100644
--- a/kernel/locking/qspinlock.c
+++ b/kernel/locking/qspinlock.c
@@ -12,11 +12,11 @@
* GNU General Public License for more details.
*
* (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
- * (C) Copyright 2013-2014 Red Hat, Inc.
+ * (C) Copyright 2013-2014,2018 Red Hat, Inc.
* (C) Copyright 2015 Intel Corp.
* (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
*
- * Authors: Waiman Long <waiman.long@hpe.com>
+ * Authors: Waiman Long <longman@redhat.com>
* Peter Zijlstra <peterz@infradead.org>
*/
@@ -33,6 +33,11 @@
#include <asm/qspinlock.h>
/*
+ * Include queued spinlock statistics code
+ */
+#include "qspinlock_stat.h"
+
+/*
* The basic principle of a queue-based spinlock can best be understood
* by studying a classic queue-based spinlock implementation called the
* MCS lock. The paper below provides a good description for this kind
@@ -77,6 +82,18 @@
#endif
/*
+ * The pending bit spinning loop count.
+ * This heuristic is used to limit the number of lockword accesses
+ * made by atomic_cond_read_relaxed when waiting for the lock to
+ * transition out of the "== _Q_PENDING_VAL" state. We don't spin
+ * indefinitely because there's no guarantee that we'll make forward
+ * progress.
+ */
+#ifndef _Q_PENDING_LOOPS
+#define _Q_PENDING_LOOPS 1
+#endif
+
+/*
* Per-CPU queue node structures; we can never have more than 4 nested
* contexts: task, softirq, hardirq, nmi.
*
@@ -114,41 +131,18 @@ static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
-/*
- * By using the whole 2nd least significant byte for the pending bit, we
- * can allow better optimization of the lock acquisition for the pending
- * bit holder.
+#if _Q_PENDING_BITS == 8
+/**
+ * clear_pending - clear the pending bit.
+ * @lock: Pointer to queued spinlock structure
*
- * This internal structure is also used by the set_locked function which
- * is not restricted to _Q_PENDING_BITS == 8.
+ * *,1,* -> *,0,*
*/
-struct __qspinlock {
- union {
- atomic_t val;
-#ifdef __LITTLE_ENDIAN
- struct {
- u8 locked;
- u8 pending;
- };
- struct {
- u16 locked_pending;
- u16 tail;
- };
-#else
- struct {
- u16 tail;
- u16 locked_pending;
- };
- struct {
- u8 reserved[2];
- u8 pending;
- u8 locked;
- };
-#endif
- };
-};
+static __always_inline void clear_pending(struct qspinlock *lock)
+{
+ WRITE_ONCE(lock->pending, 0);
+}
-#if _Q_PENDING_BITS == 8
/**
* clear_pending_set_locked - take ownership and clear the pending bit.
* @lock: Pointer to queued spinlock structure
@@ -159,9 +153,7 @@ struct __qspinlock {
*/
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
-
- WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
+ WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
}
/*
@@ -176,19 +168,28 @@ static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
*/
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
- struct __qspinlock *l = (void *)lock;
-
/*
- * Use release semantics to make sure that the MCS node is properly
- * initialized before changing the tail code.
+ * We can use relaxed semantics since the caller ensures that the
+ * MCS node is properly initialized before updating the tail.
*/
- return (u32)xchg_release(&l->tail,
+ return (u32)xchg_relaxed(&lock->tail,
tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
}
#else /* _Q_PENDING_BITS == 8 */
/**
+ * clear_pending - clear the pending bit.
+ * @lock: Pointer to queued spinlock structure
+ *
+ * *,1,* -> *,0,*
+ */
+static __always_inline void clear_pending(struct qspinlock *lock)
+{
+ atomic_andnot(_Q_PENDING_VAL, &lock->val);
+}
+
+/**
* clear_pending_set_locked - take ownership and clear the pending bit.
* @lock: Pointer to queued spinlock structure
*
@@ -216,10 +217,11 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
for (;;) {
new = (val & _Q_LOCKED_PENDING_MASK) | tail;
/*
- * Use release semantics to make sure that the MCS node is
- * properly initialized before changing the tail code.
+ * We can use relaxed semantics since the caller ensures that
+ * the MCS node is properly initialized before updating the
+ * tail.
*/
- old = atomic_cmpxchg_release(&lock->val, val, new);
+ old = atomic_cmpxchg_relaxed(&lock->val, val, new);
if (old == val)
break;
@@ -237,9 +239,7 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
*/
static __always_inline void set_locked(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
-
- WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
+ WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
}
@@ -294,86 +294,83 @@ static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
struct mcs_spinlock *prev, *next, *node;
- u32 new, old, tail;
+ u32 old, tail;
int idx;
BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
if (pv_enabled())
- goto queue;
+ goto pv_queue;
if (virt_spin_lock(lock))
return;
/*
- * wait for in-progress pending->locked hand-overs
+ * Wait for in-progress pending->locked hand-overs with a bounded
+ * number of spins so that we guarantee forward progress.
*
* 0,1,0 -> 0,0,1
*/
if (val == _Q_PENDING_VAL) {
- while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
- cpu_relax();
+ int cnt = _Q_PENDING_LOOPS;
+ val = atomic_cond_read_relaxed(&lock->val,
+ (VAL != _Q_PENDING_VAL) || !cnt--);
}
/*
+ * If we observe any contention; queue.
+ */
+ if (val & ~_Q_LOCKED_MASK)
+ goto queue;
+
+ /*
* trylock || pending
*
* 0,0,0 -> 0,0,1 ; trylock
* 0,0,1 -> 0,1,1 ; pending
*/
- for (;;) {
+ val = atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
+ if (!(val & ~_Q_LOCKED_MASK)) {
/*
- * If we observe any contention; queue.
+ * We're pending, wait for the owner to go away.
+ *
+ * *,1,1 -> *,1,0
+ *
+ * this wait loop must be a load-acquire such that we match the
+ * store-release that clears the locked bit and create lock
+ * sequentiality; this is because not all
+ * clear_pending_set_locked() implementations imply full
+ * barriers.
*/
- if (val & ~_Q_LOCKED_MASK)
- goto queue;
-
- new = _Q_LOCKED_VAL;
- if (val == new)
- new |= _Q_PENDING_VAL;
+ if (val & _Q_LOCKED_MASK) {
+ atomic_cond_read_acquire(&lock->val,
+ !(VAL & _Q_LOCKED_MASK));
+ }
/*
- * Acquire semantic is required here as the function may
- * return immediately if the lock was free.
+ * take ownership and clear the pending bit.
+ *
+ * *,1,0 -> *,0,1
*/
- old = atomic_cmpxchg_acquire(&lock->val, val, new);
- if (old == val)
- break;
-
- val = old;
- }
-
- /*
- * we won the trylock
- */
- if (new == _Q_LOCKED_VAL)
+ clear_pending_set_locked(lock);
+ qstat_inc(qstat_lock_pending, true);
return;
+ }
/*
- * we're pending, wait for the owner to go away.
- *
- * *,1,1 -> *,1,0
- *
- * this wait loop must be a load-acquire such that we match the
- * store-release that clears the locked bit and create lock
- * sequentiality; this is because not all clear_pending_set_locked()
- * implementations imply full barriers.
- */
- smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
-
- /*
- * take ownership and clear the pending bit.
- *
- * *,1,0 -> *,0,1
+ * If pending was clear but there are waiters in the queue, then
+ * we need to undo our setting of pending before we queue ourselves.
*/
- clear_pending_set_locked(lock);
- return;
+ if (!(val & _Q_PENDING_MASK))
+ clear_pending(lock);
/*
* End of pending bit optimistic spinning and beginning of MCS
* queuing.
*/
queue:
+ qstat_inc(qstat_lock_slowpath, true);
+pv_queue:
node = this_cpu_ptr(&mcs_nodes[0]);
idx = node->count++;
tail = encode_tail(smp_processor_id(), idx);
@@ -400,12 +397,18 @@ queue:
goto release;
/*
+ * Ensure that the initialisation of @node is complete before we
+ * publish the updated tail via xchg_tail() and potentially link
+ * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
+ */
+ smp_wmb();
+
+ /*
+ * Publish the updated tail.
* We have already touched the queueing cacheline; don't bother with
* pending stuff.
*
* p,*,* -> n,*,*
- *
- * RELEASE, such that the stores to @node must be complete.
