summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/00-INDEX64
-rw-r--r--Documentation/80211/conf.py5
-rw-r--r--Documentation/80211/index.rst2
-rw-r--r--Documentation/ABI/README2
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-slab2
-rw-r--r--Documentation/BUG-HUNTING246
-rw-r--r--Documentation/CodingStyle1063
-rw-r--r--Documentation/DocBook/Makefile3
-rw-r--r--Documentation/DocBook/kernel-hacking.tmpl4
-rw-r--r--Documentation/DocBook/uio-howto.tmpl62
-rw-r--r--Documentation/DocBook/usb.tmpl992
-rw-r--r--Documentation/Makefile.sphinx22
-rw-r--r--Documentation/SubmittingPatches842
-rw-r--r--Documentation/VGA-softcursor.txt39
-rw-r--r--Documentation/acpi/video_extension.txt2
-rw-r--r--Documentation/admin-guide/README.rst411
-rw-r--r--Documentation/admin-guide/binfmt-misc.rst151
-rw-r--r--Documentation/admin-guide/braille-console.rst38
-rw-r--r--Documentation/admin-guide/bug-bisect.rst76
-rw-r--r--Documentation/admin-guide/bug-hunting.rst369
-rw-r--r--Documentation/admin-guide/conf.py10
-rw-r--r--Documentation/admin-guide/devices.rst268
-rw-r--r--Documentation/admin-guide/devices.txt (renamed from Documentation/devices.txt)1176
-rw-r--r--Documentation/admin-guide/dynamic-debug-howto.rst353
-rw-r--r--Documentation/admin-guide/index.rst68
-rw-r--r--Documentation/admin-guide/init.rst (renamed from Documentation/init.txt)29
-rw-r--r--Documentation/admin-guide/initrd.rst (renamed from Documentation/initrd.txt)199
-rw-r--r--Documentation/admin-guide/java.rst (renamed from Documentation/java.txt)297
-rw-r--r--Documentation/admin-guide/kernel-parameters.rst209
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt (renamed from Documentation/kernel-parameters.txt)215
-rw-r--r--Documentation/admin-guide/md.rst (renamed from Documentation/md.txt)528
-rw-r--r--Documentation/admin-guide/module-signing.rst (renamed from Documentation/module-signing.txt)128
-rw-r--r--Documentation/admin-guide/mono.rst (renamed from Documentation/mono.txt)44
-rw-r--r--Documentation/admin-guide/parport.rst286
-rw-r--r--Documentation/admin-guide/ramoops.rst (renamed from Documentation/ramoops.txt)88
-rw-r--r--Documentation/admin-guide/reporting-bugs.rst (renamed from REPORTING-BUGS)70
-rw-r--r--Documentation/admin-guide/security-bugs.rst (renamed from Documentation/SecurityBugs)14
-rw-r--r--Documentation/admin-guide/serial-console.rst (renamed from Documentation/serial-console.txt)68
-rw-r--r--Documentation/admin-guide/sysfs-rules.rst192
-rw-r--r--Documentation/admin-guide/sysrq.rst289
-rw-r--r--Documentation/admin-guide/tainted-kernels.rst59
-rw-r--r--Documentation/admin-guide/unicode.rst (renamed from Documentation/unicode.txt)24
-rw-r--r--Documentation/admin-guide/vga-softcursor.rst66
-rw-r--r--Documentation/arm/Booting2
-rw-r--r--Documentation/atomic_ops.txt20
-rw-r--r--Documentation/bad_memory.txt45
-rw-r--r--Documentation/basic_profiling.txt56
-rw-r--r--Documentation/binfmt_misc.txt131
-rw-r--r--Documentation/blockdev/cciss.txt2
-rw-r--r--Documentation/blockdev/ramdisk.txt2
-rw-r--r--Documentation/braille-console.txt34
-rw-r--r--Documentation/cgroup-v1/00-INDEX2
-rw-r--r--Documentation/circular-buffers.txt4
-rw-r--r--Documentation/conf.py20
-rw-r--r--Documentation/core-api/conf.py10
-rw-r--r--Documentation/core-api/index.rst17
-rw-r--r--Documentation/core-api/workqueue.rst (renamed from Documentation/workqueue.txt)260
-rw-r--r--Documentation/cpu-hotplug.txt32
-rw-r--r--Documentation/dev-tools/conf.py10
-rw-r--r--Documentation/dev-tools/gcov.rst8
-rw-r--r--Documentation/dev-tools/index.rst (renamed from Documentation/dev-tools/tools.rst)8
-rw-r--r--Documentation/dev-tools/kcov.rst4
-rw-r--r--Documentation/development-process/index.rst9
-rw-r--r--Documentation/device-mapper/dm-raid.txt8
-rw-r--r--Documentation/devicetree/bindings/rtc/maxim,ds3231.txt2
-rw-r--r--Documentation/devicetree/bindings/rtc/pcf8563.txt2
-rw-r--r--Documentation/devicetree/bindings/submitting-patches.txt2
-rw-r--r--Documentation/driver-api/conf.py10
-rw-r--r--Documentation/driver-api/index.rst10
-rw-r--r--Documentation/driver-api/infrastructure.rst8
-rw-r--r--Documentation/driver-api/usb.rst748
-rw-r--r--Documentation/driver-api/vme.rst (renamed from Documentation/vme_api.txt)115
-rw-r--r--Documentation/dynamic-debug-howto.txt340
-rw-r--r--Documentation/filesystems/locks.txt2
-rw-r--r--Documentation/filesystems/nfs/nfsroot.txt4
-rw-r--r--Documentation/frv/booting.txt2
-rw-r--r--Documentation/gpu/conf.py5
-rw-r--r--Documentation/gpu/drm-kms.rst2
-rw-r--r--Documentation/gpu/drm-mm.rst2
-rw-r--r--Documentation/gpu/index.rst2
-rw-r--r--Documentation/hwmon/submitting-patches8
-rw-r--r--Documentation/index.rst58
-rw-r--r--Documentation/isdn/README2
-rw-r--r--Documentation/kernel-documentation.rst6
-rw-r--r--Documentation/kernel-per-CPU-kthreads.txt2
-rw-r--r--Documentation/kselftest.txt11
-rw-r--r--Documentation/lockup-watchdogs.txt4
-rw-r--r--Documentation/m68k/kernel-options.txt2
-rw-r--r--Documentation/magic-number.txt158
-rw-r--r--Documentation/media/.gitignore1
-rw-r--r--Documentation/media/Makefile31
-rw-r--r--Documentation/media/index.rst5
-rw-r--r--Documentation/media/intro.rst4
-rw-r--r--Documentation/media/media_api_files/typical_media_device.pdfbin52895 -> 0 bytes
-rw-r--r--Documentation/media/typical_media_device.svg (renamed from Documentation/media/media_api_files/typical_media_device.svg)0
-rw-r--r--Documentation/media/uapi/dvb/dvbstb.svg651
-rw-r--r--Documentation/media/uapi/dvb/intro.rst4
-rw-r--r--Documentation/media/uapi/dvb/intro_files/dvbstb.pdfbin1881 -> 0 bytes
-rw-r--r--Documentation/media/uapi/dvb/intro_files/dvbstb.pngbin22655 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/bayer.png (renamed from Documentation/media/uapi/v4l/subdev-formats_files/bayer.png)bin9725 -> 9725 bytes
-rw-r--r--Documentation/media/uapi/v4l/constraints.svg346
-rw-r--r--Documentation/media/uapi/v4l/crop.pngbin0 -> 3334 bytes
-rw-r--r--Documentation/media/uapi/v4l/crop.rst4
-rw-r--r--Documentation/media/uapi/v4l/crop_files/crop.gifbin5967 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/crop_files/crop.pdfbin5846 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-raw-vbi.rst12
-rw-r--r--Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.gifbin4741 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.pdfbin3706 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.gifbin5095 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.pdfbin3996 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.gifbin2400 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.pdfbin7405 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-subdev.rst16
-rw-r--r--Documentation/media/uapi/v4l/dev-subdev_files/pipeline.pdfbin20276 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-crop.pdfbin20729 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-full.pdfbin46311 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-scaling-multi-source.pdfbin36714 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/diff-v4l.rst4
-rw-r--r--Documentation/media/uapi/v4l/field-order.rst8
-rw-r--r--Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.gifbin25430 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.pdfbin9185 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.gifbin25323 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.pdfbin9173 -> 0 bytes
-rw-r--r--Documentation/media/uapi/v4l/fieldseq_bt.pngbin0 -> 12306 bytes
-rw-r--r--Documentation/media/uapi/v4l/fieldseq_tb.pngbin0 -> 12247 bytes
-rw-r--r--Documentation/media/uapi/v4l/nv12mt.png (renamed from Documentation/media/uapi/v4l/pixfmt-nv12mt_files/nv12mt.png)bin1920 -> 1920 bytes
-rw-r--r--Documentation/media/uapi/v4l/nv12mt_example.png (renamed from Documentation/media/uapi/v4l/pixfmt-nv12mt_files/nv12mt_example.png)bin5261 -> 5261 bytes
-rw-r--r--Documentation/media/uapi/v4l/pipeline.png (renamed from Documentation/media/uapi/v4l/dev-subdev_files/pipeline.png)bin12130 -> 12130 bytes
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-nv12mt.rst4
-rw-r--r--Documentation/media/uapi/v4l/selection-api-003.rst2
-rw-r--r--Documentation/media/uapi/v4l/selection.png (renamed from Documentation/media/uapi/v4l/selection-api-003_files/selection.png)bin11716 -> 11716 bytes
-rw-r--r--Documentation/media/uapi/v4l/subdev-formats.rst17
-rw-r--r--Documentation/media/uapi/v4l/subdev-image-processing-crop.svg (renamed from Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-crop.svg)0
-rw-r--r--Documentation/media/uapi/v4l/subdev-image-processing-full.svg (renamed from Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-full.svg)0
-rw-r--r--Documentation/media/uapi/v4l/subdev-image-processing-scaling-multi-source.svg (renamed from Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-scaling-multi-source.svg)0
-rw-r--r--Documentation/media/uapi/v4l/vbi_525.pngbin0 -> 2053 bytes
-rw-r--r--Documentation/media/uapi/v4l/vbi_625.pngbin0 -> 2352 bytes
-rw-r--r--Documentation/media/uapi/v4l/vbi_hsync.pngbin0 -> 906 bytes
-rw-r--r--Documentation/media/uapi/v4l/vidioc-g-selection.rst4
-rw-r--r--Documentation/media/uapi/v4l/vidioc-g-selection_files/constraints.pngbin3313 -> 0 bytes
-rw-r--r--Documentation/media/v4l-drivers/bttv.rst4
-rw-r--r--Documentation/memory-hotplug.txt2
-rw-r--r--Documentation/networking/netconsole.txt2
-rw-r--r--Documentation/networking/netdev-FAQ.txt8
-rw-r--r--Documentation/networking/vortex.txt2
-rw-r--r--Documentation/oops-tracing.txt279
-rw-r--r--Documentation/parport.txt267
-rw-r--r--Documentation/power/00-INDEX2
-rw-r--r--Documentation/power/pci.txt10
-rw-r--r--Documentation/power/runtime_pm.txt2
-rw-r--r--Documentation/power/swsusp-dmcrypt.txt2
-rw-r--r--Documentation/process/1.Intro.rst (renamed from Documentation/development-process/1.Intro.rst)0
-rw-r--r--Documentation/process/2.Process.rst (renamed from Documentation/development-process/2.Process.rst)0
-rw-r--r--Documentation/process/3.Early-stage.rst (renamed from Documentation/development-process/3.Early-stage.rst)0
-rw-r--r--Documentation/process/4.Coding.rst (renamed from Documentation/development-process/4.Coding.rst)4
-rw-r--r--Documentation/process/5.Posting.rst (renamed from Documentation/development-process/5.Posting.rst)12
-rw-r--r--Documentation/process/6.Followthrough.rst (renamed from Documentation/development-process/6.Followthrough.rst)0
-rw-r--r--Documentation/process/7.AdvancedTopics.rst (renamed from Documentation/development-process/7.AdvancedTopics.rst)2
-rw-r--r--Documentation/process/8.Conclusion.rst (renamed from Documentation/development-process/8.Conclusion.rst)6
-rw-r--r--Documentation/process/adding-syscalls.rst (renamed from Documentation/adding-syscalls.txt)269
-rw-r--r--Documentation/process/applying-patches.rst (renamed from Documentation/applying-patches.txt)7
-rw-r--r--Documentation/process/changes.rst (renamed from Documentation/Changes)2
-rw-r--r--Documentation/process/code-of-conflict.rst (renamed from Documentation/CodeOfConflict)3
-rw-r--r--Documentation/process/coding-style.rst1062
-rw-r--r--Documentation/process/conf.py (renamed from Documentation/development-process/conf.py)2
-rw-r--r--Documentation/process/development-process.rst (renamed from Documentation/development-process/development-process.rst)1
-rw-r--r--Documentation/process/email-clients.rst (renamed from Documentation/email-clients.txt)0
-rw-r--r--Documentation/process/howto.rst (renamed from Documentation/HOWTO)39
-rw-r--r--Documentation/process/index.rst57
-rw-r--r--Documentation/process/kernel-docs.rst (renamed from Documentation/kernel-docs.txt)0
-rw-r--r--Documentation/process/magic-number.rst164
-rw-r--r--Documentation/process/management-style.rst (renamed from Documentation/ManagementStyle)2
-rw-r--r--Documentation/process/stable-api-nonsense.rst (renamed from Documentation/stable_api_nonsense.txt)0
-rw-r--r--Documentation/process/stable-kernel-rules.rst (renamed from Documentation/stable_kernel_rules.txt)4
-rw-r--r--Documentation/process/submit-checklist.rst (renamed from Documentation/SubmitChecklist)6
-rw-r--r--Documentation/process/submitting-drivers.rst (renamed from Documentation/SubmittingDrivers)16
-rw-r--r--Documentation/process/submitting-patches.rst836
-rw-r--r--Documentation/process/volatile-considered-harmful.rst (renamed from Documentation/volatile-considered-harmful.txt)19
-rw-r--r--Documentation/rfkill.txt2
-rw-r--r--Documentation/scheduler/completion.txt3
-rw-r--r--Documentation/scsi/scsi-parameters.txt2
-rw-r--r--Documentation/scsi/scsi_mid_low_api.txt2
-rw-r--r--Documentation/scsi/sym53c8xx_2.txt2
-rw-r--r--Documentation/security/conf.py8
-rw-r--r--Documentation/security/index.rst7
-rw-r--r--Documentation/security/tpm/index.rst7
-rw-r--r--Documentation/security/tpm/tpm_vtpm_proxy.rst (renamed from Documentation/tpm/tpm_vtpm_proxy.txt)55
-rw-r--r--Documentation/security/tpm/xen-tpmfront.txt (renamed from Documentation/tpm/xen-tpmfront.txt)0
-rw-r--r--Documentation/sound/oss/oss-parameters.txt2
-rw-r--r--Documentation/sphinx/kerneldoc.py (renamed from Documentation/sphinx/kernel-doc.py)0
-rw-r--r--Documentation/sysctl/kernel.txt4
-rw-r--r--Documentation/sysfs-rules.txt184
-rw-r--r--Documentation/sysrq.txt257
-rw-r--r--Documentation/trace/uprobetracer.txt6
-rw-r--r--Documentation/translations/ja_JP/HOWTO (renamed from Documentation/ja_JP/HOWTO)24
-rw-r--r--Documentation/translations/ja_JP/SubmitChecklist (renamed from Documentation/ja_JP/SubmitChecklist)8
-rw-r--r--Documentation/translations/ja_JP/SubmittingPatches (renamed from Documentation/ja_JP/SubmittingPatches)18
-rw-r--r--Documentation/translations/ja_JP/stable_api_nonsense.txt (renamed from Documentation/ja_JP/stable_api_nonsense.txt)4
-rw-r--r--Documentation/translations/ja_JP/stable_kernel_rules.txt (renamed from Documentation/ja_JP/stable_kernel_rules.txt)6
-rw-r--r--Documentation/translations/ko_KR/howto.rst (renamed from Documentation/ko_KR/HOWTO)172
-rw-r--r--Documentation/translations/ko_KR/index.rst12
-rw-r--r--Documentation/translations/ko_KR/memory-barriers.txt (renamed from Documentation/ko_KR/memory-barriers.txt)36
-rw-r--r--Documentation/translations/ko_KR/stable_api_nonsense.txt (renamed from Documentation/ko_KR/stable_api_nonsense.txt)4
-rw-r--r--Documentation/translations/zh_CN/CodingStyle (renamed from Documentation/zh_CN/CodingStyle)6
-rw-r--r--Documentation/translations/zh_CN/HOWTO (renamed from Documentation/zh_CN/HOWTO)30
-rw-r--r--Documentation/translations/zh_CN/IRQ.txt (renamed from Documentation/zh_CN/IRQ.txt)0
-rw-r--r--Documentation/translations/zh_CN/SecurityBugs (renamed from Documentation/zh_CN/SecurityBugs)6
-rw-r--r--Documentation/translations/zh_CN/SubmittingDrivers (renamed from Documentation/zh_CN/SubmittingDrivers)12
-rw-r--r--Documentation/translations/zh_CN/SubmittingPatches (renamed from Documentation/zh_CN/SubmittingPatches)14
-rw-r--r--Documentation/translations/zh_CN/arm/Booting (renamed from Documentation/zh_CN/arm/Booting)2
-rw-r--r--Documentation/translations/zh_CN/arm/kernel_user_helpers.txt (renamed from Documentation/zh_CN/arm/kernel_user_helpers.txt)0
-rw-r--r--Documentation/translations/zh_CN/arm64/booting.txt (renamed from Documentation/zh_CN/arm64/booting.txt)0
-rw-r--r--Documentation/translations/zh_CN/arm64/legacy_instructions.txt (renamed from Documentation/zh_CN/arm64/legacy_instructions.txt)0
-rw-r--r--Documentation/translations/zh_CN/arm64/memory.txt (renamed from Documentation/zh_CN/arm64/memory.txt)0
-rw-r--r--Documentation/translations/zh_CN/arm64/silicon-errata.txt (renamed from Documentation/zh_CN/arm64/silicon-errata.txt)0
-rw-r--r--Documentation/translations/zh_CN/arm64/tagged-pointers.txt (renamed from Documentation/zh_CN/arm64/tagged-pointers.txt)0
-rw-r--r--Documentation/translations/zh_CN/basic_profiling.txt (renamed from Documentation/zh_CN/basic_profiling.txt)0
-rw-r--r--Documentation/translations/zh_CN/email-clients.txt (renamed from Documentation/zh_CN/email-clients.txt)4
-rw-r--r--Documentation/translations/zh_CN/filesystems/sysfs.txt (renamed from Documentation/zh_CN/filesystems/sysfs.txt)0
-rw-r--r--Documentation/translations/zh_CN/gpio.txt (renamed from Documentation/zh_CN/gpio.txt)0
-rw-r--r--Documentation/translations/zh_CN/io_ordering.txt (renamed from Documentation/zh_CN/io_ordering.txt)0
-rw-r--r--Documentation/translations/zh_CN/magic-number.txt (renamed from Documentation/zh_CN/magic-number.txt)0
-rw-r--r--Documentation/translations/zh_CN/oops-tracing.txt (renamed from Documentation/zh_CN/oops-tracing.txt)6
-rw-r--r--Documentation/translations/zh_CN/sparse.txt (renamed from Documentation/zh_CN/sparse.txt)0
-rw-r--r--Documentation/translations/zh_CN/stable_api_nonsense.txt (renamed from Documentation/zh_CN/stable_api_nonsense.txt)4
-rw-r--r--Documentation/translations/zh_CN/stable_kernel_rules.txt (renamed from Documentation/zh_CN/stable_kernel_rules.txt)6
-rw-r--r--Documentation/translations/zh_CN/video4linux/omap3isp.txt (renamed from Documentation/zh_CN/video4linux/omap3isp.txt)0
-rw-r--r--Documentation/translations/zh_CN/video4linux/v4l2-framework.txt (renamed from Documentation/zh_CN/video4linux/v4l2-framework.txt)0
-rw-r--r--Documentation/translations/zh_CN/volatile-considered-harmful.txt (renamed from Documentation/zh_CN/volatile-considered-harmful.txt)4
-rw-r--r--Documentation/virtual/kvm/review-checklist.txt4
-rw-r--r--Documentation/vm/numa2
-rw-r--r--Documentation/watchdog/convert_drivers_to_kernel_api.txt2
-rw-r--r--Documentation/watchdog/watchdog-parameters.txt2
-rw-r--r--Documentation/x86/boot.txt2
-rw-r--r--MAINTAINERS16
-rw-r--r--README408
-rw-r--r--arch/x86/Kconfig2
-rw-r--r--drivers/acpi/Kconfig2
-rw-r--r--drivers/ata/libata-core.c2
-rw-r--r--drivers/char/pcmcia/cm4000_cs.c4
-rw-r--r--drivers/net/can/grcan.c2
-rw-r--r--drivers/nvdimm/Kconfig2
-rw-r--r--drivers/staging/vme/devices/vme_user.c2
-rw-r--r--drivers/video/fbdev/skeletonfb.c8
-rw-r--r--drivers/virtio/Kconfig2
-rw-r--r--fs/Kconfig.binfmt4
-rw-r--r--fs/pstore/Kconfig2
-rw-r--r--include/linux/device.h2
-rw-r--r--include/linux/pm.h2
-rw-r--r--include/linux/workqueue.h35
-rw-r--r--include/uapi/linux/major.h2
-rw-r--r--init/Kconfig2
-rw-r--r--init/main.c2
-rw-r--r--lib/Kconfig.debug2
-rwxr-xr-xscripts/checkpatch.pl6
-rwxr-xr-xscripts/kernel-doc20
-rw-r--r--tools/testing/selftests/futex/README2
257 files changed, 9274 insertions, 7660 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index 3acc4f1..e2e7444 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -15,11 +15,11 @@ Following translations are available on the WWW:
ABI/
- info on kernel <-> userspace ABI and relative interface stability.
-BUG-HUNTING
+admin-guide/bug-hunting.rst
- brute force method of doing binary search of patches to find bug.
-Changes
+process/changes.rst
- list of changes that break older software packages.
-CodingStyle
+process/coding-style.rst
- how the maintainers expect the C code in the kernel to look.
DMA-API.txt
- DMA API, pci_ API & extensions for non-consistent memory machines.
@@ -33,7 +33,7 @@ DocBook/
- directory with DocBook templates etc. for kernel documentation.
EDID/
- directory with info on customizing EDID for broken gfx/displays.
-HOWTO
+process/howto.rst
- the process and procedures of how to do Linux kernel development.
IPMI.txt
- info on Linux Intelligent Platform Management Interface (IPMI) Driver.
@@ -48,7 +48,7 @@ Intel-IOMMU.txt
Makefile
- This file does nothing. Removing it breaks make htmldocs and
make distclean.
-ManagementStyle
+process/management-style.rst
- how to (attempt to) manage kernel hackers.
RCU/
- directory with info on RCU (read-copy update).
@@ -56,13 +56,13 @@ SAK.txt
- info on Secure Attention Keys.
SM501.txt
- Silicon Motion SM501 multimedia companion chip
-SecurityBugs
+admin-guide/security-bugs.rst
- procedure for reporting security bugs found in the kernel.
-SubmitChecklist
+process/submit-checklist.rst
- Linux kernel patch submission checklist.
-SubmittingDrivers
+process/submitting-drivers.rst
- procedure to get a new driver source included into the kernel tree.
-SubmittingPatches
+process/submitting-patches.rst
- procedure to get a source patch included into the kernel tree.
VGA-softcursor.txt
- how to change your VGA cursor from a blinking underscore.
@@ -72,7 +72,7 @@ acpi/
- info on ACPI-specific hooks in the kernel.
aoe/
- description of AoE (ATA over Ethernet) along with config examples.
-applying-patches.txt
+process/applying-patches.rst
- description of various trees and how to apply their patches.
arm/
- directory with info about Linux on the ARM architecture.
@@ -86,7 +86,7 @@ auxdisplay/
- misc. LCD driver documentation (cfag12864b, ks0108).
backlight/
- directory with info on controlling backlights in flat panel displays
-bad_memory.txt
+admin-guide/bad-memory.rst
- how to use kernel parameters to exclude bad RAM regions.
basic_profiling.txt
- basic instructions for those who wants to profile Linux kernel.
@@ -126,6 +126,8 @@ connector/
- docs on the netlink based userspace<->kernel space communication mod.
console/
- documentation on Linux console drivers.
+core-api/
+ - documentation on kernel core components.
cpu-freq/
- info on CPU frequency and voltage scaling.
cpu-hotplug.txt
@@ -150,11 +152,11 @@ debugging-via-ohci1394.txt
- how to use firewire like a hardware debugger memory reader.
dell_rbu.txt
- document demonstrating the use of the Dell Remote BIOS Update driver.
-development-process/
+process/
- how to work with the mainline kernel development process.
device-mapper/
- directory with info on Device Mapper.
-devices.txt
+admin-guide/devices.rst
- plain ASCII listing of all the nodes in /dev/ with major minor #'s.
devicetree/
- directory with info on device tree files used by OF/PowerPC/ARM
@@ -166,8 +168,6 @@ dontdiff
- file containing a list of files that should never be diff'ed.
driver-model/
- directory with info about Linux driver model.
-dvb/
- - info on Linux Digital Video Broadcast (DVB) subsystem.
dynamic-debug-howto.txt
- how to use the dynamic debug (dyndbg) feature.
early-userspace/
@@ -178,7 +178,7 @@ efi-stub.txt
- How to use the EFI boot stub to bypass GRUB or elilo on EFI systems.
eisa.txt
- info on EISA bus support.
-email-clients.txt
+process/email-clients.rst
- info on how to use e-mail to send un-mangled (git) patches.
extcon/
- directory with porting guide for Android kernel switch driver.
@@ -226,9 +226,9 @@ ia64/
- directory with info about Linux on Intel 64 bit architecture.
infiniband/
- directory with documents concerning Linux InfiniBand support.
-init.txt
+admin-guide/init.rst
- what to do when the kernel can't find the 1st process to run.
-initrd.txt
+admin-guide/initrd.rst
- how to use the RAM disk as an initial/temporary root filesystem.
input/
- info on Linux input device support.
@@ -248,7 +248,7 @@ isapnp.txt
- info on Linux ISA Plug & Play support.
isdn/
- directory with info on the Linux ISDN support, and supported cards.
-java.txt
+admin-guide/java.rst
- info on the in-kernel binary support for Java(tm).
ja_JP/
- directory with Japanese translations of various documents
@@ -256,11 +256,11 @@ kbuild/
- directory with info about the kernel build process.
kdump/
- directory with mini HowTo on getting the crash dump code to work.
-kernel-docs.txt
+process/kernel-docs.rst
- listing of various WWW + books that document kernel internals.
kernel-documentation.rst
- how to write and format reStructuredText kernel documentation
-kernel-parameters.txt
+admin-guide/kernel-parameters.rst
- summary listing of command line / boot prompt args for the kernel.
kernel-per-CPU-kthreads.txt
- List of all per-CPU kthreads and how they introduce jitter.
@@ -302,7 +302,7 @@ magic-number.txt
- list of magic numbers used to mark/protect kernel data structures.
mailbox.txt
- How to write drivers for the common mailbox framework (IPC).
-md.txt
+admin-guide/md.rst
- info on boot arguments for the multiple devices driver.
media-framework.txt
- info on media framework, its data structures, functions and usage.
@@ -326,7 +326,7 @@ module-signing.txt
- Kernel module signing for increased security when loading modules.
mtd/
- directory with info about memory technology devices (flash)
-mono.txt
+admin-guide/mono.rst
- how to execute Mono-based .NET binaries with the help of BINFMT_MISC.
namespaces/
- directory with various information about namespaces
@@ -340,7 +340,7 @@ nommu-mmap.txt
- documentation about no-mmu memory mapping support.
numastat.txt
- info on how to read Numa policy hit/miss statistics in sysfs.
-oops-tracing.txt
+admin-guide/oops-tracing.rst
- how to decode those nasty internal kernel error dump messages.
padata.txt
- An introduction to the "padata" parallel execution API
@@ -378,7 +378,7 @@ ptp/
- directory with info on support for IEEE 1588 PTP clocks in Linux.
pwm.txt
- info on the pulse width modulation driver subsystem
-ramoops.txt
+admin-guide/ramoops.rst
- documentation of the ramoops oops/panic logging module.
rapidio/
- directory with info on RapidIO packet-based fabric interconnect
@@ -406,7 +406,7 @@ security/
- directory that contains security-related info
serial/
- directory with info on the low level serial API.
-serial-console.txt
+admin-guide/serial-console.rst
- how to set up Linux with a serial line console as the default.
sgi-ioc4.txt
- description of the SGI IOC4 PCI (multi function) device.
@@ -420,9 +420,9 @@ sparse.txt
- info on how to obtain and use the sparse tool for typechecking.
spi/
- overview of Linux kernel Serial Peripheral Interface (SPI) support.
-stable_api_nonsense.txt
+process/stable-api-nonsense.rst
- info on why the kernel does not have a stable in-kernel api or abi.
-stable_kernel_rules.txt
+process/stable-kernel-rules.rst
- rules and procedures for the -stable kernel releases.
static-keys.txt
- info on how static keys allow debug code in hotpaths via patching
@@ -444,7 +444,7 @@ trace/
- directory with info on tracing technologies within linux
unaligned-memory-access.txt
- info on how to avoid arch breaking unaligned memory access in code.
-unicode.txt
+admin-guide/unicode.rst
- info on the Unicode character/font mapping used in Linux.
unshare.txt
- description of the Linux unshare system call.
@@ -458,15 +458,13 @@ vgaarbiter.txt
- info on enable/disable the legacy decoding on different VGA devices
video-output.txt
- sysfs class driver interface to enable/disable a video output device.
-video4linux/
- - directory with info regarding video/TV/radio cards and linux.
virtual/
- directory with information on the various linux virtualizations.
vm/
- directory with info on the Linux vm code.
vme_api.txt
- file relating info on the VME bus API in linux
-volatile-considered-harmful.txt
+process/volatile-considered-harmful.rst
- Why the "volatile" type class should not be used
w1/
- directory with documents regarding the 1-wire (w1) subsystem.
@@ -474,7 +472,7 @@ watchdog/
- how to auto-reboot Linux if it has "fallen and can't get up". ;-)
wimax/
- directory with info about Intel Wireless Wimax Connections
-workqueue.txt
+core-api/workqueue.rst
- information on the Concurrency Managed Workqueue implementation
x86/x86_64/
- directory with info on Linux support for AMD x86-64 (Hammer) machines.
diff --git a/Documentation/80211/conf.py b/Documentation/80211/conf.py
index 20c7c27..4424b4b 100644
--- a/Documentation/80211/conf.py
+++ b/Documentation/80211/conf.py
@@ -3,3 +3,8 @@
project = "Linux 802.11 Driver Developer's Guide"
tags.add("subproject")
+
+latex_documents = [
+ ('index', '80211.tex', project,
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/80211/index.rst b/Documentation/80211/index.rst
index 90bba47..af21085 100644
--- a/Documentation/80211/index.rst
+++ b/Documentation/80211/index.rst
@@ -9,7 +9,7 @@ Linux 802.11 Driver Developer's Guide
mac80211
mac80211-advanced
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/ABI/README b/Documentation/ABI/README
index 1fafc4b0..3121029 100644
--- a/Documentation/ABI/README
+++ b/Documentation/ABI/README
@@ -84,4 +84,4 @@ stable:
- Kernel-internal symbols. Do not rely on the presence, absence, location, or
type of any kernel symbol, either in System.map files or the kernel binary
- itself. See Documentation/stable_api_nonsense.txt.
+ itself. See Documentation/process/stable-api-nonsense.rst.
diff --git a/Documentation/ABI/testing/sysfs-kernel-slab b/Documentation/ABI/testing/sysfs-kernel-slab
index 91bd6ca..2cc0a72 100644
--- a/Documentation/ABI/testing/sysfs-kernel-slab
+++ b/Documentation/ABI/testing/sysfs-kernel-slab
@@ -347,7 +347,7 @@ Description:
because of fragmentation, SLUB will retry with the minimum order
possible depending on its characteristics.
When debug_guardpage_minorder=N (N > 0) parameter is specified
- (see Documentation/kernel-parameters.txt), the minimum possible
+ (see Documentation/admin-guide/kernel-parameters.rst), the minimum possible
order is used and this sysfs entry can not be used to change
the order at run time.
diff --git a/Documentation/BUG-HUNTING b/Documentation/BUG-HUNTING
deleted file mode 100644
index 65022a8..0000000
--- a/Documentation/BUG-HUNTING
+++ /dev/null
@@ -1,246 +0,0 @@
-Table of contents
-=================
-
-Last updated: 20 December 2005
-
-Contents
-========
-
-- Introduction
-- Devices not appearing
-- Finding patch that caused a bug
--- Finding using git-bisect
--- Finding it the old way
-- Fixing the bug
-
-Introduction
-============
-
-Always try the latest kernel from kernel.org and build from source. If you are
-not confident in doing that please report the bug to your distribution vendor
-instead of to a kernel developer.
-
-Finding bugs is not always easy. Have a go though. If you can't find it don't
-give up. Report as much as you have found to the relevant maintainer. See
-MAINTAINERS for who that is for the subsystem you have worked on.
-
-Before you submit a bug report read REPORTING-BUGS.
-
-Devices not appearing
-=====================
-
-Often this is caused by udev. Check that first before blaming it on the
-kernel.
-
-Finding patch that caused a bug
-===============================
-
-
-
-Finding using git-bisect
-------------------------
-
-Using the provided tools with git makes finding bugs easy provided the bug is
-reproducible.
-
-Steps to do it:
-- start using git for the kernel source
-- read the man page for git-bisect
-- have fun
-
-Finding it the old way
-----------------------
-
-[Sat Mar 2 10:32:33 PST 1996 KERNEL_BUG-HOWTO lm@sgi.com (Larry McVoy)]
-
-This is how to track down a bug if you know nothing about kernel hacking.
-It's a brute force approach but it works pretty well.
-
-You need:
-
- . A reproducible bug - it has to happen predictably (sorry)
- . All the kernel tar files from a revision that worked to the
- revision that doesn't
-
-You will then do:
-
- . Rebuild a revision that you believe works, install, and verify that.
- . Do a binary search over the kernels to figure out which one
- introduced the bug. I.e., suppose 1.3.28 didn't have the bug, but
- you know that 1.3.69 does. Pick a kernel in the middle and build
- that, like 1.3.50. Build & test; if it works, pick the mid point
- between .50 and .69, else the mid point between .28 and .50.
- . You'll narrow it down to the kernel that introduced the bug. You
- can probably do better than this but it gets tricky.
-
- . Narrow it down to a subdirectory
-
- - Copy kernel that works into "test". Let's say that 3.62 works,
- but 3.63 doesn't. So you diff -r those two kernels and come
- up with a list of directories that changed. For each of those
- directories:
-
- Copy the non-working directory next to the working directory
- as "dir.63".
- One directory at time, try moving the working directory to
- "dir.62" and mv dir.63 dir"time, try
-
- mv dir dir.62
- mv dir.63 dir
- find dir -name '*.[oa]' -print | xargs rm -f
-
- And then rebuild and retest. Assuming that all related
- changes were contained in the sub directory, this should
- isolate the change to a directory.
-
- Problems: changes in header files may have occurred; I've
- found in my case that they were self explanatory - you may
- or may not want to give up when that happens.
-
- . Narrow it down to a file
-
- - You can apply the same technique to each file in the directory,
- hoping that the changes in that file are self contained.
-
- . Narrow it down to a routine
-
- - You can take the old file and the new file and manually create
- a merged file that has
-
- #ifdef VER62
- routine()
- {
- ...
- }
- #else
- routine()
- {
- ...
- }
- #endif
-
- And then walk through that file, one routine at a time and
- prefix it with
-
- #define VER62
- /* both routines here */
- #undef VER62
-
- Then recompile, retest, move the ifdefs until you find the one
- that makes the difference.
-
-Finally, you take all the info that you have, kernel revisions, bug
-description, the extent to which you have narrowed it down, and pass
-that off to whomever you believe is the maintainer of that section.
-A post to linux.dev.kernel isn't such a bad idea if you've done some
-work to narrow it down.
-
-If you get it down to a routine, you'll probably get a fix in 24 hours.
-
-My apologies to Linus and the other kernel hackers for describing this
-brute force approach, it's hardly what a kernel hacker would do. However,
-it does work and it lets non-hackers help fix bugs. And it is cool
-because Linux snapshots will let you do this - something that you can't
-do with vendor supplied releases.
-
-Fixing the bug
-==============
-
-Nobody is going to tell you how to fix bugs. Seriously. You need to work it
-out. But below are some hints on how to use the tools.
-
-To debug a kernel, use objdump and look for the hex offset from the crash
-output to find the valid line of code/assembler. Without debug symbols, you
-will see the assembler code for the routine shown, but if your kernel has
-debug symbols the C code will also be available. (Debug symbols can be enabled
-in the kernel hacking menu of the menu configuration.) For example:
-
- objdump -r -S -l --disassemble net/dccp/ipv4.o
-
-NB.: you need to be at the top level of the kernel tree for this to pick up
-your C files.
-
-If you don't have access to the code you can also debug on some crash dumps
-e.g. crash dump output as shown by Dave Miller.
-
-> EIP is at ip_queue_xmit+0x14/0x4c0
-> ...
-> Code: 44 24 04 e8 6f 05 00 00 e9 e8 fe ff ff 8d 76 00 8d bc 27 00 00
-> 00 00 55 57 56 53 81 ec bc 00 00 00 8b ac 24 d0 00 00 00 8b 5d 08
-> <8b> 83 3c 01 00 00 89 44 24 14 8b 45 28 85 c0 89 44 24 18 0f 85
->
-> Put the bytes into a "foo.s" file like this:
->
-> .text
-> .globl foo
-> foo:
-> .byte .... /* bytes from Code: part of OOPS dump */
->
-> Compile it with "gcc -c -o foo.o foo.s" then look at the output of
-> "objdump --disassemble foo.o".
->
-> Output:
->
-> ip_queue_xmit:
-> push %ebp
-> push %edi
-> push %esi
-> push %ebx
-> sub $0xbc, %esp
-> mov 0xd0(%esp), %ebp ! %ebp = arg0 (skb)
-> mov 0x8(%ebp), %ebx ! %ebx = skb->sk
-> mov 0x13c(%ebx), %eax ! %eax = inet_sk(sk)->opt
-
-In addition, you can use GDB to figure out the exact file and line
-number of the OOPS from the vmlinux file. If you have
-CONFIG_DEBUG_INFO enabled, you can simply copy the EIP value from the
-OOPS:
-
- EIP: 0060:[<c021e50e>] Not tainted VLI
-
-And use GDB to translate that to human-readable form:
-
- gdb vmlinux
- (gdb) l *0xc021e50e
-
-If you don't have CONFIG_DEBUG_INFO enabled, you use the function
-offset from the OOPS:
-
- EIP is at vt_ioctl+0xda8/0x1482
-
-And recompile the kernel with CONFIG_DEBUG_INFO enabled:
-
- make vmlinux
- gdb vmlinux
- (gdb) p vt_ioctl
- (gdb) l *(0x<address of vt_ioctl> + 0xda8)
-or, as one command
- (gdb) l *(vt_ioctl + 0xda8)
-
-If you have a call trace, such as :-
->Call Trace:
-> [<ffffffff8802c8e9>] :jbd:log_wait_commit+0xa3/0xf5
-> [<ffffffff810482d9>] autoremove_wake_function+0x0/0x2e
-> [<ffffffff8802770b>] :jbd:journal_stop+0x1be/0x1ee
-> ...
-this shows the problem in the :jbd: module. You can load that module in gdb
-and list the relevant code.
- gdb fs/jbd/jbd.ko
- (gdb) p log_wait_commit
- (gdb) l *(0x<address> + 0xa3)
-or
- (gdb) l *(log_wait_commit + 0xa3)
-
-
-Another very useful option of the Kernel Hacking section in menuconfig is
-Debug memory allocations. This will help you see whether data has been
-initialised and not set before use etc. To see the values that get assigned
-with this look at mm/slab.c and search for POISON_INUSE. When using this an
-Oops will often show the poisoned data instead of zero which is the default.
-
-Once you have worked out a fix please submit it upstream. After all open
-source is about sharing what you do and don't you want to be recognised for
-your genius?
-
-Please do read Documentation/SubmittingPatches though to help your code get
-accepted.
diff --git a/Documentation/CodingStyle b/Documentation/CodingStyle
index 9c61c03..320983c 100644
--- a/Documentation/CodingStyle
+++ b/Documentation/CodingStyle
@@ -1,1062 +1 @@
-.. _codingstyle:
-
-Linux kernel coding style
-=========================
-
-This is a short document describing the preferred coding style for the
-linux kernel. Coding style is very personal, and I won't **force** my
-views on anybody, but this is what goes for anything that I have to be
-able to maintain, and I'd prefer it for most other things too. Please
-at least consider the points made here.
-
-First off, I'd suggest printing out a copy of the GNU coding standards,
-and NOT read it. Burn them, it's a great symbolic gesture.
-
-Anyway, here goes:
-
-
-1) Indentation
---------------
-
-Tabs are 8 characters, and thus indentations are also 8 characters.
-There are heretic movements that try to make indentations 4 (or even 2!)
-characters deep, and that is akin to trying to define the value of PI to
-be 3.
-
-Rationale: The whole idea behind indentation is to clearly define where
-a block of control starts and ends. Especially when you've been looking
-at your screen for 20 straight hours, you'll find it a lot easier to see
-how the indentation works if you have large indentations.
-
-Now, some people will claim that having 8-character indentations makes
-the code move too far to the right, and makes it hard to read on a
-80-character terminal screen. The answer to that is that if you need
-more than 3 levels of indentation, you're screwed anyway, and should fix
-your program.
-
-In short, 8-char indents make things easier to read, and have the added
-benefit of warning you when you're nesting your functions too deep.
-Heed that warning.
-
-The preferred way to ease multiple indentation levels in a switch statement is
-to align the ``switch`` and its subordinate ``case`` labels in the same column
-instead of ``double-indenting`` the ``case`` labels. E.g.:
-
-.. code-block:: c
-
- switch (suffix) {
- case 'G':
- case 'g':
- mem <<= 30;
- break;
- case 'M':
- case 'm':
- mem <<= 20;
- break;
- case 'K':
- case 'k':
- mem <<= 10;
- /* fall through */
- default:
- break;
- }
-
-Don't put multiple statements on a single line unless you have
-something to hide:
-
-.. code-block:: c
-
- if (condition) do_this;
- do_something_everytime;
-
-Don't put multiple assignments on a single line either. Kernel coding style
-is super simple. Avoid tricky expressions.
-
-Outside of comments, documentation and except in Kconfig, spaces are never
-used for indentation, and the above example is deliberately broken.
-
-Get a decent editor and don't leave whitespace at the end of lines.
-
-
-2) Breaking long lines and strings
-----------------------------------
-
-Coding style is all about readability and maintainability using commonly
-available tools.
-
-The limit on the length of lines is 80 columns and this is a strongly
-preferred limit.
-
-Statements longer than 80 columns will be broken into sensible chunks, unless
-exceeding 80 columns significantly increases readability and does not hide
-information. Descendants are always substantially shorter than the parent and
-are placed substantially to the right. The same applies to function headers
-with a long argument list. However, never break user-visible strings such as
-printk messages, because that breaks the ability to grep for them.
-
-
-3) Placing Braces and Spaces
-----------------------------
-
-The other issue that always comes up in C styling is the placement of
-braces. Unlike the indent size, there are few technical reasons to
-choose one placement strategy over the other, but the preferred way, as
-shown to us by the prophets Kernighan and Ritchie, is to put the opening
-brace last on the line, and put the closing brace first, thusly:
-
-.. code-block:: c
-
- if (x is true) {
- we do y
- }
-
-This applies to all non-function statement blocks (if, switch, for,
-while, do). E.g.:
-
-.. code-block:: c
-
- switch (action) {
- case KOBJ_ADD:
- return "add";
- case KOBJ_REMOVE:
- return "remove";
- case KOBJ_CHANGE:
- return "change";
- default:
- return NULL;
- }
-
-However, there is one special case, namely functions: they have the
-opening brace at the beginning of the next line, thus:
-
-.. code-block:: c
-
- int function(int x)
- {
- body of function
- }
-
-Heretic people all over the world have claimed that this inconsistency
-is ... well ... inconsistent, but all right-thinking people know that
-(a) K&R are **right** and (b) K&R are right. Besides, functions are
-special anyway (you can't nest them in C).
-
-Note that the closing brace is empty on a line of its own, **except** in
-the cases where it is followed by a continuation of the same statement,
-ie a ``while`` in a do-statement or an ``else`` in an if-statement, like
-this:
-
-.. code-block:: c
-
- do {
- body of do-loop
- } while (condition);
-
-and
-
-.. code-block:: c
-
- if (x == y) {
- ..
- } else if (x > y) {
- ...
- } else {
- ....
- }
-
-Rationale: K&R.
-
-Also, note that this brace-placement also minimizes the number of empty
-(or almost empty) lines, without any loss of readability. Thus, as the
-supply of new-lines on your screen is not a renewable resource (think
-25-line terminal screens here), you have more empty lines to put
-comments on.
-
-Do not unnecessarily use braces where a single statement will do.
-
-.. code-block:: c
-
- if (condition)
- action();
-
-and
-
-.. code-block:: none
-
- if (condition)
- do_this();
- else
- do_that();
-
-This does not apply if only one branch of a conditional statement is a single
-statement; in the latter case use braces in both branches:
-
-.. code-block:: c
-
- if (condition) {
- do_this();
- do_that();
- } else {
- otherwise();
- }
-
-3.1) Spaces
-***********
-
-Linux kernel style for use of spaces depends (mostly) on
-function-versus-keyword usage. Use a space after (most) keywords. The
-notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
-somewhat like functions (and are usually used with parentheses in Linux,
-although they are not required in the language, as in: ``sizeof info`` after
-``struct fileinfo info;`` is declared).
-
-So use a space after these keywords::
-
- if, switch, case, for, do, while
-
-but not with sizeof, typeof, alignof, or __attribute__. E.g.,
-
-.. code-block:: c
-
-
- s = sizeof(struct file);
-
-Do not add spaces around (inside) parenthesized expressions. This example is
-**bad**:
-
-.. code-block:: c
-
-
- s = sizeof( struct file );
-
-When declaring pointer data or a function that returns a pointer type, the
-preferred use of ``*`` is adjacent to the data name or function name and not
-adjacent to the type name. Examples:
-
-.. code-block:: c
-
-
- char *linux_banner;
- unsigned long long memparse(char *ptr, char **retptr);
- char *match_strdup(substring_t *s);
-
-Use one space around (on each side of) most binary and ternary operators,
-such as any of these::
-
- = + - < > * / % | & ^ <= >= == != ? :
-
-but no space after unary operators::
-
- & * + - ~ ! sizeof typeof alignof __attribute__ defined
-
-no space before the postfix increment & decrement unary operators::
-
- ++ --
-
-no space after the prefix increment & decrement unary operators::
-
- ++ --
-
-and no space around the ``.`` and ``->`` structure member operators.
-
-Do not leave trailing whitespace at the ends of lines. Some editors with
-``smart`` indentation will insert whitespace at the beginning of new lines as
-appropriate, so you can start typing the next line of code right away.
-However, some such editors do not remove the whitespace if you end up not
-putting a line of code there, such as if you leave a blank line. As a result,
-you end up with lines containing trailing whitespace.
-
-Git will warn you about patches that introduce trailing whitespace, and can
-optionally strip the trailing whitespace for you; however, if applying a series
-of patches, this may make later patches in the series fail by changing their
-context lines.
-
-
-4) Naming
----------
-
-C is a Spartan language, and so should your naming be. Unlike Modula-2
-and Pascal programmers, C programmers do not use cute names like
-ThisVariableIsATemporaryCounter. A C programmer would call that
-variable ``tmp``, which is much easier to write, and not the least more
-difficult to understand.
-
-HOWEVER, while mixed-case names are frowned upon, descriptive names for
-global variables are a must. To call a global function ``foo`` is a
-shooting offense.
-
-GLOBAL variables (to be used only if you **really** need them) need to
-have descriptive names, as do global functions. If you have a function
-that counts the number of active users, you should call that
-``count_active_users()`` or similar, you should **not** call it ``cntusr()``.
-
-Encoding the type of a function into the name (so-called Hungarian
-notation) is brain damaged - the compiler knows the types anyway and can
-check those, and it only confuses the programmer. No wonder MicroSoft
-makes buggy programs.
-
-LOCAL variable names should be short, and to the point. If you have
-some random integer loop counter, it should probably be called ``i``.
-Calling it ``loop_counter`` is non-productive, if there is no chance of it
-being mis-understood. Similarly, ``tmp`` can be just about any type of
-variable that is used to hold a temporary value.
-
-If you are afraid to mix up your local variable names, you have another
-problem, which is called the function-growth-hormone-imbalance syndrome.
-See chapter 6 (Functions).
-
-
-5) Typedefs
------------
-
-Please don't use things like ``vps_t``.
-It's a **mistake** to use typedef for structures and pointers. When you see a
-
-.. code-block:: c
-
-
- vps_t a;
-
-in the source, what does it mean?
-In contrast, if it says
-
-.. code-block:: c
-
- struct virtual_container *a;
-
-you can actually tell what ``a`` is.
-
-Lots of people think that typedefs ``help readability``. Not so. They are
-useful only for:
-
- (a) totally opaque objects (where the typedef is actively used to **hide**
- what the object is).
-
- Example: ``pte_t`` etc. opaque objects that you can only access using
- the proper accessor functions.
-
- .. note::
-
- Opaqueness and ``accessor functions`` are not good in themselves.
- The reason we have them for things like pte_t etc. is that there
- really is absolutely **zero** portably accessible information there.
-
- (b) Clear integer types, where the abstraction **helps** avoid confusion
- whether it is ``int`` or ``long``.
-
- u8/u16/u32 are perfectly fine typedefs, although they fit into
- category (d) better than here.
-
- .. note::
-
- Again - there needs to be a **reason** for this. If something is
- ``unsigned long``, then there's no reason to do
-
- typedef unsigned long myflags_t;
-
- but if there is a clear reason for why it under certain circumstances
- might be an ``unsigned int`` and under other configurations might be
- ``unsigned long``, then by all means go ahead and use a typedef.
-
- (c) when you use sparse to literally create a **new** type for
- type-checking.
-
- (d) New types which are identical to standard C99 types, in certain
- exceptional circumstances.
-
- Although it would only take a short amount of time for the eyes and
- brain to become accustomed to the standard types like ``uint32_t``,
- some people object to their use anyway.
-
- Therefore, the Linux-specific ``u8/u16/u32/u64`` types and their
- signed equivalents which are identical to standard types are
- permitted -- although they are not mandatory in new code of your
- own.
-
- When editing existing code which already uses one or the other set
- of types, you should conform to the existing choices in that code.
-
- (e) Types safe for use in userspace.
-
- In certain structures which are visible to userspace, we cannot
- require C99 types and cannot use the ``u32`` form above. Thus, we
- use __u32 and similar types in all structures which are shared
- with userspace.
-
-Maybe there are other cases too, but the rule should basically be to NEVER
-EVER use a typedef unless you can clearly match one of those rules.
-
-In general, a pointer, or a struct that has elements that can reasonably
-be directly accessed should **never** be a typedef.
-
-
-6) Functions
-------------
-
-Functions should be short and sweet, and do just one thing. They should
-fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24,
-as we all know), and do one thing and do that well.
-
-The maximum length of a function is inversely proportional to the
-complexity and indentation level of that function. So, if you have a
-conceptually simple function that is just one long (but simple)
-case-statement, where you have to do lots of small things for a lot of
-different cases, it's OK to have a longer function.
-
-However, if you have a complex function, and you suspect that a
-less-than-gifted first-year high-school student might not even
-understand what the function is all about, you should adhere to the
-maximum limits all the more closely. Use helper functions with
-descriptive names (you can ask the compiler to in-line them if you think
-it's performance-critical, and it will probably do a better job of it
-than you would have done).
-
-Another measure of the function is the number of local variables. They
-shouldn't exceed 5-10, or you're doing something wrong. Re-think the
-function, and split it into smaller pieces. A human brain can
-generally easily keep track of about 7 different things, anything more
-and it gets confused. You know you're brilliant, but maybe you'd like
-to understand what you did 2 weeks from now.
-
-In source files, separate functions with one blank line. If the function is
-exported, the **EXPORT** macro for it should follow immediately after the
-closing function brace line. E.g.:
-
-.. code-block:: c
-
- int system_is_up(void)
- {
- return system_state == SYSTEM_RUNNING;
- }
- EXPORT_SYMBOL(system_is_up);
-
-In function prototypes, include parameter names with their data types.
-Although this is not required by the C language, it is preferred in Linux
-because it is a simple way to add valuable information for the reader.
-
-
-7) Centralized exiting of functions
------------------------------------
-
-Albeit deprecated by some people, the equivalent of the goto statement is
-used frequently by compilers in form of the unconditional jump instruction.
-
-The goto statement comes in handy when a function exits from multiple
-locations and some common work such as cleanup has to be done. If there is no
-cleanup needed then just return directly.
-
-Choose label names which say what the goto does or why the goto exists. An
-example of a good name could be ``out_free_buffer:`` if the goto frees ``buffer``.
-Avoid using GW-BASIC names like ``err1:`` and ``err2:``, as you would have to
-renumber them if you ever add or remove exit paths, and they make correctness
-difficult to verify anyway.
-
-The rationale for using gotos is:
-
-- unconditional statements are easier to understand and follow
-- nesting is reduced
-- errors by not updating individual exit points when making
- modifications are prevented
-- saves the compiler work to optimize redundant code away ;)
-
-.. code-block:: c
-
- int fun(int a)
- {
- int result = 0;
- char *buffer;
-
- buffer = kmalloc(SIZE, GFP_KERNEL);
- if (!buffer)
- return -ENOMEM;
-
- if (condition1) {
- while (loop1) {
- ...
- }
- result = 1;
- goto out_buffer;
- }
- ...
- out_free_buffer:
- kfree(buffer);
- return result;
- }
-
-A common type of bug to be aware of is ``one err bugs`` which look like this:
-
-.. code-block:: c
-
- err:
- kfree(foo->bar);
- kfree(foo);
- return ret;
-
-The bug in this code is that on some exit paths ``foo`` is NULL. Normally the
-fix for this is to split it up into two error labels ``err_free_bar:`` and
-``err_free_foo:``:
-
-.. code-block:: c
-
- err_free_bar:
- kfree(foo->bar);
- err_free_foo:
- kfree(foo);
- return ret;
-
-Ideally you should simulate errors to test all exit paths.
-
-
-8) Commenting
--------------
-
-Comments are good, but there is also a danger of over-commenting. NEVER
-try to explain HOW your code works in a comment: it's much better to
-write the code so that the **working** is obvious, and it's a waste of
-time to explain badly written code.
-
-Generally, you want your comments to tell WHAT your code does, not HOW.
-Also, try to avoid putting comments inside a function body: if the
-function is so complex that you need to separately comment parts of it,
-you should probably go back to chapter 6 for a while. You can make
-small comments to note or warn about something particularly clever (or
-ugly), but try to avoid excess. Instead, put the comments at the head
-of the function, telling people what it does, and possibly WHY it does
-it.
-
-When commenting the kernel API functions, please use the kernel-doc format.
-See the files Documentation/kernel-documentation.rst and scripts/kernel-doc
-for details.
-
-The preferred style for long (multi-line) comments is:
-
-.. code-block:: c
-
- /*
- * This is the preferred style for multi-line
- * comments in the Linux kernel source code.
- * Please use it consistently.
- *
- * Description: A column of asterisks on the left side,
- * with beginning and ending almost-blank lines.
- */
-
-For files in net/ and drivers/net/ the preferred style for long (multi-line)
-comments is a little different.
-
-.. code-block:: c
-
- /* The preferred comment style for files in net/ and drivers/net
- * looks like this.
- *
- * It is nearly the same as the generally preferred comment style,
- * but there is no initial almost-blank line.
- */
-
-It's also important to comment data, whether they are basic types or derived
-types. To this end, use just one data declaration per line (no commas for
-multiple data declarations). This leaves you room for a small comment on each
-item, explaining its use.
-
-
-9) You've made a mess of it
----------------------------
-
-That's OK, we all do. You've probably been told by your long-time Unix
-user helper that ``GNU emacs`` automatically formats the C sources for
-you, and you've noticed that yes, it does do that, but the defaults it
-uses are less than desirable (in fact, they are worse than random
-typing - an infinite number of monkeys typing into GNU emacs would never
-make a good program).
-
-So, you can either get rid of GNU emacs, or change it to use saner
-values. To do the latter, you can stick the following in your .emacs file:
-
-.. code-block:: none
-
- (defun c-lineup-arglist-tabs-only (ignored)
- "Line up argument lists by tabs, not spaces"
- (let* ((anchor (c-langelem-pos c-syntactic-element))
- (column (c-langelem-2nd-pos c-syntactic-element))
- (offset (- (1+ column) anchor))
- (steps (floor offset c-basic-offset)))
- (* (max steps 1)
- c-basic-offset)))
-
- (add-hook 'c-mode-common-hook
- (lambda ()
- ;; Add kernel style
- (c-add-style
- "linux-tabs-only"
- '("linux" (c-offsets-alist
- (arglist-cont-nonempty
- c-lineup-gcc-asm-reg
- c-lineup-arglist-tabs-only))))))
-
- (add-hook 'c-mode-hook
- (lambda ()
- (let ((filename (buffer-file-name)))
- ;; Enable kernel mode for the appropriate files
- (when (and filename
- (string-match (expand-file-name "~/src/linux-trees")
- filename))
- (setq indent-tabs-mode t)
- (setq show-trailing-whitespace t)
- (c-set-style "linux-tabs-only")))))
-
-This will make emacs go better with the kernel coding style for C
-files below ``~/src/linux-trees``.
-
-But even if you fail in getting emacs to do sane formatting, not
-everything is lost: use ``indent``.
-
-Now, again, GNU indent has the same brain-dead settings that GNU emacs
-has, which is why you need to give it a few command line options.
-However, that's not too bad, because even the makers of GNU indent
-recognize the authority of K&R (the GNU people aren't evil, they are
-just severely misguided in this matter), so you just give indent the
-options ``-kr -i8`` (stands for ``K&R, 8 character indents``), or use
-``scripts/Lindent``, which indents in the latest style.
-
-``indent`` has a lot of options, and especially when it comes to comment
-re-formatting you may want to take a look at the man page. But
-remember: ``indent`` is not a fix for bad programming.
-
-
-10) Kconfig configuration files
--------------------------------
-
-For all of the Kconfig* configuration files throughout the source tree,
-the indentation is somewhat different. Lines under a ``config`` definition
-are indented with one tab, while help text is indented an additional two
-spaces. Example::
-
- config AUDIT
- bool "Auditing support"
- depends on NET
- help
- Enable auditing infrastructure that can be used with another
- kernel subsystem, such as SELinux (which requires this for
- logging of avc messages output). Does not do system-call
- auditing without CONFIG_AUDITSYSCALL.
-
-Seriously dangerous features (such as write support for certain
-filesystems) should advertise this prominently in their prompt string::
-
- config ADFS_FS_RW
- bool "ADFS write support (DANGEROUS)"
- depends on ADFS_FS
- ...
-
-For full documentation on the configuration files, see the file
-Documentation/kbuild/kconfig-language.txt.
-
-
-11) Data structures
--------------------
-
-Data structures that have visibility outside the single-threaded
-environment they are created and destroyed in should always have
-reference counts. In the kernel, garbage collection doesn't exist (and
-outside the kernel garbage collection is slow and inefficient), which
-means that you absolutely **have** to reference count all your uses.
-
-Reference counting means that you can avoid locking, and allows multiple
-users to have access to the data structure in parallel - and not having
-to worry about the structure suddenly going away from under them just
-because they slept or did something else for a while.
-
-Note that locking is **not** a replacement for reference counting.
-Locking is used to keep data structures coherent, while reference
-counting is a memory management technique. Usually both are needed, and
-they are not to be confused with each other.
-
-Many data structures can indeed have two levels of reference counting,
-when there are users of different ``classes``. The subclass count counts
-the number of subclass users, and decrements the global count just once
-when the subclass count goes to zero.
-
-Examples of this kind of ``multi-level-reference-counting`` can be found in
-memory management (``struct mm_struct``: mm_users and mm_count), and in
-filesystem code (``struct super_block``: s_count and s_active).
-
-Remember: if another thread can find your data structure, and you don't
-have a reference count on it, you almost certainly have a bug.
-
-
-12) Macros, Enums and RTL
--------------------------
-
-Names of macros defining constants and labels in enums are capitalized.
-
-.. code-block:: c
-
- #define CONSTANT 0x12345
-
-Enums are preferred when defining several related constants.
-
-CAPITALIZED macro names are appreciated but macros resembling functions
-may be named in lower case.
-
-Generally, inline functions are preferable to macros resembling functions.
-
-Macros with multiple statements should be enclosed in a do - while block:
-
-.. code-block:: c
-
- #define macrofun(a, b, c) \
- do { \
- if (a == 5) \
- do_this(b, c); \
- } while (0)
-
-Things to avoid when using macros:
-
-1) macros that affect control flow:
-
-.. code-block:: c
-
- #define FOO(x) \
- do { \
- if (blah(x) < 0) \
- return -EBUGGERED; \
- } while (0)
-
-is a **very** bad idea. It looks like a function call but exits the ``calling``
-function; don't break the internal parsers of those who will read the code.
-
-2) macros that depend on having a local variable with a magic name:
-
-.. code-block:: c
-
- #define FOO(val) bar(index, val)
-
-might look like a good thing, but it's confusing as hell when one reads the
-code and it's prone to breakage from seemingly innocent changes.
-
-3) macros with arguments that are used as l-values: FOO(x) = y; will
-bite you if somebody e.g. turns FOO into an inline function.
-
-4) forgetting about precedence: macros defining constants using expressions
-must enclose the expression in parentheses. Beware of similar issues with
-macros using parameters.
-
-.. code-block:: c
-
- #define CONSTANT 0x4000
- #define CONSTEXP (CONSTANT | 3)
-
-5) namespace collisions when defining local variables in macros resembling
-functions:
-
-.. code-block:: c
-
- #define FOO(x) \
- ({ \
- typeof(x) ret; \
- ret = calc_ret(x); \
- (ret); \
- })
-
-ret is a common name for a local variable - __foo_ret is less likely
-to collide with an existing variable.
-
-The cpp manual deals with macros exhaustively. The gcc internals manual also
-covers RTL which is used frequently with assembly language in the kernel.
-
-
-13) Printing kernel messages
-----------------------------
-
-Kernel developers like to be seen as literate. Do mind the spelling
-of kernel messages to make a good impression. Do not use crippled
-words like ``dont``; use ``do not`` or ``don't`` instead. Make the messages
-concise, clear, and unambiguous.
-
-Kernel messages do not have to be terminated with a period.
-
-Printing numbers in parentheses (%d) adds no value and should be avoided.
-
-There are a number of driver model diagnostic macros in <linux/device.h>
-which you should use to make sure messages are matched to the right device
-and driver, and are tagged with the right level: dev_err(), dev_warn(),
-dev_info(), and so forth. For messages that aren't associated with a
-particular device, <linux/printk.h> defines pr_notice(), pr_info(),
-pr_warn(), pr_err(), etc.
-
-Coming up with good debugging messages can be quite a challenge; and once
-you have them, they can be a huge help for remote troubleshooting. However
-debug message printing is handled differently than printing other non-debug
-messages. While the other pr_XXX() functions print unconditionally,
-pr_debug() does not; it is compiled out by default, unless either DEBUG is
-defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also,
-and a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to
-the ones already enabled by DEBUG.
-
-Many subsystems have Kconfig debug options to turn on -DDEBUG in the
-corresponding Makefile; in other cases specific files #define DEBUG. And
-when a debug message should be unconditionally printed, such as if it is
-already inside a debug-related #ifdef section, printk(KERN_DEBUG ...) can be
-used.
-
-
-14) Allocating memory
----------------------
-
-The kernel provides the following general purpose memory allocators:
-kmalloc(), kzalloc(), kmalloc_array(), kcalloc(), vmalloc(), and
-vzalloc(). Please refer to the API documentation for further information
-about them.
-
-The preferred form for passing a size of a struct is the following:
-
-.. code-block:: c
-
- p = kmalloc(sizeof(*p), ...);
-
-The alternative form where struct name is spelled out hurts readability and
-introduces an opportunity for a bug when the pointer variable type is changed
-but the corresponding sizeof that is passed to a memory allocator is not.
-
-Casting the return value which is a void pointer is redundant. The conversion
-from void pointer to any other pointer type is guaranteed by the C programming
-language.
-
-The preferred form for allocating an array is the following:
-
-.. code-block:: c
-
- p = kmalloc_array(n, sizeof(...), ...);
-
-The preferred form for allocating a zeroed array is the following:
-
-.. code-block:: c
-
- p = kcalloc(n, sizeof(...), ...);
-
-Both forms check for overflow on the allocation size n * sizeof(...),
-and return NULL if that occurred.
-
-
-15) The inline disease
-----------------------
-
-There appears to be a common misperception that gcc has a magic "make me
-faster" speedup option called ``inline``. While the use of inlines can be
-appropriate (for example as a means of replacing macros, see Chapter 12), it
-very often is not. Abundant use of the inline keyword leads to a much bigger
-kernel, which in turn slows the system as a whole down, due to a bigger
-icache footprint for the CPU and simply because there is less memory
-available for the pagecache. Just think about it; a pagecache miss causes a
-disk seek, which easily takes 5 milliseconds. There are a LOT of cpu cycles
-that can go into these 5 milliseconds.
-
-A reasonable rule of thumb is to not put inline at functions that have more
-than 3 lines of code in them. An exception to this rule are the cases where
-a parameter is known to be a compiletime constant, and as a result of this
-constantness you *know* the compiler will be able to optimize most of your
-function away at compile time. For a good example of this later case, see
-the kmalloc() inline function.
-
-Often people argue that adding inline to functions that are static and used
-only once is always a win since there is no space tradeoff. While this is
-technically correct, gcc is capable of inlining these automatically without
-help, and the maintenance issue of removing the inline when a second user
-appears outweighs the potential value of the hint that tells gcc to do
-something it would have done anyway.
-
-
-16) Function return values and names
-------------------------------------
-
-Functions can return values of many different kinds, and one of the
-most common is a value indicating whether the function succeeded or
-failed. Such a value can be represented as an error-code integer
-(-Exxx = failure, 0 = success) or a ``succeeded`` boolean (0 = failure,
-non-zero = success).
-
-Mixing up these two sorts of representations is a fertile source of
-difficult-to-find bugs. If the C language included a strong distinction
-between integers and booleans then the compiler would find these mistakes
-for us... but it doesn't. To help prevent such bugs, always follow this
-convention::
-
- If the name of a function is an action or an imperative command,
- the function should return an error-code integer. If the name
- is a predicate, the function should return a "succeeded" boolean.
-
-For example, ``add work`` is a command, and the add_work() function returns 0
-for success or -EBUSY for failure. In the same way, ``PCI device present`` is
-a predicate, and the pci_dev_present() function returns 1 if it succeeds in
-finding a matching device or 0 if it doesn't.
-
-All EXPORTed functions must respect this convention, and so should all
-public functions. Private (static) functions need not, but it is
-recommended that they do.
-
-Functions whose return value is the actual result of a computation, rather
-than an indication of whether the computation succeeded, are not subject to
-this rule. Generally they indicate failure by returning some out-of-range
-result. Typical examples would be functions that return pointers; they use
-NULL or the ERR_PTR mechanism to report failure.
-
-
-17) Don't re-invent the kernel macros
--------------------------------------
-
-The header file include/linux/kernel.h contains a number of macros that
-you should use, rather than explicitly coding some variant of them yourself.
-For example, if you need to calculate the length of an array, take advantage
-of the macro
-
-.. code-block:: c
-
- #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
-
-Similarly, if you need to calculate the size of some structure member, use
-
-.. code-block:: c
-
- #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
-
-There are also min() and max() macros that do strict type checking if you
-need them. Feel free to peruse that header file to see what else is already
-defined that you shouldn't reproduce in your code.
-
-
-18) Editor modelines and other cruft
-------------------------------------
-
-Some editors can interpret configuration information embedded in source files,
-indicated with special markers. For example, emacs interprets lines marked
-like this:
-
-.. code-block:: c
-
- -*- mode: c -*-
-
-Or like this:
-
-.. code-block:: c
-
- /*
- Local Variables:
- compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
- End:
- */
-
-Vim interprets markers that look like this:
-
-.. code-block:: c
-
- /* vim:set sw=8 noet */
-
-Do not include any of these in source files. People have their own personal
-editor configurations, and your source files should not override them. This
-includes markers for indentation and mode configuration. People may use their
-own custom mode, or may have some other magic method for making indentation
-work correctly.
-
-
-19) Inline assembly
--------------------
-
-In architecture-specific code, you may need to use inline assembly to interface
-with CPU or platform functionality. Don't hesitate to do so when necessary.
-However, don't use inline assembly gratuitously when C can do the job. You can
-and should poke hardware from C when possible.
-
-Consider writing simple helper functions that wrap common bits of inline
-assembly, rather than repeatedly writing them with slight variations. Remember
-that inline assembly can use C parameters.
-
-Large, non-trivial assembly functions should go in .S files, with corresponding
-C prototypes defined in C header files. The C prototypes for assembly
-functions should use ``asmlinkage``.
-
-You may need to mark your asm statement as volatile, to prevent GCC from
-removing it if GCC doesn't notice any side effects. You don't always need to
-do so, though, and doing so unnecessarily can limit optimization.
-
-When writing a single inline assembly statement containing multiple
-instructions, put each instruction on a separate line in a separate quoted
-string, and end each string except the last with \n\t to properly indent the
-next instruction in the assembly output:
-
-.. code-block:: c
-
- asm ("magic %reg1, #42\n\t"
- "more_magic %reg2, %reg3"
- : /* outputs */ : /* inputs */ : /* clobbers */);
-
-
-20) Conditional Compilation
----------------------------
-
-Wherever possible, don't use preprocessor conditionals (#if, #ifdef) in .c
-files; doing so makes code harder to read and logic harder to follow. Instead,
-use such conditionals in a header file defining functions for use in those .c
-files, providing no-op stub versions in the #else case, and then call those
-functions unconditionally from .c files. The compiler will avoid generating
-any code for the stub calls, producing identical results, but the logic will
-remain easy to follow.
-
-Prefer to compile out entire functions, rather than portions of functions or
-portions of expressions. Rather than putting an ifdef in an expression, factor
-out part or all of the expression into a separate helper function and apply the
-conditional to that function.
-
-If you have a function or variable which may potentially go unused in a
-particular configuration, and the compiler would warn about its definition
-going unused, mark the definition as __maybe_unused rather than wrapping it in
-a preprocessor conditional. (However, if a function or variable *always* goes
-unused, delete it.)
-
-Within code, where possible, use the IS_ENABLED macro to convert a Kconfig
-symbol into a C boolean expression, and use it in a normal C conditional:
-
-.. code-block:: c
-
- if (IS_ENABLED(CONFIG_SOMETHING)) {
- ...
- }
-
-The compiler will constant-fold the conditional away, and include or exclude
-the block of code just as with an #ifdef, so this will not add any runtime
-overhead. However, this approach still allows the C compiler to see the code
-inside the block, and check it for correctness (syntax, types, symbol
-references, etc). Thus, you still have to use an #ifdef if the code inside the
-block references symbols that will not exist if the condition is not met.
-
-At the end of any non-trivial #if or #ifdef block (more than a few lines),
-place a comment after the #endif on the same line, noting the conditional
-expression used. For instance:
-
-.. code-block:: c
-
- #ifdef CONFIG_SOMETHING
- ...
- #endif /* CONFIG_SOMETHING */
-
-
-Appendix I) References
-----------------------
-
-The C Programming Language, Second Edition
-by Brian W. Kernighan and Dennis M. Ritchie.
-Prentice Hall, Inc., 1988.
-ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).
-
-The Practice of Programming
-by Brian W. Kernighan and Rob Pike.
-Addison-Wesley, Inc., 1999.
-ISBN 0-201-61586-X.
-
-GNU manuals - where in compliance with K&R and this text - for cpp, gcc,
-gcc internals and indent, all available from http://www.gnu.org/manual/
-
-WG14 is the international standardization working group for the programming
-language C, URL: http://www.open-std.org/JTC1/SC22/WG14/
-
-Kernel CodingStyle, by greg@kroah.com at OLS 2002:
-http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
+This file has moved to process/coding-style.rst
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index 72f78ae..c8bd257 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -9,7 +9,7 @@
DOCBOOKS := z8530book.xml \
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
writing_usb_driver.xml networking.xml \
- kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
+ kernel-api.xml filesystems.xml lsm.xml kgdb.xml \
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
80211.xml debugobjects.xml sh.xml regulator.xml \
@@ -263,6 +263,7 @@ clean-files := $(DOCBOOKS) \
$(patsubst %.xml, %.aux.xml, $(DOCBOOKS)) \
$(patsubst %.xml, %.xml.db, $(DOCBOOKS)) \
$(patsubst %.xml, %.xml, $(DOCBOOKS)) \
+ $(patsubst %.xml, .%.xml.cmd, $(DOCBOOKS)) \
$(index)
clean-dirs := $(patsubst %.xml,%,$(DOCBOOKS)) man
diff --git a/Documentation/DocBook/kernel-hacking.tmpl b/Documentation/DocBook/kernel-hacking.tmpl
index 2a27227..da5c087 100644
--- a/Documentation/DocBook/kernel-hacking.tmpl
+++ b/Documentation/DocBook/kernel-hacking.tmpl
@@ -1208,8 +1208,8 @@ static struct block_device_operations opt_fops = {
<listitem>
<para>
- Finally, don't forget to read <filename>Documentation/SubmittingPatches</filename>
- and possibly <filename>Documentation/SubmittingDrivers</filename>.
+ Finally, don't forget to read <filename>Documentation/process/submitting-patches.rst</filename>
+ and possibly <filename>Documentation/process/submitting-drivers.rst</filename>.
</para>
</listitem>
</itemizedlist>
diff --git a/Documentation/DocBook/uio-howto.tmpl b/Documentation/DocBook/uio-howto.tmpl
index cd0e452..5210f8a 100644
--- a/Documentation/DocBook/uio-howto.tmpl
+++ b/Documentation/DocBook/uio-howto.tmpl
@@ -46,6 +46,13 @@ GPL version 2.
<revhistory>
<revision>
+ <revnumber>0.10</revnumber>
+ <date>2016-10-17</date>
+ <authorinitials>sch</authorinitials>
+ <revremark>Added generic hyperv driver
+ </revremark>
+ </revision>
+ <revision>
<revnumber>0.9</revnumber>
<date>2009-07-16</date>
<authorinitials>mst</authorinitials>
@@ -1033,6 +1040,61 @@ int main()
</chapter>
+<chapter id="uio_hv_generic" xreflabel="Using Generic driver for Hyper-V VMBUS">
+<?dbhtml filename="uio_hv_generic.html"?>
+<title>Generic Hyper-V UIO driver</title>
+ <para>
+ The generic driver is a kernel module named uio_hv_generic.
+ It supports devices on the Hyper-V VMBus similar to uio_pci_generic
+ on PCI bus.
+ </para>
+
+<sect1 id="uio_hv_generic_binding">
+<title>Making the driver recognize the device</title>
+ <para>
+Since the driver does not declare any device GUID's, it will not get loaded
+automatically and will not automatically bind to any devices, you must load it
+and allocate id to the driver yourself. For example, to use the network device
+GUID:
+ <programlisting>
+ modprobe uio_hv_generic
+ echo &quot;f8615163-df3e-46c5-913f-f2d2f965ed0e&quot; &gt; /sys/bus/vmbus/drivers/uio_hv_generic/new_id
+ </programlisting>
+ </para>
+ <para>
+If there already is a hardware specific kernel driver for the device, the
+generic driver still won't bind to it, in this case if you want to use the
+generic driver (why would you?) you'll have to manually unbind the hardware
+specific driver and bind the generic driver, like this:
+ <programlisting>
+ echo -n vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3 &gt; /sys/bus/vmbus/drivers/hv_netvsc/unbind
+ echo -n vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3 &gt; /sys/bus/vmbus/drivers/uio_hv_generic/bind
+ </programlisting>
+ </para>
+ <para>
+You can verify that the device has been bound to the driver
+by looking for it in sysfs, for example like the following:
+ <programlisting>
+ ls -l /sys/bus/vmbus/devices/vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3/driver
+ </programlisting>
+Which if successful should print
+ <programlisting>
+ .../vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3/driver -&gt; ../../../bus/vmbus/drivers/uio_hv_generic
+ </programlisting>
+ </para>
+</sect1>
+
+<sect1 id="uio_hv_generic_internals">
+<title>Things to know about uio_hv_generic</title>
+ <para>
+On each interrupt, uio_hv_generic sets the Interrupt Disable bit.
+This prevents the device from generating further interrupts
+until the bit is cleared. The userspace driver should clear this
+bit before blocking and waiting for more interrupts.
+ </para>
+</sect1>
+</chapter>
+
<appendix id="app1">
<title>Further information</title>
<itemizedlist>
diff --git a/Documentation/DocBook/usb.tmpl b/Documentation/DocBook/usb.tmpl
deleted file mode 100644
index bc776be0..0000000
--- a/Documentation/DocBook/usb.tmpl
+++ /dev/null
@@ -1,992 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
- "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
-
-<book id="Linux-USB-API">
- <bookinfo>
- <title>The Linux-USB Host Side API</title>
-
- <legalnotice>
- <para>
- This documentation is free software; you can redistribute
- it and/or modify it under the terms of the GNU General Public
- License as published by the Free Software Foundation; either
- version 2 of the License, or (at your option) any later
- version.
- </para>
-
- <para>
- This program is distributed in the hope that it will be
- useful, but WITHOUT ANY WARRANTY; without even the implied
- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- See the GNU General Public License for more details.
- </para>
-
- <para>
- You should have received a copy of the GNU General Public
- License along with this program; if not, write to the Free
- Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- MA 02111-1307 USA
- </para>
-
- <para>
- For more details see the file COPYING in the source
- distribution of Linux.
- </para>
- </legalnotice>
- </bookinfo>
-
-<toc></toc>
-
-<chapter id="intro">
- <title>Introduction to USB on Linux</title>
-
- <para>A Universal Serial Bus (USB) is used to connect a host,
- such as a PC or workstation, to a number of peripheral
- devices. USB uses a tree structure, with the host as the
- root (the system's master), hubs as interior nodes, and
- peripherals as leaves (and slaves).
- Modern PCs support several such trees of USB devices, usually
- one USB 2.0 tree (480 Mbit/sec each) with
- a few USB 1.1 trees (12 Mbit/sec each) that are used when you
- connect a USB 1.1 device directly to the machine's "root hub".
- </para>
-
- <para>That master/slave asymmetry was designed-in for a number of
- reasons, one being ease of use. It is not physically possible to
- assemble (legal) USB cables incorrectly: all upstream "to the host"
- connectors are the rectangular type (matching the sockets on
- root hubs), and all downstream connectors are the squarish type
- (or they are built into the peripheral).
- Also, the host software doesn't need to deal with distributed
- auto-configuration since the pre-designated master node manages all that.
- And finally, at the electrical level, bus protocol overhead is reduced by
- eliminating arbitration and moving scheduling into the host software.
- </para>
-
- <para>USB 1.0 was announced in January 1996 and was revised
- as USB 1.1 (with improvements in hub specification and
- support for interrupt-out transfers) in September 1998.
- USB 2.0 was released in April 2000, adding high-speed
- transfers and transaction-translating hubs (used for USB 1.1
- and 1.0 backward compatibility).
- </para>
-
- <para>Kernel developers added USB support to Linux early in the 2.2 kernel
- series, shortly before 2.3 development forked. Updates from 2.3 were
- regularly folded back into 2.2 releases, which improved reliability and
- brought <filename>/sbin/hotplug</filename> support as well more drivers.
- Such improvements were continued in the 2.5 kernel series, where they added
- USB 2.0 support, improved performance, and made the host controller drivers
- (HCDs) more consistent. They also simplified the API (to make bugs less
- likely) and added internal "kerneldoc" documentation.
- </para>
-
- <para>Linux can run inside USB devices as well as on
- the hosts that control the devices.
- But USB device drivers running inside those peripherals
- don't do the same things as the ones running inside hosts,
- so they've been given a different name:
- <emphasis>gadget drivers</emphasis>.
- This document does not cover gadget drivers.
- </para>
-
- </chapter>
-
-<chapter id="host">
- <title>USB Host-Side API Model</title>
-
- <para>Host-side drivers for USB devices talk to the "usbcore" APIs.
- There are two. One is intended for
- <emphasis>general-purpose</emphasis> drivers (exposed through
- driver frameworks), and the other is for drivers that are
- <emphasis>part of the core</emphasis>.
- Such core drivers include the <emphasis>hub</emphasis> driver
- (which manages trees of USB devices) and several different kinds
- of <emphasis>host controller drivers</emphasis>,
- which control individual busses.
- </para>
-
- <para>The device model seen by USB drivers is relatively complex.
- </para>
-
- <itemizedlist>
-
- <listitem><para>USB supports four kinds of data transfers
- (control, bulk, interrupt, and isochronous). Two of them (control
- and bulk) use bandwidth as it's available,
- while the other two (interrupt and isochronous)
- are scheduled to provide guaranteed bandwidth.
- </para></listitem>
-
- <listitem><para>The device description model includes one or more
- "configurations" per device, only one of which is active at a time.
- Devices that are capable of high-speed operation must also support
- full-speed configurations, along with a way to ask about the
- "other speed" configurations which might be used.
- </para></listitem>
-
- <listitem><para>Configurations have one or more "interfaces", each
- of which may have "alternate settings". Interfaces may be
- standardized by USB "Class" specifications, or may be specific to
- a vendor or device.</para>
-
- <para>USB device drivers actually bind to interfaces, not devices.
- Think of them as "interface drivers", though you
- may not see many devices where the distinction is important.
- <emphasis>Most USB devices are simple, with only one configuration,
- one interface, and one alternate setting.</emphasis>
- </para></listitem>
-
- <listitem><para>Interfaces have one or more "endpoints", each of
- which supports one type and direction of data transfer such as
- "bulk out" or "interrupt in". The entire configuration may have
- up to sixteen endpoints in each direction, allocated as needed
- among all the interfaces.
- </para></listitem>
-
- <listitem><para>Data transfer on USB is packetized; each endpoint
- has a maximum packet size.
- Drivers must often be aware of conventions such as flagging the end
- of bulk transfers using "short" (including zero length) packets.
- </para></listitem>
-
- <listitem><para>The Linux USB API supports synchronous calls for
- control and bulk messages.
- It also supports asynchronous calls for all kinds of data transfer,
- using request structures called "URBs" (USB Request Blocks).
- </para></listitem>
-
- </itemizedlist>
-
- <para>Accordingly, the USB Core API exposed to device drivers
- covers quite a lot of territory. You'll probably need to consult
- the USB 2.0 specification, available online from www.usb.org at
- no cost, as well as class or device specifications.
- </para>
-
- <para>The only host-side drivers that actually touch hardware
- (reading/writing registers, handling IRQs, and so on) are the HCDs.
- In theory, all HCDs provide the same functionality through the same
- API. In practice, that's becoming more true on the 2.5 kernels,
- but there are still differences that crop up especially with
- fault handling. Different controllers don't necessarily report
- the same aspects of failures, and recovery from faults (including
- software-induced ones like unlinking an URB) isn't yet fully
- consistent.
- Device driver authors should make a point of doing disconnect
- testing (while the device is active) with each different host
- controller driver, to make sure drivers don't have bugs of
- their own as well as to make sure they aren't relying on some
- HCD-specific behavior.
- (You will need external USB 1.1 and/or
- USB 2.0 hubs to perform all those tests.)
- </para>
-
- </chapter>
-
-<chapter id="types"><title>USB-Standard Types</title>
-
- <para>In <filename>&lt;linux/usb/ch9.h&gt;</filename> you will find
- the USB data types defined in chapter 9 of the USB specification.
- These data types are used throughout USB, and in APIs including
- this host side API, gadget APIs, and usbfs.
- </para>
-
-!Iinclude/linux/usb/ch9.h
-
- </chapter>
-
-<chapter id="hostside"><title>Host-Side Data Types and Macros</title>
-
- <para>The host side API exposes several layers to drivers, some of
- which are more necessary than others.
- These support lifecycle models for host side drivers
- and devices, and support passing buffers through usbcore to
- some HCD that performs the I/O for the device driver.
- </para>
-
-
-!Iinclude/linux/usb.h
-
- </chapter>
-
- <chapter id="usbcore"><title>USB Core APIs</title>
-
- <para>There are two basic I/O models in the USB API.
- The most elemental one is asynchronous: drivers submit requests
- in the form of an URB, and the URB's completion callback
- handle the next step.
- All USB transfer types support that model, although there
- are special cases for control URBs (which always have setup
- and status stages, but may not have a data stage) and
- isochronous URBs (which allow large packets and include
- per-packet fault reports).
- Built on top of that is synchronous API support, where a
- driver calls a routine that allocates one or more URBs,
- submits them, and waits until they complete.
- There are synchronous wrappers for single-buffer control
- and bulk transfers (which are awkward to use in some
- driver disconnect scenarios), and for scatterlist based
- streaming i/o (bulk or interrupt).
- </para>
-
- <para>USB drivers need to provide buffers that can be
- used for DMA, although they don't necessarily need to
- provide the DMA mapping themselves.
- There are APIs to use used when allocating DMA buffers,
- which can prevent use of bounce buffers on some systems.
- In some cases, drivers may be able to rely on 64bit DMA
- to eliminate another kind of bounce buffer.
- </para>
-
-!Edrivers/usb/core/urb.c
-!Edrivers/usb/core/message.c
-!Edrivers/usb/core/file.c
-!Edrivers/usb/core/driver.c
-!Edrivers/usb/core/usb.c
-!Edrivers/usb/core/hub.c
- </chapter>
-
- <chapter id="hcd"><title>Host Controller APIs</title>
-
- <para>These APIs are only for use by host controller drivers,
- most of which implement standard register interfaces such as
- EHCI, OHCI, or UHCI.
- UHCI was one of the first interfaces, designed by Intel and
- also used by VIA; it doesn't do much in hardware.
- OHCI was designed later, to have the hardware do more work
- (bigger transfers, tracking protocol state, and so on).
- EHCI was designed with USB 2.0; its design has features that
- resemble OHCI (hardware does much more work) as well as
- UHCI (some parts of ISO support, TD list processing).
- </para>
-
- <para>There are host controllers other than the "big three",
- although most PCI based controllers (and a few non-PCI based
- ones) use one of those interfaces.
- Not all host controllers use DMA; some use PIO, and there
- is also a simulator.
- </para>
-
- <para>The same basic APIs are available to drivers for all
- those controllers.
- For historical reasons they are in two layers:
- <structname>struct usb_bus</structname> is a rather thin
- layer that became available in the 2.2 kernels, while
- <structname>struct usb_hcd</structname> is a more featureful
- layer (available in later 2.4 kernels and in 2.5) that
- lets HCDs share common code, to shrink driver size
- and significantly reduce hcd-specific behaviors.