*/
old = xchg_tail(lock, tail);
next = NULL;
@@ -417,14 +420,8 @@ queue:
if (old & _Q_TAIL_MASK) {
prev = decode_tail(old);
- /*
- * We must ensure that the stores to @node are observed before
- * the write to prev->next. The address dependency from
- * xchg_tail is not sufficient to ensure this because the read
- * component of xchg_tail is unordered with respect to the
- * initialisation of @node.
- */
- smp_store_release(&prev->next, node);
+ /* Link @node into the waitqueue. */
+ WRITE_ONCE(prev->next, node);
pv_wait_node(node, prev);
arch_mcs_spin_lock_contended(&node->locked);
@@ -453,8 +450,8 @@ queue:
*
* The PV pv_wait_head_or_lock function, if active, will acquire
* the lock and return a non-zero value. So we have to skip the
- * smp_cond_load_acquire() call. As the next PV queue head hasn't been
- * designated yet, there is no way for the locked value to become
+ * atomic_cond_read_acquire() call. As the next PV queue head hasn't
+ * been designated yet, there is no way for the locked value to become
* _Q_SLOW_VAL. So both the set_locked() and the
* atomic_cmpxchg_relaxed() calls will be safe.
*
@@ -464,44 +461,38 @@ queue:
if ((val = pv_wait_head_or_lock(lock, node)))
goto locked;
- val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
+ val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
locked:
/*
* claim the lock:
*
* n,0,0 -> 0,0,1 : lock, uncontended
- * *,0,0 -> *,0,1 : lock, contended
+ * *,*,0 -> *,*,1 : lock, contended
*
- * If the queue head is the only one in the queue (lock value == tail),
- * clear the tail code and grab the lock. Otherwise, we only need
- * to grab the lock.
+ * If the queue head is the only one in the queue (lock value == tail)
+ * and nobody is pending, clear the tail code and grab the lock.
+ * Otherwise, we only need to grab the lock.
*/
- for (;;) {
- /* In the PV case we might already have _Q_LOCKED_VAL set */
- if ((val & _Q_TAIL_MASK) != tail) {
- set_locked(lock);
- break;
- }
- /*
- * The smp_cond_load_acquire() call above has provided the
- * necessary acquire semantics required for locking. At most
- * two iterations of this loop may be ran.
- */
- old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
- if (old == val)
- goto release; /* No contention */
- val = old;
- }
+ /*
+ * In the PV case we might already have _Q_LOCKED_VAL set.
+ *
+ * The atomic_cond_read_acquire() call above has provided the
+ * necessary acquire semantics required for locking.
+ */
+ if (((val & _Q_TAIL_MASK) == tail) &&
+ atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
+ goto release; /* No contention */
+
+ /* Either somebody is queued behind us or _Q_PENDING_VAL is set */
+ set_locked(lock);
/*
* contended path; wait for next if not observed yet, release.
*/
- if (!next) {
- while (!(next = READ_ONCE(node->next)))
- cpu_relax();
- }
+ if (!next)
+ next = smp_cond_load_relaxed(&node->next, (VAL));
arch_mcs_spin_unlock_contended(&next->locked);
pv_kick_node(lock, next);
diff --git a/kernel/locking/qspinlock_paravirt.h b/kernel/locking/qspinlock_paravirt.h
index 6ee4777..5a0cf5f 100644
--- a/kernel/locking/qspinlock_paravirt.h
+++ b/kernel/locking/qspinlock_paravirt.h
@@ -56,11 +56,6 @@ struct pv_node {
};
/*
- * Include queued spinlock statistics code
- */
-#include "qspinlock_stat.h"
-
-/*
* Hybrid PV queued/unfair lock
*
* By replacing the regular queued_spin_trylock() with the function below,
@@ -87,8 +82,6 @@ struct pv_node {
#define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l)
static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
-
/*
* Stay in unfair lock mode as long as queued mode waiters are
* present in the MCS wait queue but the pending bit isn't set.
@@ -97,7 +90,7 @@ static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
int val = atomic_read(&lock->val);
if (!(val & _Q_LOCKED_PENDING_MASK) &&
- (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) {
+ (cmpxchg_acquire(&lock->locked, 0, _Q_LOCKED_VAL) == 0)) {
qstat_inc(qstat_pv_lock_stealing, true);
return true;
}
@@ -117,16 +110,7 @@ static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
#if _Q_PENDING_BITS == 8
static __always_inline void set_pending(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
-
- WRITE_ONCE(l->pending, 1);
-}
-
-static __always_inline void clear_pending(struct qspinlock *lock)
-{
- struct __qspinlock *l = (void *)lock;
-
- WRITE_ONCE(l->pending, 0);
+ WRITE_ONCE(lock->pending, 1);
}
/*
@@ -136,10 +120,8 @@ static __always_inline void clear_pending(struct qspinlock *lock)
*/
static __always_inline int trylock_clear_pending(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
-
- return !READ_ONCE(l->locked) &&
- (cmpxchg_acquire(&l->locked_pending, _Q_PENDING_VAL,
+ return !READ_ONCE(lock->locked) &&
+ (cmpxchg_acquire(&lock->locked_pending, _Q_PENDING_VAL,
_Q_LOCKED_VAL) == _Q_PENDING_VAL);
}
#else /* _Q_PENDING_BITS == 8 */
@@ -148,11 +130,6 @@ static __always_inline void set_pending(struct qspinlock *lock)
atomic_or(_Q_PENDING_VAL, &lock->val);
}
-static __always_inline void clear_pending(struct qspinlock *lock)
-{
- atomic_andnot(_Q_PENDING_VAL, &lock->val);
-}
-
static __always_inline int trylock_clear_pending(struct qspinlock *lock)
{
int val = atomic_read(&lock->val);
@@ -384,7 +361,6 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
{
struct pv_node *pn = (struct pv_node *)node;
- struct __qspinlock *l = (void *)lock;
/*
* If the vCPU is indeed halted, advance its state to match that of
@@ -413,7 +389,7 @@ static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
* the hash table later on at unlock time, no atomic instruction is
* needed.
*/
- WRITE_ONCE(l->locked, _Q_SLOW_VAL);
+ WRITE_ONCE(lock->locked, _Q_SLOW_VAL);
(void)pv_hash(lock, pn);
}
@@ -428,7 +404,6 @@ static u32
pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
{
struct pv_node *pn = (struct pv_node *)node;
- struct __qspinlock *l = (void *)lock;
struct qspinlock **lp = NULL;
int waitcnt = 0;
int loop;
@@ -443,7 +418,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
/*
* Tracking # of slowpath locking operations
*/
- qstat_inc(qstat_pv_lock_slowpath, true);
+ qstat_inc(qstat_lock_slowpath, true);
for (;; waitcnt++) {
/*
@@ -479,13 +454,13 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
*
* Matches the smp_rmb() in __pv_queued_spin_unlock().
*/
- if (xchg(&l->locked, _Q_SLOW_VAL) == 0) {
+ if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) {
/*
* The lock was free and now we own the lock.
* Change the lock value back to _Q_LOCKED_VAL
* and unhash the table.
*/
- WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
+ WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
WRITE_ONCE(*lp, NULL);
goto gotlock;
}
@@ -493,7 +468,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
WRITE_ONCE(pn->state, vcpu_hashed);
qstat_inc(qstat_pv_wait_head, true);
qstat_inc(qstat_pv_wait_again, waitcnt);
- pv_wait(&l->locked, _Q_SLOW_VAL);
+ pv_wait(&lock->locked, _Q_SLOW_VAL);
/*
* Because of lock stealing, the queue head vCPU may not be
@@ -518,7 +493,6 @@ gotlock:
__visible void
__pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
{
- struct __qspinlock *l = (void *)lock;
struct pv_node *node;
if (unlikely(locked != _Q_SLOW_VAL)) {
@@ -547,7 +521,7 @@ __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
* Now that we have a reference to the (likely) blocked pv_node,
* release the lock.
*/
- smp_store_release(&l->locked, 0);
+ smp_store_release(&lock->locked, 0);
/*
* At this point the memory pointed at by lock can be freed/reused,
@@ -573,7 +547,6 @@ __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
#ifndef __pv_queued_spin_unlock
__visible void __pv_queued_spin_unlock(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
u8 locked;
/*
@@ -581,7 +554,7 @@ __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
* unhash. Otherwise it would be possible to have multiple @lock
* entries, which would be BAD.
*/
- locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0);
+ locked = cmpxchg_release(&lock->locked, _Q_LOCKED_VAL, 0);
if (likely(locked == _Q_LOCKED_VAL))
return;
diff --git a/kernel/locking/qspinlock_stat.h b/kernel/locking/qspinlock_stat.h
index 4a30ef6..6bd78c0 100644
--- a/kernel/locking/qspinlock_stat.h
+++ b/kernel/locking/qspinlock_stat.h
@@ -22,13 +22,14 @@
* pv_kick_wake - # of vCPU kicks used for computing pv_latency_wake
* pv_latency_kick - average latency (ns) of vCPU kick operation
* pv_latency_wake - average latency (ns) from vCPU kick to wakeup
- * pv_lock_slowpath - # of locking operations via the slowpath
* pv_lock_stealing - # of lock stealing operations
* pv_spurious_wakeup - # of spurious wakeups in non-head vCPUs
* pv_wait_again - # of wait's after a queue head vCPU kick
* pv_wait_early - # of early vCPU wait's
* pv_wait_head - # of vCPU wait's at the queue head
* pv_wait_node - # of vCPU wait's at a non-head queue node
+ * lock_pending - # of locking operations via pending code
+ * lock_slowpath - # of locking operations via MCS lock queue
*
* Writing to the "reset_counters" file will reset all the above counter
* values.
@@ -46,13 +47,14 @@ enum qlock_stats {
qstat_pv_kick_wake,
qstat_pv_latency_kick,
qstat_pv_latency_wake,
- qstat_pv_lock_slowpath,
qstat_pv_lock_stealing,
qstat_pv_spurious_wakeup,
qstat_pv_wait_again,
qstat_pv_wait_early,
qstat_pv_wait_head,
qstat_pv_wait_node,
+ qstat_lock_pending,
+ qstat_lock_slowpath,
qstat_num, /* Total number of statistical counters */
qstat_reset_cnts = qstat_num,
};
@@ -73,12 +75,13 @@ static const char * const qstat_names[qstat_num + 1] = {
[qstat_pv_spurious_wakeup] = "pv_spurious_wakeup",
[qstat_pv_latency_kick] = "pv_latency_kick",
[qstat_pv_latency_wake] = "pv_latency_wake",
- [qstat_pv_lock_slowpath] = "pv_lock_slowpath",
[qstat_pv_lock_stealing] = "pv_lock_stealing",
[qstat_pv_wait_again] = "pv_wait_again",
[qstat_pv_wait_early] = "pv_wait_early",
[qstat_pv_wait_head] = "pv_wait_head",
[qstat_pv_wait_node] = "pv_wait_node",
+ [qstat_lock_pending] = "lock_pending",
+ [qstat_lock_slowpath] = "lock_slowpath",
[qstat_reset_cnts] = "reset_counters",
};
diff --git a/kernel/locking/rwsem-xadd.c b/kernel/locking/rwsem-xadd.c
index a903367..3064c50 100644
--- a/kernel/locking/rwsem-xadd.c
+++ b/kernel/locking/rwsem-xadd.c
@@ -347,6 +347,15 @@ static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
}
}
+static inline bool owner_on_cpu(struct task_struct *owner)
+{
+ /*
+ * As lock holder preemption issue, we both skip spinning if
+ * task is not on cpu or its cpu is preempted
+ */
+ return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
+}
+
static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
{
struct task_struct *owner;
@@ -359,17 +368,10 @@ static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
rcu_read_lock();
owner = READ_ONCE(sem->owner);
- if (!owner || !is_rwsem_owner_spinnable(owner)) {
- ret = !owner; /* !owner is spinnable */
- goto done;
+ if (owner) {
+ ret = is_rwsem_owner_spinnable(owner) &&
+ owner_on_cpu(owner);
}
-
- /*
- * As lock holder preemption issue, we both skip spinning if task is not
- * on cpu or its cpu is preempted
- */
- ret = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
-done:
rcu_read_unlock();
return ret;
}
@@ -398,8 +400,7 @@ static noinline bool rwsem_spin_on_owner(struct rw_semaphore *sem)
* abort spinning when need_resched or owner is not running or
* owner's cpu is preempted.
*/
- if (!owner->on_cpu || need_resched() ||
- vcpu_is_preempted(task_cpu(owner))) {
+ if (need_resched() || !owner_on_cpu(owner)) {
rcu_read_unlock();
return false;
}
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c
index 64c0291..f89014a 100644
--- a/kernel/stop_machine.c
+++ b/kernel/stop_machine.c
@@ -37,7 +37,7 @@ struct cpu_stop_done {
struct cpu_stopper {
struct task_struct *thread;
- spinlock_t lock;
+ raw_spinlock_t lock;
bool enabled; /* is this stopper enabled? */
struct list_head works; /* list of pending works */
@@ -81,13 +81,13 @@ static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
unsigned long flags;
bool enabled;
- spin_lock_irqsave(&stopper->lock, flags);
+ raw_spin_lock_irqsave(&stopper->lock, flags);
enabled = stopper->enabled;
if (enabled)
__cpu_stop_queue_work(stopper, work, &wakeq);
else if (work->done)
cpu_stop_signal_done(work->done);
- spin_unlock_irqrestore(&stopper->lock, flags);
+ raw_spin_unlock_irqrestore(&stopper->lock, flags);
wake_up_q(&wakeq);
@@ -237,8 +237,8 @@ static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
DEFINE_WAKE_Q(wakeq);
int err;
retry:
- spin_lock_irq(&stopper1->lock);
- spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
+ raw_spin_lock_irq(&stopper1->lock);
+ raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
err = -ENOENT;
if (!stopper1->enabled || !stopper2->enabled)
@@ -261,8 +261,8 @@ retry:
__cpu_stop_queue_work(stopper1, work1, &wakeq);
__cpu_stop_queue_work(stopper2, work2, &wakeq);
unlock:
- spin_unlock(&stopper2->lock);
- spin_unlock_irq(&stopper1->lock);
+ raw_spin_unlock(&stopper2->lock);
+ raw_spin_unlock_irq(&stopper1->lock);
if (unlikely(err == -EDEADLK)) {
while (stop_cpus_in_progress)
@@ -457,9 +457,9 @@ static int cpu_stop_should_run(unsigned int cpu)
unsigned long flags;
int run;
- spin_lock_irqsave(&stopper->lock, flags);
+ raw_spin_lock_irqsave(&stopper->lock, flags);
run = !list_empty(&stopper->works);
- spin_unlock_irqrestore(&stopper->lock, flags);
+ raw_spin_unlock_irqrestore(&stopper->lock, flags);
return run;
}
@@ -470,13 +470,13 @@ static void cpu_stopper_thread(unsigned int cpu)
repeat:
work = NULL;
- spin_lock_irq(&stopper->lock);
+ raw_spin_lock_irq(&stopper->lock);
if (!list_empty(&stopper->works)) {
work = list_first_entry(&stopper->works,
struct cpu_stop_work, list);
list_del_init(&work->list);
}
- spin_unlock_irq(&stopper->lock);
+ raw_spin_unlock_irq(&stopper->lock);
if (work) {
cpu_stop_fn_t fn = work->fn;
@@ -550,7 +550,7 @@ static int __init cpu_stop_init(void)
for_each_possible_cpu(cpu) {
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
- spin_lock_init(&stopper->lock);
+ raw_spin_lock_init(&stopper->lock);
INIT_LIST_HEAD(&stopper->works);
}
diff --git a/tools/memory-model/Documentation/cheatsheet.txt b/tools/memory-model/Documentation/cheatsheet.txt
index 956b1ae4..33ba98d 100644
--- a/tools/memory-model/Documentation/cheatsheet.txt
+++ b/tools/memory-model/Documentation/cheatsheet.txt
@@ -1,6 +1,6 @@
Prior Operation Subsequent Operation
--------------- ---------------------------
- C Self R W RWM Self R W DR DW RMW SV
+ C Self R W RMW Self R W DR DW RMW SV
-- ---- - - --- ---- - - -- -- --- --
Store, e.g., WRITE_ONCE() Y Y
@@ -14,7 +14,7 @@ smp_wmb() Y W Y Y W
smp_mb() & synchronize_rcu() CP Y Y Y Y Y Y Y Y
Successful full non-void RMW CP Y Y Y Y Y Y Y Y Y Y Y
smp_mb__before_atomic() CP Y Y Y a a a a Y
-smp_mb__after_atomic() CP a a Y Y Y Y Y
+smp_mb__after_atomic() CP a a Y Y Y Y Y Y
Key: C: Ordering is cumulative
@@ -26,4 +26,5 @@ Key: C: Ordering is cumulative
DR: Dependent read (address dependency)
DW: Dependent write (address, data, or control dependency)
RMW: Atomic read-modify-write operation
- SV Same-variable access
+ SELF: Orders self, as opposed to accesses before and/or after
+ SV: Orders later accesses to the same variable
diff --git a/tools/memory-model/Documentation/explanation.txt b/tools/memory-model/Documentation/explanation.txt
index a727c82..1b09f31 100644
--- a/tools/memory-model/Documentation/explanation.txt
+++ b/tools/memory-model/Documentation/explanation.txt
@@ -27,7 +27,7 @@ Explanation of the Linux-Kernel Memory Consistency Model
19. AND THEN THERE WAS ALPHA
20. THE HAPPENS-BEFORE RELATION: hb
21. THE PROPAGATES-BEFORE RELATION: pb
- 22. RCU RELATIONS: link, gp-link, rscs-link, and rcu-path
+ 22. RCU RELATIONS: rcu-link, gp, rscs, rcu-fence, and rb
23. ODDS AND ENDS
@@ -1451,8 +1451,8 @@ they execute means that it cannot have cycles. This requirement is
the content of the LKMM's "propagation" axiom.