- </para>
-
-!Edrivers/usb/core/hcd.c
-!Edrivers/usb/core/hcd-pci.c
-!Idrivers/usb/core/buffer.c
- </chapter>
-
- <chapter id="usbfs">
- <title>The USB Filesystem (usbfs)</title>
-
- <para>This chapter presents the Linux <emphasis>usbfs</emphasis>.
- You may prefer to avoid writing new kernel code for your
- USB driver; that's the problem that usbfs set out to solve.
- User mode device drivers are usually packaged as applications
- or libraries, and may use usbfs through some programming library
- that wraps it. Such libraries include
- <ulink url="http://libusb.sourceforge.net">libusb</ulink>
- for C/C++, and
- <ulink url="http://jUSB.sourceforge.net">jUSB</ulink> for Java.
- </para>
-
- <note><title>Unfinished</title>
- <para>This particular documentation is incomplete,
- especially with respect to the asynchronous mode.
- As of kernel 2.5.66 the code and this (new) documentation
- need to be cross-reviewed.
- </para>
- </note>
-
- <para>Configure usbfs into Linux kernels by enabling the
- <emphasis>USB filesystem</emphasis> option (CONFIG_USB_DEVICEFS),
- and you get basic support for user mode USB device drivers.
- Until relatively recently it was often (confusingly) called
- <emphasis>usbdevfs</emphasis> although it wasn't solving what
- <emphasis>devfs</emphasis> was.
- Every USB device will appear in usbfs, regardless of whether or
- not it has a kernel driver.
- </para>
-
- <sect1 id="usbfs-files">
- <title>What files are in "usbfs"?</title>
-
- <para>Conventionally mounted at
- <filename>/proc/bus/usb</filename>, usbfs
- features include:
- <itemizedlist>
- <listitem><para><filename>/proc/bus/usb/devices</filename>
- ... a text file
- showing each of the USB devices on known to the kernel,
- and their configuration descriptors.
- You can also poll() this to learn about new devices.
- </para></listitem>
- <listitem><para><filename>/proc/bus/usb/BBB/DDD</filename>
- ... magic files
- exposing the each device's configuration descriptors, and
- supporting a series of ioctls for making device requests,
- including I/O to devices. (Purely for access by programs.)
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para> Each bus is given a number (BBB) based on when it was
- enumerated; within each bus, each device is given a similar
- number (DDD).
- Those BBB/DDD paths are not "stable" identifiers;
- expect them to change even if you always leave the devices
- plugged in to the same hub port.
- <emphasis>Don't even think of saving these in application
- configuration files.</emphasis>
- Stable identifiers are available, for user mode applications
- that want to use them. HID and networking devices expose
- these stable IDs, so that for example you can be sure that
- you told the right UPS to power down its second server.
- "usbfs" doesn't (yet) expose those IDs.
- </para>
-
- </sect1>
-
- <sect1 id="usbfs-fstab">
- <title>Mounting and Access Control</title>
-
- <para>There are a number of mount options for usbfs, which will
- be of most interest to you if you need to override the default
- access control policy.
- That policy is that only root may read or write device files
- (<filename>/proc/bus/BBB/DDD</filename>) although anyone may read
- the <filename>devices</filename>
- or <filename>drivers</filename> files.
- I/O requests to the device also need the CAP_SYS_RAWIO capability,
- </para>
-
- <para>The significance of that is that by default, all user mode
- device drivers need super-user privileges.
- You can change modes or ownership in a driver setup
- when the device hotplugs, or maye just start the
- driver right then, as a privileged server (or some activity
- within one).
- That's the most secure approach for multi-user systems,
- but for single user systems ("trusted" by that user)
- it's more convenient just to grant everyone all access
- (using the <emphasis>devmode=0666</emphasis> option)
- so the driver can start whenever it's needed.
- </para>
-
- <para>The mount options for usbfs, usable in /etc/fstab or
- in command line invocations of <emphasis>mount</emphasis>, are:
-
- <variablelist>
- <varlistentry>
- <term><emphasis>busgid</emphasis>=NNNNN</term>
- <listitem><para>Controls the GID used for the
- /proc/bus/usb/BBB
- directories. (Default: 0)</para></listitem></varlistentry>
- <varlistentry><term><emphasis>busmode</emphasis>=MMM</term>
- <listitem><para>Controls the file mode used for the
- /proc/bus/usb/BBB
- directories. (Default: 0555)
- </para></listitem></varlistentry>
- <varlistentry><term><emphasis>busuid</emphasis>=NNNNN</term>
- <listitem><para>Controls the UID used for the
- /proc/bus/usb/BBB
- directories. (Default: 0)</para></listitem></varlistentry>
-
- <varlistentry><term><emphasis>devgid</emphasis>=NNNNN</term>
- <listitem><para>Controls the GID used for the
- /proc/bus/usb/BBB/DDD
- files. (Default: 0)</para></listitem></varlistentry>
- <varlistentry><term><emphasis>devmode</emphasis>=MMM</term>
- <listitem><para>Controls the file mode used for the
- /proc/bus/usb/BBB/DDD
- files. (Default: 0644)</para></listitem></varlistentry>
- <varlistentry><term><emphasis>devuid</emphasis>=NNNNN</term>
- <listitem><para>Controls the UID used for the
- /proc/bus/usb/BBB/DDD
- files. (Default: 0)</para></listitem></varlistentry>
-
- <varlistentry><term><emphasis>listgid</emphasis>=NNNNN</term>
- <listitem><para>Controls the GID used for the
- /proc/bus/usb/devices and drivers files.
- (Default: 0)</para></listitem></varlistentry>
- <varlistentry><term><emphasis>listmode</emphasis>=MMM</term>
- <listitem><para>Controls the file mode used for the
- /proc/bus/usb/devices and drivers files.
- (Default: 0444)</para></listitem></varlistentry>
- <varlistentry><term><emphasis>listuid</emphasis>=NNNNN</term>
- <listitem><para>Controls the UID used for the
- /proc/bus/usb/devices and drivers files.
- (Default: 0)</para></listitem></varlistentry>
- </variablelist>
-
- </para>
-
- <para>Note that many Linux distributions hard-wire the mount options
- for usbfs in their init scripts, such as
- <filename>/etc/rc.d/rc.sysinit</filename>,
- rather than making it easy to set this per-system
- policy in <filename>/etc/fstab</filename>.
- </para>
-
- </sect1>
-
- <sect1 id="usbfs-devices">
- <title>/proc/bus/usb/devices</title>
-
- <para>This file is handy for status viewing tools in user
- mode, which can scan the text format and ignore most of it.
- More detailed device status (including class and vendor
- status) is available from device-specific files.
- For information about the current format of this file,
- see the
- <filename>Documentation/usb/proc_usb_info.txt</filename>
- file in your Linux kernel sources.
- </para>
-
- <para>This file, in combination with the poll() system call, can
- also be used to detect when devices are added or removed:
-<programlisting>int fd;
-struct pollfd pfd;
-
-fd = open("/proc/bus/usb/devices", O_RDONLY);
-pfd = { fd, POLLIN, 0 };
-for (;;) {
- /* The first time through, this call will return immediately. */
- poll(&amp;pfd, 1, -1);
-
- /* To see what's changed, compare the file's previous and current
- contents or scan the filesystem. (Scanning is more precise.) */
-}</programlisting>
- Note that this behavior is intended to be used for informational
- and debug purposes. It would be more appropriate to use programs
- such as udev or HAL to initialize a device or start a user-mode
- helper program, for instance.
- </para>
- </sect1>
-
- <sect1 id="usbfs-bbbddd">
- <title>/proc/bus/usb/BBB/DDD</title>
-
- <para>Use these files in one of these basic ways:
- </para>
-
- <para><emphasis>They can be read,</emphasis>
- producing first the device descriptor
- (18 bytes) and then the descriptors for the current configuration.
- See the USB 2.0 spec for details about those binary data formats.
- You'll need to convert most multibyte values from little endian
- format to your native host byte order, although a few of the
- fields in the device descriptor (both of the BCD-encoded fields,
- and the vendor and product IDs) will be byteswapped for you.
- Note that configuration descriptors include descriptors for
- interfaces, altsettings, endpoints, and maybe additional
- class descriptors.
- </para>
-
- <para><emphasis>Perform USB operations</emphasis> using
- <emphasis>ioctl()</emphasis> requests to make endpoint I/O
- requests (synchronously or asynchronously) or manage
- the device.
- These requests need the CAP_SYS_RAWIO capability,
- as well as filesystem access permissions.
- Only one ioctl request can be made on one of these
- device files at a time.
- This means that if you are synchronously reading an endpoint
- from one thread, you won't be able to write to a different
- endpoint from another thread until the read completes.
- This works for <emphasis>half duplex</emphasis> protocols,
- but otherwise you'd use asynchronous i/o requests.
- </para>
-
- </sect1>
-
-
- <sect1 id="usbfs-lifecycle">
- <title>Life Cycle of User Mode Drivers</title>
-
- <para>Such a driver first needs to find a device file
- for a device it knows how to handle.
- Maybe it was told about it because a
- <filename>/sbin/hotplug</filename> event handling agent
- chose that driver to handle the new device.
- Or maybe it's an application that scans all the
- /proc/bus/usb device files, and ignores most devices.
- In either case, it should <function>read()</function> all
- the descriptors from the device file,
- and check them against what it knows how to handle.
- It might just reject everything except a particular
- vendor and product ID, or need a more complex policy.
- </para>
-
- <para>Never assume there will only be one such device
- on the system at a time!
- If your code can't handle more than one device at
- a time, at least detect when there's more than one, and
- have your users choose which device to use.
- </para>
-
- <para>Once your user mode driver knows what device to use,
- it interacts with it in either of two styles.
- The simple style is to make only control requests; some
- devices don't need more complex interactions than those.
- (An example might be software using vendor-specific control
- requests for some initialization or configuration tasks,
- with a kernel driver for the rest.)
- </para>
-
- <para>More likely, you need a more complex style driver:
- one using non-control endpoints, reading or writing data
- and claiming exclusive use of an interface.
- <emphasis>Bulk</emphasis> transfers are easiest to use,
- but only their sibling <emphasis>interrupt</emphasis> transfers
- work with low speed devices.
- Both interrupt and <emphasis>isochronous</emphasis> transfers
- offer service guarantees because their bandwidth is reserved.
- Such "periodic" transfers are awkward to use through usbfs,
- unless you're using the asynchronous calls. However, interrupt
- transfers can also be used in a synchronous "one shot" style.
- </para>
-
- <para>Your user-mode driver should never need to worry
- about cleaning up request state when the device is
- disconnected, although it should close its open file
- descriptors as soon as it starts seeing the ENODEV
- errors.
- </para>
-
- </sect1>
-
- <sect1 id="usbfs-ioctl"><title>The ioctl() Requests</title>
-
- <para>To use these ioctls, you need to include the following
- headers in your userspace program:
-<programlisting>#include &lt;linux/usb.h&gt;
-#include &lt;linux/usbdevice_fs.h&gt;
-#include &lt;asm/byteorder.h&gt;</programlisting>
- The standard USB device model requests, from "Chapter 9" of
- the USB 2.0 specification, are automatically included from
- the <filename>&lt;linux/usb/ch9.h&gt;</filename> header.
- </para>
-
- <para>Unless noted otherwise, the ioctl requests
- described here will
- update the modification time on the usbfs file to which
- they are applied (unless they fail).
- A return of zero indicates success; otherwise, a
- standard USB error code is returned. (These are
- documented in
- <filename>Documentation/usb/error-codes.txt</filename>
- in your kernel sources.)
- </para>
-
- <para>Each of these files multiplexes access to several
- I/O streams, one per endpoint.
- Each device has one control endpoint (endpoint zero)
- which supports a limited RPC style RPC access.
- Devices are configured
- by hub_wq (in the kernel) setting a device-wide
- <emphasis>configuration</emphasis> that affects things
- like power consumption and basic functionality.
- The endpoints are part of USB <emphasis>interfaces</emphasis>,
- which may have <emphasis>altsettings</emphasis>
- affecting things like which endpoints are available.
- Many devices only have a single configuration and interface,
- so drivers for them will ignore configurations and altsettings.
- </para>
-
-
- <sect2 id="usbfs-mgmt">
- <title>Management/Status Requests</title>
-
- <para>A number of usbfs requests don't deal very directly
- with device I/O.
- They mostly relate to device management and status.
- These are all synchronous requests.
- </para>
-
- <variablelist>
-
- <varlistentry><term>USBDEVFS_CLAIMINTERFACE</term>
- <listitem><para>This is used to force usbfs to
- claim a specific interface,
- which has not previously been claimed by usbfs or any other
- kernel driver.
- The ioctl parameter is an integer holding the number of
- the interface (bInterfaceNumber from descriptor).
- </para><para>
- Note that if your driver doesn't claim an interface
- before trying to use one of its endpoints, and no
- other driver has bound to it, then the interface is
- automatically claimed by usbfs.
- </para><para>
- This claim will be released by a RELEASEINTERFACE ioctl,
- or by closing the file descriptor.
- File modification time is not updated by this request.
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_CONNECTINFO</term>
- <listitem><para>Says whether the device is lowspeed.
- The ioctl parameter points to a structure like this:
-<programlisting>struct usbdevfs_connectinfo {
- unsigned int devnum;
- unsigned char slow;
-}; </programlisting>
- File modification time is not updated by this request.
- </para><para>
- <emphasis>You can't tell whether a "not slow"
- device is connected at high speed (480 MBit/sec)
- or just full speed (12 MBit/sec).</emphasis>
- You should know the devnum value already,
- it's the DDD value of the device file name.
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_GETDRIVER</term>
- <listitem><para>Returns the name of the kernel driver
- bound to a given interface (a string). Parameter
- is a pointer to this structure, which is modified:
-<programlisting>struct usbdevfs_getdriver {
- unsigned int interface;
- char driver[USBDEVFS_MAXDRIVERNAME + 1];
-};</programlisting>
- File modification time is not updated by this request.
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_IOCTL</term>
- <listitem><para>Passes a request from userspace through
- to a kernel driver that has an ioctl entry in the
- <emphasis>struct usb_driver</emphasis> it registered.
-<programlisting>struct usbdevfs_ioctl {
- int ifno;
- int ioctl_code;
- void *data;
-};
-
-/* user mode call looks like this.
- * 'request' becomes the driver->ioctl() 'code' parameter.
- * the size of 'param' is encoded in 'request', and that data
- * is copied to or from the driver->ioctl() 'buf' parameter.
- */
-static int
-usbdev_ioctl (int fd, int ifno, unsigned request, void *param)
-{
- struct usbdevfs_ioctl wrapper;
-
- wrapper.ifno = ifno;
- wrapper.ioctl_code = request;
- wrapper.data = param;
-
- return ioctl (fd, USBDEVFS_IOCTL, &amp;wrapper);
-} </programlisting>
- File modification time is not updated by this request.
- </para><para>
- This request lets kernel drivers talk to user mode code
- through filesystem operations even when they don't create
- a character or block special device.
- It's also been used to do things like ask devices what
- device special file should be used.
- Two pre-defined ioctls are used
- to disconnect and reconnect kernel drivers, so
- that user mode code can completely manage binding
- and configuration of devices.
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_RELEASEINTERFACE</term>
- <listitem><para>This is used to release the claim usbfs
- made on interface, either implicitly or because of a
- USBDEVFS_CLAIMINTERFACE call, before the file
- descriptor is closed.
- The ioctl parameter is an integer holding the number of
- the interface (bInterfaceNumber from descriptor);
- File modification time is not updated by this request.
- </para><warning><para>
- <emphasis>No security check is made to ensure
- that the task which made the claim is the one
- which is releasing it.
- This means that user mode driver may interfere
- other ones. </emphasis>
- </para></warning></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_RESETEP</term>
- <listitem><para>Resets the data toggle value for an endpoint
- (bulk or interrupt) to DATA0.
- The ioctl parameter is an integer endpoint number
- (1 to 15, as identified in the endpoint descriptor),
- with USB_DIR_IN added if the device's endpoint sends
- data to the host.
- </para><warning><para>
- <emphasis>Avoid using this request.
- It should probably be removed.</emphasis>
- Using it typically means the device and driver will lose
- toggle synchronization. If you really lost synchronization,
- you likely need to completely handshake with the device,
- using a request like CLEAR_HALT
- or SET_INTERFACE.
- </para></warning></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_DROP_PRIVILEGES</term>
- <listitem><para>This is used to relinquish the ability
- to do certain operations which are considered to be
- privileged on a usbfs file descriptor.
- This includes claiming arbitrary interfaces, resetting
- a device on which there are currently claimed interfaces
- from other users, and issuing USBDEVFS_IOCTL calls.
- The ioctl parameter is a 32 bit mask of interfaces
- the user is allowed to claim on this file descriptor.
- You may issue this ioctl more than one time to narrow
- said mask.
- </para></listitem></varlistentry>
- </variablelist>
-
- </sect2>
-
- <sect2 id="usbfs-sync">
- <title>Synchronous I/O Support</title>
-
- <para>Synchronous requests involve the kernel blocking
- until the user mode request completes, either by
- finishing successfully or by reporting an error.
- In most cases this is the simplest way to use usbfs,
- although as noted above it does prevent performing I/O
- to more than one endpoint at a time.
- </para>
-
- <variablelist>
-
- <varlistentry><term>USBDEVFS_BULK</term>
- <listitem><para>Issues a bulk read or write request to the
- device.
- The ioctl parameter is a pointer to this structure:
-<programlisting>struct usbdevfs_bulktransfer {
- unsigned int ep;
- unsigned int len;
- unsigned int timeout; /* in milliseconds */
- void *data;
-};</programlisting>
- </para><para>The "ep" value identifies a
- bulk endpoint number (1 to 15, as identified in an endpoint
- descriptor),
- masked with USB_DIR_IN when referring to an endpoint which
- sends data to the host from the device.
- The length of the data buffer is identified by "len";
- Recent kernels support requests up to about 128KBytes.
- <emphasis>FIXME say how read length is returned,
- and how short reads are handled.</emphasis>.
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_CLEAR_HALT</term>
- <listitem><para>Clears endpoint halt (stall) and
- resets the endpoint toggle. This is only
- meaningful for bulk or interrupt endpoints.
- The ioctl parameter is an integer endpoint number
- (1 to 15, as identified in an endpoint descriptor),
- masked with USB_DIR_IN when referring to an endpoint which
- sends data to the host from the device.
- </para><para>
- Use this on bulk or interrupt endpoints which have
- stalled, returning <emphasis>-EPIPE</emphasis> status
- to a data transfer request.
- Do not issue the control request directly, since
- that could invalidate the host's record of the
- data toggle.
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_CONTROL</term>
- <listitem><para>Issues a control request to the device.
- The ioctl parameter points to a structure like this:
-<programlisting>struct usbdevfs_ctrltransfer {
- __u8 bRequestType;
- __u8 bRequest;
- __u16 wValue;
- __u16 wIndex;
- __u16 wLength;
- __u32 timeout; /* in milliseconds */
- void *data;
-};</programlisting>
- </para><para>
- The first eight bytes of this structure are the contents
- of the SETUP packet to be sent to the device; see the
- USB 2.0 specification for details.
- The bRequestType value is composed by combining a
- USB_TYPE_* value, a USB_DIR_* value, and a
- USB_RECIP_* value (from
- <emphasis>&lt;linux/usb.h&gt;</emphasis>).
- If wLength is nonzero, it describes the length of the data
- buffer, which is either written to the device
- (USB_DIR_OUT) or read from the device (USB_DIR_IN).
- </para><para>
- At this writing, you can't transfer more than 4 KBytes
- of data to or from a device; usbfs has a limit, and
- some host controller drivers have a limit.
- (That's not usually a problem.)
- <emphasis>Also</emphasis> there's no way to say it's
- not OK to get a short read back from the device.
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_RESET</term>
- <listitem><para>Does a USB level device reset.
- The ioctl parameter is ignored.
- After the reset, this rebinds all device interfaces.
- File modification time is not updated by this request.
- </para><warning><para>
- <emphasis>Avoid using this call</emphasis>
- until some usbcore bugs get fixed,
- since it does not fully synchronize device, interface,
- and driver (not just usbfs) state.
- </para></warning></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_SETINTERFACE</term>
- <listitem><para>Sets the alternate setting for an
- interface. The ioctl parameter is a pointer to a
- structure like this:
-<programlisting>struct usbdevfs_setinterface {
- unsigned int interface;
- unsigned int altsetting;
-}; </programlisting>
- File modification time is not updated by this request.
- </para><para>
- Those struct members are from some interface descriptor
- applying to the current configuration.
- The interface number is the bInterfaceNumber value, and
- the altsetting number is the bAlternateSetting value.
- (This resets each endpoint in the interface.)
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_SETCONFIGURATION</term>
- <listitem><para>Issues the
- <function>usb_set_configuration</function> call
- for the device.
- The parameter is an integer holding the number of
- a configuration (bConfigurationValue from descriptor).
- File modification time is not updated by this request.
- </para><warning><para>
- <emphasis>Avoid using this call</emphasis>
- until some usbcore bugs get fixed,
- since it does not fully synchronize device, interface,
- and driver (not just usbfs) state.
- </para></warning></listitem></varlistentry>
-
- </variablelist>
- </sect2>
-
- <sect2 id="usbfs-async">
- <title>Asynchronous I/O Support</title>
-
- <para>As mentioned above, there are situations where it may be
- important to initiate concurrent operations from user mode code.
- This is particularly important for periodic transfers
- (interrupt and isochronous), but it can be used for other
- kinds of USB requests too.
- In such cases, the asynchronous requests described here
- are essential. Rather than submitting one request and having
- the kernel block until it completes, the blocking is separate.
- </para>
-
- <para>These requests are packaged into a structure that
- resembles the URB used by kernel device drivers.
- (No POSIX Async I/O support here, sorry.)
- It identifies the endpoint type (USBDEVFS_URB_TYPE_*),
- endpoint (number, masked with USB_DIR_IN as appropriate),
- buffer and length, and a user "context" value serving to
- uniquely identify each request.
- (It's usually a pointer to per-request data.)
- Flags can modify requests (not as many as supported for
- kernel drivers).
- </para>
-
- <para>Each request can specify a realtime signal number
- (between SIGRTMIN and SIGRTMAX, inclusive) to request a
- signal be sent when the request completes.
- </para>
-
- <para>When usbfs returns these urbs, the status value
- is updated, and the buffer may have been modified.
- Except for isochronous transfers, the actual_length is
- updated to say how many bytes were transferred; if the
- USBDEVFS_URB_DISABLE_SPD flag is set
- ("short packets are not OK"), if fewer bytes were read
- than were requested then you get an error report.
- </para>
-
-<programlisting>struct usbdevfs_iso_packet_desc {
- unsigned int length;
- unsigned int actual_length;
- unsigned int status;
-};
-
-struct usbdevfs_urb {
- unsigned char type;
- unsigned char endpoint;
- int status;
- unsigned int flags;
- void *buffer;
- int buffer_length;
- int actual_length;
- int start_frame;
- int number_of_packets;
- int error_count;
- unsigned int signr;
- void *usercontext;
- struct usbdevfs_iso_packet_desc iso_frame_desc[];
-};</programlisting>
-
- <para> For these asynchronous requests, the file modification
- time reflects when the request was initiated.
- This contrasts with their use with the synchronous requests,
- where it reflects when requests complete.
- </para>
-
- <variablelist>
-
- <varlistentry><term>USBDEVFS_DISCARDURB</term>
- <listitem><para>
- <emphasis>TBS</emphasis>
- File modification time is not updated by this request.
- </para><para>
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_DISCSIGNAL</term>
- <listitem><para>
- <emphasis>TBS</emphasis>
- File modification time is not updated by this request.
- </para><para>
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_REAPURB</term>
- <listitem><para>
- <emphasis>TBS</emphasis>
- File modification time is not updated by this request.
- </para><para>
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_REAPURBNDELAY</term>
- <listitem><para>
- <emphasis>TBS</emphasis>
- File modification time is not updated by this request.
- </para><para>
- </para></listitem></varlistentry>
-
- <varlistentry><term>USBDEVFS_SUBMITURB</term>
- <listitem><para>
- <emphasis>TBS</emphasis>
- </para><para>
- </para></listitem></varlistentry>
-
- </variablelist>
- </sect2>
-
- </sect1>
-
- </chapter>
-
-</book>
-<!-- vim:syntax=sgml:sw=4
--->
diff --git a/Documentation/Makefile.sphinx b/Documentation/Makefile.sphinx
index 92deea3..a23d3c8 100644
--- a/Documentation/Makefile.sphinx
+++ b/Documentation/Makefile.sphinx
@@ -10,6 +10,8 @@ _SPHINXDIRS = $(patsubst $(srctree)/Documentation/%/conf.py,%,$(wildcard $(src
SPHINX_CONF = conf.py
PAPER =
BUILDDIR = $(obj)/output
+PDFLATEX = xelatex
+LATEXOPTS = -interaction=batchmode
# User-friendly check for sphinx-build
HAVE_SPHINX := $(shell if which $(SPHINXBUILD) >/dev/null 2>&1; then echo 1; else echo 0; fi)
@@ -29,7 +31,7 @@ else ifneq ($(DOCBOOKS),)
else # HAVE_SPHINX
# User-friendly check for pdflatex
-HAVE_PDFLATEX := $(shell if which xelatex >/dev/null 2>&1; then echo 1; else echo 0; fi)
+HAVE_PDFLATEX := $(shell if which $(PDFLATEX) >/dev/null 2>&1; then echo 1; else echo 0; fi)
# Internal variables.
PAPEROPT_a4 = -D latex_paper_size=a4
@@ -51,8 +53,8 @@ loop_cmd = $(echo-cmd) $(cmd_$(1))
# $5 reST source folder relative to $(srctree)/$(src),
# e.g. "media" for the linux-tv book-set at ./Documentation/media
-quiet_cmd_sphinx = SPHINX $@ --> file://$(abspath $(BUILDDIR)/$3/$4);
- cmd_sphinx = $(MAKE) BUILDDIR=$(abspath $(BUILDDIR)) $(build)=Documentation/media all;\
+quiet_cmd_sphinx = SPHINX $@ --> file://$(abspath $(BUILDDIR)/$3/$4)
+ cmd_sphinx = $(MAKE) BUILDDIR=$(abspath $(BUILDDIR)) $(build)=Documentation/media $2;\
BUILDDIR=$(abspath $(BUILDDIR)) SPHINX_CONF=$(abspath $(srctree)/$(src)/$5/$(SPHINX_CONF)) \
$(SPHINXBUILD) \
-b $2 \
@@ -67,16 +69,19 @@ htmldocs:
@$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,html,$(var),,$(var)))
latexdocs:
+ @$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,latex,$(var),latex,$(var)))
+
ifeq ($(HAVE_PDFLATEX),0)
- $(warning The 'xelatex' command was not found. Make sure you have it installed and in PATH to produce PDF output.)
+
+pdfdocs:
+ $(warning The '$(PDFLATEX)' command was not found. Make sure you have it installed and in PATH to produce PDF output.)
@echo " SKIP Sphinx $@ target."
+
else # HAVE_PDFLATEX
- @$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,latex,$(var),latex,$(var)))
-endif # HAVE_PDFLATEX
pdfdocs: latexdocs
-ifneq ($(HAVE_PDFLATEX),0)
- $(foreach var,$(SPHINXDIRS), $(MAKE) PDFLATEX=xelatex LATEXOPTS="-interaction=nonstopmode" -C $(BUILDDIR)/$(var)/latex)
+ $(foreach var,$(SPHINXDIRS), $(MAKE) PDFLATEX=$(PDFLATEX) LATEXOPTS="$(LATEXOPTS)" -C $(BUILDDIR)/$(var)/latex;)
+
endif # HAVE_PDFLATEX
epubdocs:
@@ -93,6 +98,7 @@ installmandocs:
cleandocs:
$(Q)rm -rf $(BUILDDIR)
+ $(Q)$(MAKE) -C Documentation/media clean
endif # HAVE_SPHINX
diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches
index 36f1ded..8145570 100644
--- a/Documentation/SubmittingPatches
+++ b/Documentation/SubmittingPatches
@@ -1,841 +1 @@
-.. _submittingpatches:
-
-How to Get Your Change Into the Linux Kernel or Care And Operation Of Your Linus Torvalds
-=========================================================================================
-
-For a person or company who wishes to submit a change to the Linux
-kernel, the process can sometimes be daunting if you're not familiar
-with "the system." This text is a collection of suggestions which
-can greatly increase the chances of your change being accepted.
-
-This document contains a large number of suggestions in a relatively terse
-format. For detailed information on how the kernel development process
-works, see :ref:`Documentation/development-process <development_process_main>`.
-Also, read :ref:`Documentation/SubmitChecklist <submitchecklist>`
-for a list of items to check before
-submitting code. If you are submitting a driver, also read
-:ref:`Documentation/SubmittingDrivers <submittingdrivers>`;
-for device tree binding patches, read
-Documentation/devicetree/bindings/submitting-patches.txt.
-
-Many of these steps describe the default behavior of the ``git`` version
-control system; if you use ``git`` to prepare your patches, you'll find much
-of the mechanical work done for you, though you'll still need to prepare
-and document a sensible set of patches. In general, use of ``git`` will make
-your life as a kernel developer easier.
-
-Creating and Sending your Change
-********************************
-
-
-0) Obtain a current source tree
--------------------------------
-
-If you do not have a repository with the current kernel source handy, use
-``git`` to obtain one. You'll want to start with the mainline repository,
-which can be grabbed with::
-
- git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
-
-Note, however, that you may not want to develop against the mainline tree
-directly. Most subsystem maintainers run their own trees and want to see
-patches prepared against those trees. See the **T:** entry for the subsystem
-in the MAINTAINERS file to find that tree, or simply ask the maintainer if
-the tree is not listed there.
-
-It is still possible to download kernel releases via tarballs (as described
-in the next section), but that is the hard way to do kernel development.
-
-1) ``diff -up``
----------------
-
-If you must generate your patches by hand, use ``diff -up`` or ``diff -uprN``
-to create patches. Git generates patches in this form by default; if
-you're using ``git``, you can skip this section entirely.
-
-All changes to the Linux kernel occur in the form of patches, as
-generated by :manpage:`diff(1)`. When creating your patch, make sure to
-create it in "unified diff" format, as supplied by the ``-u`` argument
-to :manpage:`diff(1)`.
-Also, please use the ``-p`` argument which shows which C function each
-change is in - that makes the resultant ``diff`` a lot easier to read.
-Patches should be based in the root kernel source directory,
-not in any lower subdirectory.
-
-To create a patch for a single file, it is often sufficient to do::
-
- SRCTREE= linux
- MYFILE= drivers/net/mydriver.c
-
- cd $SRCTREE
- cp $MYFILE $MYFILE.orig
- vi $MYFILE # make your change
- cd ..
- diff -up $SRCTREE/$MYFILE{.orig,} > /tmp/patch
-
-To create a patch for multiple files, you should unpack a "vanilla",
-or unmodified kernel source tree, and generate a ``diff`` against your
-own source tree. For example::
-
- MYSRC= /devel/linux
-
- tar xvfz linux-3.19.tar.gz
- mv linux-3.19 linux-3.19-vanilla
- diff -uprN -X linux-3.19-vanilla/Documentation/dontdiff \
- linux-3.19-vanilla $MYSRC > /tmp/patch
-
-``dontdiff`` is a list of files which are generated by the kernel during
-the build process, and should be ignored in any :manpage:`diff(1)`-generated
-patch.
-
-Make sure your patch does not include any extra files which do not
-belong in a patch submission. Make sure to review your patch -after-
-generating it with :manpage:`diff(1)`, to ensure accuracy.
-
-If your changes produce a lot of deltas, you need to split them into
-individual patches which modify things in logical stages; see
-:ref:`split_changes`. This will facilitate review by other kernel developers,
-very important if you want your patch accepted.
-
-If you're using ``git``, ``git rebase -i`` can help you with this process. If
-you're not using ``git``, ``quilt`` <http://savannah.nongnu.org/projects/quilt>
-is another popular alternative.
-
-.. _describe_changes:
-
-2) Describe your changes
-------------------------
-
-Describe your problem. Whether your patch is a one-line bug fix or
-5000 lines of a new feature, there must be an underlying problem that
-motivated you to do this work. Convince the reviewer that there is a
-problem worth fixing and that it makes sense for them to read past the
-first paragraph.
-
-Describe user-visible impact. Straight up crashes and lockups are
-pretty convincing, but not all bugs are that blatant. Even if the
-problem was spotted during code review, describe the impact you think
-it can have on users. Keep in mind that the majority of Linux
-installations run kernels from secondary stable trees or
-vendor/product-specific trees that cherry-pick only specific patches
-from upstream, so include anything that could help route your change
-downstream: provoking circumstances, excerpts from dmesg, crash
-descriptions, performance regressions, latency spikes, lockups, etc.
-
-Quantify optimizations and trade-offs. If you claim improvements in
-performance, memory consumption, stack footprint, or binary size,
-include numbers that back them up. But also describe non-obvious
-costs. Optimizations usually aren't free but trade-offs between CPU,
-memory, and readability; or, when it comes to heuristics, between
-different workloads. Describe the expected downsides of your
-optimization so that the reviewer can weigh costs against benefits.
-
-Once the problem is established, describe what you are actually doing
-about it in technical detail. It's important to describe the change
-in plain English for the reviewer to verify that the code is behaving
-as you intend it to.
-
-The maintainer will thank you if you write your patch description in a
-form which can be easily pulled into Linux's source code management
-system, ``git``, as a "commit log". See :ref:`explicit_in_reply_to`.
-
-Solve only one problem per patch. If your description starts to get
-long, that's a sign that you probably need to split up your patch.
-See :ref:`split_changes`.
-
-When you submit or resubmit a patch or patch series, include the
-complete patch description and justification for it. Don't just
-say that this is version N of the patch (series). Don't expect the
-subsystem maintainer to refer back to earlier patch versions or referenced
-URLs to find the patch description and put that into the patch.
-I.e., the patch (series) and its description should be self-contained.
-This benefits both the maintainers and reviewers. Some reviewers
-probably didn't even receive earlier versions of the patch.
-
-Describe your changes in imperative mood, e.g. "make xyzzy do frotz"
-instead of "[This patch] makes xyzzy do frotz" or "[I] changed xyzzy
-to do frotz", as if you are giving orders to the codebase to change
-its behaviour.
-
-If the patch fixes a logged bug entry, refer to that bug entry by
-number and URL. If the patch follows from a mailing list discussion,
-give a URL to the mailing list archive; use the https://lkml.kernel.org/
-redirector with a ``Message-Id``, to ensure that the links cannot become
-stale.
-
-However, try to make your explanation understandable without external
-resources. In addition to giving a URL to a mailing list archive or
-bug, summarize the relevant points of the discussion that led to the
-patch as submitted.
-
-If you want to refer to a specific commit, don't just refer to the
-SHA-1 ID of the commit. Please also include the oneline summary of
-the commit, to make it easier for reviewers to know what it is about.
-Example::
-
- Commit e21d2170f36602ae2708 ("video: remove unnecessary
- platform_set_drvdata()") removed the unnecessary
- platform_set_drvdata(), but left the variable "dev" unused,
- delete it.
-
-You should also be sure to use at least the first twelve characters of the
-SHA-1 ID. The kernel repository holds a *lot* of objects, making
-collisions with shorter IDs a real possibility. Bear in mind that, even if
-there is no collision with your six-character ID now, that condition may
-change five years from now.
-
-If your patch fixes a bug in a specific commit, e.g. you found an issue using
-``git bisect``, please use the 'Fixes:' tag with the first 12 characters of
-the SHA-1 ID, and the one line summary. For example::
-
- Fixes: e21d2170f366 ("video: remove unnecessary platform_set_drvdata()")
-
-The following ``git config`` settings can be used to add a pretty format for
-outputting the above style in the ``git log`` or ``git show`` commands::
-
- [core]
- abbrev = 12
- [pretty]
- fixes = Fixes: %h (\"%s\")
-
-.. _split_changes:
-
-3) Separate your changes
-------------------------
-
-Separate each **logical change** into a separate patch.
-
-For example, if your changes include both bug fixes and performance
-enhancements for a single driver, separate those changes into two
-or more patches. If your changes include an API update, and a new
-driver which uses that new API, separate those into two patches.
-
-On the other hand, if you make a single change to numerous files,
-group those changes into a single patch. Thus a single logical change
-is contained within a single patch.
-
-The point to remember is that each patch should make an easily understood
-change that can be verified by reviewers. Each patch should be justifiable
-on its own merits.
-
-If one patch depends on another patch in order for a change to be
-complete, that is OK. Simply note **"this patch depends on patch X"**
-in your patch description.
-
-When dividing your change into a series of patches, take special care to
-ensure that the kernel builds and runs properly after each patch in the
-series. Developers using ``git bisect`` to track down a problem can end up
-splitting your patch series at any point; they will not thank you if you
-introduce bugs in the middle.
-
-If you cannot condense your patch set into a smaller set of patches,
-then only post say 15 or so at a time and wait for review and integration.
-
-
-
-4) Style-check your changes
----------------------------
-
-Check your patch for basic style violations, details of which can be
-found in
-:ref:`Documentation/CodingStyle <codingstyle>`.
-Failure to do so simply wastes
-the reviewers time and will get your patch rejected, probably
-without even being read.
-
-One significant exception is when moving code from one file to
-another -- in this case you should not modify the moved code at all in
-the same patch which moves it. This clearly delineates the act of
-moving the code and your changes. This greatly aids review of the
-actual differences and allows tools to better track the history of
-the code itself.
-
-Check your patches with the patch style checker prior to submission
-(scripts/checkpatch.pl). Note, though, that the style checker should be
-viewed as a guide, not as a replacement for human judgment. If your code
-looks better with a violation then its probably best left alone.
-
-The checker reports at three levels:
- - ERROR: things that are very likely to be wrong
- - WARNING: things requiring careful review
- - CHECK: things requiring thought
-
-You should be able to justify all violations that remain in your
-patch.
-
-
-5) Select the recipients for your patch
----------------------------------------
-
-You should always copy the appropriate subsystem maintainer(s) on any patch
-to code that they maintain; look through the MAINTAINERS file and the
-source code revision history to see who those maintainers are. The
-script scripts/get_maintainer.pl can be very useful at this step. If you
-cannot find a maintainer for the subsystem you are working on, Andrew
-Morton (akpm@linux-foundation.org) serves as a maintainer of last resort.
-
-You should also normally choose at least one mailing list to receive a copy
-of your patch set. linux-kernel@vger.kernel.org functions as a list of
-last resort, but the volume on that list has caused a number of developers
-to tune it out. Look in the MAINTAINERS file for a subsystem-specific
-list; your patch will probably get more attention there. Please do not
-spam unrelated lists, though.
-
-Many kernel-related lists are hosted on vger.kernel.org; you can find a
-list of them at http://vger.kernel.org/vger-lists.html. There are
-kernel-related lists hosted elsewhere as well, though.
-
-Do not send more than 15 patches at once to the vger mailing lists!!!
-
-Linus Torvalds is the final arbiter of all changes accepted into the
-Linux kernel. His e-mail address is <torvalds@linux-foundation.org>.
-He gets a lot of e-mail, and, at this point, very few patches go through
-Linus directly, so typically you should do your best to -avoid-
-sending him e-mail.
-
-If you have a patch that fixes an exploitable security bug, send that patch
-to security@kernel.org. For severe bugs, a short embargo may be considered
-to allow distributors to get the patch out to users; in such cases,
-obviously, the patch should not be sent to any public lists.
-
-Patches that fix a severe bug in a released kernel should be directed
-toward the stable maintainers by putting a line like this::
-
- Cc: stable@vger.kernel.org
-
-into the sign-off area of your patch (note, NOT an email recipient). You
-should also read
-:ref:`Documentation/stable_kernel_rules.txt <stable_kernel_rules>`
-in addition to this file.
-
-Note, however, that some subsystem maintainers want to come to their own
-conclusions on which patches should go to the stable trees. The networking
-maintainer, in particular, would rather not see individual developers
-adding lines like the above to their patches.
-
-If changes affect userland-kernel interfaces, please send the MAN-PAGES
-maintainer (as listed in the MAINTAINERS file) a man-pages patch, or at
-least a notification of the change, so that some information makes its way
-into the manual pages. User-space API changes should also be copied to
-linux-api@vger.kernel.org.
-
-For small patches you may want to CC the Trivial Patch Monkey
-trivial@kernel.org which collects "trivial" patches. Have a look
-into the MAINTAINERS file for its current manager.
-
-Trivial patches must qualify for one of the following rules:
-
-- Spelling fixes in documentation
-- Spelling fixes for errors which could break :manpage:`grep(1)`
-- Warning fixes (cluttering with useless warnings is bad)
-- Compilation fixes (only if they are actually correct)
-- Runtime fixes (only if they actually fix things)
-- Removing use of deprecated functions/macros
-- Contact detail and documentation fixes
-- Non-portable code replaced by portable code (even in arch-specific,
- since people copy, as long as it's trivial)
-- Any fix by the author/maintainer of the file (ie. patch monkey
- in re-transmission mode)
-
-
-
-6) No MIME, no links, no compression, no attachments. Just plain text
-----------------------------------------------------------------------
-
-Linus and other kernel developers need to be able to read and comment
-on the changes you are submitting. It is important for a kernel
-developer to be able to "quote" your changes, using standard e-mail
-tools, so that they may comment on specific portions of your code.
-
-For this reason, all patches should be submitted by e-mail "inline".
-
-.. warning::
-
- Be wary of your editor's word-wrap corrupting your patch,
- if you choose to cut-n-paste your patch.
-
-Do not attach the patch as a MIME attachment, compressed or not.
-Many popular e-mail applications will not always transmit a MIME
-attachment as plain text, making it impossible to comment on your
-code. A MIME attachment also takes Linus a bit more time to process,
-decreasing the likelihood of your MIME-attached change being accepted.
-
-Exception: If your mailer is mangling patches then someone may ask
-you to re-send them using MIME.
-
-See :ref:`Documentation/email-clients.txt <email_clients>`
-for hints about configuring your e-mail client so that it sends your patches
-untouched.
-
-7) E-mail size
---------------
-
-Large changes are not appropriate for mailing lists, and some
-maintainers. If your patch, uncompressed, exceeds 300 kB in size,
-it is preferred that you store your patch on an Internet-accessible
-server, and provide instead a URL (link) pointing to your patch. But note
-that if your patch exceeds 300 kB, it almost certainly needs to be broken up
-anyway.
-
-8) Respond to review comments
------------------------------
-
-Your patch will almost certainly get comments from reviewers on ways in
-which the patch can be improved. You must respond to those comments;
-ignoring reviewers is a good way to get ignored in return. Review comments
-or questions that do not lead to a code change should almost certainly
-bring about a comment or changelog entry so that the next reviewer better
-understands what is going on.
-
-Be sure to tell the reviewers what changes you are making and to thank them
-for their time. Code review is a tiring and time-consuming process, and
-reviewers sometimes get grumpy. Even in that case, though, respond
-politely and address the problems they have pointed out.
-
-
-9) Don't get discouraged - or impatient
----------------------------------------
-
-After you have submitted your change, be patient and wait. Reviewers are
-busy people and may not get to your patch right away.
-
-Once upon a time, patches used to disappear into the void without comment,
-but the development process works more smoothly than that now. You should
-receive comments within a week or so; if that does not happen, make sure
-that you have sent your patches to the right place. Wait for a minimum of
-one week before resubmitting or pinging reviewers - possibly longer during
-busy times like merge windows.
-
-
-10) Include PATCH in the subject
---------------------------------
-
-Due to high e-mail traffic to Linus, and to linux-kernel, it is common
-convention to prefix your subject line with [PATCH]. This lets Linus
-and other kernel developers more easily distinguish patches from other
-e-mail discussions.