-RCU RELATIONS: link, gp-link, rscs-link, and rcu-path
------------------------------------------------------
+RCU RELATIONS: rcu-link, gp, rscs, rcu-fence, and rb
+----------------------------------------------------
RCU (Read-Copy-Update) is a powerful synchronization mechanism. It
rests on two concepts: grace periods and read-side critical sections.
@@ -1509,8 +1509,8 @@ y, which occurs before the end of the critical section, did not
propagate to P1 before the end of the grace period, violating the
Guarantee.
-In the kernel's implementations of RCU, the business about stores
-propagating to every CPU is realized by placing strong fences at
+In the kernel's implementations of RCU, the requirements for stores
+to propagate to every CPU are fulfilled by placing strong fences at
suitable places in the RCU-related code. Thus, if a critical section
starts before a grace period does then the critical section's CPU will
execute an smp_mb() fence after the end of the critical section and
@@ -1523,72 +1523,124 @@ executes.
What exactly do we mean by saying that a critical section "starts
before" or "ends after" a grace period? Some aspects of the meaning
are pretty obvious, as in the example above, but the details aren't
-entirely clear. The LKMM formalizes this notion by means of a
-relation with the unfortunately generic name "link". It is a very
-general relation; among other things, X ->link Z includes cases where
-X happens-before or is equal to some event Y which is equal to or
-comes before Z in the coherence order. Taking Y = Z, this says that
-X ->rfe Z implies X ->link Z, and taking Y = X, it says that X ->fr Z
-and X ->co Z each imply X ->link Z.
-
-The formal definition of the link relation is more than a little
+entirely clear. The LKMM formalizes this notion by means of the
+rcu-link relation. rcu-link encompasses a very general notion of
+"before": Among other things, X ->rcu-link Z includes cases where X
+happens-before or is equal to some event Y which is equal to or comes
+before Z in the coherence order. When Y = Z this says that X ->rfe Z
+implies X ->rcu-link Z. In addition, when Y = X it says that X ->fr Z
+and X ->co Z each imply X ->rcu-link Z.
+
+The formal definition of the rcu-link relation is more than a little
obscure, and we won't give it here. It is closely related to the pb
relation, and the details don't matter unless you want to comb through
a somewhat lengthy formal proof. Pretty much all you need to know
-about link is the information in the preceding paragraph.
-
-The LKMM goes on to define the gp-link and rscs-link relations. They
-bring grace periods and read-side critical sections into the picture,
-in the following way:
-
- E ->gp-link F means there is a synchronize_rcu() fence event S
- and an event X such that E ->po S, either S ->po X or S = X,
- and X ->link F. In other words, E and F are connected by a
- grace period followed by an instance of link.
-
- E ->rscs-link F means there is a critical section delimited by
- an rcu_read_lock() fence L and an rcu_read_unlock() fence U,
- and an event X such that E ->po U, either L ->po X or L = X,
- and X ->link F. Roughly speaking, this says that some event
- in the same critical section as E is connected by link to F.
-
-If we think of the link relation as standing for an extended "before",
-then E ->gp-link F says that E executes before a grace period which
-ends before F executes. (In fact it says more than this, because it
-includes cases where E executes before a grace period and some store
-propagates to F's CPU before F executes and doesn't propagate to some
-other CPU until after the grace period ends.) Similarly,
-E ->rscs-link F says that E is part of (or before the start of) a
-critical section which starts before F executes.
+about rcu-link is the information in the preceding paragraph.
+
+The LKMM also defines the gp and rscs relations. They bring grace
+periods and read-side critical sections into the picture, in the
+following way:
+
+ E ->gp F means there is a synchronize_rcu() fence event S such
+ that E ->po S and either S ->po F or S = F. In simple terms,
+ there is a grace period po-between E and F.
+
+ E ->rscs F means there is a critical section delimited by an
+ rcu_read_lock() fence L and an rcu_read_unlock() fence U, such
+ that E ->po U and either L ->po F or L = F. You can think of
+ this as saying that E and F are in the same critical section
+ (in fact, it also allows E to be po-before the start of the
+ critical section and F to be po-after the end).
+
+If we think of the rcu-link relation as standing for an extended
+"before", then X ->gp Y ->rcu-link Z says that X executes before a
+grace period which ends before Z executes. (In fact it covers more
+than this, because it also includes cases where X executes before a
+grace period and some store propagates to Z's CPU before Z executes
+but doesn't propagate to some other CPU until after the grace period
+ends.) Similarly, X ->rscs Y ->rcu-link Z says that X is part of (or
+before the start of) a critical section which starts before Z
+executes.
+
+The LKMM goes on to define the rcu-fence relation as a sequence of gp
+and rscs links separated by rcu-link links, in which the number of gp
+links is >= the number of rscs links. For example:
+
+ X ->gp Y ->rcu-link Z ->rscs T ->rcu-link U ->gp V
+
+would imply that X ->rcu-fence V, because this sequence contains two
+gp links and only one rscs link. (It also implies that X ->rcu-fence T
+and Z ->rcu-fence V.) On the other hand:
+
+ X ->rscs Y ->rcu-link Z ->rscs T ->rcu-link U ->gp V
+
+does not imply X ->rcu-fence V, because the sequence contains only
+one gp link but two rscs links.
+
+The rcu-fence relation is important because the Grace Period Guarantee
+means that rcu-fence acts kind of like a strong fence. In particular,
+if W is a write and we have W ->rcu-fence Z, the Guarantee says that W
+will propagate to every CPU before Z executes.
+
+To prove this in full generality requires some intellectual effort.
+We'll consider just a very simple case:
+
+ W ->gp X ->rcu-link Y ->rscs Z.
+
+This formula means that there is a grace period G and a critical
+section C such that:
+
+ 1. W is po-before G;
+
+ 2. X is equal to or po-after G;
+
+ 3. X comes "before" Y in some sense;
+
+ 4. Y is po-before the end of C;
+
+ 5. Z is equal to or po-after the start of C.
+
+From 2 - 4 we deduce that the grace period G ends before the critical
+section C. Then the second part of the Grace Period Guarantee says
+not only that G starts before C does, but also that W (which executes
+on G's CPU before G starts) must propagate to every CPU before C
+starts. In particular, W propagates to every CPU before Z executes
+(or finishes executing, in the case where Z is equal to the
+rcu_read_lock() fence event which starts C.) This sort of reasoning
+can be expanded to handle all the situations covered by rcu-fence.
+
+Finally, the LKMM defines the RCU-before (rb) relation in terms of
+rcu-fence. This is done in essentially the same way as the pb
+relation was defined in terms of strong-fence. We will omit the
+details; the end result is that E ->rb F implies E must execute before
+F, just as E ->pb F does (and for much the same reasons).
Putting this all together, the LKMM expresses the Grace Period
-Guarantee by requiring that there are no cycles consisting of gp-link
-and rscs-link connections in which the number of gp-link instances is
->= the number of rscs-link instances. It does this by defining the
-rcu-path relation to link events E and F whenever it is possible to
-pass from E to F by a sequence of gp-link and rscs-link connections
-with at least as many of the former as the latter. The LKMM's "rcu"
-axiom then says that there are no events E such that E ->rcu-path E.