-
-
-
-11) Sign your work
-------------------
-
-To improve tracking of who did what, especially with patches that can
-percolate to their final resting place in the kernel through several
-layers of maintainers, we've introduced a "sign-off" procedure on
-patches that are being emailed around.
-
-The sign-off is a simple line at the end of the explanation for the
-patch, which certifies that you wrote it or otherwise have the right to
-pass it on as an open-source patch. The rules are pretty simple: if you
-can certify the below:
-
-Developer's Certificate of Origin 1.1
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-By making a contribution to this project, I certify that:
-
- (a) The contribution was created in whole or in part by me and I
- have the right to submit it under the open source license
- indicated in the file; or
-
- (b) The contribution is based upon previous work that, to the best
- of my knowledge, is covered under an appropriate open source
- license and I have the right under that license to submit that
- work with modifications, whether created in whole or in part
- by me, under the same open source license (unless I am
- permitted to submit under a different license), as indicated
- in the file; or
-
- (c) The contribution was provided directly to me by some other
- person who certified (a), (b) or (c) and I have not modified
- it.
-
- (d) I understand and agree that this project and the contribution
- are public and that a record of the contribution (including all
- personal information I submit with it, including my sign-off) is
- maintained indefinitely and may be redistributed consistent with
- this project or the open source license(s) involved.
-
-then you just add a line saying::
-
- Signed-off-by: Random J Developer <random@developer.example.org>
-
-using your real name (sorry, no pseudonyms or anonymous contributions.)
-
-Some people also put extra tags at the end. They'll just be ignored for
-now, but you can do this to mark internal company procedures or just
-point out some special detail about the sign-off.
-
-If you are a subsystem or branch maintainer, sometimes you need to slightly
-modify patches you receive in order to merge them, because the code is not
-exactly the same in your tree and the submitters'. If you stick strictly to
-rule (c), you should ask the submitter to rediff, but this is a totally
-counter-productive waste of time and energy. Rule (b) allows you to adjust
-the code, but then it is very impolite to change one submitter's code and
-make him endorse your bugs. To solve this problem, it is recommended that
-you add a line between the last Signed-off-by header and yours, indicating
-the nature of your changes. While there is nothing mandatory about this, it
-seems like prepending the description with your mail and/or name, all
-enclosed in square brackets, is noticeable enough to make it obvious that
-you are responsible for last-minute changes. Example::
-
- Signed-off-by: Random J Developer <random@developer.example.org>
- [lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]
- Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>
-
-This practice is particularly helpful if you maintain a stable branch and
-want at the same time to credit the author, track changes, merge the fix,
-and protect the submitter from complaints. Note that under no circumstances
-can you change the author's identity (the From header), as it is the one
-which appears in the changelog.
-
-Special note to back-porters: It seems to be a common and useful practice
-to insert an indication of the origin of a patch at the top of the commit
-message (just after the subject line) to facilitate tracking. For instance,
-here's what we see in a 3.x-stable release::
-
- Date: Tue Oct 7 07:26:38 2014 -0400
-
- libata: Un-break ATA blacklist
-
- commit 1c40279960bcd7d52dbdf1d466b20d24b99176c8 upstream.
-
-And here's what might appear in an older kernel once a patch is backported::
-
- Date: Tue May 13 22:12:27 2008 +0200
-
- wireless, airo: waitbusy() won't delay
-
- [backport of 2.6 commit b7acbdfbd1f277c1eb23f344f899cfa4cd0bf36a]
-
-Whatever the format, this information provides a valuable help to people
-tracking your trees, and to people trying to troubleshoot bugs in your
-tree.
-
-
-12) When to use Acked-by: and Cc:
----------------------------------
-
-The Signed-off-by: tag indicates that the signer was involved in the
-development of the patch, or that he/she was in the patch's delivery path.
-
-If a person was not directly involved in the preparation or handling of a
-patch but wishes to signify and record their approval of it then they can
-ask to have an Acked-by: line added to the patch's changelog.
-
-Acked-by: is often used by the maintainer of the affected code when that
-maintainer neither contributed to nor forwarded the patch.
-
-Acked-by: is not as formal as Signed-off-by:. It is a record that the acker
-has at least reviewed the patch and has indicated acceptance. Hence patch
-mergers will sometimes manually convert an acker's "yep, looks good to me"
-into an Acked-by: (but note that it is usually better to ask for an
-explicit ack).
-
-Acked-by: does not necessarily indicate acknowledgement of the entire patch.
-For example, if a patch affects multiple subsystems and has an Acked-by: from
-one subsystem maintainer then this usually indicates acknowledgement of just
-the part which affects that maintainer's code. Judgement should be used here.
-When in doubt people should refer to the original discussion in the mailing
-list archives.
-
-If a person has had the opportunity to comment on a patch, but has not
-provided such comments, you may optionally add a ``Cc:`` tag to the patch.
-This is the only tag which might be added without an explicit action by the
-person it names - but it should indicate that this person was copied on the
-patch. This tag documents that potentially interested parties
-have been included in the discussion.
-
-
-13) Using Reported-by:, Tested-by:, Reviewed-by:, Suggested-by: and Fixes:
---------------------------------------------------------------------------
-
-The Reported-by tag gives credit to people who find bugs and report them and it
-hopefully inspires them to help us again in the future. Please note that if
-the bug was reported in private, then ask for permission first before using the
-Reported-by tag.
-
-A Tested-by: tag indicates that the patch has been successfully tested (in
-some environment) by the person named. This tag informs maintainers that
-some testing has been performed, provides a means to locate testers for
-future patches, and ensures credit for the testers.
-
-Reviewed-by:, instead, indicates that the patch has been reviewed and found
-acceptable according to the Reviewer's Statement:
-
-Reviewer's statement of oversight
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-By offering my Reviewed-by: tag, I state that:
-
- (a) I have carried out a technical review of this patch to
- evaluate its appropriateness and readiness for inclusion into
- the mainline kernel.
-
- (b) Any problems, concerns, or questions relating to the patch
- have been communicated back to the submitter. I am satisfied
- with the submitter's response to my comments.
-
- (c) While there may be things that could be improved with this
- submission, I believe that it is, at this time, (1) a
- worthwhile modification to the kernel, and (2) free of known
- issues which would argue against its inclusion.
-
- (d) While I have reviewed the patch and believe it to be sound, I
- do not (unless explicitly stated elsewhere) make any
- warranties or guarantees that it will achieve its stated
- purpose or function properly in any given situation.
-
-A Reviewed-by tag is a statement of opinion that the patch is an
-appropriate modification of the kernel without any remaining serious
-technical issues. Any interested reviewer (who has done the work) can
-offer a Reviewed-by tag for a patch. This tag serves to give credit to
-reviewers and to inform maintainers of the degree of review which has been
-done on the patch. Reviewed-by: tags, when supplied by reviewers known to
-understand the subject area and to perform thorough reviews, will normally
-increase the likelihood of your patch getting into the kernel.
-
-A Suggested-by: tag indicates that the patch idea is suggested by the person
-named and ensures credit to the person for the idea. Please note that this
-tag should not be added without the reporter's permission, especially if the
-idea was not posted in a public forum. That said, if we diligently credit our
-idea reporters, they will, hopefully, be inspired to help us again in the
-future.
-
-A Fixes: tag indicates that the patch fixes an issue in a previous commit. It
-is used to make it easy to determine where a bug originated, which can help
-review a bug fix. This tag also assists the stable kernel team in determining
-which stable kernel versions should receive your fix. This is the preferred
-method for indicating a bug fixed by the patch. See :ref:`describe_changes`
-for more details.
-
-
-14) The canonical patch format
-------------------------------
-
-This section describes how the patch itself should be formatted. Note
-that, if you have your patches stored in a ``git`` repository, proper patch
-formatting can be had with ``git format-patch``. The tools cannot create
-the necessary text, though, so read the instructions below anyway.
-
-The canonical patch subject line is::
-
- Subject: [PATCH 001/123] subsystem: summary phrase
-
-The canonical patch message body contains the following:
-
- - A ``from`` line specifying the patch author (only needed if the person
- sending the patch is not the author).
-
- - An empty line.
-
- - The body of the explanation, line wrapped at 75 columns, which will
- be copied to the permanent changelog to describe this patch.
-
- - The ``Signed-off-by:`` lines, described above, which will
- also go in the changelog.
-
- - A marker line containing simply ``---``.
-
- - Any additional comments not suitable for the changelog.
-
- - The actual patch (``diff`` output).
-
-The Subject line format makes it very easy to sort the emails
-alphabetically by subject line - pretty much any email reader will
-support that - since because the sequence number is zero-padded,
-the numerical and alphabetic sort is the same.
-
-The ``subsystem`` in the email's Subject should identify which
-area or subsystem of the kernel is being patched.
-
-The ``summary phrase`` in the email's Subject should concisely
-describe the patch which that email contains. The ``summary
-phrase`` should not be a filename. Do not use the same ``summary
-phrase`` for every patch in a whole patch series (where a ``patch
-series`` is an ordered sequence of multiple, related patches).
-
-Bear in mind that the ``summary phrase`` of your email becomes a
-globally-unique identifier for that patch. It propagates all the way
-into the ``git`` changelog. The ``summary phrase`` may later be used in
-developer discussions which refer to the patch. People will want to
-google for the ``summary phrase`` to read discussion regarding that
-patch. It will also be the only thing that people may quickly see
-when, two or three months later, they are going through perhaps
-thousands of patches using tools such as ``gitk`` or ``git log
---oneline``.
-
-For these reasons, the ``summary`` must be no more than 70-75
-characters, and it must describe both what the patch changes, as well
-as why the patch might be necessary. It is challenging to be both
-succinct and descriptive, but that is what a well-written summary
-should do.
-
-The ``summary phrase`` may be prefixed by tags enclosed in square
-brackets: "Subject: [PATCH <tag>...] <summary phrase>". The tags are
-not considered part of the summary phrase, but describe how the patch
-should be treated. Common tags might include a version descriptor if
-the multiple versions of the patch have been sent out in response to
-comments (i.e., "v1, v2, v3"), or "RFC" to indicate a request for
-comments. If there are four patches in a patch series the individual
-patches may be numbered like this: 1/4, 2/4, 3/4, 4/4. This assures
-that developers understand the order in which the patches should be
-applied and that they have reviewed or applied all of the patches in
-the patch series.
-
-A couple of example Subjects::
-
- Subject: [PATCH 2/5] ext2: improve scalability of bitmap searching
- Subject: [PATCH v2 01/27] x86: fix eflags tracking
-
-The ``from`` line must be the very first line in the message body,
-and has the form:
-
- From: Original Author <author@example.com>
-
-The ``from`` line specifies who will be credited as the author of the
-patch in the permanent changelog. If the ``from`` line is missing,
-then the ``From:`` line from the email header will be used to determine
-the patch author in the changelog.
-
-The explanation body will be committed to the permanent source
-changelog, so should make sense to a competent reader who has long
-since forgotten the immediate details of the discussion that might
-have led to this patch. Including symptoms of the failure which the
-patch addresses (kernel log messages, oops messages, etc.) is
-especially useful for people who might be searching the commit logs
-looking for the applicable patch. If a patch fixes a compile failure,
-it may not be necessary to include _all_ of the compile failures; just
-enough that it is likely that someone searching for the patch can find
-it. As in the ``summary phrase``, it is important to be both succinct as
-well as descriptive.
-
-The ``---`` marker line serves the essential purpose of marking for patch
-handling tools where the changelog message ends.
-
-One good use for the additional comments after the ``---`` marker is for
-a ``diffstat``, to show what files have changed, and the number of
-inserted and deleted lines per file. A ``diffstat`` is especially useful
-on bigger patches. Other comments relevant only to the moment or the
-maintainer, not suitable for the permanent changelog, should also go
-here. A good example of such comments might be ``patch changelogs``
-which describe what has changed between the v1 and v2 version of the
-patch.
-
-If you are going to include a ``diffstat`` after the ``---`` marker, please
-use ``diffstat`` options ``-p 1 -w 70`` so that filenames are listed from
-the top of the kernel source tree and don't use too much horizontal
-space (easily fit in 80 columns, maybe with some indentation). (``git``
-generates appropriate diffstats by default.)
-
-See more details on the proper patch format in the following
-references.
-
-.. _explicit_in_reply_to:
-
-15) Explicit In-Reply-To headers
---------------------------------
-
-It can be helpful to manually add In-Reply-To: headers to a patch
-(e.g., when using ``git send-email``) to associate the patch with
-previous relevant discussion, e.g. to link a bug fix to the email with
-the bug report. However, for a multi-patch series, it is generally
-best to avoid using In-Reply-To: to link to older versions of the
-series. This way multiple versions of the patch don't become an
-unmanageable forest of references in email clients. If a link is
-helpful, you can use the https://lkml.kernel.org/ redirector (e.g., in
-the cover email text) to link to an earlier version of the patch series.
-
-
-16) Sending ``git pull`` requests
----------------------------------
-
-If you have a series of patches, it may be most convenient to have the
-maintainer pull them directly into the subsystem repository with a
-``git pull`` operation. Note, however, that pulling patches from a developer
-requires a higher degree of trust than taking patches from a mailing list.
-As a result, many subsystem maintainers are reluctant to take pull
-requests, especially from new, unknown developers. If in doubt you can use
-the pull request as the cover letter for a normal posting of the patch
-series, giving the maintainer the option of using either.
-
-A pull request should have [GIT] or [PULL] in the subject line. The
-request itself should include the repository name and the branch of
-interest on a single line; it should look something like::
-
- Please pull from
-
- git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
-
- to get these changes:
-
-A pull request should also include an overall message saying what will be
-included in the request, a ``git shortlog`` listing of the patches
-themselves, and a ``diffstat`` showing the overall effect of the patch series.
-The easiest way to get all this information together is, of course, to let
-``git`` do it for you with the ``git request-pull`` command.
-
-Some maintainers (including Linus) want to see pull requests from signed
-commits; that increases their confidence that the request actually came
-from you. Linus, in particular, will not pull from public hosting sites
-like GitHub in the absence of a signed tag.
-
-The first step toward creating such tags is to make a GNUPG key and get it
-signed by one or more core kernel developers. This step can be hard for
-new developers, but there is no way around it. Attending conferences can
-be a good way to find developers who can sign your key.
-
-Once you have prepared a patch series in ``git`` that you wish to have somebody
-pull, create a signed tag with ``git tag -s``. This will create a new tag
-identifying the last commit in the series and containing a signature
-created with your private key. You will also have the opportunity to add a
-changelog-style message to the tag; this is an ideal place to describe the
-effects of the pull request as a whole.
-
-If the tree the maintainer will be pulling from is not the repository you
-are working from, don't forget to push the signed tag explicitly to the
-public tree.
-
-When generating your pull request, use the signed tag as the target. A
-command like this will do the trick::
-
- git request-pull master git://my.public.tree/linux.git my-signed-tag
-
-
-REFERENCES
-**********
-
-Andrew Morton, "The perfect patch" (tpp).
- <http://www.ozlabs.org/~akpm/stuff/tpp.txt>
-
-Jeff Garzik, "Linux kernel patch submission format".
- <http://linux.yyz.us/patch-format.html>
-
-Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
- <http://www.kroah.com/log/linux/maintainer.html>
-
- <http://www.kroah.com/log/linux/maintainer-02.html>
-
- <http://www.kroah.com/log/linux/maintainer-03.html>
-
- <http://www.kroah.com/log/linux/maintainer-04.html>
-
- <http://www.kroah.com/log/linux/maintainer-05.html>
-
- <http://www.kroah.com/log/linux/maintainer-06.html>
-
-NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
- <https://lkml.org/lkml/2005/7/11/336>
-
-Kernel Documentation/CodingStyle:
- :ref:`Documentation/CodingStyle <codingstyle>`
-
-Linus Torvalds's mail on the canonical patch format:
- <http://lkml.org/lkml/2005/4/7/183>
-
-Andi Kleen, "On submitting kernel patches"
- Some strategies to get difficult or controversial changes in.
-
- http://halobates.de/on-submitting-patches.pdf
-
+This file has moved to process/submitting-patches.rst
diff --git a/Documentation/VGA-softcursor.txt b/Documentation/VGA-softcursor.txt
deleted file mode 100644
index 70acfbf..0000000
--- a/Documentation/VGA-softcursor.txt
+++ /dev/null
@@ -1,39 +0,0 @@
-Software cursor for VGA by Pavel Machek <pavel@atrey.karlin.mff.cuni.cz>
-======================= and Martin Mares <mj@atrey.karlin.mff.cuni.cz>
-
- Linux now has some ability to manipulate cursor appearance. Normally, you
-can set the size of hardware cursor (and also work around some ugly bugs in
-those miserable Trident cards--see #define TRIDENT_GLITCH in drivers/video/
-vgacon.c). You can now play a few new tricks: you can make your cursor look
-like a non-blinking red block, make it inverse background of the character it's
-over or to highlight that character and still choose whether the original
-hardware cursor should remain visible or not. There may be other things I have
-never thought of.
-
- The cursor appearance is controlled by a "<ESC>[?1;2;3c" escape sequence
-where 1, 2 and 3 are parameters described below. If you omit any of them,
-they will default to zeroes.
-
- Parameter 1 specifies cursor size (0=default, 1=invisible, 2=underline, ...,
-8=full block) + 16 if you want the software cursor to be applied + 32 if you
-want to always change the background color + 64 if you dislike having the
-background the same as the foreground. Highlights are ignored for the last two
-flags.
-
- The second parameter selects character attribute bits you want to change
-(by simply XORing them with the value of this parameter). On standard VGA,
-the high four bits specify background and the low four the foreground. In both
-groups, low three bits set color (as in normal color codes used by the console)
-and the most significant one turns on highlight (or sometimes blinking--it
-depends on the configuration of your VGA).
-
- The third parameter consists of character attribute bits you want to set.
-Bit setting takes place before bit toggling, so you can simply clear a bit by
-including it in both the set mask and the toggle mask.
-
-Examples:
-=========
-
-To get normal blinking underline, use: echo -e '\033[?2c'
-To get blinking block, use: echo -e '\033[?6c'
-To get red non-blinking block, use: echo -e '\033[?17;0;64c'
diff --git a/Documentation/acpi/video_extension.txt b/Documentation/acpi/video_extension.txt
index 78b32ac..79bf6a4 100644
--- a/Documentation/acpi/video_extension.txt
+++ b/Documentation/acpi/video_extension.txt
@@ -101,6 +101,6 @@ received a notification, it will set the backlight level accordingly. This does
not affect the sending of event to user space, they are always sent to user
space regardless of whether or not the video module controls the backlight level
directly. This behaviour can be controlled through the brightness_switch_enabled
-module parameter as documented in kernel-parameters.txt. It is recommended to
+module parameter as documented in admin-guide/kernel-parameters.rst. It is recommended to
disable this behaviour once a GUI environment starts up and wants to have full
control of the backlight level.
diff --git a/Documentation/admin-guide/README.rst b/Documentation/admin-guide/README.rst
new file mode 100644
index 0000000..1b6dfb2
--- /dev/null
+++ b/Documentation/admin-guide/README.rst
@@ -0,0 +1,411 @@
+Linux kernel release 4.x <http://kernel.org/>
+=============================================
+
+These are the release notes for Linux version 4. Read them carefully,
+as they tell you what this is all about, explain how to install the
+kernel, and what to do if something goes wrong.
+
+What is Linux?
+--------------
+
+ Linux is a clone of the operating system Unix, written from scratch by
+ Linus Torvalds with assistance from a loosely-knit team of hackers across
+ the Net. It aims towards POSIX and Single UNIX Specification compliance.
+
+ It has all the features you would expect in a modern fully-fledged Unix,
+ including true multitasking, virtual memory, shared libraries, demand
+ loading, shared copy-on-write executables, proper memory management,
+ and multistack networking including IPv4 and IPv6.
+
+ It is distributed under the GNU General Public License - see the
+ accompanying COPYING file for more details.
+
+On what hardware does it run?
+-----------------------------
+
+ Although originally developed first for 32-bit x86-based PCs (386 or higher),
+ today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
+ UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
+ IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
+ Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.
+
+ Linux is easily portable to most general-purpose 32- or 64-bit architectures
+ as long as they have a paged memory management unit (PMMU) and a port of the
+ GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
+ also been ported to a number of architectures without a PMMU, although
+ functionality is then obviously somewhat limited.
+ Linux has also been ported to itself. You can now run the kernel as a
+ userspace application - this is called UserMode Linux (UML).
+
+Documentation
+-------------
+
+ - There is a lot of documentation available both in electronic form on
+ the Internet and in books, both Linux-specific and pertaining to
+ general UNIX questions. I'd recommend looking into the documentation
+ subdirectories on any Linux FTP site for the LDP (Linux Documentation
+ Project) books. This README is not meant to be documentation on the
+ system: there are much better sources available.
+
+ - There are various README files in the Documentation/ subdirectory:
+ these typically contain kernel-specific installation notes for some
+ drivers for example. See Documentation/00-INDEX for a list of what
+ is contained in each file. Please read the
+ :ref:`Documentation/process/changes.rst <changes>` file, as it
+ contains information about the problems, which may result by upgrading
+ your kernel.
+
+ - The Documentation/DocBook/ subdirectory contains several guides for
+ kernel developers and users. These guides can be rendered in a
+ number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others.
+ After installation, ``make psdocs``, ``make pdfdocs``, ``make htmldocs``,
+ or ``make mandocs`` will render the documentation in the requested format.
+
+Installing the kernel source
+----------------------------
+
+ - If you install the full sources, put the kernel tarball in a
+ directory where you have permissions (e.g. your home directory) and
+ unpack it::
+
+ xz -cd linux-4.X.tar.xz | tar xvf -
+
+ Replace "X" with the version number of the latest kernel.
+
+ Do NOT use the /usr/src/linux area! This area has a (usually
+ incomplete) set of kernel headers that are used by the library header
+ files. They should match the library, and not get messed up by
+ whatever the kernel-du-jour happens to be.
+
+ - You can also upgrade between 4.x releases by patching. Patches are
+ distributed in the xz format. To install by patching, get all the
+ newer patch files, enter the top level directory of the kernel source
+ (linux-4.X) and execute::
+
+ xz -cd ../patch-4.x.xz | patch -p1
+
+ Replace "x" for all versions bigger than the version "X" of your current
+ source tree, **in_order**, and you should be ok. You may want to remove
+ the backup files (some-file-name~ or some-file-name.orig), and make sure
+ that there are no failed patches (some-file-name# or some-file-name.rej).
+ If there are, either you or I have made a mistake.
+
+ Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
+ (also known as the -stable kernels) are not incremental but instead apply
+ directly to the base 4.x kernel. For example, if your base kernel is 4.0
+ and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
+ and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
+ want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
+ patch -R) **before** applying the 4.0.3 patch. You can read more on this in
+ :ref:`Documentation/process/applying-patches.rst <applying_patches>`.
+
+ Alternatively, the script patch-kernel can be used to automate this
+ process. It determines the current kernel version and applies any
+ patches found::
+
+ linux/scripts/patch-kernel linux
+
+ The first argument in the command above is the location of the
+ kernel source. Patches are applied from the current directory, but
+ an alternative directory can be specified as the second argument.
+
+ - Make sure you have no stale .o files and dependencies lying around::
+
+ cd linux
+ make mrproper
+
+ You should now have the sources correctly installed.
+
+Software requirements
+---------------------
+
+ Compiling and running the 4.x kernels requires up-to-date
+ versions of various software packages. Consult
+ :ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers
+ required and how to get updates for these packages. Beware that using
+ excessively old versions of these packages can cause indirect
+ errors that are very difficult to track down, so don't assume that
+ you can just update packages when obvious problems arise during
+ build or operation.
+
+Build directory for the kernel
+------------------------------
+
+ When compiling the kernel, all output files will per default be
+ stored together with the kernel source code.
+ Using the option ``make O=output/dir`` allows you to specify an alternate
+ place for the output files (including .config).
+ Example::
+
+ kernel source code: /usr/src/linux-4.X
+ build directory: /home/name/build/kernel
+
+ To configure and build the kernel, use::
+
+ cd /usr/src/linux-4.X
+ make O=/home/name/build/kernel menuconfig
+ make O=/home/name/build/kernel
+ sudo make O=/home/name/build/kernel modules_install install
+
+ Please note: If the ``O=output/dir`` option is used, then it must be
+ used for all invocations of make.
+
+Configuring the kernel
+----------------------
+
+ Do not skip this step even if you are only upgrading one minor
+ version. New configuration options are added in each release, and
+ odd problems will turn up if the configuration files are not set up
+ as expected. If you want to carry your existing configuration to a
+ new version with minimal work, use ``make oldconfig``, which will
+ only ask you for the answers to new questions.
+
+ - Alternative configuration commands are::
+
+ "make config" Plain text interface.
+
+ "make menuconfig" Text based color menus, radiolists & dialogs.
+
+ "make nconfig" Enhanced text based color menus.
+
+ "make xconfig" Qt based configuration tool.
+
+ "make gconfig" GTK+ based configuration tool.
+
+ "make oldconfig" Default all questions based on the contents of
+ your existing ./.config file and asking about
+ new config symbols.
+
+ "make silentoldconfig"
+ Like above, but avoids cluttering the screen
+ with questions already answered.
+ Additionally updates the dependencies.
+
+ "make olddefconfig"
+ Like above, but sets new symbols to their default
+ values without prompting.
+
+ "make defconfig" Create a ./.config file by using the default
+ symbol values from either arch/$ARCH/defconfig
+ or arch/$ARCH/configs/${PLATFORM}_defconfig,
+ depending on the architecture.
+
+ "make ${PLATFORM}_defconfig"
+ Create a ./.config file by using the default
+ symbol values from
+ arch/$ARCH/configs/${PLATFORM}_defconfig.
+ Use "make help" to get a list of all available
+ platforms of your architecture.
+
+ "make allyesconfig"
+ Create a ./.config file by setting symbol
+ values to 'y' as much as possible.
+
+ "make allmodconfig"
+ Create a ./.config file by setting symbol
+ values to 'm' as much as possible.
+
+ "make allnoconfig" Create a ./.config file by setting symbol
+ values to 'n' as much as possible.
+
+ "make randconfig" Create a ./.config file by setting symbol
+ values to random values.
+
+ "make localmodconfig" Create a config based on current config and
+ loaded modules (lsmod). Disables any module
+ option that is not needed for the loaded modules.
+
+ To create a localmodconfig for another machine,
+ store the lsmod of that machine into a file
+ and pass it in as a LSMOD parameter.
+
+ target$ lsmod > /tmp/mylsmod
+ target$ scp /tmp/mylsmod host:/tmp
+
+ host$ make LSMOD=/tmp/mylsmod localmodconfig
+
+ The above also works when cross compiling.
+
+ "make localyesconfig" Similar to localmodconfig, except it will convert
+ all module options to built in (=y) options.
+
+ You can find more information on using the Linux kernel config tools
+ in Documentation/kbuild/kconfig.txt.
+
+ - NOTES on ``make config``:
+
+ - Having unnecessary drivers will make the kernel bigger, and can
+ under some circumstances lead to problems: probing for a
+ nonexistent controller card may confuse your other controllers
+
+ - A kernel with math-emulation compiled in will still use the
+ coprocessor if one is present: the math emulation will just
+ never get used in that case. The kernel will be slightly larger,
+ but will work on different machines regardless of whether they
+ have a math coprocessor or not.
+
+ - The "kernel hacking" configuration details usually result in a
+ bigger or slower kernel (or both), and can even make the kernel
+ less stable by configuring some routines to actively try to
+ break bad code to find kernel problems (kmalloc()). Thus you
+ should probably answer 'n' to the questions for "development",
+ "experimental", or "debugging" features.
+
+Compiling the kernel
+--------------------
+
+ - Make sure you have at least gcc 3.2 available.
+ For more information, refer to :ref:`Documentation/process/changes.rst <changes>`.
+
+ Please note that you can still run a.out user programs with this kernel.
+
+ - Do a ``make`` to create a compressed kernel image. It is also
+ possible to do ``make install`` if you have lilo installed to suit the
+ kernel makefiles, but you may want to check your particular lilo setup first.
+
+ To do the actual install, you have to be root, but none of the normal
+ build should require that. Don't take the name of root in vain.
+
+ - If you configured any of the parts of the kernel as ``modules``, you
+ will also have to do ``make modules_install``.
+
+ - Verbose kernel compile/build output:
+
+ Normally, the kernel build system runs in a fairly quiet mode (but not
+ totally silent). However, sometimes you or other kernel developers need
+ to see compile, link, or other commands exactly as they are executed.
+ For this, use "verbose" build mode. This is done by passing
+ ``V=1`` to the ``make`` command, e.g.::
+
+ make V=1 all
+
+ To have the build system also tell the reason for the rebuild of each
+ target, use ``V=2``. The default is ``V=0``.
+
+ - Keep a backup kernel handy in case something goes wrong. This is
+ especially true for the development releases, since each new release
+ contains new code which has not been debugged. Make sure you keep a
+ backup of the modules corresponding to that kernel, as well. If you
+ are installing a new kernel with the same version number as your
+ working kernel, make a backup of your modules directory before you
+ do a ``make modules_install``.
+
+ Alternatively, before compiling, use the kernel config option
+ "LOCALVERSION" to append a unique suffix to the regular kernel version.
+ LOCALVERSION can be set in the "General Setup" menu.
+
+ - In order to boot your new kernel, you'll need to copy the kernel
+ image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
+ to the place where your regular bootable kernel is found.
+
+ - Booting a kernel directly from a floppy without the assistance of a
+ bootloader such as LILO, is no longer supported.
+
+ If you boot Linux from the hard drive, chances are you use LILO, which
+ uses the kernel image as specified in the file /etc/lilo.conf. The
+ kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
+ /boot/bzImage. To use the new kernel, save a copy of the old image
+ and copy the new image over the old one. Then, you MUST RERUN LILO
+ to update the loading map! If you don't, you won't be able to boot
+ the new kernel image.
+
+ Reinstalling LILO is usually a matter of running /sbin/lilo.
+ You may wish to edit /etc/lilo.conf to specify an entry for your
+ old kernel image (say, /vmlinux.old) in case the new one does not
+ work. See the LILO docs for more information.
+
+ After reinstalling LILO, you should be all set. Shutdown the system,
+ reboot, and enjoy!
+
+ If you ever need to change the default root device, video mode,
+ ramdisk size, etc. in the kernel image, use the ``rdev`` program (or
+ alternatively the LILO boot options when appropriate). No need to
+ recompile the kernel to change these parameters.
+
+ - Reboot with the new kernel and enjoy.
+
+If something goes wrong
+-----------------------
+
+ - If you have problems that seem to be due to kernel bugs, please check
+ the file MAINTAINERS to see if there is a particular person associated
+ with the part of the kernel that you are having trouble with. If there
+ isn't anyone listed there, then the second best thing is to mail
+ them to me (torvalds@linux-foundation.org), and possibly to any other
+ relevant mailing-list or to the newsgroup.
+
+ - In all bug-reports, *please* tell what kernel you are talking about,
+ how to duplicate the problem, and what your setup is (use your common
+ sense). If the problem is new, tell me so, and if the problem is
+ old, please try to tell me when you first noticed it.
+
+ - If the bug results in a message like::
+
+ unable to handle kernel paging request at address C0000010
+ Oops: 0002
+ EIP: 0010:XXXXXXXX
+ eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
+ esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
+ ds: xxxx es: xxxx fs: xxxx gs: xxxx
+ Pid: xx, process nr: xx
+ xx xx xx xx xx xx xx xx xx xx
+
+ or similar kernel debugging information on your screen or in your
+ system log, please duplicate it *exactly*. The dump may look
+ incomprehensible to you, but it does contain information that may
+ help debugging the problem. The text above the dump is also
+ important: it tells something about why the kernel dumped code (in
+ the above example, it's due to a bad kernel pointer). More information
+ on making sense of the dump is in Documentation/admin-guide/oops-tracing.rst
+
+ - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
+ as is, otherwise you will have to use the ``ksymoops`` program to make
+ sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
+ This utility can be downloaded from
+ ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
+ Alternatively, you can do the dump lookup by hand:
+
+ - In debugging dumps like the above, it helps enormously if you can
+ look up what the EIP value means. The hex value as such doesn't help
+ me or anybody else very much: it will depend on your particular
+ kernel setup. What you should do is take the hex value from the EIP
+ line (ignore the ``0010:``), and look it up in the kernel namelist to
+ see which kernel function contains the offending address.
+
+ To find out the kernel function name, you'll need to find the system
+ binary associated with the kernel that exhibited the symptom. This is
+ the file 'linux/vmlinux'. To extract the namelist and match it against
+ the EIP from the kernel crash, do::
+
+ nm vmlinux | sort | less
+
+ This will give you a list of kernel addresses sorted in ascending
+ order, from which it is simple to find the function that contains the
+ offending address. Note that the address given by the kernel
+ debugging messages will not necessarily match exactly with the
+ function addresses (in fact, that is very unlikely), so you can't
+ just 'grep' the list: the list will, however, give you the starting
+ point of each kernel function, so by looking for the function that
+ has a starting address lower than the one you are searching for but
+ is followed by a function with a higher address you will find the one
+ you want. In fact, it may be a good idea to include a bit of
+ "context" in your problem report, giving a few lines around the
+ interesting one.
+
+ If you for some reason cannot do the above (you have a pre-compiled
+ kernel image or similar), telling me as much about your setup as
+ possible will help. Please read the :ref:`admin-guide/reporting-bugs.rst <reportingbugs>`
+ document for details.
+
+ - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
+ cannot change values or set break points.) To do this, first compile the
+ kernel with -g; edit arch/x86/Makefile appropriately, then do a ``make
+ clean``. You'll also need to enable CONFIG_PROC_FS (via ``make config``).
+
+ After you've rebooted with the new kernel, do ``gdb vmlinux /proc/kcore``.
+ You can now use all the usual gdb commands. The command to look up the
+ point where your system crashed is ``l *0xXXXXXXXX``. (Replace the XXXes
+ with the EIP value.)
+
+ gdb'ing a non-running kernel currently fails because ``gdb`` (wrongly)
+ disregards the starting offset for which the kernel is compiled.
diff --git a/Documentation/admin-guide/binfmt-misc.rst b/Documentation/admin-guide/binfmt-misc.rst
new file mode 100644
index 0000000..97b0d79
--- /dev/null
+++ b/Documentation/admin-guide/binfmt-misc.rst
@@ -0,0 +1,151 @@
+Kernel Support for miscellaneous (your favourite) Binary Formats v1.1
+=====================================================================
+
+This Kernel feature allows you to invoke almost (for restrictions see below)
+every program by simply typing its name in the shell.
+This includes for example compiled Java(TM), Python or Emacs programs.
+
+To achieve this you must tell binfmt_misc which interpreter has to be invoked
+with which binary. Binfmt_misc recognises the binary-type by matching some bytes
+at the beginning of the file with a magic byte sequence (masking out specified
+bits) you have supplied. Binfmt_misc can also recognise a filename extension
+aka ``.com`` or ``.exe``.
+
+First you must mount binfmt_misc::
+
+ mount binfmt_misc -t binfmt_misc /proc/sys/fs/binfmt_misc
+
+To actually register a new binary type, you have to set up a string looking like
+``:name:type:offset:magic:mask:interpreter:flags`` (where you can choose the
+``:`` upon your needs) and echo it to ``/proc/sys/fs/binfmt_misc/register``.
+
+Here is what the fields mean:
+
+- ``name``
+ is an identifier string. A new /proc file will be created with this
+ ``name below /proc/sys/fs/binfmt_misc``; cannot contain slashes ``/`` for
+ obvious reasons.
+- ``type``
+ is the type of recognition. Give ``M`` for magic and ``E`` for extension.
+- ``offset``
+ is the offset of the magic/mask in the file, counted in bytes. This
+ defaults to 0 if you omit it (i.e. you write ``:name:type::magic...``).
+ Ignored when using filename extension matching.
+- ``magic``
+ is the byte sequence binfmt_misc is matching for. The magic string
+ may contain hex-encoded characters like ``\x0a`` or ``\xA4``. Note that you
+ must escape any NUL bytes; parsing halts at the first one. In a shell
+ environment you might have to write ``\\x0a`` to prevent the shell from
+ eating your ``\``.
+ If you chose filename extension matching, this is the extension to be
+ recognised (without the ``.``, the ``\x0a`` specials are not allowed).
+ Extension matching is case sensitive, and slashes ``/`` are not allowed!
+- ``mask``
+ is an (optional, defaults to all 0xff) mask. You can mask out some
+ bits from matching by supplying a string like magic and as long as magic.
+ The mask is anded with the byte sequence of the file. Note that you must
+ escape any NUL bytes; parsing halts at the first one. Ignored when using
+ filename extension matching.
+- ``interpreter``
+ is the program that should be invoked with the binary as first
+ argument (specify the full path)
+- ``flags``
+ is an optional field that controls several aspects of the invocation
+ of the interpreter. It is a string of capital letters, each controls a
+ certain aspect. The following flags are supported:
+
+ ``P`` - preserve-argv[0]
+ Legacy behavior of binfmt_misc is to overwrite
+ the original argv[0] with the full path to the binary. When this
+ flag is included, binfmt_misc will add an argument to the argument
+ vector for this purpose, thus preserving the original ``argv[0]``.
+ e.g. If your interp is set to ``/bin/foo`` and you run ``blah``
+ (which is in ``/usr/local/bin``), then the kernel will execute
+ ``/bin/foo`` with ``argv[]`` set to ``["/bin/foo", "/usr/local/bin/blah", "blah"]``. The interp has to be aware of this so it can
+ execute ``/usr/local/bin/blah``
+ with ``argv[]`` set to ``["blah"]``.
+ ``O`` - open-binary
+ Legacy behavior of binfmt_misc is to pass the full path
+ of the binary to the interpreter as an argument. When this flag is
+ included, binfmt_misc will open the file for reading and pass its
+ descriptor as an argument, instead of the full path, thus allowing
+ the interpreter to execute non-readable binaries. This feature
+ should be used with care - the interpreter has to be trusted not to
+ emit the contents of the non-readable binary.
+ ``C`` - credentials
+ Currently, the behavior of binfmt_misc is to calculate
+ the credentials and security token of the new process according to
+ the interpreter. When this flag is included, these attributes are
+ calculated according to the binary. It also implies the ``O`` flag.
+ This feature should be used with care as the interpreter
+ will run with root permissions when a setuid binary owned by root
+ is run with binfmt_misc.
+ ``F`` - fix binary
+ The usual behaviour of binfmt_misc is to spawn the
+ binary lazily when the misc format file is invoked. However,
+ this doesn``t work very well in the face of mount namespaces and
+ changeroots, so the ``F`` mode opens the binary as soon as the
+ emulation is installed and uses the opened image to spawn the
+ emulator, meaning it is always available once installed,
+ regardless of how the environment changes.
+
+
+There are some restrictions:
+
+ - the whole register string may not exceed 1920 characters
+ - the magic must reside in the first 128 bytes of the file, i.e.
+ offset+size(magic) has to be less than 128
+ - the interpreter string may not exceed 127 characters
+
+To use binfmt_misc you have to mount it first. You can mount it with
+``mount -t binfmt_misc none /proc/sys/fs/binfmt_misc`` command, or you can add
+a line ``none /proc/sys/fs/binfmt_misc binfmt_misc defaults 0 0`` to your
+``/etc/fstab`` so it auto mounts on boot.
+
+You may want to add the binary formats in one of your ``/etc/rc`` scripts during
+boot-up. Read the manual of your init program to figure out how to do this
+right.
+
+Think about the order of adding entries! Later added entries are matched first!
+
+
+A few examples (assumed you are in ``/proc/sys/fs/binfmt_misc``):
+
+- enable support for em86 (like binfmt_em86, for Alpha AXP only)::
+
+ echo ':i386:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x03:\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' > register
+ echo ':i486:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x06:\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' > register
+
+- enable support for packed DOS applications (pre-configured dosemu hdimages)::
+
+ echo ':DEXE:M::\x0eDEX::/usr/bin/dosexec:' > register
+
+- enable support for Windows executables using wine::
+
+ echo ':DOSWin:M::MZ::/usr/local/bin/wine:' > register
+
+For java support see Documentation/admin-guide/java.rst
+
+
+You can enable/disable binfmt_misc or one binary type by echoing 0 (to disable)
+or 1 (to enable) to ``/proc/sys/fs/binfmt_misc/status`` or
+``/proc/.../the_name``.
+Catting the file tells you the current status of ``binfmt_misc/the_entry``.
+
+You can remove one entry or all entries by echoing -1 to ``/proc/.../the_name``
+or ``/proc/sys/fs/binfmt_misc/status``.
+
+
+Hints
+-----
+
+If you want to pass special arguments to your interpreter, you can
+write a wrapper script for it. See Documentation/admin-guide/java.rst for an
+example.
+
+Your interpreter should NOT look in the PATH for the filename; the kernel
+passes it the full filename (or the file descriptor) to use. Using ``$PATH`` can
+cause unexpected behaviour and can be a security hazard.
+
+
+Richard Günther <rguenth@tat.physik.uni-tuebingen.de>
diff --git a/Documentation/admin-guide/braille-console.rst b/Documentation/admin-guide/braille-console.rst
new file mode 100644
index 0000000..18e7933
--- /dev/null
+++ b/Documentation/admin-guide/braille-console.rst
@@ -0,0 +1,38 @@
+Linux Braille Console
+=====================
+
+To get early boot messages on a braille device (before userspace screen
+readers can start), you first need to compile the support for the usual serial
+console (see :ref:`Documentation/admin-guide/serial-console.rst <serial_console>`), and
+for braille device
+(in :menuselection:`Device Drivers --> Accessibility support --> Console on braille device`).
+
+Then you need to specify a ``console=brl``, option on the kernel command line, the
+format is::
+
+ console=brl,serial_options...
+
+where ``serial_options...`` are the same as described in
+:ref:`Documentation/admin-guide/serial-console.rst <serial_console>`.
+
+So for instance you can use ``console=brl,ttyS0`` if the braille device is connected to the first serial port, and ``console=brl,ttyS0,115200`` to
+override the baud rate to 115200, etc.
+
+By default, the braille device will just show the last kernel message (console
+mode). To review previous messages, press the Insert key to switch to the VT
+review mode. In review mode, the arrow keys permit to browse in the VT content,
+:kbd:`PAGE-UP`/:kbd:`PAGE-DOWN` keys go at the top/bottom of the screen, and
+the :kbd:`HOME` key goes back
+to the cursor, hence providing very basic screen reviewing facility.
+
+Sound feedback can be obtained by adding the ``braille_console.sound=1`` kernel
+parameter.
+
+For simplicity, only one braille console can be enabled, other uses of
+``console=brl,...`` will be discarded. Also note that it does not interfere with
+the console selection mechanism described in
+:ref:`Documentation/admin-guide/serial-console.rst <serial_console>`.
+
+For now, only the VisioBraille device is supported.
+
+Samuel Thibault <samuel.thibault@ens-lyon.org>
diff --git a/Documentation/admin-guide/bug-bisect.rst b/Documentation/admin-guide/bug-bisect.rst
new file mode 100644
index 0000000..59567da
--- /dev/null
+++ b/Documentation/admin-guide/bug-bisect.rst
@@ -0,0 +1,76 @@
+Bisecting a bug
++++++++++++++++
+
+Last updated: 28 October 2016
+
+Introduction
+============
+
+Always try the latest kernel from kernel.org and build from source. If you are
+not confident in doing that please report the bug to your distribution vendor
+instead of to a kernel developer.
+
+Finding bugs is not always easy. Have a go though. If you can't find it don't
+give up. Report as much as you have found to the relevant maintainer. See
+MAINTAINERS for who that is for the subsystem you have worked on.
+
+Before you submit a bug report read
+:ref:`Documentation/admin-guide/reporting-bugs.rst <reportingbugs>`.
+
+Devices not appearing
+=====================
+
+Often this is caused by udev/systemd. Check that first before blaming it
+on the kernel.