-
-Justifying this axiom takes some intellectual effort, but it is in
-fact a valid formalization of the Grace Period Guarantee. We won't
-attempt to go through the detailed argument, but the following
-analysis gives a taste of what is involved. Suppose we have a
-violation of the first part of the Guarantee: A critical section
-starts before a grace period, and some store propagates to the
-critical section's CPU before the end of the critical section but
-doesn't propagate to some other CPU until after the end of the grace
-period.
+Guarantee by requiring that the rb relation does not contain a cycle.
+Equivalently, this "rcu" axiom requires that there are no events E and
+F with E ->rcu-link F ->rcu-fence E. Or to put it a third way, the
+axiom requires that there are no cycles consisting of gp and rscs
+alternating with rcu-link, where the number of gp links is >= the
+number of rscs links.
+
+Justifying the axiom isn't easy, but it is in fact a valid
+formalization of the Grace Period Guarantee. We won't attempt to go
+through the detailed argument, but the following analysis gives a
+taste of what is involved. Suppose we have a violation of the first
+part of the Guarantee: A critical section starts before a grace
+period, and some store propagates to the critical section's CPU before
+the end of the critical section but doesn't propagate to some other
+CPU until after the end of the grace period.
Putting symbols to these ideas, let L and U be the rcu_read_lock() and
rcu_read_unlock() fence events delimiting the critical section in
question, and let S be the synchronize_rcu() fence event for the grace
period. Saying that the critical section starts before S means there
are events E and F where E is po-after L (which marks the start of the
-critical section), E is "before" F in the sense of the link relation,
-and F is po-before the grace period S:
+critical section), E is "before" F in the sense of the rcu-link
+relation, and F is po-before the grace period S:
- L ->po E ->link F ->po S.
+ L ->po E ->rcu-link F ->po S.
Let W be the store mentioned above, let Z come before the end of the
critical section and witness that W propagates to the critical
@@ -1600,16 +1652,19 @@ some event X which is po-after S. Symbolically, this amounts to:
The fr link from Y to W indicates that W has not propagated to Y's CPU
at the time that Y executes. From this, it can be shown (see the
-discussion of the link relation earlier) that X and Z are connected by
-link, yielding:
+discussion of the rcu-link relation earlier) that X and Z are related
+by rcu-link, yielding:
+
+ S ->po X ->rcu-link Z ->po U.
+
+The formulas say that S is po-between F and X, hence F ->gp X. They
+also say that Z comes before the end of the critical section and E
+comes after its start, hence Z ->rscs E. From all this we obtain:
- S ->po X ->link Z ->po U.
+ F ->gp X ->rcu-link Z ->rscs E ->rcu-link F,
-These formulas say that S is po-between F and X, hence F ->gp-link Z
-via X. They also say that Z comes before the end of the critical
-section and E comes after its start, hence Z ->rscs-link F via E. But
-now we have a forbidden cycle: F ->gp-link Z ->rscs-link F. Thus the
-"rcu" axiom rules out this violation of the Grace Period Guarantee.
+a forbidden cycle. Thus the "rcu" axiom rules out this violation of
+the Grace Period Guarantee.
For something a little more down-to-earth, let's see how the axiom
works out in practice. Consider the RCU code example from above, this
@@ -1635,18 +1690,18 @@ time with statement labels added to the memory access instructions:
}
-If r2 = 0 at the end then P0's store at X overwrites the value
-that P1's load at Z reads from, so we have Z ->fre X and thus
-Z ->link X. In addition, there is a synchronize_rcu() between Y and
-Z, so therefore we have Y ->gp-link X.
+If r2 = 0 at the end then P0's store at X overwrites the value that
+P1's load at Z reads from, so we have Z ->fre X and thus Z ->rcu-link X.
+In addition, there is a synchronize_rcu() between Y and Z, so therefore
+we have Y ->gp Z.
If r1 = 1 at the end then P1's load at Y reads from P0's store at W,
-so we have W ->link Y. In addition, W and X are in the same critical
-section, so therefore we have X ->rscs-link Y.
+so we have W ->rcu-link Y. In addition, W and X are in the same critical
+section, so therefore we have X ->rscs W.
-This gives us a cycle, Y ->gp-link X ->rscs-link Y, with one gp-link
-and one rscs-link, violating the "rcu" axiom. Hence the outcome is
-not allowed by the LKMM, as we would expect.
+Then X ->rscs W ->rcu-link Y ->gp Z ->rcu-link X is a forbidden cycle,
+violating the "rcu" axiom. Hence the outcome is not allowed by the
+LKMM, as we would expect.
For contrast, let's see what can happen in a more complicated example:
@@ -1682,15 +1737,11 @@ For contrast, let's see what can happen in a more complicated example:
}
If r0 = r1 = r2 = 1 at the end, then similar reasoning to before shows
-that W ->rscs-link Y via X, Y ->gp-link U via Z, and U ->rscs-link W
-via V. And just as before, this gives a cycle:
-
- W ->rscs-link Y ->gp-link U ->rscs-link W.
-
-However, this cycle has fewer gp-link instances than rscs-link
-instances, and consequently the outcome is not forbidden by the LKMM.
-The following instruction timing diagram shows how it might actually
-occur:
+that W ->rscs X ->rcu-link Y ->gp Z ->rcu-link U ->rscs V ->rcu-link W.
+However this cycle is not forbidden, because the sequence of relations
+contains fewer instances of gp (one) than of rscs (two). Consequently
+the outcome is allowed by the LKMM. The following instruction timing
+diagram shows how it might actually occur:
P0 P1 P2
-------------------- -------------------- --------------------
diff --git a/tools/memory-model/Documentation/references.txt b/tools/memory-model/Documentation/references.txt
index ba2e34c..b177f3e 100644
--- a/tools/memory-model/Documentation/references.txt
+++ b/tools/memory-model/Documentation/references.txt
@@ -63,15 +63,22 @@ o Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis,
Principles of Programming Languages (POPL 2017). ACM, New York,
NY, USA, 429–442.
+o Christopher Pulte, Shaked Flur, Will Deacon, Jon French,
+ Susmit Sarkar, and Peter Sewell. 2018. "Simplifying ARM concurrency:
+ multicopy-atomic axiomatic and operational models for ARMv8". In
+ Proceedings of the ACM on Programming Languages, Volume 2, Issue
+ POPL, Article No. 19. ACM, New York, NY, USA.
+
Linux-kernel memory model
=========================
-o Andrea Parri, Alan Stern, Luc Maranget, Paul E. McKenney,
- and Jade Alglave. 2017. "A formal model of
- Linux-kernel memory ordering - companion webpage".
- http://moscova.inria.fr/∼maranget/cats7/linux/. (2017). [Online;
- accessed 30-January-2017].
+o Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
+ Alan Stern. 2018. "Frightening small children and disconcerting
+ grown-ups: Concurrency in the Linux kernel". In Proceedings of
+ the 23rd International Conference on Architectural Support for
+ Programming Languages and Operating Systems (ASPLOS 2018). ACM,
+ New York, NY, USA, 405-418. Webpage: http://diy.inria.fr/linux/.
o Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan Stern. 2017. "A formal kernel memory-ordering model (part 1)"
diff --git a/tools/memory-model/README b/tools/memory-model/README
index 0b3a5f3..734f7fe 100644
--- a/tools/memory-model/README
+++ b/tools/memory-model/README
@@ -20,7 +20,7 @@ that litmus test to be exercised within the Linux kernel.
REQUIREMENTS
============
-Version 7.48 of the "herd7" and "klitmus7" tools must be downloaded
+Version 7.49 of the "herd7" and "klitmus7" tools must be downloaded
separately:
https://github.com/herd/herdtools7
diff --git a/tools/memory-model/linux-kernel.bell b/tools/memory-model/linux-kernel.bell
index 432c7cf..64f5740 100644
--- a/tools/memory-model/linux-kernel.bell
+++ b/tools/memory-model/linux-kernel.bell
@@ -5,10 +5,10 @@
* Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>,
* Andrea Parri <parri.andrea@gmail.com>
*
- * An earlier version of this file appears in the companion webpage for
+ * An earlier version of this file appeared in the companion webpage for
* "Frightening small children and disconcerting grown-ups: Concurrency
* in the Linux kernel" by Alglave, Maranget, McKenney, Parri, and Stern,
- * which is to appear in ASPLOS 2018.