+
+Finding patch that caused a bug
+===============================
+
+Using the provided tools with ``git`` makes finding bugs easy provided the bug
+is reproducible.
+
+Steps to do it:
+
+- build the Kernel from its git source
+- start bisect with [#f1]_::
+
+ $ git bisect start
+
+- mark the broken changeset with::
+
+ $ git bisect bad [commit]
+
+- mark a changeset where the code is known to work with::
+
+ $ git bisect good [commit]
+
+- rebuild the Kernel and test
+- interact with git bisect by using either::
+
+ $ git bisect good
+
+ or::
+
+ $ git bisect bad
+
+ depending if the bug happened on the changeset you're testing
+- After some interactions, git bisect will give you the changeset that
+ likely caused the bug.
+
+- For example, if you know that the current version is bad, and version
+ 4.8 is good, you could do::
+
+ $ git bisect start
+ $ git bisect bad # Current version is bad
+ $ git bisect good v4.8
+
+
+.. [#f1] You can, optionally, provide both good and bad arguments at git
+ start with ``git bisect start [BAD] [GOOD]``
+
+For further references, please read:
+
+- The man page for ``git-bisect``
+- `Fighting regressions with git bisect <https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html>`_
+- `Fully automated bisecting with "git bisect run" <https://lwn.net/Articles/317154>`_
+- `Using Git bisect to figure out when brokenness was introduced <http://webchick.net/node/99>`_
diff --git a/Documentation/admin-guide/bug-hunting.rst b/Documentation/admin-guide/bug-hunting.rst
new file mode 100644
index 0000000..08c4b13
--- /dev/null
+++ b/Documentation/admin-guide/bug-hunting.rst
@@ -0,0 +1,369 @@
+Bug hunting
+===========
+
+Kernel bug reports often come with a stack dump like the one below::
+
+ ------------[ cut here ]------------
+ WARNING: CPU: 1 PID: 28102 at kernel/module.c:1108 module_put+0x57/0x70
+ Modules linked in: dvb_usb_gp8psk(-) dvb_usb dvb_core nvidia_drm(PO) nvidia_modeset(PO) snd_hda_codec_hdmi snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm snd_timer snd soundcore nvidia(PO) [last unloaded: rc_core]
+ CPU: 1 PID: 28102 Comm: rmmod Tainted: P WC O 4.8.4-build.1 #1
+ Hardware name: MSI MS-7309/MS-7309, BIOS V1.12 02/23/2009
+ 00000000 c12ba080 00000000 00000000 c103ed6a c1616014 00000001 00006dc6
+ c1615862 00000454 c109e8a7 c109e8a7 00000009 ffffffff 00000000 f13f6a10
+ f5f5a600 c103ee33 00000009 00000000 00000000 c109e8a7 f80ca4d0 c109f617
+ Call Trace:
+ [<c12ba080>] ? dump_stack+0x44/0x64
+ [<c103ed6a>] ? __warn+0xfa/0x120
+ [<c109e8a7>] ? module_put+0x57/0x70
+ [<c109e8a7>] ? module_put+0x57/0x70
+ [<c103ee33>] ? warn_slowpath_null+0x23/0x30
+ [<c109e8a7>] ? module_put+0x57/0x70
+ [<f80ca4d0>] ? gp8psk_fe_set_frontend+0x460/0x460 [dvb_usb_gp8psk]
+ [<c109f617>] ? symbol_put_addr+0x27/0x50
+ [<f80bc9ca>] ? dvb_usb_adapter_frontend_exit+0x3a/0x70 [dvb_usb]
+ [<f80bb3bf>] ? dvb_usb_exit+0x2f/0xd0 [dvb_usb]
+ [<c13d03bc>] ? usb_disable_endpoint+0x7c/0xb0
+ [<f80bb48a>] ? dvb_usb_device_exit+0x2a/0x50 [dvb_usb]
+ [<c13d2882>] ? usb_unbind_interface+0x62/0x250
+ [<c136b514>] ? __pm_runtime_idle+0x44/0x70
+ [<c13620d8>] ? __device_release_driver+0x78/0x120
+ [<c1362907>] ? driver_detach+0x87/0x90
+ [<c1361c48>] ? bus_remove_driver+0x38/0x90
+ [<c13d1c18>] ? usb_deregister+0x58/0xb0
+ [<c109fbb0>] ? SyS_delete_module+0x130/0x1f0
+ [<c1055654>] ? task_work_run+0x64/0x80
+ [<c1000fa5>] ? exit_to_usermode_loop+0x85/0x90
+ [<c10013f0>] ? do_fast_syscall_32+0x80/0x130
+ [<c1549f43>] ? sysenter_past_esp+0x40/0x6a
+ ---[ end trace 6ebc60ef3981792f ]---
+
+Such stack traces provide enough information to identify the line inside the
+Kernel's source code where the bug happened. Depending on the severity of
+the issue, it may also contain the word **Oops**, as on this one::
+
+ BUG: unable to handle kernel NULL pointer dereference at (null)
+ IP: [<c06969d4>] iret_exc+0x7d0/0xa59
+ *pdpt = 000000002258a001 *pde = 0000000000000000
+ Oops: 0002 [#1] PREEMPT SMP
+ ...
+
+Despite being an **Oops** or some other sort of stack trace, the offended
+line is usually required to identify and handle the bug. Along this chapter,
+we'll refer to "Oops" for all kinds of stack traces that need to be analized.
+
+.. note::
+
+ ``ksymoops`` is useless on 2.6 or upper. Please use the Oops in its original
+ format (from ``dmesg``, etc). Ignore any references in this or other docs to
+ "decoding the Oops" or "running it through ksymoops".
+ If you post an Oops from 2.6+ that has been run through ``ksymoops``,
+ people will just tell you to repost it.
+
+Where is the Oops message is located?
+-------------------------------------
+
+Normally the Oops text is read from the kernel buffers by klogd and
+handed to ``syslogd`` which writes it to a syslog file, typically
+``/var/log/messages`` (depends on ``/etc/syslog.conf``). On systems with
+systemd, it may also be stored by the ``journald`` daemon, and accessed
+by running ``journalctl`` command.
+
+Sometimes ``klogd`` dies, in which case you can run ``dmesg > file`` to
+read the data from the kernel buffers and save it. Or you can
+``cat /proc/kmsg > file``, however you have to break in to stop the transfer,
+``kmsg`` is a "never ending file".
+
+If the machine has crashed so badly that you cannot enter commands or
+the disk is not available then you have three options:
+
+(1) Hand copy the text from the screen and type it in after the machine
+ has restarted. Messy but it is the only option if you have not
+ planned for a crash. Alternatively, you can take a picture of
+ the screen with a digital camera - not nice, but better than
+ nothing. If the messages scroll off the top of the console, you
+ may find that booting with a higher resolution (eg, ``vga=791``)
+ will allow you to read more of the text. (Caveat: This needs ``vesafb``,
+ so won't help for 'early' oopses)
+
+(2) Boot with a serial console (see
+ :ref:`Documentation/admin-guide/serial-console.rst <serial_console>`),
+ run a null modem to a second machine and capture the output there
+ using your favourite communication program. Minicom works well.
+
+(3) Use Kdump (see Documentation/kdump/kdump.txt),
+ extract the kernel ring buffer from old memory with using dmesg
+ gdbmacro in Documentation/kdump/gdbmacros.txt.
+
+Finding the bug's location
+--------------------------
+
+Reporting a bug works best if you point the location of the bug at the
+Kernel source file. There are two methods for doing that. Usually, using
+``gdb`` is easier, but the Kernel should be pre-compiled with debug info.
+
+gdb
+^^^
+
+The GNU debug (``gdb``) is the best way to figure out the exact file and line
+number of the OOPS from the ``vmlinux`` file.
+
+The usage of gdb works best on a kernel compiled with ``CONFIG_DEBUG_INFO``.
+This can be set by running::
+
+ $ ./scripts/config -d COMPILE_TEST -e DEBUG_KERNEL -e DEBUG_INFO
+
+On a kernel compiled with ``CONFIG_DEBUG_INFO``, you can simply copy the
+EIP value from the OOPS::
+
+ EIP: 0060:[<c021e50e>] Not tainted VLI
+
+And use GDB to translate that to human-readable form::
+
+ $ gdb vmlinux
+ (gdb) l *0xc021e50e
+
+If you don't have ``CONFIG_DEBUG_INFO`` enabled, you use the function
+offset from the OOPS::
+
+ EIP is at vt_ioctl+0xda8/0x1482
+
+And recompile the kernel with ``CONFIG_DEBUG_INFO`` enabled::
+
+ $ ./scripts/config -d COMPILE_TEST -e DEBUG_KERNEL -e DEBUG_INFO
+ $ make vmlinux
+ $ gdb vmlinux
+ (gdb) l *vt_ioctl+0xda8
+ 0x1888 is in vt_ioctl (drivers/tty/vt/vt_ioctl.c:293).
+ 288 {
+ 289 struct vc_data *vc = NULL;
+ 290 int ret = 0;
+ 291
+ 292 console_lock();
+ 293 if (VT_BUSY(vc_num))
+ 294 ret = -EBUSY;
+ 295 else if (vc_num)
+ 296 vc = vc_deallocate(vc_num);
+ 297 console_unlock();
+
+or, if you want to be more verbose::
+
+ (gdb) p vt_ioctl
+ $1 = {int (struct tty_struct *, unsigned int, unsigned long)} 0xae0 <vt_ioctl>
+ (gdb) l *0xae0+0xda8
+
+You could, instead, use the object file::
+
+ $ make drivers/tty/
+ $ gdb drivers/tty/vt/vt_ioctl.o
+ (gdb) l *vt_ioctl+0xda8
+
+If you have a call trace, such as::
+
+ Call Trace:
+ [<ffffffff8802c8e9>] :jbd:log_wait_commit+0xa3/0xf5
+ [<ffffffff810482d9>] autoremove_wake_function+0x0/0x2e
+ [<ffffffff8802770b>] :jbd:journal_stop+0x1be/0x1ee
+ ...
+
+this shows the problem likely in the :jbd: module. You can load that module
+in gdb and list the relevant code::
+
+ $ gdb fs/jbd/jbd.ko
+ (gdb) l *log_wait_commit+0xa3
+
+.. note::
+
+ You can also do the same for any function call at the stack trace,
+ like this one::
+
+ [<f80bc9ca>] ? dvb_usb_adapter_frontend_exit+0x3a/0x70 [dvb_usb]
+
+ The position where the above call happened can be seen with::
+
+ $ gdb drivers/media/usb/dvb-usb/dvb-usb.o
+ (gdb) l *dvb_usb_adapter_frontend_exit+0x3a
+
+objdump
+^^^^^^^
+
+To debug a kernel, use objdump and look for the hex offset from the crash
+output to find the valid line of code/assembler. Without debug symbols, you
+will see the assembler code for the routine shown, but if your kernel has
+debug symbols the C code will also be available. (Debug symbols can be enabled
+in the kernel hacking menu of the menu configuration.) For example::
+
+ $ objdump -r -S -l --disassemble net/dccp/ipv4.o
+
+.. note::
+
+ You need to be at the top level of the kernel tree for this to pick up
+ your C files.
+
+If you don't have access to the code you can also debug on some crash dumps
+e.g. crash dump output as shown by Dave Miller::
+
+ EIP is at +0x14/0x4c0
+ ...
+ Code: 44 24 04 e8 6f 05 00 00 e9 e8 fe ff ff 8d 76 00 8d bc 27 00 00
+ 00 00 55 57 56 53 81 ec bc 00 00 00 8b ac 24 d0 00 00 00 8b 5d 08
+ <8b> 83 3c 01 00 00 89 44 24 14 8b 45 28 85 c0 89 44 24 18 0f 85
+
+ Put the bytes into a "foo.s" file like this:
+
+ .text
+ .globl foo
+ foo:
+ .byte .... /* bytes from Code: part of OOPS dump */
+
+ Compile it with "gcc -c -o foo.o foo.s" then look at the output of
+ "objdump --disassemble foo.o".
+
+ Output:
+
+ ip_queue_xmit:
+ push %ebp
+ push %edi
+ push %esi
+ push %ebx
+ sub $0xbc, %esp
+ mov 0xd0(%esp), %ebp ! %ebp = arg0 (skb)
+ mov 0x8(%ebp), %ebx ! %ebx = skb->sk
+ mov 0x13c(%ebx), %eax ! %eax = inet_sk(sk)->opt
+
+Reporting the bug
+-----------------
+
+Once you find where the bug happened, by inspecting its location,
+you could either try to fix it yourself or report it upstream.
+
+In order to report it upstream, you should identify the mailing list
+used for the development of the affected code. This can be done by using
+the ``get_maintainer.pl`` script.
+
+For example, if you find a bug at the gspca's conex.c file, you can get
+their maintainers with::
+
+ $ ./scripts/get_maintainer.pl -f drivers/media/usb/gspca/sonixj.c
+ Hans Verkuil <hverkuil@xs4all.nl> (odd fixer:GSPCA USB WEBCAM DRIVER,commit_signer:1/1=100%)
+ Mauro Carvalho Chehab <mchehab@kernel.org> (maintainer:MEDIA INPUT INFRASTRUCTURE (V4L/DVB),commit_signer:1/1=100%)
+ Tejun Heo <tj@kernel.org> (commit_signer:1/1=100%)
+ Bhaktipriya Shridhar <bhaktipriya96@gmail.com> (commit_signer:1/1=100%,authored:1/1=100%,added_lines:4/4=100%,removed_lines:9/9=100%)
+ linux-media@vger.kernel.org (open list:GSPCA USB WEBCAM DRIVER)
+ linux-kernel@vger.kernel.org (open list)
+
+Please notice that it will point to:
+
+- The last developers that touched on the source code. On the above example,
+ Tejun and Bhaktipriya (in this specific case, none really envolved on the
+ development of this file);
+- The driver maintainer (Hans Verkuil);
+- The subsystem maintainer (Mauro Carvalho Chehab)
+- The driver and/or subsystem mailing list (linux-media@vger.kernel.org);
+- the Linux Kernel mailing list (linux-kernel@vger.kernel.org).
+
+Usually, the fastest way to have your bug fixed is to report it to mailing
+list used for the development of the code (linux-media ML) copying the driver maintainer (Hans).
+
+If you are totally stumped as to whom to send the report, and
+``get_maintainer.pl`` didn't provide you anything useful, send it to
+linux-kernel@vger.kernel.org.
+
+Thanks for your help in making Linux as stable as humanly possible.
+
+Fixing the bug
+--------------
+
+If you know programming, you could help us by not only reporting the bug,
+but also providing us with a solution. After all open source is about
+sharing what you do and don't you want to be recognised for your genius?
+
+If you decide to take this way, once you have worked out a fix please submit
+it upstream.
+
+Please do read
+ref:`Documentation/process/submitting-patches.rst <submittingpatches>` though
+to help your code get accepted.
+
+
+---------------------------------------------------------------------------
+
+Notes on Oops tracing with ``klogd``
+------------------------------------
+
+In order to help Linus and the other kernel developers there has been
+substantial support incorporated into ``klogd`` for processing protection
+faults. In order to have full support for address resolution at least
+version 1.3-pl3 of the ``sysklogd`` package should be used.
+
+When a protection fault occurs the ``klogd`` daemon automatically
+translates important addresses in the kernel log messages to their
+symbolic equivalents. This translated kernel message is then
+forwarded through whatever reporting mechanism ``klogd`` is using. The
+protection fault message can be simply cut out of the message files
+and forwarded to the kernel developers.
+
+Two types of address resolution are performed by ``klogd``. The first is
+static translation and the second is dynamic translation. Static
+translation uses the System.map file in much the same manner that
+ksymoops does. In order to do static translation the ``klogd`` daemon
+must be able to find a system map file at daemon initialization time.
+See the klogd man page for information on how ``klogd`` searches for map
+files.
+
+Dynamic address translation is important when kernel loadable modules
+are being used. Since memory for kernel modules is allocated from the
+kernel's dynamic memory pools there are no fixed locations for either
+the start of the module or for functions and symbols in the module.
+
+The kernel supports system calls which allow a program to determine
+which modules are loaded and their location in memory. Using these
+system calls the klogd daemon builds a symbol table which can be used
+to debug a protection fault which occurs in a loadable kernel module.
+
+At the very minimum klogd will provide the name of the module which
+generated the protection fault. There may be additional symbolic
+information available if the developer of the loadable module chose to
+export symbol information from the module.
+
+Since the kernel module environment can be dynamic there must be a
+mechanism for notifying the ``klogd`` daemon when a change in module
+environment occurs. There are command line options available which
+allow klogd to signal the currently executing daemon that symbol
+information should be refreshed. See the ``klogd`` manual page for more
+information.
+
+A patch is included with the sysklogd distribution which modifies the
+``modules-2.0.0`` package to automatically signal klogd whenever a module
+is loaded or unloaded. Applying this patch provides essentially
+seamless support for debugging protection faults which occur with
+kernel loadable modules.
+
+The following is an example of a protection fault in a loadable module
+processed by ``klogd``::
+
+ Aug 29 09:51:01 blizard kernel: Unable to handle kernel paging request at virtual address f15e97cc
+ Aug 29 09:51:01 blizard kernel: current->tss.cr3 = 0062d000, %cr3 = 0062d000
+ Aug 29 09:51:01 blizard kernel: *pde = 00000000
+ Aug 29 09:51:01 blizard kernel: Oops: 0002
+ Aug 29 09:51:01 blizard kernel: CPU: 0
+ Aug 29 09:51:01 blizard kernel: EIP: 0010:[oops:_oops+16/3868]
+ Aug 29 09:51:01 blizard kernel: EFLAGS: 00010212
+ Aug 29 09:51:01 blizard kernel: eax: 315e97cc ebx: 003a6f80 ecx: 001be77b edx: 00237c0c
+ Aug 29 09:51:01 blizard kernel: esi: 00000000 edi: bffffdb3 ebp: 00589f90 esp: 00589f8c
+ Aug 29 09:51:01 blizard kernel: ds: 0018 es: 0018 fs: 002b gs: 002b ss: 0018
+ Aug 29 09:51:01 blizard kernel: Process oops_test (pid: 3374, process nr: 21, stackpage=00589000)
+ Aug 29 09:51:01 blizard kernel: Stack: 315e97cc 00589f98 0100b0b4 bffffed4 0012e38e 00240c64 003a6f80 00000001
+ Aug 29 09:51:01 blizard kernel: 00000000 00237810 bfffff00 0010a7fa 00000003 00000001 00000000 bfffff00
+ Aug 29 09:51:01 blizard kernel: bffffdb3 bffffed4 ffffffda 0000002b 0007002b 0000002b 0000002b 00000036
+ Aug 29 09:51:01 blizard kernel: Call Trace: [oops:_oops_ioctl+48/80] [_sys_ioctl+254/272] [_system_call+82/128]
+ Aug 29 09:51:01 blizard kernel: Code: c7 00 05 00 00 00 eb 08 90 90 90 90 90 90 90 90 89 ec 5d c3
+
+---------------------------------------------------------------------------
+
+::
+
+ Dr. G.W. Wettstein Oncology Research Div. Computing Facility
+ Roger Maris Cancer Center INTERNET: greg@wind.rmcc.com
+ 820 4th St. N.
+ Fargo, ND 58122
+ Phone: 701-234-7556
diff --git a/Documentation/admin-guide/conf.py b/Documentation/admin-guide/conf.py
new file mode 100644
index 0000000..86f7389
--- /dev/null
+++ b/Documentation/admin-guide/conf.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8; mode: python -*-
+
+project = 'Linux Kernel User Documentation'
+
+tags.add("subproject")
+
+latex_documents = [
+ ('index', 'linux-user.tex', 'Linux Kernel User Documentation',
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/admin-guide/devices.rst b/Documentation/admin-guide/devices.rst
new file mode 100644
index 0000000..7fadc05
--- /dev/null
+++ b/Documentation/admin-guide/devices.rst
@@ -0,0 +1,268 @@
+
+Linux allocated devices (4.x+ version)
+======================================
+
+This list is the Linux Device List, the official registry of allocated
+device numbers and ``/dev`` directory nodes for the Linux operating
+system.
+
+The LaTeX version of this document is no longer maintained, nor is
+the document that used to reside at lanana.org. This version in the
+mainline Linux kernel is the master document. Updates shall be sent
+as patches to the kernel maintainers (see the
+:ref:`Documentation/process/submitting-patches.rst <submittingpatches>` document).
+Specifically explore the sections titled "CHAR and MISC DRIVERS", and
+"BLOCK LAYER" in the MAINTAINERS file to find the right maintainers
+to involve for character and block devices.
+
+This document is included by reference into the Filesystem Hierarchy
+Standard (FHS). The FHS is available from http://www.pathname.com/fhs/.
+
+Allocations marked (68k/Amiga) apply to Linux/68k on the Amiga
+platform only. Allocations marked (68k/Atari) apply to Linux/68k on
+the Atari platform only.
+
+This document is in the public domain. The authors requests, however,
+that semantically altered versions are not distributed without
+permission of the authors, assuming the authors can be contacted without
+an unreasonable effort.
+
+
+.. attention::
+
+ DEVICE DRIVERS AUTHORS PLEASE READ THIS
+
+ Linux now has extensive support for dynamic allocation of device numbering
+ and can use ``sysfs`` and ``udev`` (``systemd``) to handle the naming needs.
+ There are still some exceptions in the serial and boot device area. Before
+ asking for a device number make sure you actually need one.
+
+ To have a major number allocated, or a minor number in situations
+ where that applies (e.g. busmice), please submit a patch and send to
+ the authors as indicated above.
+
+ Keep the description of the device *in the same format
+ as this list*. The reason for this is that it is the only way we have
+ found to ensure we have all the requisite information to publish your
+ device and avoid conflicts.
+
+ Finally, sometimes we have to play "namespace police." Please don't be
+ offended. We often get submissions for ``/dev`` names that would be bound
+ to cause conflicts down the road. We are trying to avoid getting in a
+ situation where we would have to suffer an incompatible forward
+ change. Therefore, please consult with us **before** you make your
+ device names and numbers in any way public, at least to the point
+ where it would be at all difficult to get them changed.
+
+ Your cooperation is appreciated.
+
+.. include:: devices.txt
+ :literal:
+
+Additional ``/dev/`` directory entries
+--------------------------------------
+
+This section details additional entries that should or may exist in
+the /dev directory. It is preferred that symbolic links use the same
+form (absolute or relative) as is indicated here. Links are
+classified as "hard" or "symbolic" depending on the preferred type of
+link; if possible, the indicated type of link should be used.
+
+Compulsory links
+++++++++++++++++
+
+These links should exist on all systems:
+
+=============== =============== =============== ===============================
+/dev/fd /proc/self/fd symbolic File descriptors
+/dev/stdin fd/0 symbolic stdin file descriptor
+/dev/stdout fd/1 symbolic stdout file descriptor
+/dev/stderr fd/2 symbolic stderr file descriptor
+/dev/nfsd socksys symbolic Required by iBCS-2
+/dev/X0R null symbolic Required by iBCS-2
+=============== =============== =============== ===============================
+
+Note: ``/dev/X0R`` is <letter X>-<digit 0>-<letter R>.
+
+Recommended links
++++++++++++++++++
+
+It is recommended that these links exist on all systems:
+
+
+=============== =============== =============== ===============================
+/dev/core /proc/kcore symbolic Backward compatibility
+/dev/ramdisk ram0 symbolic Backward compatibility
+/dev/ftape qft0 symbolic Backward compatibility
+/dev/bttv0 video0 symbolic Backward compatibility
+/dev/radio radio0 symbolic Backward compatibility
+/dev/i2o* /dev/i2o/* symbolic Backward compatibility
+/dev/scd? sr? hard Alternate SCSI CD-ROM name
+=============== =============== =============== ===============================
+
+Locally defined links
++++++++++++++++++++++
+
+The following links may be established locally to conform to the
+configuration of the system. This is merely a tabulation of existing
+practice, and does not constitute a recommendation. However, if they
+exist, they should have the following uses.
+
+=============== =============== =============== ===============================
+/dev/mouse mouse port symbolic Current mouse device
+/dev/tape tape device symbolic Current tape device
+/dev/cdrom CD-ROM device symbolic Current CD-ROM device
+/dev/cdwriter CD-writer symbolic Current CD-writer device
+/dev/scanner scanner symbolic Current scanner device
+/dev/modem modem port symbolic Current dialout device
+/dev/root root device symbolic Current root filesystem
+/dev/swap swap device symbolic Current swap device
+=============== =============== =============== ===============================
+
+``/dev/modem`` should not be used for a modem which supports dialin as
+well as dialout, as it tends to cause lock file problems. If it
+exists, ``/dev/modem`` should point to the appropriate primary TTY device
+(the use of the alternate callout devices is deprecated).
+
+For SCSI devices, ``/dev/tape`` and ``/dev/cdrom`` should point to the
+*cooked* devices (``/dev/st*`` and ``/dev/sr*``, respectively), whereas
+``/dev/cdwriter`` and /dev/scanner should point to the appropriate generic
+SCSI devices (/dev/sg*).
+
+``/dev/mouse`` may point to a primary serial TTY device, a hardware mouse
+device, or a socket for a mouse driver program (e.g. ``/dev/gpmdata``).
+
+Sockets and pipes
++++++++++++++++++
+
+Non-transient sockets and named pipes may exist in /dev. Common entries are:
+
+=============== =============== ===============================================
+/dev/printer socket lpd local socket
+/dev/log socket syslog local socket
+/dev/gpmdata socket gpm mouse multiplexer
+=============== =============== ===============================================
+
+Mount points
+++++++++++++
+
+The following names are reserved for mounting special filesystems
+under /dev. These special filesystems provide kernel interfaces that
+cannot be provided with standard device nodes.
+
+=============== =============== ===============================================
+/dev/pts devpts PTY slave filesystem
+/dev/shm tmpfs POSIX shared memory maintenance access
+=============== =============== ===============================================
+
+Terminal devices
+----------------
+
+Terminal, or TTY devices are a special class of character devices. A
+terminal device is any device that could act as a controlling terminal
+for a session; this includes virtual consoles, serial ports, and
+pseudoterminals (PTYs).
+
+All terminal devices share a common set of capabilities known as line
+disciplines; these include the common terminal line discipline as well
+as SLIP and PPP modes.
+
+All terminal devices are named similarly; this section explains the
+naming and use of the various types of TTYs. Note that the naming
+conventions include several historical warts; some of these are
+Linux-specific, some were inherited from other systems, and some
+reflect Linux outgrowing a borrowed convention.
+
+A hash mark (``#``) in a device name is used here to indicate a decimal
+number without leading zeroes.
+
+Virtual consoles and the console device
++++++++++++++++++++++++++++++++++++++++
+
+Virtual consoles are full-screen terminal displays on the system video
+monitor. Virtual consoles are named ``/dev/tty#``, with numbering
+starting at ``/dev/tty1``; ``/dev/tty0`` is the current virtual console.
+``/dev/tty0`` is the device that should be used to access the system video
+card on those architectures for which the frame buffer devices
+(``/dev/fb*``) are not applicable. Do not use ``/dev/console``
+for this purpose.
+
+The console device, ``/dev/console``, is the device to which system
+messages should be sent, and on which logins should be permitted in
+single-user mode. Starting with Linux 2.1.71, ``/dev/console`` is managed
+by the kernel; for previous versions it should be a symbolic link to
+either ``/dev/tty0``, a specific virtual console such as ``/dev/tty1``, or to
+a serial port primary (``tty*``, not ``cu*``) device, depending on the
+configuration of the system.
+
+Serial ports
+++++++++++++
+
+Serial ports are RS-232 serial ports and any device which simulates
+one, either in hardware (such as internal modems) or in software (such
+as the ISDN driver.) Under Linux, each serial ports has two device
+names, the primary or callin device and the alternate or callout one.
+Each kind of device is indicated by a different letter. For any
+letter X, the names of the devices are ``/dev/ttyX#`` and ``/dev/cux#``,
+respectively; for historical reasons, ``/dev/ttyS#`` and ``/dev/ttyC#``
+correspond to ``/dev/cua#`` and ``/dev/cub#``. In the future, it should be
+expected that multiple letters will be used; all letters will be upper
+case for the "tty" device (e.g. ``/dev/ttyDP#``) and lower case for the
+"cu" device (e.g. ``/dev/cudp#``).
+
+The names ``/dev/ttyQ#`` and ``/dev/cuq#`` are reserved for local use.
+
+The alternate devices provide for kernel-based exclusion and somewhat
+different defaults than the primary devices. Their main purpose is to
+allow the use of serial ports with programs with no inherent or broken
+support for serial ports. Their use is deprecated, and they may be
+removed from a future version of Linux.
+
+Arbitration of serial ports is provided by the use of lock files with
+the names ``/var/lock/LCK..ttyX#``. The contents of the lock file should
+be the PID of the locking process as an ASCII number.
+
+It is common practice to install links such as /dev/modem
+which point to serial ports. In order to ensure proper locking in the
+presence of these links, it is recommended that software chase
+symlinks and lock all possible names; additionally, it is recommended
+that a lock file be installed with the corresponding alternate
+device. In order to avoid deadlocks, it is recommended that the locks
+are acquired in the following order, and released in the reverse:
+
+ 1. The symbolic link name, if any (``/var/lock/LCK..modem``)
+ 2. The "tty" name (``/var/lock/LCK..ttyS2``)
+ 3. The alternate device name (``/var/lock/LCK..cua2``)
+
+In the case of nested symbolic links, the lock files should be
+installed in the order the symlinks are resolved.
+
+Under no circumstances should an application hold a lock while waiting
+for another to be released. In addition, applications which attempt
+to create lock files for the corresponding alternate device names
+should take into account the possibility of being used on a non-serial
+port TTY, for which no alternate device would exist.
+
+Pseudoterminals (PTYs)
+++++++++++++++++++++++
+
+Pseudoterminals, or PTYs, are used to create login sessions or provide
+other capabilities requiring a TTY line discipline (including SLIP or
+PPP capability) to arbitrary data-generation processes. Each PTY has
+a master side, named ``/dev/pty[p-za-e][0-9a-f]``, and a slave side, named
+``/dev/tty[p-za-e][0-9a-f]``. The kernel arbitrates the use of PTYs by
+allowing each master side to be opened only once.
+
+Once the master side has been opened, the corresponding slave device
+can be used in the same manner as any TTY device. The master and
+slave devices are connected by the kernel, generating the equivalent
+of a bidirectional pipe with TTY capabilities.
+
+Recent versions of the Linux kernels and GNU libc contain support for
+the System V/Unix98 naming scheme for PTYs, which assigns a common
+device, ``/dev/ptmx``, to all the masters (opening it will automatically
+give you a previously unassigned PTY) and a subdirectory, ``/dev/pts``,
+for the slaves; the slaves are named with decimal integers (``/dev/pts/#``
+in our notation). This removes the problem of exhausting the
+namespace and enables the kernel to automatically create the device
+nodes for the slaves on demand using the "devpts" filesystem.
diff --git a/Documentation/devices.txt b/Documentation/admin-guide/devices.txt
index 4035eca..c9cea2e 100644
--- a/Documentation/devices.txt
+++ b/Documentation/admin-guide/devices.txt
@@ -1,63 +1,8 @@
-
- LINUX ALLOCATED DEVICES (4.x+ version)
-
-This list is the Linux Device List, the official registry of allocated
-device numbers and /dev directory nodes for the Linux operating
-system.
-
-The LaTeX version of this document is no longer maintained, nor is
-the document that used to reside at lanana.org. This version in the
-mainline Linux kernel is the master document. Updates shall be sent
-as patches to the kernel maintainers (see the SubmittingPatches document).
-Specifically explore the sections titled "CHAR and MISC DRIVERS", and
-"BLOCK LAYER" in the MAINTAINERS file to find the right maintainers
-to involve for character and block devices.
-
-This document is included by reference into the Filesystem Hierarchy
-Standard (FHS). The FHS is available from http://www.pathname.com/fhs/.
-
-Allocations marked (68k/Amiga) apply to Linux/68k on the Amiga
-platform only. Allocations marked (68k/Atari) apply to Linux/68k on
-the Atari platform only.
-
-This document is in the public domain. The authors requests, however,
-that semantically altered versions are not distributed without
-permission of the authors, assuming the authors can be contacted without
-an unreasonable effort.
-
-
- **** DEVICE DRIVERS AUTHORS PLEASE READ THIS ****
-
-Linux now has extensive support for dynamic allocation of device numbering
-and can use sysfs and udev (systemd) to handle the naming needs. There are
-still some exceptions in the serial and boot device area. Before asking
-for a device number make sure you actually need one.
-
-To have a major number allocated, or a minor number in situations
-where that applies (e.g. busmice), please submit a patch and send to
-the authors as indicated above.
-
-Keep the description of the device *in the same format
-as this list*. The reason for this is that it is the only way we have
-found to ensure we have all the requisite information to publish your
-device and avoid conflicts.
-
-Finally, sometimes we have to play "namespace police." Please don't be
-offended. We often get submissions for /dev names that would be bound
-to cause conflicts down the road. We are trying to avoid getting in a
-situation where we would have to suffer an incompatible forward
-change. Therefore, please consult with us *before* you make your
-device names and numbers in any way public, at least to the point
-where it would be at all difficult to get them changed.
-
-Your cooperation is appreciated.
-
-
- 0 Unnamed devices (e.g. non-device mounts)
+ 0 Unnamed devices (e.g. non-device mounts)
0 = reserved as null device number
See block major 144, 145, 146 for expansion areas.
- 1 char Memory devices
+ 1 char Memory devices
1 = /dev/mem Physical memory access
2 = /dev/kmem Kernel virtual memory access
3 = /dev/null Null device
@@ -72,7 +17,7 @@ Your cooperation is appreciated.
export the buffered printk records.
12 = /dev/oldmem OBSOLETE - replaced by /proc/vmcore
- 1 block RAM disk
+ 1 block RAM disk
0 = /dev/ram0 First RAM disk
1 = /dev/ram1 Second RAM disk
...
@@ -83,7 +28,7 @@ Your cooperation is appreciated.
by the boot loader; newer kernels use /dev/ram0 for
the initrd.
- 2 char Pseudo-TTY masters
+ 2 char Pseudo-TTY masters
0 = /dev/ptyp0 First PTY master
1 = /dev/ptyp1 Second PTY master
...
@@ -101,7 +46,7 @@ Your cooperation is appreciated.
master multiplex (/dev/ptmx) to acquire a PTY on
demand.
- 2 block Floppy disks
+ 2 block Floppy disks
0 = /dev/fd0 Controller 0, drive 0, autodetect
1 = /dev/fd1 Controller 0, drive 1, autodetect
2 = /dev/fd2 Controller 0, drive 2, autodetect
@@ -158,7 +103,7 @@ Your cooperation is appreciated.
and E for the 3.5" models have been deprecated, since
the drive type is insignificant for these devices.
- 3 char Pseudo-TTY slaves
+ 3 char Pseudo-TTY slaves
0 = /dev/ttyp0 First PTY slave
1 = /dev/ttyp1 Second PTY slave
...
@@ -167,7 +112,7 @@ Your cooperation is appreciated.
These are the old-style (BSD) PTY devices; Unix98
devices are on major 136 and above.
- 3 block First MFM, RLL and IDE hard disk/CD-ROM interface
+ 3 block First MFM, RLL and IDE hard disk/CD-ROM interface
0 = /dev/hda Master: whole disk (or CD-ROM)
64 = /dev/hdb Slave: whole disk (or CD-ROM)
@@ -183,7 +128,7 @@ Your cooperation is appreciated.
Other versions of Linux use partitioning schemes
appropriate to their respective architectures.
- 4 char TTY devices
+ 4 char TTY devices
0 = /dev/tty0 Current virtual console
1 = /dev/tty1 First virtual console
@@ -199,13 +144,13 @@ Your cooperation is appreciated.
number for BSD PTY devices. As of Linux 2.1.115, this
is no longer supported. Use major numbers 2 and 3.
- 4 block Aliases for dynamically allocated major devices to be used
+ 4 block Aliases for dynamically allocated major devices to be used
when its not possible to create the real device nodes
because the root filesystem is mounted read-only.
- 0 = /dev/root
+ 0 = /dev/root
- 5 char Alternate TTY devices
+ 5 char Alternate TTY devices
0 = /dev/tty Current TTY device
1 = /dev/console System console
2 = /dev/ptmx PTY master multiplex
@@ -218,7 +163,7 @@ Your cooperation is appreciated.
the section on terminal devices for more information
on /dev/console.
- 6 char Parallel printer devices
+ 6 char Parallel printer devices
0 = /dev/lp0 Parallel printer on parport0
1 = /dev/lp1 Parallel printer on parport1
...
@@ -227,7 +172,7 @@ Your cooperation is appreciated.
between parallel ports and I/O addresses. Instead,
they are redirected through the parport multiplex layer.
- 7 char Virtual console capture devices
+ 7 char Virtual console capture devices
0 = /dev/vcs Current vc text contents
1 = /dev/vcs1 tty1 text contents
...
@@ -239,7 +184,7 @@ Your cooperation is appreciated.
NOTE: These devices permit both read and write access.
- 7 block Loopback devices
+ 7 block Loopback devices
0 = /dev/loop0 First loop device
1 = /dev/loop1 Second loop device
...
@@ -248,7 +193,7 @@ Your cooperation is appreciated.
associated with block devices. The binding to the
loop devices is handled by mount(8) or losetup(8).
- 8 block SCSI disk devices (0-15)
+ 8 block SCSI disk devices (0-15)
0 = /dev/sda First SCSI disk whole disk
16 = /dev/sdb Second SCSI disk whole disk
32 = /dev/sdc Third SCSI disk whole disk
@@ -259,7 +204,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 9 char SCSI tape devices
+ 9 char SCSI tape devices
0 = /dev/st0 First SCSI tape, mode 0
1 = /dev/st1 Second SCSI tape, mode 0
...
@@ -290,7 +235,7 @@ Your cooperation is appreciated.
ioctl()'s can be used to rewind the tape regardless of
the device used to access it.
- 9 block Metadisk (RAID) devices
+ 9 block Metadisk (RAID) devices
0 = /dev/md0 First metadisk group
1 = /dev/md1 Second metadisk group
...
@@ -298,7 +243,7 @@ Your cooperation is appreciated.
The metadisk driver is used to span a
filesystem across multiple physical disks.
- 10 char Non-serial mice, misc features
+ 10 char Non-serial mice, misc features
0 = /dev/logibm Logitech bus mouse
1 = /dev/psaux PS/2-style mouse port
2 = /dev/inportbm Microsoft Inport bus mouse
@@ -428,22 +373,22 @@ Your cooperation is appreciated.
240-254 Reserved for local use
255 Reserved for MISC_DYNAMIC_MINOR
- 11 char Raw keyboard device (Linux/SPARC only)
+ 11 char Raw keyboard device (Linux/SPARC only)
0 = /dev/kbd Raw keyboard device
- 11 char Serial Mux device (Linux/PA-RISC only)
+ 11 char Serial Mux device (Linux/PA-RISC only)
0 = /dev/ttyB0 First mux port
1 = /dev/ttyB1 Second mux port
...
- 11 block SCSI CD-ROM devices
+ 11 block SCSI CD-ROM devices
0 = /dev/scd0 First SCSI CD-ROM
1 = /dev/scd1 Second SCSI CD-ROM
...
The prefix /dev/sr (instead of /dev/scd) has been deprecated.
- 12 char QIC-02 tape
+ 12 char QIC-02 tape
2 = /dev/ntpqic11 QIC-11, no rewind-on-close
3 = /dev/tpqic11 QIC-11, rewind-on-close
4 = /dev/ntpqic24 QIC-24, no rewind-on-close
@@ -456,9 +401,9 @@ Your cooperation is appreciated.
The device names specified are proposed -- if there
are "standard" names for these devices, please let me know.
- 12 block
+ 12 block
- 13 char Input core
+ 13 char Input core
0 = /dev/input/js0 First joystick
1 = /dev/input/js1 Second joystick
...
@@ -472,10 +417,10 @@ Your cooperation is appreciated.
Each device type has 5 bits (32 minors).
- 13 block Previously used for the XT disk (/dev/xdN)
+ 13 block Previously used for the XT disk (/dev/xdN)
Deleted in kernel v3.9.
- 14 char Open Sound System (OSS)
+ 14 char Open Sound System (OSS)
0 = /dev/mixer Mixer control
1 = /dev/sequencer Audio sequencer
2 = /dev/midi00 First MIDI port
@@ -493,44 +438,44 @@ Your cooperation is appreciated.
34 = /dev/midi02 Third MIDI port
50 = /dev/midi03 Fourth MIDI port
- 14 block
+ 14 block
- 15 char Joystick
+ 15 char Joystick
0 = /dev/js0 First analog joystick
1 = /dev/js1 Second analog joystick
...
128 = /dev/djs0 First digital joystick
129 = /dev/djs1 Second digital joystick
...
- 15 block Sony CDU-31A/CDU-33A CD-ROM
+ 15 block Sony CDU-31A/CDU-33A CD-ROM
0 = /dev/sonycd Sony CDU-31a CD-ROM
- 16 char Non-SCSI scanners
+ 16 char Non-SCSI scanners
0 = /dev/gs4500 Genius 4500 handheld scanner
- 16 block GoldStar CD-ROM
+ 16 block GoldStar CD-ROM
0 = /dev/gscd GoldStar CD-ROM
- 17 char OBSOLETE (was Chase serial card)
+ 17 char OBSOLETE (was Chase serial card)
0 = /dev/ttyH0 First Chase port
1 = /dev/ttyH1 Second Chase port
...
- 17 block Optics Storage CD-ROM
+ 17 block Optics Storage CD-ROM
0 = /dev/optcd Optics Storage CD-ROM
- 18 char OBSOLETE (was Chase serial card - alternate devices)
+ 18 char OBSOLETE (was Chase serial card - alternate devices)
0 = /dev/cuh0 Callout device for ttyH0
1 = /dev/cuh1 Callout device for ttyH1
...
- 18 block Sanyo CD-ROM
+ 18 block Sanyo CD-ROM
0 = /dev/sjcd Sanyo CD-ROM
- 19 char Cyclades serial card
+ 19 char Cyclades serial card
0 = /dev/ttyC0 First Cyclades port
...
31 = /dev/ttyC31 32nd Cyclades port
- 19 block "Double" compressed disk
+ 19 block "Double" compressed disk
0 = /dev/double0 First compressed disk
...
7 = /dev/double7 Eighth compressed disk
@@ -541,15 +486,15 @@ Your cooperation is appreciated.
See the Double documentation for the meaning of the
mirror devices.
- 20 char Cyclades serial card - alternate devices
+ 20 char Cyclades serial card - alternate devices
0 = /dev/cub0 Callout device for ttyC0
...
31 = /dev/cub31 Callout device for ttyC31
- 20 block Hitachi CD-ROM (under development)
+ 20 block Hitachi CD-ROM (under development)
0 = /dev/hitcd Hitachi CD-ROM
- 21 char Generic SCSI access
+ 21 char Generic SCSI access
0 = /dev/sg0 First generic SCSI device
1 = /dev/sg1 Second generic SCSI device
...
@@ -559,7 +504,7 @@ Your cooperation is appreciated.
the system and is counter to standard Linux
device-naming practice.
- 21 block Acorn MFM hard drive interface
+ 21 block Acorn MFM hard drive interface
0 = /dev/mfma First MFM drive whole disk
64 = /dev/mfmb Second MFM drive whole disk
@@ -567,25 +512,25 @@ Your cooperation is appreciated.
Partitions are handled the same way as for IDE disks
(see major number 3).
- 22 char Digiboard serial card
+ 22 char Digiboard serial card
0 = /dev/ttyD0 First Digiboard port
1 = /dev/ttyD1 Second Digiboard port
...