+ * which appeared in ASPLOS 2018.
*)
"Linux-kernel memory consistency model"
diff --git a/tools/memory-model/linux-kernel.cat b/tools/memory-model/linux-kernel.cat
index df97db0..59b5cbe 100644
--- a/tools/memory-model/linux-kernel.cat
+++ b/tools/memory-model/linux-kernel.cat
@@ -5,10 +5,10 @@
* Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>,
* Andrea Parri <parri.andrea@gmail.com>
*
- * An earlier version of this file appears in the companion webpage for
+ * An earlier version of this file appeared in the companion webpage for
* "Frightening small children and disconcerting grown-ups: Concurrency
* in the Linux kernel" by Alglave, Maranget, McKenney, Parri, and Stern,
- * which is to appear in ASPLOS 2018.
+ * which appeared in ASPLOS 2018.
*)
"Linux-kernel memory consistency model"
@@ -100,22 +100,29 @@ let rscs = po ; crit^-1 ; po?
* one but two non-rf relations, but only in conjunction with an RCU
* read-side critical section.
*)
-let link = hb* ; pb* ; prop
+let rcu-link = hb* ; pb* ; prop
-(* Chains that affect the RCU grace-period guarantee *)
-let gp-link = gp ; link
-let rscs-link = rscs ; link
+(*
+ * Any sequence containing at least as many grace periods as RCU read-side
+ * critical sections (joined by rcu-link) acts as a generalized strong fence.
+ *)
+let rec rcu-fence = gp |
+ (gp ; rcu-link ; rscs) |
+ (rscs ; rcu-link ; gp) |
+ (gp ; rcu-link ; rcu-fence ; rcu-link ; rscs) |
+ (rscs ; rcu-link ; rcu-fence ; rcu-link ; gp) |
+ (rcu-fence ; rcu-link ; rcu-fence)
+
+(* rb orders instructions just as pb does *)
+let rb = prop ; rcu-fence ; hb* ; pb*
+
+irreflexive rb as rcu
(*
- * A cycle containing at least as many grace periods as RCU read-side
- * critical sections is forbidden.
+ * The happens-before, propagation, and rcu constraints are all
+ * expressions of temporal ordering. They could be replaced by
+ * a single constraint on an "executes-before" relation, xb:
+ *
+ * let xb = hb | pb | rb
+ * acyclic xb as executes-before
*)
-let rec rcu-path =
- gp-link |
- (gp-link ; rscs-link) |
- (rscs-link ; gp-link) |
- (rcu-path ; rcu-path) |
- (gp-link ; rcu-path ; rscs-link) |
- (rscs-link ; rcu-path ; gp-link)
-
-irreflexive rcu-path as rcu
diff --git a/tools/memory-model/linux-kernel.def b/tools/memory-model/linux-kernel.def
index 397e4e6..6fa3eb2 100644
--- a/tools/memory-model/linux-kernel.def
+++ b/tools/memory-model/linux-kernel.def
@@ -1,9 +1,9 @@
// SPDX-License-Identifier: GPL-2.0+
//
-// An earlier version of this file appears in the companion webpage for
+// An earlier version of this file appeared in the companion webpage for
// "Frightening small children and disconcerting grown-ups: Concurrency
// in the Linux kernel" by Alglave, Maranget, McKenney, Parri, and Stern,
-// which is to appear in ASPLOS 2018.
+// which appeared in ASPLOS 2018.
// ONCE
READ_ONCE(X) __load{once}(X)
@@ -14,14 +14,15 @@ smp_store_release(X,V) { __store{release}(*X,V); }
smp_load_acquire(X) __load{acquire}(*X)
rcu_assign_pointer(X,V) { __store{release}(X,V); }
rcu_dereference(X) __load{once}(X)
+smp_store_mb(X,V) { __store{once}(X,V); __fence{mb}; }
// Fences
-smp_mb() { __fence{mb} ; }
-smp_rmb() { __fence{rmb} ; }
-smp_wmb() { __fence{wmb} ; }
-smp_mb__before_atomic() { __fence{before-atomic} ; }
-smp_mb__after_atomic() { __fence{after-atomic} ; }
-smp_mb__after_spinlock() { __fence{after-spinlock} ; }
+smp_mb() { __fence{mb}; }
+smp_rmb() { __fence{rmb}; }
+smp_wmb() { __fence{wmb}; }
+smp_mb__before_atomic() { __fence{before-atomic}; }
+smp_mb__after_atomic() { __fence{after-atomic}; }
+smp_mb__after_spinlock() { __fence{after-spinlock}; }
// Exchange
xchg(X,V) __xchg{mb}(X,V)
@@ -34,26 +35,27 @@ cmpxchg_acquire(X,V,W) __cmpxchg{acquire}(X,V,W)
cmpxchg_release(X,V,W) __cmpxchg{release}(X,V,W)
// Spinlocks
-spin_lock(X) { __lock(X) ; }
-spin_unlock(X) { __unlock(X) ; }
+spin_lock(X) { __lock(X); }
+spin_unlock(X) { __unlock(X); }
spin_trylock(X) __trylock(X)
+spin_is_locked(X) __islocked(X)
// RCU
rcu_read_lock() { __fence{rcu-lock}; }
-rcu_read_unlock() { __fence{rcu-unlock};}
+rcu_read_unlock() { __fence{rcu-unlock}; }
synchronize_rcu() { __fence{sync-rcu}; }
synchronize_rcu_expedited() { __fence{sync-rcu}; }
// Atomic
atomic_read(X) READ_ONCE(*X)
-atomic_set(X,V) { WRITE_ONCE(*X,V) ; }
+atomic_set(X,V) { WRITE_ONCE(*X,V); }
atomic_read_acquire(X) smp_load_acquire(X)
atomic_set_release(X,V) { smp_store_release(X,V); }
-atomic_add(V,X) { __atomic_op(X,+,V) ; }
-atomic_sub(V,X) { __atomic_op(X,-,V) ; }
-atomic_inc(X) { __atomic_op(X,+,1) ; }
-atomic_dec(X) { __atomic_op(X,-,1) ; }
+atomic_add(V,X) { __atomic_op(X,+,V); }
+atomic_sub(V,X) { __atomic_op(X,-,V); }
+atomic_inc(X) { __atomic_op(X,+,1); }
+atomic_dec(X) { __atomic_op(X,-,1); }
atomic_add_return(V,X) __atomic_op_return{mb}(X,+,V)
atomic_add_return_relaxed(V,X) __atomic_op_return{once}(X,+,V)
diff --git a/tools/memory-model/litmus-tests/.gitignore b/tools/memory-model/litmus-tests/.gitignore
new file mode 100644
index 0000000..6e2ddc54
--- /dev/null
+++ b/tools/memory-model/litmus-tests/.gitignore
@@ -0,0 +1 @@
+*.litmus.out
diff --git a/tools/memory-model/litmus-tests/IRIW+mbonceonces+OnceOnce.litmus b/tools/memory-model/litmus-tests/IRIW+mbonceonces+OnceOnce.litmus
index 50d5db9..98a3716 100644
--- a/tools/memory-model/litmus-tests/IRIW+mbonceonces+OnceOnce.litmus
+++ b/tools/memory-model/litmus-tests/IRIW+mbonceonces+OnceOnce.litmus
@@ -7,7 +7,7 @@ C IRIW+mbonceonces+OnceOnce
* between each pairs of reads. In other words, is smp_mb() sufficient to
* cause two different reading processes to agree on the order of a pair
* of writes, where each write is to a different variable by a different
- * process?
+ * process? This litmus test exercises LKMM's "propagation" rule.
*)
{}
diff --git a/tools/memory-model/litmus-tests/MP+polockmbonce+poacquiresilsil.litmus b/tools/memory-model/litmus-tests/MP+polockmbonce+poacquiresilsil.litmus
new file mode 100644
index 0000000..50f4d62
--- /dev/null
+++ b/tools/memory-model/litmus-tests/MP+polockmbonce+poacquiresilsil.litmus
@@ -0,0 +1,35 @@
+C MP+polockmbonce+poacquiresilsil
+
+(*
+ * Result: Never
+ *
+ * Do spinlocks combined with smp_mb__after_spinlock() provide order
+ * to outside observers using spin_is_locked() to sense the lock-held
+ * state, ordered by acquire? Note that when the first spin_is_locked()
+ * returns false and the second true, we know that the smp_load_acquire()
+ * executed before the lock was acquired (loosely speaking).
+ *)
+
+{
+}
+
+P0(spinlock_t *lo, int *x)
+{
+ spin_lock(lo);
+ smp_mb__after_spinlock();
+ WRITE_ONCE(*x, 1);
+ spin_unlock(lo);
+}
+
+P1(spinlock_t *lo, int *x)
+{
+ int r1;
+ int r2;
+ int r3;
+
+ r1 = smp_load_acquire(x);
+ r2 = spin_is_locked(lo);
+ r3 = spin_is_locked(lo);
+}
+
+exists (1:r1=1 /\ 1:r2=0 /\ 1:r3=1)
diff --git a/tools/memory-model/litmus-tests/MP+polockonce+poacquiresilsil.litmus b/tools/memory-model/litmus-tests/MP+polockonce+poacquiresilsil.litmus
new file mode 100644
index 0000000..abf81e7
--- /dev/null
+++ b/tools/memory-model/litmus-tests/MP+polockonce+poacquiresilsil.litmus
@@ -0,0 +1,34 @@
+C MP+polockonce+poacquiresilsil
+
+(*
+ * Result: Sometimes
+ *
+ * Do spinlocks provide order to outside observers using spin_is_locked()
+ * to sense the lock-held state, ordered by acquire? Note that when the
+ * first spin_is_locked() returns false and the second true, we know that
+ * the smp_load_acquire() executed before the lock was acquired (loosely
+ * speaking).
+ *)
+
+{
+}
+
+P0(spinlock_t *lo, int *x)
+{
+ spin_lock(lo);
+ WRITE_ONCE(*x, 1);
+ spin_unlock(lo);
+}
+
+P1(spinlock_t *lo, int *x)
+{
+ int r1;
+ int r2;
+ int r3;
+
+ r1 = smp_load_acquire(x);
+ r2 = spin_is_locked(lo);
+ r3 = spin_is_locked(lo);
+}
+
+exists (1:r1=1 /\ 1:r2=0 /\ 1:r3=1)
diff --git a/tools/memory-model/litmus-tests/README b/tools/memory-model/litmus-tests/README
index 04096fb..17eb9a8 100644
--- a/tools/memory-model/litmus-tests/README
+++ b/tools/memory-model/litmus-tests/README
@@ -23,7 +23,8 @@ IRIW+mbonceonces+OnceOnce.litmus
between each pairs of reads. In other words, is smp_mb()
sufficient to cause two different reading processes to agree on
the order of a pair of writes, where each write is to a different
- variable by a different process?
+ variable by a different process? This litmus test is forbidden
+ by LKMM's propagation rule.
IRIW+poonceonces+OnceOnce.litmus
Test of independent reads from independent writes with nothing
@@ -63,6 +64,16 @@ LB+poonceonces.litmus
MP+onceassign+derefonce.litmus
As below, but with rcu_assign_pointer() and an rcu_dereference().
+MP+polockmbonce+poacquiresilsil.litmus
+ Protect the access with a lock and an smp_mb__after_spinlock()
+ in one process, and use an acquire load followed by a pair of
+ spin_is_locked() calls in the other process.
+
+MP+polockonce+poacquiresilsil.litmus
+ Protect the access with a lock in one process, and use an
+ acquire load followed by a pair of spin_is_locked() calls
+ in the other process.
+
MP+polocks.litmus
As below, but with the second access of the writer process
and the first access of reader process protected by a lock.
@@ -109,8 +120,10 @@ S+wmbonceonce+poacquireonce.litmus
WRC+poonceonces+Once.litmus
WRC+pooncerelease+rmbonceonce+Once.litmus
- These two are members of an extension of the MP litmus-test class
- in which the first write is moved to a separate process.
+ These two are members of an extension of the MP litmus-test
+ class in which the first write is moved to a separate process.
+ The second is forbidden because smp_store_release() is
+ A-cumulative in LKMM.
Z6.0+pooncelock+pooncelock+pombonce.litmus
Is the ordering provided by a spin_unlock() and a subsequent
diff --git a/tools/memory-model/litmus-tests/WRC+pooncerelease+rmbonceonce+Once.litmus b/tools/memory-model/litmus-tests/WRC+pooncerelease+rmbonceonce+Once.litmus
index 97fcbff..ad3448b 100644
--- a/tools/memory-model/litmus-tests/WRC+pooncerelease+rmbonceonce+Once.litmus
+++ b/tools/memory-model/litmus-tests/WRC+pooncerelease+rmbonceonce+Once.litmus
@@ -5,7 +5,9 @@ C WRC+pooncerelease+rmbonceonce+Once
*
* This litmus test is an extension of the message-passing pattern, where
* the first write is moved to a separate process. Because it features
- * a release and a read memory barrier, it should be forbidden.
+ * a release and a read memory barrier, it should be forbidden. More
+ * specifically, this litmus test is forbidden because smp_store_release()
+ * is A-cumulative in LKMM.
*)
{}
diff --git a/tools/memory-model/lock.cat b/tools/memory-model/lock.cat
index ba4a4ec..305ded1 100644
--- a/tools/memory-model/lock.cat
+++ b/tools/memory-model/lock.cat
@@ -4,46 +4,72 @@
* Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>
*)
-(* Generate coherence orders and handle lock operations *)
+(*
+ * Generate coherence orders and handle lock operations
+ *
+ * Warning: spin_is_locked() crashes herd7 versions strictly before 7.48.
+ * spin_is_locked() is functional from herd7 version 7.49.
+ *)
include "cross.cat"
-(* From lock reads to their partner lock writes *)
-let lk-rmw = ([LKR] ; po-loc ; [LKW]) \ (po ; po)
-let rmw = rmw | lk-rmw
-
(*
- * A paired LKR must always see an unlocked value; spin_lock() calls nested
- * inside a critical section (for the same lock) always deadlock.
+ * The lock-related events generated by herd are as follows:
+ *
+ * LKR Lock-Read: the read part of a spin_lock() or successful
+ * spin_trylock() read-modify-write event pair
+ * LKW Lock-Write: the write part of a spin_lock() or successful
+ * spin_trylock() RMW event pair
+ * UL Unlock: a spin_unlock() event
+ * LF Lock-Fail: a failed spin_trylock() event
+ * RL Read-Locked: a spin_is_locked() event which returns True
+ * RU Read-Unlocked: a spin_is_locked() event which returns False
+ *
+ * LKR and LKW events always come paired, like all RMW event sequences.
+ *
+ * LKR, LF, RL, and RU are read events; LKR has Acquire ordering.
+ * LKW and UL are write events; UL has Release ordering.
+ * LKW, LF, RL, and RU have no ordering properties.
*)
-empty ([LKW] ; po-loc ; [domain(lk-rmw)]) \ (po-loc ; [UL] ; po-loc)
- as lock-nest
-(* The litmus test is invalid if an LKW event is not part of an RMW pair *)
-flag ~empty LKW \ range(lk-rmw) as unpaired-LKW
+(* Backward compatibility *)
+let RL = try RL with emptyset
+let RU = try RU with emptyset
-(* This will be allowed if we implement spin_is_locked() *)
-flag ~empty LKR \ domain(lk-rmw) as unpaired-LKR
+(* Treat RL as a kind of LF: a read with no ordering properties *)
+let LF = LF | RL
-(* There should be no R or W accesses to spinlocks *)
-let ALL-LOCKS = LKR | LKW | UL | LF
+(* There should be no ordinary R or W accesses to spinlocks *)
+let ALL-LOCKS = LKR | LKW | UL | LF | RU
flag ~empty [M \ IW] ; loc ; [ALL-LOCKS] as mixed-lock-accesses
+(* Link Lock-Reads to their RMW-partner Lock-Writes *)
+let lk-rmw = ([LKR] ; po-loc ; [LKW]) \ (po ; po)
+let rmw = rmw | lk-rmw
+
+(* The litmus test is invalid if an LKR/LKW event is not part of an RMW pair *)
+flag ~empty LKW \ range(lk-rmw) as unpaired-LKW
+flag ~empty LKR \ domain(lk-rmw) as unpaired-LKR
+
+(*
+ * An LKR must always see an unlocked value; spin_lock() calls nested
+ * inside a critical section (for the same lock) always deadlock.
+ *)
+empty ([LKW] ; po-loc ; [LKR]) \ (po-loc ; [UL] ; po-loc) as lock-nest
+
(* The final value of a spinlock should not be tested *)
flag ~empty [FW] ; loc ; [ALL-LOCKS] as lock-final
-
(*
* Put lock operations in their appropriate classes, but leave UL out of W
* until after the co relation has been generated.