- 22 block Second IDE hard disk/CD-ROM interface
+ 22 block Second IDE hard disk/CD-ROM interface
0 = /dev/hdc Master: whole disk (or CD-ROM)
64 = /dev/hdd Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 23 char Digiboard serial card - alternate devices
+ 23 char Digiboard serial card - alternate devices
0 = /dev/cud0 Callout device for ttyD0
1 = /dev/cud1 Callout device for ttyD1
...
- 23 block Mitsumi proprietary CD-ROM
+ 23 block Mitsumi proprietary CD-ROM
0 = /dev/mcd Mitsumi CD-ROM
- 24 char Stallion serial card
+ 24 char Stallion serial card
0 = /dev/ttyE0 Stallion port 0 card 0
1 = /dev/ttyE1 Stallion port 1 card 0
...
@@ -598,10 +543,10 @@ Your cooperation is appreciated.
192 = /dev/ttyE192 Stallion port 0 card 3
193 = /dev/ttyE193 Stallion port 1 card 3
...
- 24 block Sony CDU-535 CD-ROM
+ 24 block Sony CDU-535 CD-ROM
0 = /dev/cdu535 Sony CDU-535 CD-ROM
- 25 char Stallion serial card - alternate devices
+ 25 char Stallion serial card - alternate devices
0 = /dev/cue0 Callout device for ttyE0
1 = /dev/cue1 Callout device for ttyE1
...
@@ -614,21 +559,21 @@ Your cooperation is appreciated.
192 = /dev/cue192 Callout device for ttyE192
193 = /dev/cue193 Callout device for ttyE193
...
- 25 block First Matsushita (Panasonic/SoundBlaster) CD-ROM
+ 25 block First Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd0 Panasonic CD-ROM controller 0 unit 0
1 = /dev/sbpcd1 Panasonic CD-ROM controller 0 unit 1
2 = /dev/sbpcd2 Panasonic CD-ROM controller 0 unit 2
3 = /dev/sbpcd3 Panasonic CD-ROM controller 0 unit 3
- 26 char
+ 26 char
- 26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM
+ 26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd4 Panasonic CD-ROM controller 1 unit 0
1 = /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 1
2 = /dev/sbpcd6 Panasonic CD-ROM controller 1 unit 2
3 = /dev/sbpcd7 Panasonic CD-ROM controller 1 unit 3
- 27 char QIC-117 tape
+ 27 char QIC-117 tape
0 = /dev/qft0 Unit 0, rewind-on-close
1 = /dev/qft1 Unit 1, rewind-on-close
2 = /dev/qft2 Unit 2, rewind-on-close
@@ -654,29 +599,29 @@ Your cooperation is appreciated.
38 = /dev/nrawqft2 Unit 2, no rewind-on-close, no file marks
39 = /dev/nrawqft3 Unit 3, no rewind-on-close, no file marks
- 27 block Third Matsushita (Panasonic/SoundBlaster) CD-ROM
+ 27 block Third Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 0
1 = /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 1
2 = /dev/sbpcd10 Panasonic CD-ROM controller 2 unit 2
3 = /dev/sbpcd11 Panasonic CD-ROM controller 2 unit 3
- 28 char Stallion serial card - card programming
+ 28 char Stallion serial card - card programming
0 = /dev/staliomem0 First Stallion card I/O memory
1 = /dev/staliomem1 Second Stallion card I/O memory
2 = /dev/staliomem2 Third Stallion card I/O memory
3 = /dev/staliomem3 Fourth Stallion card I/O memory
- 28 char Atari SLM ACSI laser printer (68k/Atari)
+ 28 char Atari SLM ACSI laser printer (68k/Atari)
0 = /dev/slm0 First SLM laser printer
1 = /dev/slm1 Second SLM laser printer
...
- 28 block Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM
+ 28 block Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd12 Panasonic CD-ROM controller 3 unit 0
1 = /dev/sbpcd13 Panasonic CD-ROM controller 3 unit 1
2 = /dev/sbpcd14 Panasonic CD-ROM controller 3 unit 2
3 = /dev/sbpcd15 Panasonic CD-ROM controller 3 unit 3
- 28 block ACSI disk (68k/Atari)
+ 28 block ACSI disk (68k/Atari)
0 = /dev/ada First ACSI disk whole disk
16 = /dev/adb Second ACSI disk whole disk
32 = /dev/adc Third ACSI disk whole disk
@@ -687,16 +632,16 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15, like SCSI.
- 29 char Universal frame buffer
+ 29 char Universal frame buffer
0 = /dev/fb0 First frame buffer
1 = /dev/fb1 Second frame buffer
...
31 = /dev/fb31 32nd frame buffer
- 29 block Aztech/Orchid/Okano/Wearnes CD-ROM
+ 29 block Aztech/Orchid/Okano/Wearnes CD-ROM
0 = /dev/aztcd Aztech CD-ROM
- 30 char iBCS-2 compatibility devices
+ 30 char iBCS-2 compatibility devices
0 = /dev/socksys Socket access
1 = /dev/spx SVR3 local X interface
32 = /dev/inet/ip Network access
@@ -727,17 +672,17 @@ Your cooperation is appreciated.
/dev/nfsd -> /dev/socksys
/dev/X0R -> /dev/null (? apparently not required ?)
- 30 block Philips LMS CM-205 CD-ROM
+ 30 block Philips LMS CM-205 CD-ROM
0 = /dev/cm205cd Philips LMS CM-205 CD-ROM
/dev/lmscd is an older name for this device. This
driver does not work with the CM-205MS CD-ROM.
- 31 char MPU-401 MIDI
+ 31 char MPU-401 MIDI
0 = /dev/mpu401data MPU-401 data port
1 = /dev/mpu401stat MPU-401 status port
- 31 block ROM/flash memory card
+ 31 block ROM/flash memory card
0 = /dev/rom0 First ROM card (rw)
...
7 = /dev/rom7 Eighth ROM card (rw)
@@ -756,25 +701,25 @@ Your cooperation is appreciated.
devices. The read-only devices (ro) support reading
only.
- 32 char Specialix serial card
+ 32 char Specialix serial card
0 = /dev/ttyX0 First Specialix port
1 = /dev/ttyX1 Second Specialix port
...
- 32 block Philips LMS CM-206 CD-ROM
+ 32 block Philips LMS CM-206 CD-ROM
0 = /dev/cm206cd Philips LMS CM-206 CD-ROM
- 33 char Specialix serial card - alternate devices
+ 33 char Specialix serial card - alternate devices
0 = /dev/cux0 Callout device for ttyX0
1 = /dev/cux1 Callout device for ttyX1
...
- 33 block Third IDE hard disk/CD-ROM interface
+ 33 block Third IDE hard disk/CD-ROM interface
0 = /dev/hde Master: whole disk (or CD-ROM)
64 = /dev/hdf Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 34 char Z8530 HDLC driver
+ 34 char Z8530 HDLC driver
0 = /dev/scc0 First Z8530, first port
1 = /dev/scc1 First Z8530, second port
2 = /dev/scc2 Second Z8530, first port
@@ -785,14 +730,14 @@ Your cooperation is appreciated.
/dev/sc1 for /dev/scc0, /dev/sc2 for /dev/scc1, and so
on.
- 34 block Fourth IDE hard disk/CD-ROM interface
+ 34 block Fourth IDE hard disk/CD-ROM interface
0 = /dev/hdg Master: whole disk (or CD-ROM)
64 = /dev/hdh Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 35 char tclmidi MIDI driver
+ 35 char tclmidi MIDI driver
0 = /dev/midi0 First MIDI port, kernel timed
1 = /dev/midi1 Second MIDI port, kernel timed
2 = /dev/midi2 Third MIDI port, kernel timed
@@ -806,10 +751,10 @@ Your cooperation is appreciated.
130 = /dev/smpte2 Third MIDI port, SMPTE timed
131 = /dev/smpte3 Fourth MIDI port, SMPTE timed
- 35 block Slow memory ramdisk
+ 35 block Slow memory ramdisk
0 = /dev/slram Slow memory ramdisk
- 36 char Netlink support
+ 36 char Netlink support
0 = /dev/route Routing, device updates, kernel to user
1 = /dev/skip enSKIP security cache control
3 = /dev/fwmonitor Firewall packet copies
@@ -817,9 +762,9 @@ Your cooperation is appreciated.
...
31 = /dev/tap15 16th Ethertap device
- 36 block OBSOLETE (was MCA ESDI hard disk)
+ 36 block OBSOLETE (was MCA ESDI hard disk)
- 37 char IDE tape
+ 37 char IDE tape
0 = /dev/ht0 First IDE tape
1 = /dev/ht1 Second IDE tape
...
@@ -829,10 +774,10 @@ Your cooperation is appreciated.
Currently, only one IDE tape drive is supported.
- 37 block Zorro II ramdisk
+ 37 block Zorro II ramdisk
0 = /dev/z2ram Zorro II ramdisk
- 38 char Myricom PCI Myrinet board
+ 38 char Myricom PCI Myrinet board
0 = /dev/mlanai0 First Myrinet board
1 = /dev/mlanai1 Second Myrinet board
...
@@ -841,9 +786,9 @@ Your cooperation is appreciated.
and "user level packet I/O." This board is also
accessible as a standard networking "eth" device.
- 38 block OBSOLETE (was Linux/AP+)
+ 38 block OBSOLETE (was Linux/AP+)
- 39 char ML-16P experimental I/O board
+ 39 char ML-16P experimental I/O board
0 = /dev/ml16pa-a0 First card, first analog channel
1 = /dev/ml16pa-a1 First card, second analog channel
...
@@ -861,20 +806,20 @@ Your cooperation is appreciated.
50 = /dev/ml16pb-c1 Second card, second counter/timer
51 = /dev/ml16pb-c2 Second card, third counter/timer
...
- 39 block
+ 39 block
- 40 char
+ 40 char
- 40 block
+ 40 block
- 41 char Yet Another Micro Monitor
+ 41 char Yet Another Micro Monitor
0 = /dev/yamm Yet Another Micro Monitor
- 41 block
+ 41 block
- 42 char Demo/sample use
+ 42 char Demo/sample use
- 42 block Demo/sample use
+ 42 block Demo/sample use
This number is intended for use in sample code, as
well as a general "example" device number. It
@@ -887,12 +832,12 @@ Your cooperation is appreciated.
IN PARTICULAR, ANY DISTRIBUTION WHICH CONTAINS A
DEVICE DRIVER USING MAJOR NUMBER 42 IS NONCOMPLIANT.
- 43 char isdn4linux virtual modem
+ 43 char isdn4linux virtual modem
0 = /dev/ttyI0 First virtual modem
...
63 = /dev/ttyI63 64th virtual modem
- 43 block Network block devices
+ 43 block Network block devices
0 = /dev/nb0 First network block device
1 = /dev/nb1 Second network block device
...
@@ -904,12 +849,12 @@ Your cooperation is appreciated.
to mounting filesystems over the net, swapping over
the net, implementing block device in userland etc.
- 44 char isdn4linux virtual modem - alternate devices
+ 44 char isdn4linux virtual modem - alternate devices
0 = /dev/cui0 Callout device for ttyI0
...
63 = /dev/cui63 Callout device for ttyI63
- 44 block Flash Translation Layer (FTL) filesystems
+ 44 block Flash Translation Layer (FTL) filesystems
0 = /dev/ftla FTL on first Memory Technology Device
16 = /dev/ftlb FTL on second Memory Technology Device
32 = /dev/ftlc FTL on third Memory Technology Device
@@ -920,7 +865,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the partition
limit is 15 rather than 63 per disk (same as SCSI.)
- 45 char isdn4linux ISDN BRI driver
+ 45 char isdn4linux ISDN BRI driver
0 = /dev/isdn0 First virtual B channel raw data
...
63 = /dev/isdn63 64th virtual B channel raw data
@@ -934,7 +879,7 @@ Your cooperation is appreciated.
255 = /dev/isdninfo ISDN monitor interface
- 45 block Parallel port IDE disk devices
+ 45 block Parallel port IDE disk devices
0 = /dev/pda First parallel port IDE disk
16 = /dev/pdb Second parallel port IDE disk
32 = /dev/pdc Third parallel port IDE disk
@@ -944,21 +889,21 @@ Your cooperation is appreciated.
disks (see major number 3) except that the partition
limit is 15 rather than 63 per disk.
- 46 char Comtrol Rocketport serial card
+ 46 char Comtrol Rocketport serial card
0 = /dev/ttyR0 First Rocketport port
1 = /dev/ttyR1 Second Rocketport port
...
- 46 block Parallel port ATAPI CD-ROM devices
+ 46 block Parallel port ATAPI CD-ROM devices
0 = /dev/pcd0 First parallel port ATAPI CD-ROM
1 = /dev/pcd1 Second parallel port ATAPI CD-ROM
2 = /dev/pcd2 Third parallel port ATAPI CD-ROM
3 = /dev/pcd3 Fourth parallel port ATAPI CD-ROM
- 47 char Comtrol Rocketport serial card - alternate devices
+ 47 char Comtrol Rocketport serial card - alternate devices
0 = /dev/cur0 Callout device for ttyR0
1 = /dev/cur1 Callout device for ttyR1
...
- 47 block Parallel port ATAPI disk devices
+ 47 block Parallel port ATAPI disk devices
0 = /dev/pf0 First parallel port ATAPI disk
1 = /dev/pf1 Second parallel port ATAPI disk
2 = /dev/pf2 Third parallel port ATAPI disk
@@ -967,11 +912,11 @@ Your cooperation is appreciated.
This driver is intended for floppy disks and similar
devices and hence does not support partitioning.
- 48 char SDL RISCom serial card
+ 48 char SDL RISCom serial card
0 = /dev/ttyL0 First RISCom port
1 = /dev/ttyL1 Second RISCom port
...
- 48 block Mylex DAC960 PCI RAID controller; first controller
+ 48 block Mylex DAC960 PCI RAID controller; first controller
0 = /dev/rd/c0d0 First disk, whole disk
8 = /dev/rd/c0d1 Second disk, whole disk
...
@@ -983,11 +928,11 @@ Your cooperation is appreciated.
...
7 = /dev/rd/c?d?p7 Seventh partition
- 49 char SDL RISCom serial card - alternate devices
+ 49 char SDL RISCom serial card - alternate devices
0 = /dev/cul0 Callout device for ttyL0
1 = /dev/cul1 Callout device for ttyL1
...
- 49 block Mylex DAC960 PCI RAID controller; second controller
+ 49 block Mylex DAC960 PCI RAID controller; second controller
0 = /dev/rd/c1d0 First disk, whole disk
8 = /dev/rd/c1d1 Second disk, whole disk
...
@@ -995,19 +940,19 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
- 50 char Reserved for GLINT
+ 50 char Reserved for GLINT
- 50 block Mylex DAC960 PCI RAID controller; third controller
+ 50 block Mylex DAC960 PCI RAID controller; third controller
0 = /dev/rd/c2d0 First disk, whole disk
8 = /dev/rd/c2d1 Second disk, whole disk
...
248 = /dev/rd/c2d31 32nd disk, whole disk
- 51 char Baycom radio modem OR Radio Tech BIM-XXX-RS232 radio modem
+ 51 char Baycom radio modem OR Radio Tech BIM-XXX-RS232 radio modem
0 = /dev/bc0 First Baycom radio modem
1 = /dev/bc1 Second Baycom radio modem
...
- 51 block Mylex DAC960 PCI RAID controller; fourth controller
+ 51 block Mylex DAC960 PCI RAID controller; fourth controller
0 = /dev/rd/c3d0 First disk, whole disk
8 = /dev/rd/c3d1 Second disk, whole disk
...
@@ -1015,13 +960,13 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
- 52 char Spellcaster DataComm/BRI ISDN card
+ 52 char Spellcaster DataComm/BRI ISDN card
0 = /dev/dcbri0 First DataComm card
1 = /dev/dcbri1 Second DataComm card
2 = /dev/dcbri2 Third DataComm card
3 = /dev/dcbri3 Fourth DataComm card
- 52 block Mylex DAC960 PCI RAID controller; fifth controller
+ 52 block Mylex DAC960 PCI RAID controller; fifth controller
0 = /dev/rd/c4d0 First disk, whole disk
8 = /dev/rd/c4d1 Second disk, whole disk
...
@@ -1029,7 +974,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
- 53 char BDM interface for remote debugging MC683xx microcontrollers
+ 53 char BDM interface for remote debugging MC683xx microcontrollers
0 = /dev/pd_bdm0 PD BDM interface on lp0
1 = /dev/pd_bdm1 PD BDM interface on lp1
2 = /dev/pd_bdm2 PD BDM interface on lp2
@@ -1043,7 +988,7 @@ Your cooperation is appreciated.
Domain Interface and ICD is the commercial interface
by P&E.
- 53 block Mylex DAC960 PCI RAID controller; sixth controller
+ 53 block Mylex DAC960 PCI RAID controller; sixth controller
0 = /dev/rd/c5d0 First disk, whole disk
8 = /dev/rd/c5d1 Second disk, whole disk
...
@@ -1051,7 +996,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
- 54 char Electrocardiognosis Holter serial card
+ 54 char Electrocardiognosis Holter serial card
0 = /dev/holter0 First Holter port
1 = /dev/holter1 Second Holter port
2 = /dev/holter2 Third Holter port
@@ -1060,7 +1005,7 @@ Your cooperation is appreciated.
<mseritan@ottonel.pub.ro> to transfer data from Holter
24-hour heart monitoring equipment.
- 54 block Mylex DAC960 PCI RAID controller; seventh controller
+ 54 block Mylex DAC960 PCI RAID controller; seventh controller
0 = /dev/rd/c6d0 First disk, whole disk
8 = /dev/rd/c6d1 Second disk, whole disk
...
@@ -1068,10 +1013,10 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
- 55 char DSP56001 digital signal processor
+ 55 char DSP56001 digital signal processor
0 = /dev/dsp56k First DSP56001
- 55 block Mylex DAC960 PCI RAID controller; eighth controller
+ 55 block Mylex DAC960 PCI RAID controller; eighth controller
0 = /dev/rd/c7d0 First disk, whole disk
8 = /dev/rd/c7d1 Second disk, whole disk
...
@@ -1079,42 +1024,42 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
- 56 char Apple Desktop Bus
+ 56 char Apple Desktop Bus
0 = /dev/adb ADB bus control
Additional devices will be added to this number, all
starting with /dev/adb.
- 56 block Fifth IDE hard disk/CD-ROM interface
+ 56 block Fifth IDE hard disk/CD-ROM interface
0 = /dev/hdi Master: whole disk (or CD-ROM)
64 = /dev/hdj Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 57 char Hayes ESP serial card
+ 57 char Hayes ESP serial card
0 = /dev/ttyP0 First ESP port
1 = /dev/ttyP1 Second ESP port
...
- 57 block Sixth IDE hard disk/CD-ROM interface
+ 57 block Sixth IDE hard disk/CD-ROM interface
0 = /dev/hdk Master: whole disk (or CD-ROM)
64 = /dev/hdl Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 58 char Hayes ESP serial card - alternate devices
+ 58 char Hayes ESP serial card - alternate devices
0 = /dev/cup0 Callout device for ttyP0
1 = /dev/cup1 Callout device for ttyP1
...
- 58 block Reserved for logical volume manager
+ 58 block Reserved for logical volume manager
- 59 char sf firewall package
+ 59 char sf firewall package
0 = /dev/firewall Communication with sf kernel module
- 59 block Generic PDA filesystem device
+ 59 block Generic PDA filesystem device
0 = /dev/pda0 First PDA device
1 = /dev/pda1 Second PDA device
...
@@ -1127,17 +1072,17 @@ Your cooperation is appreciated.
NAMING CONFLICT -- PROPOSED REVISED NAME /dev/rpda0 etc
- 60-63 char LOCAL/EXPERIMENTAL USE
+ 60-63 char LOCAL/EXPERIMENTAL USE
- 60-63 block LOCAL/EXPERIMENTAL USE
+ 60-63 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.
- 64 char ENskip kernel encryption package
+ 64 char ENskip kernel encryption package
0 = /dev/enskip Communication with ENskip kernel module
- 64 block Scramdisk/DriveCrypt encrypted devices
+ 64 block Scramdisk/DriveCrypt encrypted devices
0 = /dev/scramdisk/master Master node for ioctls
1 = /dev/scramdisk/1 First encrypted device
2 = /dev/scramdisk/2 Second encrypted device
@@ -1152,7 +1097,7 @@ Your cooperation is appreciated.
Requested by: andy@scramdisklinux.org
- 65 char Sundance "plink" Transputer boards (obsolete, unused)
+ 65 char Sundance "plink" Transputer boards (obsolete, unused)
0 = /dev/plink0 First plink device
1 = /dev/plink1 Second plink device
2 = /dev/plink2 Third plink device
@@ -1173,7 +1118,7 @@ Your cooperation is appreciated.
This is a commercial driver; contact James Howes
<jth@prosig.demon.co.uk> for information.
- 65 block SCSI disk devices (16-31)
+ 65 block SCSI disk devices (16-31)
0 = /dev/sdq 17th SCSI disk whole disk
16 = /dev/sdr 18th SCSI disk whole disk
32 = /dev/sds 19th SCSI disk whole disk
@@ -1184,12 +1129,12 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 66 char YARC PowerPC PCI coprocessor card
+ 66 char YARC PowerPC PCI coprocessor card
0 = /dev/yppcpci0 First YARC card
1 = /dev/yppcpci1 Second YARC card
...
- 66 block SCSI disk devices (32-47)
+ 66 block SCSI disk devices (32-47)
0 = /dev/sdag 33th SCSI disk whole disk
16 = /dev/sdah 34th SCSI disk whole disk
32 = /dev/sdai 35th SCSI disk whole disk
@@ -1200,12 +1145,12 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 67 char Coda network file system
+ 67 char Coda network file system
0 = /dev/cfs0 Coda cache manager
See http://www.coda.cs.cmu.edu for information about Coda.
- 67 block SCSI disk devices (48-63)
+ 67 block SCSI disk devices (48-63)
0 = /dev/sdaw 49th SCSI disk whole disk
16 = /dev/sdax 50th SCSI disk whole disk
32 = /dev/sday 51st SCSI disk whole disk
@@ -1216,7 +1161,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 68 char CAPI 2.0 interface
+ 68 char CAPI 2.0 interface
0 = /dev/capi20 Control device
1 = /dev/capi20.00 First CAPI 2.0 application
2 = /dev/capi20.01 Second CAPI 2.0 application
@@ -1226,7 +1171,7 @@ Your cooperation is appreciated.
ISDN CAPI 2.0 driver for use with CAPI 2.0
applications; currently supports the AVM B1 card.
- 68 block SCSI disk devices (64-79)
+ 68 block SCSI disk devices (64-79)
0 = /dev/sdbm 65th SCSI disk whole disk
16 = /dev/sdbn 66th SCSI disk whole disk
32 = /dev/sdbo 67th SCSI disk whole disk
@@ -1237,10 +1182,10 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 69 char MA16 numeric accelerator card
+ 69 char MA16 numeric accelerator card
0 = /dev/ma16 Board memory access
- 69 block SCSI disk devices (80-95)
+ 69 block SCSI disk devices (80-95)
0 = /dev/sdcc 81st SCSI disk whole disk
16 = /dev/sdcd 82nd SCSI disk whole disk
32 = /dev/sdce 83th SCSI disk whole disk
@@ -1251,7 +1196,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 70 char SpellCaster Protocol Services Interface
+ 70 char SpellCaster Protocol Services Interface
0 = /dev/apscfg Configuration interface
1 = /dev/apsauth Authentication interface
2 = /dev/apslog Logging interface
@@ -1260,7 +1205,7 @@ Your cooperation is appreciated.
65 = /dev/apsasync Async command interface
128 = /dev/apsmon Monitor interface
- 70 block SCSI disk devices (96-111)
+ 70 block SCSI disk devices (96-111)
0 = /dev/sdcs 97th SCSI disk whole disk
16 = /dev/sdct 98th SCSI disk whole disk
32 = /dev/sdcu 99th SCSI disk whole disk
@@ -1271,7 +1216,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 71 char Computone IntelliPort II serial card
+ 71 char Computone IntelliPort II serial card
0 = /dev/ttyF0 IntelliPort II board 0, port 0
1 = /dev/ttyF1 IntelliPort II board 0, port 1
...
@@ -1289,7 +1234,7 @@ Your cooperation is appreciated.
...
255 = /dev/ttyF255 IntelliPort II board 3, port 63
- 71 block SCSI disk devices (112-127)
+ 71 block SCSI disk devices (112-127)
0 = /dev/sddi 113th SCSI disk whole disk
16 = /dev/sddj 114th SCSI disk whole disk
32 = /dev/sddk 115th SCSI disk whole disk
@@ -1300,7 +1245,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 72 char Computone IntelliPort II serial card - alternate devices
+ 72 char Computone IntelliPort II serial card - alternate devices
0 = /dev/cuf0 Callout device for ttyF0
1 = /dev/cuf1 Callout device for ttyF1
...
@@ -1318,7 +1263,7 @@ Your cooperation is appreciated.
...
255 = /dev/cuf255 Callout device for ttyF255
- 72 block Compaq Intelligent Drive Array, first controller
+ 72 block Compaq Intelligent Drive Array, first controller
0 = /dev/ida/c0d0 First logical drive whole disk
16 = /dev/ida/c0d1 Second logical drive whole disk
...
@@ -1328,7 +1273,7 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
- 73 char Computone IntelliPort II serial card - control devices
+ 73 char Computone IntelliPort II serial card - control devices
0 = /dev/ip2ipl0 Loadware device for board 0
1 = /dev/ip2stat0 Status device for board 0
4 = /dev/ip2ipl1 Loadware device for board 1
@@ -1338,7 +1283,7 @@ Your cooperation is appreciated.
12 = /dev/ip2ipl3 Loadware device for board 3
13 = /dev/ip2stat3 Status device for board 3
- 73 block Compaq Intelligent Drive Array, second controller
+ 73 block Compaq Intelligent Drive Array, second controller
0 = /dev/ida/c1d0 First logical drive whole disk
16 = /dev/ida/c1d1 Second logical drive whole disk
...
@@ -1348,7 +1293,7 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
- 74 char SCI bridge
+ 74 char SCI bridge
0 = /dev/SCI/0 SCI device 0
1 = /dev/SCI/1 SCI device 1
...
@@ -1356,7 +1301,7 @@ Your cooperation is appreciated.
Currently for Dolphin Interconnect Solutions' PCI-SCI
bridge.
- 74 block Compaq Intelligent Drive Array, third controller
+ 74 block Compaq Intelligent Drive Array, third controller
0 = /dev/ida/c2d0 First logical drive whole disk
16 = /dev/ida/c2d1 Second logical drive whole disk
...
@@ -1366,14 +1311,14 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
- 75 char Specialix IO8+ serial card
+ 75 char Specialix IO8+ serial card
0 = /dev/ttyW0 First IO8+ port, first card
1 = /dev/ttyW1 Second IO8+ port, first card
...
8 = /dev/ttyW8 First IO8+ port, second card
...
- 75 block Compaq Intelligent Drive Array, fourth controller
+ 75 block Compaq Intelligent Drive Array, fourth controller
0 = /dev/ida/c3d0 First logical drive whole disk
16 = /dev/ida/c3d1 Second logical drive whole disk
...
@@ -1383,14 +1328,14 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
- 76 char Specialix IO8+ serial card - alternate devices
+ 76 char Specialix IO8+ serial card - alternate devices
0 = /dev/cuw0 Callout device for ttyW0
1 = /dev/cuw1 Callout device for ttyW1
...
8 = /dev/cuw8 Callout device for ttyW8
...
- 76 block Compaq Intelligent Drive Array, fifth controller
+ 76 block Compaq Intelligent Drive Array, fifth controller
0 = /dev/ida/c4d0 First logical drive whole disk
16 = /dev/ida/c4d1 Second logical drive whole disk
...
@@ -1401,10 +1346,10 @@ Your cooperation is appreciated.
partitions is 15.
- 77 char ComScire Quantum Noise Generator
+ 77 char ComScire Quantum Noise Generator
0 = /dev/qng ComScire Quantum Noise Generator
- 77 block Compaq Intelligent Drive Array, sixth controller
+ 77 block Compaq Intelligent Drive Array, sixth controller
0 = /dev/ida/c5d0 First logical drive whole disk
16 = /dev/ida/c5d1 Second logical drive whole disk
...
@@ -1414,12 +1359,12 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
- 78 char PAM Software's multimodem boards
+ 78 char PAM Software's multimodem boards
0 = /dev/ttyM0 First PAM modem
1 = /dev/ttyM1 Second PAM modem
...
- 78 block Compaq Intelligent Drive Array, seventh controller
+ 78 block Compaq Intelligent Drive Array, seventh controller
0 = /dev/ida/c6d0 First logical drive whole disk
16 = /dev/ida/c6d1 Second logical drive whole disk
...
@@ -1429,12 +1374,12 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
- 79 char PAM Software's multimodem boards - alternate devices
+ 79 char PAM Software's multimodem boards - alternate devices
0 = /dev/cum0 Callout device for ttyM0
1 = /dev/cum1 Callout device for ttyM1
...
- 79 block Compaq Intelligent Drive Array, eighth controller
+ 79 block Compaq Intelligent Drive Array, eighth controller
0 = /dev/ida/c7d0 First logical drive whole disk
16 = /dev/ida/c7d1 Second logical drive whole disk
...
@@ -1444,10 +1389,10 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
- 80 char Photometrics AT200 CCD camera
+ 80 char Photometrics AT200 CCD camera
0 = /dev/at200 Photometrics AT200 CCD camera
- 80 block I2O hard disk
+ 80 block I2O hard disk
0 = /dev/i2o/hda First I2O hard disk, whole disk
16 = /dev/i2o/hdb Second I2O hard disk, whole disk
...
@@ -1457,7 +1402,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 81 char video4linux
+ 81 char video4linux
0 = /dev/video0 Video capture/overlay device
...
63 = /dev/video63 Video capture/overlay device
@@ -1475,7 +1420,7 @@ Your cooperation is appreciated.
CONFIG_VIDEO_FIXED_MINOR_RANGES (default n)
configuration option is set.
- 81 block I2O hard disk
+ 81 block I2O hard disk
0 = /dev/i2o/hdq 17th I2O hard disk, whole disk
16 = /dev/i2o/hdr 18th I2O hard disk, whole disk
...
@@ -1485,7 +1430,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 82 char WiNRADiO communications receiver card
+ 82 char WiNRADiO communications receiver card
0 = /dev/winradio0 First WiNRADiO card
1 = /dev/winradio1 Second WiNRADiO card
...
@@ -1493,7 +1438,7 @@ Your cooperation is appreciated.
The driver and documentation may be obtained from
http://www.winradio.com/
- 82 block I2O hard disk
+ 82 block I2O hard disk
0 = /dev/i2o/hdag 33rd I2O hard disk, whole disk
16 = /dev/i2o/hdah 34th I2O hard disk, whole disk
...
@@ -1503,14 +1448,14 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 83 char Matrox mga_vid video driver
- 0 = /dev/mga_vid0 1st video card
+ 83 char Matrox mga_vid video driver
+ 0 = /dev/mga_vid0 1st video card
1 = /dev/mga_vid1 2nd video card
2 = /dev/mga_vid2 3rd video card
...
- 15 = /dev/mga_vid15 16th video card
+ 15 = /dev/mga_vid15 16th video card
- 83 block I2O hard disk
+ 83 block I2O hard disk
0 = /dev/i2o/hdaw 49th I2O hard disk, whole disk
16 = /dev/i2o/hdax 50th I2O hard disk, whole disk
...
@@ -1520,11 +1465,11 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 84 char Ikon 1011[57] Versatec Greensheet Interface
+ 84 char Ikon 1011[57] Versatec Greensheet Interface
0 = /dev/ihcp0 First Greensheet port
1 = /dev/ihcp1 Second Greensheet port
- 84 block I2O hard disk
+ 84 block I2O hard disk
0 = /dev/i2o/hdbm 65th I2O hard disk, whole disk
16 = /dev/i2o/hdbn 66th I2O hard disk, whole disk
...
@@ -1534,13 +1479,13 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 85 char Linux/SGI shared memory input queue
+ 85 char Linux/SGI shared memory input queue
0 = /dev/shmiq Master shared input queue
1 = /dev/qcntl0 First device pushed
2 = /dev/qcntl1 Second device pushed
...
- 85 block I2O hard disk
+ 85 block I2O hard disk
0 = /dev/i2o/hdcc 81st I2O hard disk, whole disk
16 = /dev/i2o/hdcd 82nd I2O hard disk, whole disk
...
@@ -1550,12 +1495,12 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 86 char SCSI media changer
+ 86 char SCSI media changer
0 = /dev/sch0 First SCSI media changer
1 = /dev/sch1 Second SCSI media changer
...
- 86 block I2O hard disk
+ 86 block I2O hard disk
0 = /dev/i2o/hdcs 97th I2O hard disk, whole disk
16 = /dev/i2o/hdct 98th I2O hard disk, whole disk
...
@@ -1565,12 +1510,12 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 87 char Sony Control-A1 stereo control bus
+ 87 char Sony Control-A1 stereo control bus
0 = /dev/controla0 First device on chain
1 = /dev/controla1 Second device on chain
...
- 87 block I2O hard disk
+ 87 block I2O hard disk
0 = /dev/i2o/hddi 113rd I2O hard disk, whole disk
16 = /dev/i2o/hddj 114th I2O hard disk, whole disk
...
@@ -1580,59 +1525,59 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 88 char COMX synchronous serial card
+ 88 char COMX synchronous serial card
0 = /dev/comx0 COMX channel 0
1 = /dev/comx1 COMX channel 1
...
- 88 block Seventh IDE hard disk/CD-ROM interface
+ 88 block Seventh IDE hard disk/CD-ROM interface
0 = /dev/hdm Master: whole disk (or CD-ROM)
64 = /dev/hdn Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 89 char I2C bus interface
+ 89 char I2C bus interface
0 = /dev/i2c-0 First I2C adapter
1 = /dev/i2c-1 Second I2C adapter
...
- 89 block Eighth IDE hard disk/CD-ROM interface
+ 89 block Eighth IDE hard disk/CD-ROM interface
0 = /dev/hdo Master: whole disk (or CD-ROM)
64 = /dev/hdp Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 90 char Memory Technology Device (RAM, ROM, Flash)
+ 90 char Memory Technology Device (RAM, ROM, Flash)
0 = /dev/mtd0 First MTD (rw)
1 = /dev/mtdr0 First MTD (ro)
...
30 = /dev/mtd15 16th MTD (rw)
31 = /dev/mtdr15 16th MTD (ro)
- 90 block Ninth IDE hard disk/CD-ROM interface
+ 90 block Ninth IDE hard disk/CD-ROM interface
0 = /dev/hdq Master: whole disk (or CD-ROM)
64 = /dev/hdr Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 91 char CAN-Bus devices
+ 91 char CAN-Bus devices
0 = /dev/can0 First CAN-Bus controller
1 = /dev/can1 Second CAN-Bus controller
...
- 91 block Tenth IDE hard disk/CD-ROM interface
+ 91 block Tenth IDE hard disk/CD-ROM interface
0 = /dev/hds Master: whole disk (or CD-ROM)
64 = /dev/hdt Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
- 92 char Reserved for ith Kommunikationstechnik MIC ISDN card
+ 92 char Reserved for ith Kommunikationstechnik MIC ISDN card
- 92 block PPDD encrypted disk driver
+ 92 block PPDD encrypted disk driver
0 = /dev/ppdd0 First encrypted disk
1 = /dev/ppdd1 Second encrypted disk
...
@@ -1641,35 +1586,35 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
- 93 char
+ 93 char
- 93 block NAND Flash Translation Layer filesystem
+ 93 block NAND Flash Translation Layer filesystem
0 = /dev/nftla First NFTL layer
16 = /dev/nftlb Second NFTL layer
...
240 = /dev/nftlp 16th NTFL layer
- 94 char
+ 94 char
- 94 block IBM S/390 DASD block storage
- 0 = /dev/dasda First DASD device, major
- 1 = /dev/dasda1 First DASD device, block 1
- 2 = /dev/dasda2 First DASD device, block 2
- 3 = /dev/dasda3 First DASD device, block 3
- 4 = /dev/dasdb Second DASD device, major
- 5 = /dev/dasdb1 Second DASD device, block 1
- 6 = /dev/dasdb2 Second DASD device, block 2
- 7 = /dev/dasdb3 Second DASD device, block 3
+ 94 block IBM S/390 DASD block storage
+ 0 = /dev/dasda First DASD device, major
+ 1 = /dev/dasda1 First DASD device, block 1
+ 2 = /dev/dasda2 First DASD device, block 2
+ 3 = /dev/dasda3 First DASD device, block 3
+ 4 = /dev/dasdb Second DASD device, major
+ 5 = /dev/dasdb1 Second DASD device, block 1
+ 6 = /dev/dasdb2 Second DASD device, block 2
+ 7 = /dev/dasdb3 Second DASD device, block 3
...
- 95 char IP filter
+ 95 char IP filter
0 = /dev/ipl Filter control device/log file
1 = /dev/ipnat NAT control device/log file
2 = /dev/ipstate State information log file
3 = /dev/ipauth Authentication control device/log file
...
- 96 char Parallel port ATAPI tape devices
+ 96 char Parallel port ATAPI tape devices
0 = /dev/pt0 First parallel port ATAPI tape
1 = /dev/pt1 Second parallel port ATAPI tape
...
@@ -1677,13 +1622,13 @@ Your cooperation is appreciated.
129 = /dev/npt1 Second p.p. ATAPI tape, no rewind
...
- 96 block Inverse NAND Flash Translation Layer
+ 96 block Inverse NAND Flash Translation Layer
0 = /dev/inftla First INFTL layer
16 = /dev/inftlb Second INFTL layer
...
240 = /dev/inftlp 16th INTFL layer
- 97 char Parallel port generic ATAPI interface
+ 97 char Parallel port generic ATAPI interface
0 = /dev/pg0 First parallel port ATAPI device
1 = /dev/pg1 Second parallel port ATAPI device
2 = /dev/pg2 Third parallel port ATAPI device
@@ -1692,14 +1637,14 @@ Your cooperation is appreciated.
These devices support the same API as the generic SCSI
devices.
- 98 char Control and Measurement Device (comedi)
+ 98 char Control and Measurement Device (comedi)
0 = /dev/comedi0 First comedi device
1 = /dev/comedi1 Second comedi device
...
See http://stm.lbl.gov/comedi.
- 98 block User-mode virtual block device
+ 98 block User-mode virtual block device
0 = /dev/ubda First user-mode block device
16 = /dev/udbb Second user-mode block device
...
@@ -1710,26 +1655,26 @@ Your cooperation is appreciated.
This device is used by the user-mode virtual kernel port.
- 99 char Raw parallel ports
+ 99 char Raw parallel ports
0 = /dev/parport0 First parallel port
1 = /dev/parport1 Second parallel port
...
- 99 block JavaStation flash disk
+ 99 block JavaStation flash disk
0 = /dev/jsfd JavaStation flash disk
-100 char Telephony for Linux
+ 100 char Telephony for Linux
0 = /dev/phone0 First telephony device
1 = /dev/phone1 Second telephony device
...
-101 char Motorola DSP 56xxx board
+ 101 char Motorola DSP 56xxx board
0 = /dev/mdspstat Status information
1 = /dev/mdsp1 First DSP board I/O controls
...
16 = /dev/mdsp16 16th DSP board I/O controls
-101 block AMI HyperDisk RAID controller
+ 101 block AMI HyperDisk RAID controller
0 = /dev/amiraid/ar0 First array whole disk
16 = /dev/amiraid/ar1 Second array whole disk
...
@@ -1742,9 +1687,9 @@ Your cooperation is appreciated.
...
15 = /dev/amiraid/ar?p15 15th partition
-102 char
+ 102 char
-102 block Compressed block device
+ 102 block Compressed block device
0 = /dev/cbd/a First compressed block device, whole device
16 = /dev/cbd/b Second compressed block device, whole device
...
@@ -1754,7 +1699,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
-103 char Arla network file system
+ 103 char Arla network file system
0 = /dev/nnpfs0 First NNPFS device
1 = /dev/nnpfs1 Second NNPFS device
@@ -1765,12 +1710,12 @@ Your cooperation is appreciated.
write to <arla-drinkers@stacken.kth.se> or see
http://www.stacken.kth.se/project/arla/
-103 block Audit device
+ 103 block Audit device
0 = /dev/audit Audit device
-104 char Flash BIOS support
+ 104 char Flash BIOS support
-104 block Compaq Next Generation Drive Array, first controller
+ 104 block Compaq Next Generation Drive Array, first controller
0 = /dev/cciss/c0d0 First logical drive, whole disk
16 = /dev/cciss/c0d1 Second logical drive, whole disk
...
@@ -1780,12 +1725,12 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-105 char Comtrol VS-1000 serial controller
+ 105 char Comtrol VS-1000 serial controller
0 = /dev/ttyV0 First VS-1000 port
1 = /dev/ttyV1 Second VS-1000 port
...
-105 block Compaq Next Generation Drive Array, second controller
+ 105 block Compaq Next Generation Drive Array, second controller
0 = /dev/cciss/c1d0 First logical drive, whole disk
16 = /dev/cciss/c1d1 Second logical drive, whole disk
...
@@ -1795,12 +1740,12 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-106 char Comtrol VS-1000 serial controller - alternate devices
+ 106 char Comtrol VS-1000 serial controller - alternate devices
0 = /dev/cuv0 First VS-1000 port
1 = /dev/cuv1 Second VS-1000 port
...
-106 block Compaq Next Generation Drive Array, third controller
+ 106 block Compaq Next Generation Drive Array, third controller
0 = /dev/cciss/c2d0 First logical drive, whole disk
16 = /dev/cciss/c2d1 Second logical drive, whole disk
...
@@ -1810,10 +1755,10 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-107 char 3Dfx Voodoo Graphics device
+ 107 char 3Dfx Voodoo Graphics device
0 = /dev/3dfx Primary 3Dfx graphics device
-107 block Compaq Next Generation Drive Array, fourth controller
+ 107 block Compaq Next Generation Drive Array, fourth controller
0 = /dev/cciss/c3d0 First logical drive, whole disk
16 = /dev/cciss/c3d1 Second logical drive, whole disk
...
@@ -1823,10 +1768,10 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-108 char Device independent PPP interface
+ 108 char Device independent PPP interface
0 = /dev/ppp Device independent PPP interface
-108 block Compaq Next Generation Drive Array, fifth controller
+ 108 block Compaq Next Generation Drive Array, fifth controller
0 = /dev/cciss/c4d0 First logical drive, whole disk
16 = /dev/cciss/c4d1 Second logical drive, whole disk
...
@@ -1836,9 +1781,9 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-109 char Reserved for logical volume manager
+ 109 char Reserved for logical volume manager
-109 block Compaq Next Generation Drive Array, sixth controller
+ 109 block Compaq Next Generation Drive Array, sixth controller
0 = /dev/cciss/c5d0 First logical drive, whole disk
16 = /dev/cciss/c5d1 Second logical drive, whole disk
...
@@ -1848,12 +1793,12 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-110 char miroMEDIA Surround board
+ 110 char miroMEDIA Surround board
0 = /dev/srnd0 First miroMEDIA Surround board
1 = /dev/srnd1 Second miroMEDIA Surround board
...
-110 block Compaq Next Generation Drive Array, seventh controller
+ 110 block Compaq Next Generation Drive Array, seventh controller
0 = /dev/cciss/c6d0 First logical drive, whole disk
16 = /dev/cciss/c6d1 Second logical drive, whole disk
...
@@ -1863,9 +1808,9 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-111 char
+ 111 char
-111 block Compaq Next Generation Drive Array, eighth controller
+ 111 block Compaq Next Generation Drive Array, eighth controller
0 = /dev/cciss/c7d0 First logical drive, whole disk
16 = /dev/cciss/c7d1 Second logical drive, whole disk
...
@@ -1875,7 +1820,7 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
-112 char ISI serial card
+ 112 char ISI serial card
0 = /dev/ttyM0 First ISI port
1 = /dev/ttyM1 Second ISI port
...