*)
-let R = R | LKR | LF
+let R = R | LKR | LF | RU
let W = W | LKW
let Release = Release | UL
let Acquire = Acquire | LKR
-
(* Match LKW events to their corresponding UL events *)
let critical = ([LKW] ; po-loc ; [UL]) \ (po-loc ; [LKW | UL] ; po-loc)
@@ -53,27 +79,48 @@ flag ~empty UL \ range(critical) as unmatched-unlock
let UNMATCHED-LKW = LKW \ domain(critical)
empty ([UNMATCHED-LKW] ; loc ; [UNMATCHED-LKW]) \ id as unmatched-locks
-
(* rfi for LF events: link each LKW to the LF events in its critical section *)
let rfi-lf = ([LKW] ; po-loc ; [LF]) \ ([LKW] ; po-loc ; [UL] ; po-loc)
(* rfe for LF events *)
let all-possible-rfe-lf =
- (*
- * Given an LF event r, compute the possible rfe edges for that event
- * (all those starting from LKW events in other threads),
- * and then convert that relation to a set of single-edge relations.
- *)
- let possible-rfe-lf r =
- let pair-to-relation p = p ++ 0
- in map pair-to-relation ((LKW * {r}) & loc & ext)
- (* Do this for each LF event r that isn't in rfi-lf *)
- in map possible-rfe-lf (LF \ range(rfi-lf))
+ (*
+ * Given an LF event r, compute the possible rfe edges for that event
+ * (all those starting from LKW events in other threads),
+ * and then convert that relation to a set of single-edge relations.
+ *)
+ let possible-rfe-lf r =
+ let pair-to-relation p = p ++ 0
+ in map pair-to-relation ((LKW * {r}) & loc & ext)
+ (* Do this for each LF event r that isn't in rfi-lf *)
+ in map possible-rfe-lf (LF \ range(rfi-lf))
(* Generate all rf relations for LF events *)
with rfe-lf from cross(all-possible-rfe-lf)
-let rf = rf | rfi-lf | rfe-lf
+let rf-lf = rfe-lf | rfi-lf
+
+(*
+ * RU, i.e., spin_is_locked() returning False, is slightly different.
+ * We rely on the memory model to rule out cases where spin_is_locked()
+ * within one of the lock's critical sections returns False.
+ *)
+
+(* rfi for RU events: an RU may read from the last po-previous UL *)
+let rfi-ru = ([UL] ; po-loc ; [RU]) \ ([UL] ; po-loc ; [LKW] ; po-loc)
+
+(* rfe for RU events: an RU may read from an external UL or the initial write *)
+let all-possible-rfe-ru =
+ let possible-rfe-ru r =
+ let pair-to-relation p = p ++ 0
+ in map pair-to-relation (((UL | IW) * {r}) & loc & ext)
+ in map possible-rfe-ru RU
+
+(* Generate all rf relations for RU events *)
+with rfe-ru from cross(all-possible-rfe-ru)
+let rf-ru = rfe-ru | rfi-ru
+(* Final rf relation *)
+let rf = rf | rf-lf | rf-ru
(* Generate all co relations, including LKW events but not UL *)
let co0 = co0 | ([IW] ; loc ; [LKW]) |
diff --git a/tools/memory-model/scripts/checkalllitmus.sh b/tools/memory-model/scripts/checkalllitmus.sh
new file mode 100644
index 0000000..af0aa15
--- /dev/null
+++ b/tools/memory-model/scripts/checkalllitmus.sh
@@ -0,0 +1,73 @@
+#!/bin/sh
+#
+# Run herd tests on all .litmus files in the specified directory (which
+# defaults to litmus-tests) and check each file's result against a "Result:"
+# comment within that litmus test. If the verification result does not
+# match that specified in the litmus test, this script prints an error
+# message prefixed with "^^^". It also outputs verification results to
+# a file whose name is that of the specified litmus test, but with ".out"
+# appended.
+#
+# Usage:
+# sh checkalllitmus.sh [ directory ]
+#
+# The LINUX_HERD_OPTIONS environment variable may be used to specify
+# arguments to herd, whose default is defined by the checklitmus.sh script.
+# Thus, one would normally run this in the directory containing the memory
+# model, specifying the pathname of the litmus test to check.
+#
+# This script makes no attempt to run the litmus tests concurrently.
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, you can access it online at
+# http://www.gnu.org/licenses/gpl-2.0.html.
+#
+# Copyright IBM Corporation, 2018
+#
+# Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+
+litmusdir=${1-litmus-tests}
+if test -d "$litmusdir" -a -r "$litmusdir" -a -x "$litmusdir"
+then
+ :
+else
+ echo ' --- ' error: $litmusdir is not an accessible directory
+ exit 255
+fi
+
+# Find the checklitmus script. If it is not where we expect it, then
+# assume that the caller has the PATH environment variable set
+# appropriately.
+if test -x scripts/checklitmus.sh
+then
+ clscript=scripts/checklitmus.sh
+else
+ clscript=checklitmus.sh
+fi
+
+# Run the script on all the litmus tests in the specified directory
+ret=0
+for i in litmus-tests/*.litmus
+do
+ if ! $clscript $i
+ then
+ ret=1
+ fi
+done
+if test "$ret" -ne 0
+then
+ echo " ^^^ VERIFICATION MISMATCHES"
+else
+ echo All litmus tests verified as was expected.
+fi
+exit $ret
diff --git a/tools/memory-model/scripts/checklitmus.sh b/tools/memory-model/scripts/checklitmus.sh
new file mode 100644
index 0000000..e2e4774
--- /dev/null
+++ b/tools/memory-model/scripts/checklitmus.sh
@@ -0,0 +1,86 @@
+#!/bin/sh
+#
+# Run a herd test and check the result against a "Result:" comment within
+# the litmus test. If the verification result does not match that specified
+# in the litmus test, this script prints an error message prefixed with
+# "^^^" and exits with a non-zero status. It also outputs verification
+# results to a file whose name is that of the specified litmus test, but
+# with ".out" appended.
+#
+# Usage:
+# sh checklitmus.sh file.litmus
+#
+# The LINUX_HERD_OPTIONS environment variable may be used to specify
+# arguments to herd, which default to "-conf linux-kernel.cfg". Thus,
+# one would normally run this in the directory containing the memory model,
+# specifying the pathname of the litmus test to check.
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, you can access it online at
+# http://www.gnu.org/licenses/gpl-2.0.html.
+#
+# Copyright IBM Corporation, 2018
+#
+# Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+
+litmus=$1
+herdoptions=${LINUX_HERD_OPTIONS--conf linux-kernel.cfg}
+
+if test -f "$litmus" -a -r "$litmus"
+then
+ :
+else
+ echo ' --- ' error: \"$litmus\" is not a readable file
+ exit 255
+fi
+if grep -q '^ \* Result: ' $litmus
+then
+ outcome=`grep -m 1 '^ \* Result: ' $litmus | awk '{ print $3 }'`
+else
+ outcome=specified
+fi
+
+echo Herd options: $herdoptions > $litmus.out
+/usr/bin/time herd7 -o ~/tmp $herdoptions $litmus >> $litmus.out 2>&1
+grep "Herd options:" $litmus.out
+grep '^Observation' $litmus.out
+if grep -q '^Observation' $litmus.out
+then
+ :
+else
+ cat $litmus.out
+ echo ' ^^^ Verification error'
+ echo ' ^^^ Verification error' >> $litmus.out 2>&1
+ exit 255
+fi
+if test "$outcome" = DEADLOCK
+then
+ echo grep 3 and 4
+ if grep '^Observation' $litmus.out | grep -q 'Never 0 0$'
+ then
+ ret=0
+ else
+ echo " ^^^ Unexpected non-$outcome verification"
+ echo " ^^^ Unexpected non-$outcome verification" >> $litmus.out 2>&1
+ ret=1
+ fi
+elif grep '^Observation' $litmus.out | grep -q $outcome || test "$outcome" = Maybe
+then
+ ret=0
+else
+ echo " ^^^ Unexpected non-$outcome verification"
+ echo " ^^^ Unexpected non-$outcome verification" >> $litmus.out 2>&1
+ ret=1
+fi
+tail -2 $litmus.out | head -1
+exit $ret
OpenPOWER on IntegriCloud