@@ -1883,7 +1828,7 @@ Your cooperation is appreciated.
There is currently a device-naming conflict between
these and PAM multimodems (major 78).
-112 block IBM iSeries virtual disk
+ 112 block IBM iSeries virtual disk
0 = /dev/iseries/vda First virtual disk, whole disk
8 = /dev/iseries/vdb Second virtual disk, whole disk
...
@@ -1896,17 +1841,17 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 7.
-113 char ISI serial card - alternate devices
+ 113 char ISI serial card - alternate devices
0 = /dev/cum0 Callout device for ttyM0
1 = /dev/cum1 Callout device for ttyM1
...
-113 block IBM iSeries virtual CD-ROM
+ 113 block IBM iSeries virtual CD-ROM
0 = /dev/iseries/vcda First virtual CD-ROM
1 = /dev/iseries/vcdb Second virtual CD-ROM
...
-114 char Picture Elements ISE board
+ 114 char Picture Elements ISE board
0 = /dev/ise0 First ISE board
1 = /dev/ise1 Second ISE board
...
@@ -1919,24 +1864,24 @@ Your cooperation is appreciated.
I/O access to the board, the /dev/isex0 nodes command
nodes used to control the board.
-114 block IDE BIOS powered software RAID interfaces such as the
- Promise Fastrak
+ 114 block IDE BIOS powered software RAID interfaces such as the
+ Promise Fastrak
- 0 = /dev/ataraid/d0
- 1 = /dev/ataraid/d0p1
- 2 = /dev/ataraid/d0p2
- ...
- 16 = /dev/ataraid/d1
- 17 = /dev/ataraid/d1p1
- 18 = /dev/ataraid/d1p2
- ...
- 255 = /dev/ataraid/d15p15
+ 0 = /dev/ataraid/d0
+ 1 = /dev/ataraid/d0p1
+ 2 = /dev/ataraid/d0p2
+ ...
+ 16 = /dev/ataraid/d1
+ 17 = /dev/ataraid/d1p1
+ 18 = /dev/ataraid/d1p2
+ ...
+ 255 = /dev/ataraid/d15p15
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-115 char TI link cable devices (115 was formerly the console driver speaker)
+ 115 char TI link cable devices (115 was formerly the console driver speaker)
0 = /dev/tipar0 Parallel cable on first parallel port
...
7 = /dev/tipar7 Parallel cable on seventh parallel port
@@ -1949,28 +1894,28 @@ Your cooperation is appreciated.
...
47 = /dev/tiusb31 32nd USB cable
-115 block NetWare (NWFS) Devices (0-255)
+ 115 block NetWare (NWFS) Devices (0-255)
- The NWFS (NetWare) devices are used to present a
- collection of NetWare Mirror Groups or NetWare
- Partitions as a logical storage segment for
- use in mounting NetWare volumes. A maximum of
- 256 NetWare volumes can be supported in a single
- machine.
+ The NWFS (NetWare) devices are used to present a
+ collection of NetWare Mirror Groups or NetWare
+ Partitions as a logical storage segment for
+ use in mounting NetWare volumes. A maximum of
+ 256 NetWare volumes can be supported in a single
+ machine.
- http://cgfa.telepac.pt/ftp2/kernel.org/linux/kernel/people/jmerkey/nwfs/
+ http://cgfa.telepac.pt/ftp2/kernel.org/linux/kernel/people/jmerkey/nwfs/
- 0 = /dev/nwfs/v0 First NetWare (NWFS) Logical Volume
- 1 = /dev/nwfs/v1 Second NetWare (NWFS) Logical Volume
- 2 = /dev/nwfs/v2 Third NetWare (NWFS) Logical Volume
- ...
- 255 = /dev/nwfs/v255 Last NetWare (NWFS) Logical Volume
+ 0 = /dev/nwfs/v0 First NetWare (NWFS) Logical Volume
+ 1 = /dev/nwfs/v1 Second NetWare (NWFS) Logical Volume
+ 2 = /dev/nwfs/v2 Third NetWare (NWFS) Logical Volume
+ ...
+ 255 = /dev/nwfs/v255 Last NetWare (NWFS) Logical Volume
-116 char Advanced Linux Sound Driver (ALSA)
+ 116 char Advanced Linux Sound Driver (ALSA)
-116 block MicroMemory battery backed RAM adapter (NVRAM)
- Supports 16 boards, 15 partitions each.
- Requested by neilb at cse.unsw.edu.au.
+ 116 block MicroMemory battery backed RAM adapter (NVRAM)
+ Supports 16 boards, 15 partitions each.
+ Requested by neilb at cse.unsw.edu.au.
0 = /dev/umem/d0 Whole of first board
1 = /dev/umem/d0p1 First partition of first board
@@ -1982,7 +1927,7 @@ Your cooperation is appreciated.
...
255= /dev/umem/d15p15 15th partition of 16th board.
-117 char COSA/SRP synchronous serial card
+ 117 char COSA/SRP synchronous serial card
0 = /dev/cosa0c0 1st board, 1st channel
1 = /dev/cosa0c1 1st board, 2nd channel
...
@@ -1990,147 +1935,147 @@ Your cooperation is appreciated.
17 = /dev/cosa1c1 2nd board, 2nd channel
...
-117 block Enterprise Volume Management System (EVMS)
+ 117 block Enterprise Volume Management System (EVMS)
- The EVMS driver uses a layered, plug-in model to provide
- unparalleled flexibility and extensibility in managing
- storage. This allows for easy expansion or customization
- of various levels of volume management. Requested by
- Mark Peloquin (peloquin at us.ibm.com).
+ The EVMS driver uses a layered, plug-in model to provide
+ unparalleled flexibility and extensibility in managing
+ storage. This allows for easy expansion or customization
+ of various levels of volume management. Requested by
+ Mark Peloquin (peloquin at us.ibm.com).
- Note: EVMS populates and manages all the devnodes in
- /dev/evms.
+ Note: EVMS populates and manages all the devnodes in
+ /dev/evms.
- http://sf.net/projects/evms
+ http://sf.net/projects/evms
- 0 = /dev/evms/block_device EVMS block device
- 1 = /dev/evms/legacyname1 First EVMS legacy device
- 2 = /dev/evms/legacyname2 Second EVMS legacy device
- ...
- Both ranges can grow (down or up) until they meet.
- ...
- 254 = /dev/evms/EVMSname2 Second EVMS native device
- 255 = /dev/evms/EVMSname1 First EVMS native device
+ 0 = /dev/evms/block_device EVMS block device
+ 1 = /dev/evms/legacyname1 First EVMS legacy device
+ 2 = /dev/evms/legacyname2 Second EVMS legacy device
+ ...
+ Both ranges can grow (down or up) until they meet.
+ ...
+ 254 = /dev/evms/EVMSname2 Second EVMS native device
+ 255 = /dev/evms/EVMSname1 First EVMS native device
- Note: legacyname(s) are derived from the normal legacy
- device names. For example, /dev/hda5 would become
- /dev/evms/hda5.
+ Note: legacyname(s) are derived from the normal legacy
+ device names. For example, /dev/hda5 would become
+ /dev/evms/hda5.
-118 char IBM Cryptographic Accelerator
+ 118 char IBM Cryptographic Accelerator
0 = /dev/ica Virtual interface to all IBM Crypto Accelerators
1 = /dev/ica0 IBMCA Device 0
2 = /dev/ica1 IBMCA Device 1
...
-119 char VMware virtual network control
+ 119 char VMware virtual network control
0 = /dev/vnet0 1st virtual network
1 = /dev/vnet1 2nd virtual network
...
-120-127 char LOCAL/EXPERIMENTAL USE
+ 120-127 char LOCAL/EXPERIMENTAL USE
-120-127 block LOCAL/EXPERIMENTAL USE
+ 120-127 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.
-128-135 char Unix98 PTY masters
+ 128-135 char Unix98 PTY masters
These devices should not have corresponding device
nodes; instead they should be accessed through the
/dev/ptmx cloning interface.
-128 block SCSI disk devices (128-143)
- 0 = /dev/sddy 129th SCSI disk whole disk
- 16 = /dev/sddz 130th SCSI disk whole disk
- 32 = /dev/sdea 131th SCSI disk whole disk
- ...
- 240 = /dev/sden 144th SCSI disk whole disk
+ 128 block SCSI disk devices (128-143)
+ 0 = /dev/sddy 129th SCSI disk whole disk
+ 16 = /dev/sddz 130th SCSI disk whole disk
+ 32 = /dev/sdea 131th SCSI disk whole disk
+ ...
+ 240 = /dev/sden 144th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-129 block SCSI disk devices (144-159)
- 0 = /dev/sdeo 145th SCSI disk whole disk
- 16 = /dev/sdep 146th SCSI disk whole disk
- 32 = /dev/sdeq 147th SCSI disk whole disk
- ...
- 240 = /dev/sdfd 160th SCSI disk whole disk
+ 129 block SCSI disk devices (144-159)
+ 0 = /dev/sdeo 145th SCSI disk whole disk
+ 16 = /dev/sdep 146th SCSI disk whole disk
+ 32 = /dev/sdeq 147th SCSI disk whole disk
+ ...
+ 240 = /dev/sdfd 160th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-130 char (Misc devices)
+ 130 char (Misc devices)
-130 block SCSI disk devices (160-175)
- 0 = /dev/sdfe 161st SCSI disk whole disk
- 16 = /dev/sdff 162nd SCSI disk whole disk
- 32 = /dev/sdfg 163rd SCSI disk whole disk
- ...
- 240 = /dev/sdft 176th SCSI disk whole disk
+ 130 block SCSI disk devices (160-175)
+ 0 = /dev/sdfe 161st SCSI disk whole disk
+ 16 = /dev/sdff 162nd SCSI disk whole disk
+ 32 = /dev/sdfg 163rd SCSI disk whole disk
+ ...
+ 240 = /dev/sdft 176th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-131 block SCSI disk devices (176-191)
- 0 = /dev/sdfu 177th SCSI disk whole disk
- 16 = /dev/sdfv 178th SCSI disk whole disk
- 32 = /dev/sdfw 179th SCSI disk whole disk
- ...
- 240 = /dev/sdgj 192nd SCSI disk whole disk
+ 131 block SCSI disk devices (176-191)
+ 0 = /dev/sdfu 177th SCSI disk whole disk
+ 16 = /dev/sdfv 178th SCSI disk whole disk
+ 32 = /dev/sdfw 179th SCSI disk whole disk
+ ...
+ 240 = /dev/sdgj 192nd SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-132 block SCSI disk devices (192-207)
- 0 = /dev/sdgk 193rd SCSI disk whole disk
- 16 = /dev/sdgl 194th SCSI disk whole disk
- 32 = /dev/sdgm 195th SCSI disk whole disk
- ...
- 240 = /dev/sdgz 208th SCSI disk whole disk
+ 132 block SCSI disk devices (192-207)
+ 0 = /dev/sdgk 193rd SCSI disk whole disk
+ 16 = /dev/sdgl 194th SCSI disk whole disk
+ 32 = /dev/sdgm 195th SCSI disk whole disk
+ ...
+ 240 = /dev/sdgz 208th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-133 block SCSI disk devices (208-223)
- 0 = /dev/sdha 209th SCSI disk whole disk
- 16 = /dev/sdhb 210th SCSI disk whole disk
- 32 = /dev/sdhc 211th SCSI disk whole disk
- ...
- 240 = /dev/sdhp 224th SCSI disk whole disk
+ 133 block SCSI disk devices (208-223)
+ 0 = /dev/sdha 209th SCSI disk whole disk
+ 16 = /dev/sdhb 210th SCSI disk whole disk
+ 32 = /dev/sdhc 211th SCSI disk whole disk
+ ...
+ 240 = /dev/sdhp 224th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-134 block SCSI disk devices (224-239)
- 0 = /dev/sdhq 225th SCSI disk whole disk
- 16 = /dev/sdhr 226th SCSI disk whole disk
- 32 = /dev/sdhs 227th SCSI disk whole disk
- ...
- 240 = /dev/sdif 240th SCSI disk whole disk
+ 134 block SCSI disk devices (224-239)
+ 0 = /dev/sdhq 225th SCSI disk whole disk
+ 16 = /dev/sdhr 226th SCSI disk whole disk
+ 32 = /dev/sdhs 227th SCSI disk whole disk
+ ...
+ 240 = /dev/sdif 240th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-135 block SCSI disk devices (240-255)
- 0 = /dev/sdig 241st SCSI disk whole disk
- 16 = /dev/sdih 242nd SCSI disk whole disk
- 32 = /dev/sdih 243rd SCSI disk whole disk
- ...
- 240 = /dev/sdiv 256th SCSI disk whole disk
+ 135 block SCSI disk devices (240-255)
+ 0 = /dev/sdig 241st SCSI disk whole disk
+ 16 = /dev/sdih 242nd SCSI disk whole disk
+ 32 = /dev/sdih 243rd SCSI disk whole disk
+ ...
+ 240 = /dev/sdiv 256th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
-136-143 char Unix98 PTY slaves
+ 136-143 char Unix98 PTY slaves
0 = /dev/pts/0 First Unix98 pseudo-TTY
1 = /dev/pts/1 Second Unix98 pseudo-TTY
...
@@ -2142,7 +2087,7 @@ Your cooperation is appreciated.
*most* distributions the appropriate options are
"mode=0620,gid=<gid of the "tty" group>".)
-136 block Mylex DAC960 PCI RAID controller; ninth controller
+ 136 block Mylex DAC960 PCI RAID controller; ninth controller
0 = /dev/rd/c8d0 First disk, whole disk
8 = /dev/rd/c8d1 Second disk, whole disk
...
@@ -2150,7 +2095,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-137 block Mylex DAC960 PCI RAID controller; tenth controller
+ 137 block Mylex DAC960 PCI RAID controller; tenth controller
0 = /dev/rd/c9d0 First disk, whole disk
8 = /dev/rd/c9d1 Second disk, whole disk
...
@@ -2158,7 +2103,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-138 block Mylex DAC960 PCI RAID controller; eleventh controller
+ 138 block Mylex DAC960 PCI RAID controller; eleventh controller
0 = /dev/rd/c10d0 First disk, whole disk
8 = /dev/rd/c10d1 Second disk, whole disk
...
@@ -2166,7 +2111,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-139 block Mylex DAC960 PCI RAID controller; twelfth controller
+ 139 block Mylex DAC960 PCI RAID controller; twelfth controller
0 = /dev/rd/c11d0 First disk, whole disk
8 = /dev/rd/c11d1 Second disk, whole disk
...
@@ -2174,7 +2119,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-140 block Mylex DAC960 PCI RAID controller; thirteenth controller
+ 140 block Mylex DAC960 PCI RAID controller; thirteenth controller
0 = /dev/rd/c12d0 First disk, whole disk
8 = /dev/rd/c12d1 Second disk, whole disk
...
@@ -2182,7 +2127,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-141 block Mylex DAC960 PCI RAID controller; fourteenth controller
+ 141 block Mylex DAC960 PCI RAID controller; fourteenth controller
0 = /dev/rd/c13d0 First disk, whole disk
8 = /dev/rd/c13d1 Second disk, whole disk
...
@@ -2190,7 +2135,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-142 block Mylex DAC960 PCI RAID controller; fifteenth controller
+ 142 block Mylex DAC960 PCI RAID controller; fifteenth controller
0 = /dev/rd/c14d0 First disk, whole disk
8 = /dev/rd/c14d1 Second disk, whole disk
...
@@ -2198,7 +2143,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-143 block Mylex DAC960 PCI RAID controller; sixteenth controller
+ 143 block Mylex DAC960 PCI RAID controller; sixteenth controller
0 = /dev/rd/c15d0 First disk, whole disk
8 = /dev/rd/c15d1 Second disk, whole disk
...
@@ -2206,7 +2151,7 @@ Your cooperation is appreciated.
Partitions are handled as for major 48.
-144 char Encapsulated PPP
+ 144 char Encapsulated PPP
0 = /dev/pppox0 First PPP over Ethernet
...
63 = /dev/pppox63 64th PPP over Ethernet
@@ -2216,11 +2161,11 @@ Your cooperation is appreciated.
The SST 5136-DN DeviceNet interface driver has been
relocated to major 183 due to an unfortunate conflict.
-144 block Expansion Area #1 for more non-device (e.g. NFS) mounts
+ 144 block Expansion Area #1 for more non-device (e.g. NFS) mounts
0 = mounted device 256
255 = mounted device 511
-145 char SAM9407-based soundcard
+ 145 char SAM9407-based soundcard
0 = /dev/sam0_mixer
1 = /dev/sam0_sequencer
2 = /dev/sam0_midi00
@@ -2241,66 +2186,66 @@ Your cooperation is appreciated.
addons, which are sam9407 specific. OSS can be
operated simultaneously, taking care of the codec.
-145 block Expansion Area #2 for more non-device (e.g. NFS) mounts
+ 145 block Expansion Area #2 for more non-device (e.g. NFS) mounts
0 = mounted device 512
255 = mounted device 767
-146 char SYSTRAM SCRAMNet mirrored-memory network
+ 146 char SYSTRAM SCRAMNet mirrored-memory network
0 = /dev/scramnet0 First SCRAMNet device
1 = /dev/scramnet1 Second SCRAMNet device
...
-146 block Expansion Area #3 for more non-device (e.g. NFS) mounts
+ 146 block Expansion Area #3 for more non-device (e.g. NFS) mounts
0 = mounted device 768
255 = mounted device 1023
-147 char Aureal Semiconductor Vortex Audio device
+ 147 char Aureal Semiconductor Vortex Audio device
0 = /dev/aureal0 First Aureal Vortex
1 = /dev/aureal1 Second Aureal Vortex
...
-147 block Distributed Replicated Block Device (DRBD)
+ 147 block Distributed Replicated Block Device (DRBD)
0 = /dev/drbd0 First DRBD device
1 = /dev/drbd1 Second DRBD device
...
-148 char Technology Concepts serial card
+ 148 char Technology Concepts serial card
0 = /dev/ttyT0 First TCL port
1 = /dev/ttyT1 Second TCL port
...
-149 char Technology Concepts serial card - alternate devices
+ 149 char Technology Concepts serial card - alternate devices
0 = /dev/cut0 Callout device for ttyT0
1 = /dev/cut0 Callout device for ttyT1
...
-150 char Real-Time Linux FIFOs
+ 150 char Real-Time Linux FIFOs
0 = /dev/rtf0 First RTLinux FIFO
1 = /dev/rtf1 Second RTLinux FIFO
...
-151 char DPT I2O SmartRaid V controller
+ 151 char DPT I2O SmartRaid V controller
0 = /dev/dpti0 First DPT I2O adapter
1 = /dev/dpti1 Second DPT I2O adapter
...
-152 char EtherDrive Control Device
+ 152 char EtherDrive Control Device
0 = /dev/etherd/ctl Connect/Disconnect an EtherDrive
1 = /dev/etherd/err Monitor errors
2 = /dev/etherd/raw Raw AoE packet monitor
-152 block EtherDrive Block Devices
+ 152 block EtherDrive Block Devices
0 = /dev/etherd/0 EtherDrive 0
...
255 = /dev/etherd/255 EtherDrive 255
-153 char SPI Bus Interface (sometimes referred to as MicroWire)
+ 153 char SPI Bus Interface (sometimes referred to as MicroWire)
0 = /dev/spi0 First SPI device on the bus
1 = /dev/spi1 Second SPI device on the bus
...
15 = /dev/spi15 Sixteenth SPI device on the bus
-153 block Enhanced Metadisk RAID (EMD) storage units
+ 153 block Enhanced Metadisk RAID (EMD) storage units
0 = /dev/emd/0 First unit
1 = /dev/emd/0p1 Partition 1 on First unit
2 = /dev/emd/0p2 Partition 2 on First unit
@@ -2316,41 +2261,41 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
-154 char Specialix RIO serial card
+ 154 char Specialix RIO serial card
0 = /dev/ttySR0 First RIO port
...
255 = /dev/ttySR255 256th RIO port
-155 char Specialix RIO serial card - alternate devices
+ 155 char Specialix RIO serial card - alternate devices
0 = /dev/cusr0 Callout device for ttySR0
...
255 = /dev/cusr255 Callout device for ttySR255
-156 char Specialix RIO serial card
+ 156 char Specialix RIO serial card
0 = /dev/ttySR256 257th RIO port
...
255 = /dev/ttySR511 512th RIO port
-157 char Specialix RIO serial card - alternate devices
+ 157 char Specialix RIO serial card - alternate devices
0 = /dev/cusr256 Callout device for ttySR256
...
255 = /dev/cusr511 Callout device for ttySR511
-158 char Dialogic GammaLink fax driver
+ 158 char Dialogic GammaLink fax driver
0 = /dev/gfax0 GammaLink channel 0
1 = /dev/gfax1 GammaLink channel 1
...
-159 char RESERVED
+ 159 char RESERVED
-159 block RESERVED
+ 159 block RESERVED
-160 char General Purpose Instrument Bus (GPIB)
+ 160 char General Purpose Instrument Bus (GPIB)
0 = /dev/gpib0 First GPIB bus
1 = /dev/gpib1 Second GPIB bus
...
-160 block Carmel 8-port SATA Disks on First Controller
+ 160 block Carmel 8-port SATA Disks on First Controller
0 = /dev/carmel/0 SATA disk 0 whole disk
1 = /dev/carmel/0p1 SATA disk 0 partition 1
...
@@ -2365,7 +2310,7 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 31.
-161 char IrCOMM devices (IrDA serial/parallel emulation)
+ 161 char IrCOMM devices (IrDA serial/parallel emulation)
0 = /dev/ircomm0 First IrCOMM device
1 = /dev/ircomm1 Second IrCOMM device
...
@@ -2373,7 +2318,7 @@ Your cooperation is appreciated.
17 = /dev/irlpt1 Second IrLPT device
...
-161 block Carmel 8-port SATA Disks on Second Controller
+ 161 block Carmel 8-port SATA Disks on Second Controller
0 = /dev/carmel/8 SATA disk 8 whole disk
1 = /dev/carmel/8p1 SATA disk 8 partition 1
...
@@ -2388,17 +2333,17 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 31.
-162 char Raw block device interface
+ 162 char Raw block device interface
0 = /dev/rawctl Raw I/O control device
1 = /dev/raw/raw1 First raw I/O device
2 = /dev/raw/raw2 Second raw I/O device
...
- max minor number of raw device is set by kernel config
- MAX_RAW_DEVS or raw module parameter 'max_raw_devs'
+ max minor number of raw device is set by kernel config
+ MAX_RAW_DEVS or raw module parameter 'max_raw_devs'
-163 char
+ 163 char
-164 char Chase Research AT/PCI-Fast serial card
+ 164 char Chase Research AT/PCI-Fast serial card
0 = /dev/ttyCH0 AT/PCI-Fast board 0, port 0
...
15 = /dev/ttyCH15 AT/PCI-Fast board 0, port 15
@@ -2412,67 +2357,67 @@ Your cooperation is appreciated.
...
63 = /dev/ttyCH63 AT/PCI-Fast board 3, port 15
-165 char Chase Research AT/PCI-Fast serial card - alternate devices
+ 165 char Chase Research AT/PCI-Fast serial card - alternate devices
0 = /dev/cuch0 Callout device for ttyCH0
...
63 = /dev/cuch63 Callout device for ttyCH63
-166 char ACM USB modems
+ 166 char ACM USB modems
0 = /dev/ttyACM0 First ACM modem
1 = /dev/ttyACM1 Second ACM modem
...
-167 char ACM USB modems - alternate devices
+ 167 char ACM USB modems - alternate devices
0 = /dev/cuacm0 Callout device for ttyACM0
1 = /dev/cuacm1 Callout device for ttyACM1
...
-168 char Eracom CSA7000 PCI encryption adaptor
+ 168 char Eracom CSA7000 PCI encryption adaptor
0 = /dev/ecsa0 First CSA7000
1 = /dev/ecsa1 Second CSA7000
...
-169 char Eracom CSA8000 PCI encryption adaptor
+ 169 char Eracom CSA8000 PCI encryption adaptor
0 = /dev/ecsa8-0 First CSA8000
1 = /dev/ecsa8-1 Second CSA8000
...
-170 char AMI MegaRAC remote access controller
+ 170 char AMI MegaRAC remote access controller
0 = /dev/megarac0 First MegaRAC card
1 = /dev/megarac1 Second MegaRAC card
...
-171 char Reserved for IEEE 1394 (Firewire)
+ 171 char Reserved for IEEE 1394 (Firewire)
-172 char Moxa Intellio serial card
+ 172 char Moxa Intellio serial card
0 = /dev/ttyMX0 First Moxa port
1 = /dev/ttyMX1 Second Moxa port
...
127 = /dev/ttyMX127 128th Moxa port
128 = /dev/moxactl Moxa control port
-173 char Moxa Intellio serial card - alternate devices
+ 173 char Moxa Intellio serial card - alternate devices
0 = /dev/cumx0 Callout device for ttyMX0
1 = /dev/cumx1 Callout device for ttyMX1
...
127 = /dev/cumx127 Callout device for ttyMX127
-174 char SmartIO serial card
+ 174 char SmartIO serial card
0 = /dev/ttySI0 First SmartIO port
1 = /dev/ttySI1 Second SmartIO port
...
-175 char SmartIO serial card - alternate devices
+ 175 char SmartIO serial card - alternate devices
0 = /dev/cusi0 Callout device for ttySI0
1 = /dev/cusi1 Callout device for ttySI1
...
-176 char nCipher nFast PCI crypto accelerator
+ 176 char nCipher nFast PCI crypto accelerator
0 = /dev/nfastpci0 First nFast PCI device
1 = /dev/nfastpci1 First nFast PCI device
...
-177 char TI PCILynx memory spaces
+ 177 char TI PCILynx memory spaces
0 = /dev/pcilynx/aux0 AUX space of first PCILynx card
...
15 = /dev/pcilynx/aux15 AUX space of 16th PCILynx card
@@ -2483,12 +2428,12 @@ Your cooperation is appreciated.
...
47 = /dev/pcilynx/ram15 RAM space of 16th PCILynx card
-178 char Giganet cLAN1xxx virtual interface adapter
+ 178 char Giganet cLAN1xxx virtual interface adapter
0 = /dev/clanvi0 First cLAN adapter
1 = /dev/clanvi1 Second cLAN adapter
...
-179 block MMC block devices
+ 179 block MMC block devices
0 = /dev/mmcblk0 First SD/MMC card
1 = /dev/mmcblk0p1 First partition on first MMC card
8 = /dev/mmcblk1 Second SD/MMC card
@@ -2500,12 +2445,12 @@ Your cooperation is appreciated.
bump the offset between each card to be the configured
value instead of the default 8.
-179 char CCube DVXChip-based PCI products
+ 179 char CCube DVXChip-based PCI products
0 = /dev/dvxirq0 First DVX device
1 = /dev/dvxirq1 Second DVX device
...
-180 char USB devices
+ 180 char USB devices
0 = /dev/usb/lp0 First USB printer
...
15 = /dev/usb/lp15 16th USB printer
@@ -2539,23 +2484,23 @@ Your cooperation is appreciated.
...
209 = /dev/usb/yurex16 16th USB Yurex device
-180 block USB block devices
+ 180 block USB block devices
0 = /dev/uba First USB block device
8 = /dev/ubb Second USB block device
16 = /dev/ubc Third USB block device
- ...
+ ...
-181 char Conrad Electronic parallel port radio clocks
+ 181 char Conrad Electronic parallel port radio clocks
0 = /dev/pcfclock0 First Conrad radio clock
1 = /dev/pcfclock1 Second Conrad radio clock
...
-182 char Picture Elements THR2 binarizer
+ 182 char Picture Elements THR2 binarizer
0 = /dev/pethr0 First THR2 board
1 = /dev/pethr1 Second THR2 board
...
-183 char SST 5136-DN DeviceNet interface
+ 183 char SST 5136-DN DeviceNet interface
0 = /dev/ss5136dn0 First DeviceNet interface
1 = /dev/ss5136dn1 Second DeviceNet interface
...
@@ -2563,12 +2508,12 @@ Your cooperation is appreciated.
This device used to be assigned to major number 144.
It had to be moved due to an unfortunate conflict.
-184 char Picture Elements' video simulator/sender
+ 184 char Picture Elements' video simulator/sender
0 = /dev/pevss0 First sender board
1 = /dev/pevss1 Second sender board
...
-185 char InterMezzo high availability file system
+ 185 char InterMezzo high availability file system
0 = /dev/intermezzo0 First cache manager
1 = /dev/intermezzo1 Second cache manager
...
@@ -2576,48 +2521,48 @@ Your cooperation is appreciated.
See http://web.archive.org/web/20080115195241/
http://inter-mezzo.org/index.html
-186 char Object-based storage control device
+ 186 char Object-based storage control device
0 = /dev/obd0 First obd control device
1 = /dev/obd1 Second obd control device
...
See ftp://ftp.lustre.org/pub/obd for code and information.
-187 char DESkey hardware encryption device
+ 187 char DESkey hardware encryption device
0 = /dev/deskey0 First DES key
1 = /dev/deskey1 Second DES key
...
-188 char USB serial converters
+ 188 char USB serial converters
0 = /dev/ttyUSB0 First USB serial converter
1 = /dev/ttyUSB1 Second USB serial converter
...
-189 char USB serial converters - alternate devices
+ 189 char USB serial converters - alternate devices
0 = /dev/cuusb0 Callout device for ttyUSB0
1 = /dev/cuusb1 Callout device for ttyUSB1
...
-190 char Kansas City tracker/tuner card
+ 190 char Kansas City tracker/tuner card
0 = /dev/kctt0 First KCT/T card
1 = /dev/kctt1 Second KCT/T card
...
-191 char Reserved for PCMCIA
+ 191 char Reserved for PCMCIA
-192 char Kernel profiling interface
+ 192 char Kernel profiling interface
0 = /dev/profile Profiling control device
1 = /dev/profile0 Profiling device for CPU 0
2 = /dev/profile1 Profiling device for CPU 1
...
-193 char Kernel event-tracing interface
+ 193 char Kernel event-tracing interface
0 = /dev/trace Tracing control device
1 = /dev/trace0 Tracing device for CPU 0
2 = /dev/trace1 Tracing device for CPU 1
...
-194 char linVideoStreams (LINVS)
+ 194 char linVideoStreams (LINVS)
0 = /dev/mvideo/status0 Video compression status
1 = /dev/mvideo/stream0 Video stream
2 = /dev/mvideo/frame0 Single compressed frame
@@ -2633,13 +2578,13 @@ Your cooperation is appreciated.
240 = /dev/mvideo/status15 16th device
...
-195 char Nvidia graphics devices
+ 195 char Nvidia graphics devices
0 = /dev/nvidia0 First Nvidia card
1 = /dev/nvidia1 Second Nvidia card
...
255 = /dev/nvidiactl Nvidia card control device
-196 char Tormenta T1 card
+ 196 char Tormenta T1 card
0 = /dev/tor/0 Master control channel for all cards
1 = /dev/tor/1 First DS0
2 = /dev/tor/2 Second DS0
@@ -2649,24 +2594,24 @@ Your cooperation is appreciated.
50 = /dev/tor/50 Second pseudo-channel
...
-197 char OpenTNF tracing facility
+ 197 char OpenTNF tracing facility
0 = /dev/tnf/t0 Trace 0 data extraction
1 = /dev/tnf/t1 Trace 1 data extraction
...
128 = /dev/tnf/status Tracing facility status
130 = /dev/tnf/trace Tracing device
-198 char Total Impact TPMP2 quad coprocessor PCI card
+ 198 char Total Impact TPMP2 quad coprocessor PCI card
0 = /dev/tpmp2/0 First card
1 = /dev/tpmp2/1 Second card
...
-199 char Veritas volume manager (VxVM) volumes
+ 199 char Veritas volume manager (VxVM) volumes
0 = /dev/vx/rdsk/*/* First volume
1 = /dev/vx/rdsk/*/* Second volume
...
-199 block Veritas volume manager (VxVM) volumes
+ 199 block Veritas volume manager (VxVM) volumes
0 = /dev/vx/dsk/*/* First volume
1 = /dev/vx/dsk/*/* Second volume
...
@@ -2674,19 +2619,19 @@ Your cooperation is appreciated.
The namespace in these directories is maintained by
the user space VxVM software.
-200 char Veritas VxVM configuration interface
- 0 = /dev/vx/config Configuration access node
- 1 = /dev/vx/trace Volume i/o trace access node
- 2 = /dev/vx/iod Volume i/o daemon access node
- 3 = /dev/vx/info Volume information access node
- 4 = /dev/vx/task Volume tasks access node
- 5 = /dev/vx/taskmon Volume tasks monitor daemon
+ 200 char Veritas VxVM configuration interface
+ 0 = /dev/vx/config Configuration access node
+ 1 = /dev/vx/trace Volume i/o trace access node
+ 2 = /dev/vx/iod Volume i/o daemon access node
+ 3 = /dev/vx/info Volume information access node
+ 4 = /dev/vx/task Volume tasks access node
+ 5 = /dev/vx/taskmon Volume tasks monitor daemon
-201 char Veritas VxVM dynamic multipathing driver
+ 201 char Veritas VxVM dynamic multipathing driver
0 = /dev/vx/rdmp/* First multipath device
1 = /dev/vx/rdmp/* Second multipath device
...
-201 block Veritas VxVM dynamic multipathing driver
+ 201 block Veritas VxVM dynamic multipathing driver
0 = /dev/vx/dmp/* First multipath device
1 = /dev/vx/dmp/* Second multipath device
...
@@ -2694,28 +2639,28 @@ Your cooperation is appreciated.
The namespace in these directories is maintained by
the user space VxVM software.
-202 char CPU model-specific registers
+ 202 char CPU model-specific registers
0 = /dev/cpu/0/msr MSRs on CPU 0
1 = /dev/cpu/1/msr MSRs on CPU 1
...
-202 block Xen Virtual Block Device
+ 202 block Xen Virtual Block Device
0 = /dev/xvda First Xen VBD whole disk
16 = /dev/xvdb Second Xen VBD whole disk
32 = /dev/xvdc Third Xen VBD whole disk
...
240 = /dev/xvdp Sixteenth Xen VBD whole disk
- Partitions are handled in the same way as for IDE
- disks (see major number 3) except that the limit on
- partitions is 15.
+ Partitions are handled in the same way as for IDE
+ disks (see major number 3) except that the limit on
+ partitions is 15.
-203 char CPU CPUID information
+ 203 char CPU CPUID information
0 = /dev/cpu/0/cpuid CPUID on CPU 0
1 = /dev/cpu/1/cpuid CPUID on CPU 1
...
-204 char Low-density serial ports
+ 204 char Low-density serial ports
0 = /dev/ttyLU0 LinkUp Systems L72xx UART - port 0
1 = /dev/ttyLU1 LinkUp Systems L72xx UART - port 1
2 = /dev/ttyLU2 LinkUp Systems L72xx UART - port 2
@@ -2787,7 +2732,7 @@ Your cooperation is appreciated.
211 = /dev/ttyMAX2 MAX3100 serial port 2
212 = /dev/ttyMAX3 MAX3100 serial port 3
-205 char Low-density serial ports (alternate device)
+ 205 char Low-density serial ports (alternate device)
0 = /dev/culu0 Callout device for ttyLU0
1 = /dev/culu1 Callout device for ttyLU1
2 = /dev/culu2 Callout device for ttyLU2
@@ -2823,7 +2768,7 @@ Your cooperation is appreciated.
82 = /dev/cuvr0 Callout device for ttyVR0
83 = /dev/cuvr1 Callout device for ttyVR1
-206 char OnStream SC-x0 tape devices
+ 206 char OnStream SC-x0 tape devices
0 = /dev/osst0 First OnStream SCSI tape, mode 0
1 = /dev/osst1 Second OnStream SCSI tape, mode 0
...
@@ -2857,7 +2802,7 @@ Your cooperation is appreciated.
driver as well. The ADR-x0 drives are QIC-157
compliant and don't need osst.
-207 char Compaq ProLiant health feature indicate
+ 207 char Compaq ProLiant health feature indicate
0 = /dev/cpqhealth/cpqw Redirector interface
1 = /dev/cpqhealth/crom EISA CROM
2 = /dev/cpqhealth/cdt Data Table
@@ -2871,17 +2816,17 @@ Your cooperation is appreciated.
10 = /dev/cpqhealth/cram CMOS interface
11 = /dev/cpqhealth/cpci PCI IRQ interface
-208 char User space serial ports
+ 208 char User space serial ports
0 = /dev/ttyU0 First user space serial port
1 = /dev/ttyU1 Second user space serial port
...
-209 char User space serial ports (alternate devices)
+ 209 char User space serial ports (alternate devices)
0 = /dev/cuu0 Callout device for ttyU0
1 = /dev/cuu1 Callout device for ttyU1
...
-210 char SBE, Inc. sync/async serial card
+ 210 char SBE, Inc. sync/async serial card
0 = /dev/sbei/wxcfg0 Configuration device for board 0
1 = /dev/sbei/dld0 Download device for board 0
2 = /dev/sbei/wan00 WAN device, port 0, board 0
@@ -2906,12 +2851,12 @@ Your cooperation is appreciated.
Yes, each board is really spaced 10 (decimal) apart.
-211 char Addinum CPCI1500 digital I/O card
+ 211 char Addinum CPCI1500 digital I/O card
0 = /dev/addinum/cpci1500/0 First CPCI1500 card
1 = /dev/addinum/cpci1500/1 Second CPCI1500 card
...
-212 char LinuxTV.org DVB driver subsystem
+ 212 char LinuxTV.org DVB driver subsystem
0 = /dev/dvb/adapter0/video0 first video decoder of first card
1 = /dev/dvb/adapter0/audio0 first audio decoder of first card
2 = /dev/dvb/adapter0/sec0 (obsolete/unused)
@@ -2929,34 +2874,34 @@ Your cooperation is appreciated.
...
196 = /dev/dvb/adapter3/video0 first video decoder of fourth card
-216 char Bluetooth RFCOMM TTY devices
+ 216 char Bluetooth RFCOMM TTY devices
0 = /dev/rfcomm0 First Bluetooth RFCOMM TTY device
1 = /dev/rfcomm1 Second Bluetooth RFCOMM TTY device
...
-217 char Bluetooth RFCOMM TTY devices (alternate devices)
+ 217 char Bluetooth RFCOMM TTY devices (alternate devices)
0 = /dev/curf0 Callout device for rfcomm0
1 = /dev/curf1 Callout device for rfcomm1
...
-218 char The Logical Company bus Unibus/Qbus adapters
+ 218 char The Logical Company bus Unibus/Qbus adapters
0 = /dev/logicalco/bci/0 First bus adapter
1 = /dev/logicalco/bci/1 First bus adapter
...
-219 char The Logical Company DCI-1300 digital I/O card
+ 219 char The Logical Company DCI-1300 digital I/O card
0 = /dev/logicalco/dci1300/0 First DCI-1300 card
1 = /dev/logicalco/dci1300/1 Second DCI-1300 card
...
-220 char Myricom Myrinet "GM" board
+ 220 char Myricom Myrinet "GM" board
0 = /dev/myricom/gm0 First Myrinet GM board
1 = /dev/myricom/gmp0 First board "root access"
2 = /dev/myricom/gm1 Second Myrinet GM board
3 = /dev/myricom/gmp1 Second board "root access"
...
-221 char VME bus
+ 221 char VME bus
0 = /dev/bus/vme/m0 First master image
1 = /dev/bus/vme/m1 Second master image
2 = /dev/bus/vme/m2 Third master image
@@ -2971,38 +2916,38 @@ Your cooperation is appreciated.
same interface. For interface documentation see
http://www.vmelinux.org/.
-224 char A2232 serial card
+ 224 char A2232 serial card
0 = /dev/ttyY0 First A2232 port
1 = /dev/ttyY1 Second A2232 port
...
-225 char A2232 serial card (alternate devices)
+ 225 char A2232 serial card (alternate devices)
0 = /dev/cuy0 Callout device for ttyY0
1 = /dev/cuy1 Callout device for ttyY1
...
-226 char Direct Rendering Infrastructure (DRI)
+ 226 char Direct Rendering Infrastructure (DRI)
0 = /dev/dri/card0 First graphics card
1 = /dev/dri/card1 Second graphics card
...
-227 char IBM 3270 terminal Unix tty access
+ 227 char IBM 3270 terminal Unix tty access
1 = /dev/3270/tty1 First 3270 terminal
2 = /dev/3270/tty2 Seconds 3270 terminal
...
-228 char IBM 3270 terminal block-mode access
+ 228 char IBM 3270 terminal block-mode access
0 = /dev/3270/tub Controlling interface
1 = /dev/3270/tub1 First 3270 terminal
2 = /dev/3270/tub2 Second 3270 terminal
...
-229 char IBM iSeries/pSeries virtual console
+ 229 char IBM iSeries/pSeries virtual console
0 = /dev/hvc0 First console port
1 = /dev/hvc1 Second console port
...
-230 char IBM iSeries virtual tape
+ 230 char IBM iSeries virtual tape
0 = /dev/iseries/vt0 First virtual tape, mode 0
1 = /dev/iseries/vt1 Second virtual tape, mode 0
...
@@ -3033,7 +2978,7 @@ Your cooperation is appreciated.
ioctl()'s can be used to rewind the tape regardless of
the device used to access it.
-231 char InfiniBand
+ 231 char InfiniBand
0 = /dev/infiniband/umad0
1 = /dev/infiniband/umad1
...
@@ -3047,7 +2992,7 @@ Your cooperation is appreciated.
...
159 = /dev/infiniband/uverbs31 31st InfiniBand verbs device
-232 char Biometric Devices
+ 232 char Biometric Devices
0 = /dev/biometric/sensor0/fingerprint first fingerprint sensor on first device
1 = /dev/biometric/sensor0/iris first iris sensor on first device
2 = /dev/biometric/sensor0/retina first retina sensor on first device
@@ -3060,7 +3005,7 @@ Your cooperation is appreciated.
20 = /dev/biometric/sensor2/fingerprint first fingerprint sensor on third device
...
-233 char PathScale InfiniPath interconnect
+ 233 char PathScale InfiniPath interconnect
0 = /dev/ipath Primary device for programs (any unit)
1 = /dev/ipath0 Access specifically to unit 0
2 = /dev/ipath1 Access specifically to unit 1
@@ -3069,18 +3014,18 @@ Your cooperation is appreciated.
129 = /dev/ipath_sma Device used by Subnet Management Agent
130 = /dev/ipath_diag Device used by diagnostics programs
-234-254 char RESERVED FOR DYNAMIC ASSIGNMENT
+ 234-254 char RESERVED FOR DYNAMIC ASSIGNMENT
Character devices that request a dynamic allocation of major number will
take numbers starting from 254 and downward.
-240-254 block LOCAL/EXPERIMENTAL USE
+ 240-254 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.
-255 char RESERVED
+ 255 char RESERVED
-255 block RESERVED
+ 255 block RESERVED
This major is reserved to assist the expansion to a
larger number space. No device nodes with this major
@@ -3088,25 +3033,25 @@ Your cooperation is appreciated.
(This is probably not true anymore, but I'll leave it
for now /Torben)
----LARGE MAJORS!!!!!---
+ ---LARGE MAJORS!!!!!---
-256 char Equinox SST multi-port serial boards
+ 256 char Equinox SST multi-port serial boards
0 = /dev/ttyEQ0 First serial port on first Equinox SST board
127 = /dev/ttyEQ127 Last serial port on first Equinox SST board
128 = /dev/ttyEQ128 First serial port on second Equinox SST board
...
1027 = /dev/ttyEQ1027 Last serial port on eighth Equinox SST board
-256 block Resident Flash Disk Flash Translation Layer
+ 256 block Resident Flash Disk Flash Translation Layer
0 = /dev/rfda First RFD FTL layer
16 = /dev/rfdb Second RFD FTL layer
...
240 = /dev/rfdp 16th RFD FTL layer
-257 char Phoenix Technologies Cryptographic Services Driver
+ 257 char Phoenix Technologies Cryptographic Services Driver
0 = /dev/ptlsec Crypto Services Driver
-257 block SSFDC Flash Translation Layer filesystem
+ 257 block SSFDC Flash Translation Layer filesystem
0 = /dev/ssfdca First SSFDC layer
8 = /dev/ssfdcb Second SSFDC layer
16 = /dev/ssfdcc Third SSFDC layer
@@ -3116,210 +3061,21 @@ Your cooperation is appreciated.
48 = /dev/ssfdcg 7th SSFDC layer
56 = /dev/ssfdch 8th SSFDC layer
-258 block ROM/Flash read-only translation layer
+ 258 block ROM/Flash read-only translation layer
0 = /dev/blockrom0 First ROM card's translation layer interface
1 = /dev/blockrom1 Second ROM card's translation layer interface
...
-259 block Block Extended Major
+ 259 block Block Extended Major
Used dynamically to hold additional partition minor
numbers and allow large numbers of partitions per device
-259 char FPGA configuration interfaces
+ 259 char FPGA configuration interfaces
0 = /dev/icap0 First Xilinx internal configuration
1 = /dev/icap1 Second Xilinx internal configuration
-260 char OSD (Object-based-device) SCSI Device
+ 260 char OSD (Object-based-device) SCSI Device
0 = /dev/osd0 First OSD Device
1 = /dev/osd1 Second OSD Device
...
255 = /dev/osd255 256th OSD Device
-
- **** ADDITIONAL /dev DIRECTORY ENTRIES
-
-This section details additional entries that should or may exist in
-the /dev directory. It is preferred that symbolic links use the same
-form (absolute or relative) as is indicated here. Links are
-classified as "hard" or "symbolic" depending on the preferred type of
-link; if possible, the indicated type of link should be used.
-
-
- Compulsory links
-
-These links should exist on all systems:
-
-/dev/fd /proc/self/fd symbolic File descriptors
-/dev/stdin fd/0 symbolic stdin file descriptor
-/dev/stdout fd/1 symbolic stdout file descriptor
-/dev/stderr fd/2 symbolic stderr file descriptor
-/dev/nfsd socksys symbolic Required by iBCS-2
-/dev/X0R null symbolic Required by iBCS-2
-
-Note: /dev/X0R is <letter X>-<digit 0>-<letter R>.
-
- Recommended links
-
-It is recommended that these links exist on all systems:
-
-/dev/core /proc/kcore symbolic Backward compatibility
-/dev/ramdisk ram0 symbolic Backward compatibility
-/dev/ftape qft0 symbolic Backward compatibility
-/dev/bttv0 video0 symbolic Backward compatibility
-/dev/radio radio0 symbolic Backward compatibility
-/dev/i2o* /dev/i2o/* symbolic Backward compatibility
-/dev/scd? sr? hard Alternate SCSI CD-ROM name
-
- Locally defined links
-
-The following links may be established locally to conform to the
-configuration of the system. This is merely a tabulation of existing
-practice, and does not constitute a recommendation. However, if they
-exist, they should have the following uses.
-
-/dev/mouse mouse port symbolic Current mouse device
-/dev/tape tape device symbolic Current tape device
-/dev/cdrom CD-ROM device symbolic Current CD-ROM device
-/dev/cdwriter CD-writer symbolic Current CD-writer device
-/dev/scanner scanner symbolic Current scanner device
-/dev/modem modem port symbolic Current dialout device
-/dev/root root device symbolic Current root filesystem
-/dev/swap swap device symbolic Current swap device
-
-/dev/modem should not be used for a modem which supports dialin as
-well as dialout, as it tends to cause lock file problems. If it
-exists, /dev/modem should point to the appropriate primary TTY device
-(the use of the alternate callout devices is deprecated).
-
-For SCSI devices, /dev/tape and /dev/cdrom should point to the
-``cooked'' devices (/dev/st* and /dev/sr*, respectively), whereas
-/dev/cdwriter and /dev/scanner should point to the appropriate generic
-SCSI devices (/dev/sg*).
-
-/dev/mouse may point to a primary serial TTY device, a hardware mouse
-device, or a socket for a mouse driver program (e.g. /dev/gpmdata).
-
- Sockets and pipes
-
-Non-transient sockets and named pipes may exist in /dev. Common entries are:
-
-/dev/printer socket lpd local socket
-/dev/log socket syslog local socket
-/dev/gpmdata socket gpm mouse multiplexer
-
- Mount points
-
-The following names are reserved for mounting special filesystems
-under /dev. These special filesystems provide kernel interfaces that
-cannot be provided with standard device nodes.
-
-/dev/pts devpts PTY slave filesystem
-/dev/shm tmpfs POSIX shared memory maintenance access
-
- **** TERMINAL DEVICES
-
-Terminal, or TTY devices are a special class of character devices. A
-terminal device is any device that could act as a controlling terminal
-for a session; this includes virtual consoles, serial ports, and
-pseudoterminals (PTYs).
-
-All terminal devices share a common set of capabilities known as line
-disciplines; these include the common terminal line discipline as well
-as SLIP and PPP modes.
-
-All terminal devices are named similarly; this section explains the
-naming and use of the various types of TTYs. Note that the naming
-conventions include several historical warts; some of these are
-Linux-specific, some were inherited from other systems, and some
-reflect Linux outgrowing a borrowed convention.
-
-A hash mark (#) in a device name is used here to indicate a decimal
-number without leading zeroes.
-
- Virtual consoles and the console device
-
-Virtual consoles are full-screen terminal displays on the system video
-monitor. Virtual consoles are named /dev/tty#, with numbering
-starting at /dev/tty1; /dev/tty0 is the current virtual console.
-/dev/tty0 is the device that should be used to access the system video
-card on those architectures for which the frame buffer devices
-(/dev/fb*) are not applicable. Do not use /dev/console
-for this purpose.
-
-The console device, /dev/console, is the device to which system
-messages should be sent, and on which logins should be permitted in
-single-user mode. Starting with Linux 2.1.71, /dev/console is managed
-by the kernel; for previous versions it should be a symbolic link to
-either /dev/tty0, a specific virtual console such as /dev/tty1, or to
-a serial port primary (tty*, not cu*) device, depending on the
-configuration of the system.
-
- Serial ports
-
-Serial ports are RS-232 serial ports and any device which simulates
-one, either in hardware (such as internal modems) or in software (such
-as the ISDN driver.) Under Linux, each serial ports has two device
-names, the primary or callin device and the alternate or callout one.
-Each kind of device is indicated by a different letter. For any
-letter X, the names of the devices are /dev/ttyX# and /dev/cux#,
-respectively; for historical reasons, /dev/ttyS# and /dev/ttyC#
-correspond to /dev/cua# and /dev/cub#. In the future, it should be
-expected that multiple letters will be used; all letters will be upper
-case for the "tty" device (e.g. /dev/ttyDP#) and lower case for the
-"cu" device (e.g. /dev/cudp#).
-
-The names /dev/ttyQ# and /dev/cuq# are reserved for local use.
-
-The alternate devices provide for kernel-based exclusion and somewhat
-different defaults than the primary devices. Their main purpose is to
-allow the use of serial ports with programs with no inherent or broken
-support for serial ports. Their use is deprecated, and they may be
-removed from a future version of Linux.
-
-Arbitration of serial ports is provided by the use of lock files with
-the names /var/lock/LCK..ttyX#. The contents of the lock file should
-be the PID of the locking process as an ASCII number.
-
-It is common practice to install links such as /dev/modem
-which point to serial ports. In order to ensure proper locking in the
-presence of these links, it is recommended that software chase
-symlinks and lock all possible names; additionally, it is recommended
-that a lock file be installed with the corresponding alternate
-device. In order to avoid deadlocks, it is recommended that the locks
-are acquired in the following order, and released in the reverse:
-
- 1. The symbolic link name, if any (/var/lock/LCK..modem)
- 2. The "tty" name (/var/lock/LCK..ttyS2)
- 3. The alternate device name (/var/lock/LCK..cua2)
-
-In the case of nested symbolic links, the lock files should be
-installed in the order the symlinks are resolved.
-
-Under no circumstances should an application hold a lock while waiting
-for another to be released. In addition, applications which attempt
-to create lock files for the corresponding alternate device names
-should take into account the possibility of being used on a non-serial
-port TTY, for which no alternate device would exist.
-
- Pseudoterminals (PTYs)
-
-Pseudoterminals, or PTYs, are used to create login sessions or provide
-other capabilities requiring a TTY line discipline (including SLIP or
-PPP capability) to arbitrary data-generation processes. Each PTY has
-a master side, named /dev/pty[p-za-e][0-9a-f], and a slave side, named
-/dev/tty[p-za-e][0-9a-f]. The kernel arbitrates the use of PTYs by
-allowing each master side to be opened only once.
-
-Once the master side has been opened, the corresponding slave device
-can be used in the same manner as any TTY device. The master and
-slave devices are connected by the kernel, generating the equivalent
-of a bidirectional pipe with TTY capabilities.
-
-Recent versions of the Linux kernels and GNU libc contain support for
-the System V/Unix98 naming scheme for PTYs, which assigns a common
-device, /dev/ptmx, to all the masters (opening it will automatically
-give you a previously unassigned PTY) and a subdirectory, /dev/pts,
-for the slaves; the slaves are named with decimal integers (/dev/pts/#
-in our notation). This removes the problem of exhausting the
-namespace and enables the kernel to automatically create the device
-nodes for the slaves on demand using the "devpts" filesystem.
-
diff --git a/Documentation/admin-guide/dynamic-debug-howto.rst b/Documentation/admin-guide/dynamic-debug-howto.rst
new file mode 100644
index 0000000..88adcfd
--- /dev/null
+++ b/Documentation/admin-guide/dynamic-debug-howto.rst
@@ -0,0 +1,353 @@
+Dynamic debug
++++++++++++++
+
+
+Introduction
+============
+
+This document describes how to use the dynamic debug (dyndbg) feature.
+
+Dynamic debug is designed to allow you to dynamically enable/disable
+kernel code to obtain additional kernel information. Currently, if
+``CONFIG_DYNAMIC_DEBUG`` is set, then all ``pr_debug()``/``dev_dbg()`` and
+``print_hex_dump_debug()``/``print_hex_dump_bytes()`` calls can be dynamically
+enabled per-callsite.
+
+If ``CONFIG_DYNAMIC_DEBUG`` is not set, ``print_hex_dump_debug()`` is just
+shortcut for ``print_hex_dump(KERN_DEBUG)``.
+
+For ``print_hex_dump_debug()``/``print_hex_dump_bytes()``, format string is
+its ``prefix_str`` argument, if it is constant string; or ``hexdump``
+in case ``prefix_str`` is build dynamically.
+
+Dynamic debug has even more useful features:
+
+ * Simple query language allows turning on and off debugging
+ statements by matching any combination of 0 or 1 of:
+
+ - source filename
+ - function name
+ - line number (including ranges of line numbers)
+ - module name
+ - format string
+
+ * Provides a debugfs control file: ``<debugfs>/dynamic_debug/control``
+ which can be read to display the complete list of known debug
+ statements, to help guide you
+
+Controlling dynamic debug Behaviour
+===================================
+
+The behaviour of ``pr_debug()``/``dev_dbg()`` are controlled via writing to a
+control file in the 'debugfs' filesystem. Thus, you must first mount
+the debugfs filesystem, in order to make use of this feature.
+Subsequently, we refer to the control file as:
+``<debugfs>/dynamic_debug/control``. For example, if you want to enable
+printing from source file ``svcsock.c``, line 1603 you simply do::
+
+ nullarbor:~ # echo 'file svcsock.c line 1603 +p' >
+ <debugfs>/dynamic_debug/control
+
+If you make a mistake with the syntax, the write will fail thus::
+
+ nullarbor:~ # echo 'file svcsock.c wtf 1 +p' >
+ <debugfs>/dynamic_debug/control
+ -bash: echo: write error: Invalid argument
+
+Viewing Dynamic Debug Behaviour
+===============================
+
+You can view the currently configured behaviour of all the debug
+statements via::
+
+ nullarbor:~ # cat <debugfs>/dynamic_debug/control
+ # filename:lineno [module]function flags format
+ /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:323 [svcxprt_rdma]svc_rdma_cleanup =_ "SVCRDMA Module Removed, deregister RPC RDMA transport\012"
+ /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:341 [svcxprt_rdma]svc_rdma_init =_ "\011max_inline : %d\012"
+ /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:340 [svcxprt_rdma]svc_rdma_init =_ "\011sq_depth : %d\012"
+ /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:338 [svcxprt_rdma]svc_rdma_init =_ "\011max_requests : %d\012"
+ ...
+
+
+You can also apply standard Unix text manipulation filters to this
+data, e.g.::
+
+ nullarbor:~ # grep -i rdma <debugfs>/dynamic_debug/control | wc -l
+ 62
+
+ nullarbor:~ # grep -i tcp <debugfs>/dynamic_debug/control | wc -l
+ 42
+
+The third column shows the currently enabled flags for each debug
+statement callsite (see below for definitions of the flags). The
+default value, with no flags enabled, is ``=_``. So you can view all
+the debug statement callsites with any non-default flags::
+
+ nullarbor:~ # awk '$3 != "=_"' <debugfs>/dynamic_debug/control
+ # filename:lineno [module]function flags format
+ /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c:1603 [sunrpc]svc_send p "svc_process: st_sendto returned %d\012"
+
+Command Language Reference
+==========================
+
+At the lexical level, a command comprises a sequence of words separated
+by spaces or tabs. So these are all equivalent::
+
+ nullarbor:~ # echo -c 'file svcsock.c line 1603 +p' >
+ <debugfs>/dynamic_debug/control
+ nullarbor:~ # echo -c ' file svcsock.c line 1603 +p ' >
+ <debugfs>/dynamic_debug/control
+ nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
+ <debugfs>/dynamic_debug/control
+
+Command submissions are bounded by a write() system call.
+Multiple commands can be written together, separated by ``;`` or ``\n``::
+
+ ~# echo "func pnpacpi_get_resources +p; func pnp_assign_mem +p" \
+ > <debugfs>/dynamic_debug/control
+
+If your query set is big, you can batch them too::
+
+ ~# cat query-batch-file > <debugfs>/dynamic_debug/control
+
+A another way is to use wildcard. The match rule support ``*`` (matches
+zero or more characters) and ``?`` (matches exactly one character).For
+example, you can match all usb drivers::
+
+ ~# echo "file drivers/usb/* +p" > <debugfs>/dynamic_debug/control
+
+At the syntactical level, a command comprises a sequence of match
+specifications, followed by a flags change specification::
+
+ command ::= match-spec* flags-spec
+
+The match-spec's are used to choose a subset of the known pr_debug()
+callsites to which to apply the flags-spec. Think of them as a query
+with implicit ANDs between each pair. Note that an empty list of
+match-specs will select all debug statement callsites.
+
+A match specification comprises a keyword, which controls the
+attribute of the callsite to be compared, and a value to compare
+against. Possible keywords are:::
+
+ match-spec ::= 'func' string |
+ 'file' string |
+ 'module' string |
+ 'format' string |
+ 'line' line-range
+
+ line-range ::= lineno |
+ '-'lineno |
+ lineno'-' |
+ lineno'-'lineno
+
+ lineno ::= unsigned-int
+
+.. note::
+
+ ``line-range`` cannot contain space, e.g.
+ "1-30" is valid range but "1 - 30" is not.
+
+
+The meanings of each keyword are:
+
+func
+ The given string is compared against the function name
+ of each callsite. Example::
+
+ func svc_tcp_accept
+
+file
+ The given string is compared against either the full pathname, the
+ src-root relative pathname, or the basename of the source file of
+ each callsite. Examples::
+
+ file svcsock.c
+ file kernel/freezer.c
+ file /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c
+
+module
+ The given string is compared against the module name
+ of each callsite. The module name is the string as
+ seen in ``lsmod``, i.e. without the directory or the ``.ko``
+ suffix and with ``-`` changed to ``_``. Examples::
+
+ module sunrpc
+ module nfsd
+
+format
+ The given string is searched for in the dynamic debug format
+ string. Note that the string does not need to match the
+ entire format, only some part. Whitespace and other
+ special characters can be escaped using C octal character
+ escape ``\ooo`` notation, e.g. the space character is ``\040``.
+ Alternatively, the string can be enclosed in double quote
+ characters (``"``) or single quote characters (``'``).
+ Examples::
+
+ format svcrdma: // many of the NFS/RDMA server pr_debugs
+ format readahead // some pr_debugs in the readahead cache
+ format nfsd:\040SETATTR // one way to match a format with whitespace
+ format "nfsd: SETATTR" // a neater way to match a format with whitespace
+ format 'nfsd: SETATTR' // yet another way to match a format with whitespace
+
+line
+ The given line number or range of line numbers is compared
+ against the line number of each ``pr_debug()`` callsite. A single
+ line number matches the callsite line number exactly. A
+ range of line numbers matches any callsite between the first
+ and last line number inclusive. An empty first number means
+ the first line in the file, an empty line number means the
+ last number in the file. Examples::
+
+ line 1603 // exactly line 1603
+ line 1600-1605 // the six lines from line 1600 to line 1605
+ line -1605 // the 1605 lines from line 1 to line 1605
+ line 1600- // all lines from line 1600 to the end of the file
+
+The flags specification comprises a change operation followed
+by one or more flag characters. The change operation is one
+of the characters::
+
+ - remove the given flags
+ + add the given flags
+ = set the flags to the given flags
+
+The flags are::
+
+ p enables the pr_debug() callsite.
+ f Include the function name in the printed message
+ l Include line number in the printed message
+ m Include module name in the printed message
+ t Include thread ID in messages not generated from interrupt context
+ _ No flags are set. (Or'd with others on input)
+
+For ``print_hex_dump_debug()`` and ``print_hex_dump_bytes()``, only ``p`` flag
+have meaning, other flags ignored.
+
+For display, the flags are preceded by ``=``
+(mnemonic: what the flags are currently equal to).
+
+Note the regexp ``^[-+=][flmpt_]+$`` matches a flags specification.
+To clear all flags at once, use ``=_`` or ``-flmpt``.
+
+
+Debug messages during Boot Process
+==================================
+
+To activate debug messages for core code and built-in modules during
+the boot process, even before userspace and debugfs exists, use
+``dyndbg="QUERY"``, ``module.dyndbg="QUERY"``, or ``ddebug_query="QUERY"``
+(``ddebug_query`` is obsoleted by ``dyndbg``, and deprecated). QUERY follows
+the syntax described above, but must not exceed 1023 characters. Your
+bootloader may impose lower limits.
+
+These ``dyndbg`` params are processed just after the ddebug tables are
+processed, as part of the arch_initcall. Thus you can enable debug
+messages in all code run after this arch_initcall via this boot
+parameter.
+
+On an x86 system for example ACPI enablement is a subsys_initcall and::
+
+ dyndbg="file ec.c +p"
+
+will show early Embedded Controller transactions during ACPI setup if
+your machine (typically a laptop) has an Embedded Controller.
+PCI (or other devices) initialization also is a hot candidate for using
+this boot parameter for debugging purposes.
+
+If ``foo`` module is not built-in, ``foo.dyndbg`` will still be processed at
+boot time, without effect, but will be reprocessed when module is
+loaded later. ``dyndbg_query=`` and bare ``dyndbg=`` are only processed at
+boot.
+
+
+Debug Messages at Module Initialization Time
+============================================
+
+When ``modprobe foo`` is called, modprobe scans ``/proc/cmdline`` for
+``foo.params``, strips ``foo.``, and passes them to the kernel along with
+params given in modprobe args or ``/etc/modprob.d/*.conf`` files,
+in the following order:
+
+1. parameters given via ``/etc/modprobe.d/*.conf``::
+
+ options foo dyndbg=+pt
+ options foo dyndbg # defaults to +p
+
+2. ``foo.dyndbg`` as given in boot args, ``foo.`` is stripped and passed::
+
+ foo.dyndbg=" func bar +p; func buz +mp"
+
+3. args to modprobe::
+
+ modprobe foo dyndbg==pmf # override previous settings
+
+These ``dyndbg`` queries are applied in order, with last having final say.
+This allows boot args to override or modify those from ``/etc/modprobe.d``
+(sensible, since 1 is system wide, 2 is kernel or boot specific), and
+modprobe args to override both.
+
+In the ``foo.dyndbg="QUERY"`` form, the query must exclude ``module foo``.
+``foo`` is extracted from the param-name, and applied to each query in
+``QUERY``, and only 1 match-spec of each type is allowed.
+
+The ``dyndbg`` option is a "fake" module parameter, which means:
+
+- modules do not need to define it explicitly
+- every module gets it tacitly, whether they use pr_debug or not
+- it doesn't appear in ``/sys/module/$module/parameters/``
+ To see it, grep the control file, or inspect ``/proc/cmdline.``
+
+For ``CONFIG_DYNAMIC_DEBUG`` kernels, any settings given at boot-time (or
+enabled by ``-DDEBUG`` flag during compilation) can be disabled later via
+the sysfs interface if the debug messages are no longer needed::
+
+ echo "module module_name -p" > <debugfs>/dynamic_debug/control
+
+Examples
+========
+
+::
+
+ // enable the message at line 1603 of file svcsock.c
+ nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
+ <debugfs>/dynamic_debug/control
+
+ // enable all the messages in file svcsock.c
+ nullarbor:~ # echo -n 'file svcsock.c +p' >
+ <debugfs>/dynamic_debug/control
+
+ // enable all the messages in the NFS server module
+ nullarbor:~ # echo -n 'module nfsd +p' >
+ <debugfs>/dynamic_debug/control
+
+ // enable all 12 messages in the function svc_process()
+ nullarbor:~ # echo -n 'func svc_process +p' >
+ <debugfs>/dynamic_debug/control
+
+ // disable all 12 messages in the function svc_process()
+ nullarbor:~ # echo -n 'func svc_process -p' >
+ <debugfs>/dynamic_debug/control
+
+ // enable messages for NFS calls READ, READLINK, READDIR and READDIR+.
+ nullarbor:~ # echo -n 'format "nfsd: READ" +p' >
+ <debugfs>/dynamic_debug/control
+
+ // enable messages in files of which the paths include string "usb"
+ nullarbor:~ # echo -n '*usb* +p' > <debugfs>/dynamic_debug/control
+
+ // enable all messages
+ nullarbor:~ # echo -n '+p' > <debugfs>/dynamic_debug/control
+
+ // add module, function to all enabled messages
+ nullarbor:~ # echo -n '+mf' > <debugfs>/dynamic_debug/control
+
+ // boot-args example, with newlines and comments for readability
+ Kernel command line: ...
+ // see whats going on in dyndbg=value processing
+ dynamic_debug.verbose=1
+ // enable pr_debugs in 2 builtins, #cmt is stripped
+ dyndbg="module params +p #cmt ; module sys +p"
+ // enable pr_debugs in 2 functions in a module loaded later
+ pc87360.dyndbg="func pc87360_init_device +p; func pc87360_find +p"
diff --git a/Documentation/admin-guide/index.rst b/Documentation/admin-guide/index.rst
new file mode 100644
index 0000000..2681cbd
--- /dev/null
+++ b/Documentation/admin-guide/index.rst
@@ -0,0 +1,68 @@
+The Linux kernel user's and administrator's guide
+=================================================
+
+The following is a collection of user-oriented documents that have been
+added to the kernel over time. There is, as yet, little overall order or
+organization here — this material was not written to be a single, coherent
+document! With luck things will improve quickly over time.
+
+This initial section contains overall information, including the README
+file describing the kernel as a whole, documentation on kernel parameters,
+etc.
+
+.. toctree::
+ :maxdepth: 1
+
+ README
+ kernel-parameters
+ devices
+
+Here is a set of documents aimed at users who are trying to track down
+problems and bugs in particular.
+
+.. toctree::
+ :maxdepth: 1
+
+ reporting-bugs
+ security-bugs
+ bug-hunting
+ bug-bisect
+ tainted-kernels
+ ramoops
+ dynamic-debug-howto
+ init
+
+This is the beginning of a section with information of interest to
+application developers. Documents covering various aspects of the kernel
+ABI will be found here.
+
+.. toctree::
+ :maxdepth: 1
+
+ sysfs-rules
+
+The rest of this manual consists of various unordered guides on how to
+configure specific aspects of kernel behavior to your liking.
+
+.. toctree::
+ :maxdepth: 1
+
+ initrd
+ serial-console
+ braille-console
+ parport
+ md
+ module-signing
+ sysrq
+ unicode
+ vga-softcursor
+ binfmt-misc
+ mono
+ java
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/init.txt b/Documentation/admin-guide/init.rst
index 535ad5e..e89d97f 100644
--- a/Documentation/init.txt
+++ b/Documentation/admin-guide/init.rst
@@ -5,6 +5,7 @@ OK, so you've got this pretty unintuitive message (currently located
in init/main.c) and are wondering what the H*** went wrong.
Some high-level reasons for failure (listed roughly in order of execution)
to load the init binary are:
+
A) Unable to mount root FS
B) init binary doesn't exist on rootfs
C) broken console device
@@ -12,37 +13,39 @@ D) binary exists but dependencies not available
E) binary cannot be loaded
Detailed explanations:
-0) Set "debug" kernel parameter (in bootloader config file or CONFIG_CMDLINE)
+
+A) Set "debug" kernel parameter (in bootloader config file or CONFIG_CMDLINE)
to get more detailed kernel messages.
-A) make sure you have the correct root FS type
- (and root= kernel parameter points to the correct partition),
+B) make sure you have the correct root FS type
+ (and ``root=`` kernel parameter points to the correct partition),
required drivers such as storage hardware (such as SCSI or USB!)
and filesystem (ext3, jffs2 etc.) are builtin (alternatively as modules,
to be pre-loaded by an initrd)
-C) Possibly a conflict in console= setup --> initial console unavailable.
+C) Possibly a conflict in ``console= setup`` --> initial console unavailable.
E.g. some serial consoles are unreliable due to serial IRQ issues (e.g.
missing interrupt-based configuration).
- Try using a different console= device or e.g. netconsole= .
+ Try using a different ``console= device`` or e.g. ``netconsole=``.
D) e.g. required library dependencies of the init binary such as
- /lib/ld-linux.so.2 missing or broken. Use readelf -d <INIT>|grep NEEDED
- to find out which libraries are required.
+ ``/lib/ld-linux.so.2`` missing or broken. Use
+ ``readelf -d <INIT>|grep NEEDED`` to find out which libraries are required.
E) make sure the binary's architecture matches your hardware.
E.g. i386 vs. x86_64 mismatch, or trying to load x86 on ARM hardware.
In case you tried loading a non-binary file here (shell script?),
you should make sure that the script specifies an interpreter in its shebang
- header line (#!/...) that is fully working (including its library
+ header line (``#!/...``) that is fully working (including its library
dependencies). And before tackling scripts, better first test a simple
- non-script binary such as /bin/sh and confirm its successful execution.
- To find out more, add code to init/main.c to display kernel_execve()s
+ non-script binary such as ``/bin/sh`` and confirm its successful execution.
+ To find out more, add code ``to init/main.c`` to display kernel_execve()s
return values.
Please extend this explanation whenever you find new failure causes
(after all loading the init binary is a CRITICAL and hard transition step
which needs to be made as painless as possible), then submit patch to LKML.
Further TODOs:
-- Implement the various run_init_process() invocations via a struct array
- which can then store the kernel_execve() result value and on failure
- log it all by iterating over _all_ results (very important usability fix).
+
+- Implement the various ``run_init_process()`` invocations via a struct array
+ which can then store the ``kernel_execve()`` result value and on failure
+ log it all by iterating over **all** results (very important usability fix).
- try to make the implementation itself more helpful in general,
e.g. by providing additional error messages at affected places.
diff --git a/Documentation/initrd.txt b/Documentation/admin-guide/initrd.rst
index 4e1839c..a03daba 100644
--- a/Documentation/initrd.txt
+++ b/Documentation/admin-guide/initrd.rst
@@ -2,7 +2,7 @@ Using the initial RAM disk (initrd)
===================================
Written 1996,2000 by Werner Almesberger <werner.almesberger@epfl.ch> and
- Hans Lermen <lermen@fgan.de>
+Hans Lermen <lermen@fgan.de>
initrd provides the capability to load a RAM disk by the boot loader.
@@ -16,7 +16,7 @@ where the kernel comes up with a minimum set of compiled-in drivers, and
where additional modules are loaded from initrd.
This document gives a brief overview of the use of initrd. A more detailed
-discussion of the boot process can be found in [1].
+discussion of the boot process can be found in [#f1]_.
Operation
@@ -27,10 +27,10 @@ When using initrd, the system typically boots as follows:
1) the boot loader loads the kernel and the initial RAM disk
2) the kernel converts initrd into a "normal" RAM disk and
frees the memory used by initrd
- 3) if the root device is not /dev/ram0, the old (deprecated)
+ 3) if the root device is not ``/dev/ram0``, the old (deprecated)
change_root procedure is followed. see the "Obsolete root change
mechanism" section below.
- 4) root device is mounted. if it is /dev/ram0, the initrd image is
+ 4) root device is mounted. if it is ``/dev/ram0``, the initrd image is
then mounted as root
5) /sbin/init is executed (this can be any valid executable, including
shell scripts; it is run with uid 0 and can do basically everything
@@ -38,7 +38,7 @@ When using initrd, the system typically boots as follows:
6) init mounts the "real" root file system
7) init places the root file system at the root directory using the
pivot_root system call
- 8) init execs the /sbin/init on the new root filesystem, performing
+ 8) init execs the ``/sbin/init`` on the new root filesystem, performing
the usual boot sequence
9) the initrd file system is removed
@@ -51,7 +51,7 @@ be accessible.
Boot command-line options
-------------------------
-initrd adds the following new options:
+initrd adds the following new options::
initrd=<path> (e.g. LOADLIN)
@@ -83,36 +83,36 @@ Recent kernels have support for populating a ramdisk from a compressed cpio
archive. On such systems, the creation of a ramdisk image doesn't need to
involve special block devices or loopbacks; you merely create a directory on
disk with the desired initrd content, cd to that directory, and run (as an
-example):
+example)::
-find . | cpio --quiet -H newc -o | gzip -9 -n > /boot/imagefile.img
+ find . | cpio --quiet -H newc -o | gzip -9 -n > /boot/imagefile.img
-Examining the contents of an existing image file is just as simple:
+Examining the contents of an existing image file is just as simple::
-mkdir /tmp/imagefile
-cd /tmp/imagefile
-gzip -cd /boot/imagefile.img | cpio -imd --quiet
+ mkdir /tmp/imagefile
+ cd /tmp/imagefile
+ gzip -cd /boot/imagefile.img | cpio -imd --quiet
Installation
------------
First, a directory for the initrd file system has to be created on the
-"normal" root file system, e.g.
+"normal" root file system, e.g.::
-# mkdir /initrd
+ # mkdir /initrd
-The name is not relevant. More details can be found on the pivot_root(2)
-man page.
+The name is not relevant. More details can be found on the
+:manpage:`pivot_root(2)` man page.
If the root file system is created during the boot procedure (i.e. if
you're building an install floppy), the root file system creation
-procedure should create the /initrd directory.
+procedure should create the ``/initrd`` directory.
If initrd will not be mounted in some cases, its content is still
-accessible if the following device has been created:
+accessible if the following device has been created::
-# mknod /dev/initrd b 1 250
-# chmod 400 /dev/initrd
+ # mknod /dev/initrd b 1 250
+ # chmod 400 /dev/initrd
Second, the kernel has to be compiled with RAM disk support and with
support for the initial RAM disk enabled. Also, at least all components
@@ -131,60 +131,76 @@ kernels, at least three types of devices are suitable for that:
We'll describe the loopback device method:
1) make sure loopback block devices are configured into the kernel
- 2) create an empty file system of the appropriate size, e.g.
- # dd if=/dev/zero of=initrd bs=300k count=1
- # mke2fs -F -m0 initrd
+ 2) create an empty file system of the appropriate size, e.g.::
+
+ # dd if=/dev/zero of=initrd bs=300k count=1
+ # mke2fs -F -m0 initrd
+
(if space is critical, you may want to use the Minix FS instead of Ext2)
- 3) mount the file system, e.g.
- # mount -t ext2 -o loop initrd /mnt
- 4) create the console device:
+ 3) mount the file system, e.g.::
+
+ # mount -t ext2 -o loop initrd /mnt
+
+ 4) create the console device::
+
# mkdir /mnt/dev
# mknod /mnt/dev/console c 5 1
+
5) copy all the files that are needed to properly use the initrd
- environment. Don't forget the most important file, /sbin/init
- Note that /sbin/init's permissions must include "x" (execute).
+ environment. Don't forget the most important file, ``/sbin/init``
+
+ .. note:: ``/sbin/init`` permissions must include "x" (execute).
+
6) correct operation the initrd environment can frequently be tested
- even without rebooting with the command
- # chroot /mnt /sbin/init
+ even without rebooting with the command::
+
+ # chroot /mnt /sbin/init
+
This is of course limited to initrds that do not interfere with the
general system state (e.g. by reconfiguring network interfaces,
overwriting mounted devices, trying to start already running demons,
etc. Note however that it is usually possible to use pivot_root in
such a chroot'ed initrd environment.)
- 7) unmount the file system
- # umount /mnt
+ 7) unmount the file system::
+
+ # umount /mnt
+
8) the initrd is now in the file "initrd". Optionally, it can now be
- compressed
- # gzip -9 initrd
+ compressed::
+
+ # gzip -9 initrd
For experimenting with initrd, you may want to take a rescue floppy and
-only add a symbolic link from /sbin/init to /bin/sh. Alternatively, you
-can try the experimental newlib environment [2] to create a small
+only add a symbolic link from ``/sbin/init`` to ``/bin/sh``. Alternatively, you
+can try the experimental newlib environment [#f2]_ to create a small
initrd.
Finally, you have to boot the kernel and load initrd. Almost all Linux
boot loaders support initrd. Since the boot process is still compatible
with an older mechanism, the following boot command line parameters
-have to be given:
+have to be given::
root=/dev/ram0 rw
(rw is only necessary if writing to the initrd file system.)
-With LOADLIN, you simply execute
+With LOADLIN, you simply execute::
LOADLIN <kernel> initrd=<disk_image>
-e.g. LOADLIN C:\LINUX\BZIMAGE initrd=C:\LINUX\INITRD.GZ root=/dev/ram0 rw
-With LILO, you add the option INITRD=<path> to either the global section
-or to the section of the respective kernel in /etc/lilo.conf, and pass
-the options using APPEND, e.g.
+e.g.::
+
+ LOADLIN C:\LINUX\BZIMAGE initrd=C:\LINUX\INITRD.GZ root=/dev/ram0 rw
+
+With LILO, you add the option ``INITRD=<path>`` to either the global section
+or to the section of the respective kernel in ``/etc/lilo.conf``, and pass
+the options using APPEND, e.g.::
image = /bzImage
initrd = /boot/initrd.gz
append = "root=/dev/ram0 rw"
-and run /sbin/lilo
+and run ``/sbin/lilo``
For other boot loaders, please refer to the respective documentation.
@@ -204,33 +220,33 @@ The procedure involves the following steps:
- unmounting the initrd file system and de-allocating the RAM disk
Mounting the new root file system is easy: it just needs to be mounted on
-a directory under the current root. Example:
+a directory under the current root. Example::
-# mkdir /new-root
-# mount -o ro /dev/hda1 /new-root
+ # mkdir /new-root
+ # mount -o ro /dev/hda1 /new-root
The root change is accomplished with the pivot_root system call, which
-is also available via the pivot_root utility (see pivot_root(8) man
-page; pivot_root is distributed with util-linux version 2.10h or higher
-[3]). pivot_root moves the current root to a directory under the new
+is also available via the ``pivot_root`` utility (see :manpage:`pivot_root(8)`
+man page; ``pivot_root`` is distributed with util-linux version 2.10h or higher
+[#f3]_). ``pivot_root`` moves the current root to a directory under the new
root, and puts the new root at its place. The directory for the old root
-must exist before calling pivot_root. Example:
+must exist before calling ``pivot_root``. Example::
-# cd /new-root
-# mkdir initrd
-# pivot_root . initrd
+ # cd /new-root
+ # mkdir initrd
+ # pivot_root . initrd
Now, the init process may still access the old root via its
executable, shared libraries, standard input/output/error, and its
current root directory. All these references are dropped by the
-following command:
+following command::
-# exec chroot . what-follows <dev/console >dev/console 2>&1
+ # exec chroot . what-follows <dev/console >dev/console 2>&1
-Where what-follows is a program under the new root, e.g. /sbin/init
+Where what-follows is a program under the new root, e.g. ``/sbin/init``
If the new root file system will be used with udev and has no valid
-/dev directory, udev must be initialized before invoking chroot in order
-to provide /dev/console.
+``/dev`` directory, udev must be initialized before invoking chroot in order
+to provide ``/dev/console``.
Note: implementation details of pivot_root may change with time. In order
to ensure compatibility, the following points should be observed:
@@ -244,13 +260,13 @@ to ensure compatibility, the following points should be observed:
- use relative paths for dev/console in the exec command
Now, the initrd can be unmounted and the memory allocated by the RAM
-disk can be freed:
+disk can be freed::
-# umount /initrd
-# blockdev --flushbufs /dev/ram0
+ # umount /initrd
+ # blockdev --flushbufs /dev/ram0
It is also possible to use initrd with an NFS-mounted root, see the
-pivot_root(8) man page for details.
+:manpage:`pivot_root(8)` man page for details.
Usage scenarios
@@ -263,21 +279,21 @@ as follows:
1) system boots from floppy or other media with a minimal kernel
(e.g. support for RAM disks, initrd, a.out, and the Ext2 FS) and
loads initrd
- 2) /sbin/init determines what is needed to (1) mount the "real" root FS
+ 2) ``/sbin/init`` determines what is needed to (1) mount the "real" root FS
(i.e. device type, device drivers, file system) and (2) the
distribution media (e.g. CD-ROM, network, tape, ...). This can be
done by asking the user, by auto-probing, or by using a hybrid
approach.
- 3) /sbin/init loads the necessary kernel modules
- 4) /sbin/init creates and populates the root file system (this doesn't
+ 3) ``/sbin/init`` loads the necessary kernel modules
+ 4) ``/sbin/init`` creates and populates the root file system (this doesn't
have to be a very usable system yet)
- 5) /sbin/init invokes pivot_root to change the root file system and
+ 5) ``/sbin/init`` invokes ``pivot_root`` to change the root file system and
execs - via chroot - a program that continues the installation
6) the boot loader is installed
7) the boot loader is configured to load an initrd with the set of
- modules that was used to bring up the system (e.g. /initrd can be
+ modules that was used to bring up the system (e.g. ``/initrd`` can be
modified, then unmounted, and finally, the image is written from
- /dev/ram0 or /dev/rd/0 to a file)
+ ``/dev/ram0`` or ``/dev/rd/0`` to a file)
8) now the system is bootable and additional installation tasks can be
performed
@@ -290,7 +306,7 @@ different hardware configurations in a single administrative domain. In
such cases, it is desirable to generate only a small set of kernels
(ideally only one) and to keep the system-specific part of configuration
information as small as possible. In this case, a common initrd could be
-generated with all the necessary modules. Then, only /sbin/init or a file
+generated with all the necessary modules. Then, only ``/sbin/init`` or a file
read by it would have to be different.
A third scenario is more convenient recovery disks, because information
@@ -301,9 +317,9 @@ auto-detection).
Last not least, CD-ROM distributors may use it for better installation
from CD, e.g. by using a boot floppy and bootstrapping a bigger RAM disk
-via initrd from CD; or by booting via a loader like LOADLIN or directly
+via initrd from CD; or by booting via a loader like ``LOADLIN`` or directly
from the CD-ROM, and loading the RAM disk from CD without need of
-floppies.
+floppies.
Obsolete root change mechanism
@@ -316,51 +332,52 @@ continued availability.
It works by mounting the "real" root device (i.e. the one set with rdev
in the kernel image or with root=... at the boot command line) as the
root file system when linuxrc exits. The initrd file system is then
-unmounted, or, if it is still busy, moved to a directory /initrd, if
+unmounted, or, if it is still busy, moved to a directory ``/initrd``, if
such a directory exists on the new root file system.
In order to use this mechanism, you do not have to specify the boot
command options root, init, or rw. (If specified, they will affect
the real root file system, not the initrd environment.)
-
+
If /proc is mounted, the "real" root device can be changed from within
linuxrc by writing the number of the new root FS device to the special
-file /proc/sys/kernel/real-root-dev, e.g.
+file /proc/sys/kernel/real-root-dev, e.g.::
# echo 0x301 >/proc/sys/kernel/real-root-dev
Note that the mechanism is incompatible with NFS and similar file
systems.
-This old, deprecated mechanism is commonly called "change_root", while
-the new, supported mechanism is called "pivot_root".
+This old, deprecated mechanism is commonly called ``change_root``, while
+the new, supported mechanism is called ``pivot_root``.
Mixed change_root and pivot_root mechanism
------------------------------------------
-In case you did not want to use root=/dev/ram0 to trigger the pivot_root
-mechanism, you may create both /linuxrc and /sbin/init in your initrd image.
+In case you did not want to use ``root=/dev/ram0`` to trigger the pivot_root
+mechanism, you may create both ``/linuxrc`` and ``/sbin/init`` in your initrd
+image.
-/linuxrc would contain only the following:
+``/linuxrc`` would contain only the following::
-#! /bin/sh
-mount -n -t proc proc /proc
-echo 0x0100 >/proc/sys/kernel/real-root-dev
-umount -n /proc
+ #! /bin/sh
+ mount -n -t proc proc /proc
+ echo 0x0100 >/proc/sys/kernel/real-root-dev
+ umount -n /proc
Once linuxrc exited, the kernel would mount again your initrd as root,
-this time executing /sbin/init. Again, it would be the duty of this init
-to build the right environment (maybe using the root= device passed on
-the cmdline) before the final execution of the real /sbin/init.
+this time executing ``/sbin/init``. Again, it would be the duty of this init
+to build the right environment (maybe using the ``root= device`` passed on
+the cmdline) before the final execution of the real ``/sbin/init``.
Resources
---------
-[1] Almesberger, Werner; "Booting Linux: The History and the Future"
+.. [#f1] Almesberger, Werner; "Booting Linux: The History and the Future"
http://www.almesberger.net/cv/papers/ols2k-9.ps.gz
-[2] newlib package (experimental), with initrd example
- http://sources.redhat.com/newlib/
-[3] util-linux: Miscellaneous utilities for Linux
- http://www.kernel.org/pub/linux/utils/util-linux/
+.. [#f2] newlib package (experimental), with initrd example
+ https://www.sourceware.org/newlib/
+.. [#f3] util-linux: Miscellaneous utilities for Linux
+ https://www.kernel.org/pub/linux/utils/util-linux/
diff --git a/Documentation/java.txt b/Documentation/admin-guide/java.rst
index 4180205..8744e27 100644
--- a/Documentation/java.txt
+++ b/Documentation/admin-guide/java.rst
@@ -1,5 +1,5 @@
- Java(tm) Binary Kernel Support for Linux v1.03
- ----------------------------------------------
+Java(tm) Binary Kernel Support for Linux v1.03
+----------------------------------------------
Linux beats them ALL! While all other OS's are TALKING about direct
support of Java Binaries in the OS, Linux is doing it!
@@ -19,70 +19,82 @@ other program after you have done the following:
as the application itself).
2) You have to compile BINFMT_MISC either as a module or into
- the kernel (CONFIG_BINFMT_MISC) and set it up properly.
+ the kernel (``CONFIG_BINFMT_MISC``) and set it up properly.
If you choose to compile it as a module, you will have
to insert it manually with modprobe/insmod, as kmod
- cannot easily be supported with binfmt_misc.
+ cannot easily be supported with binfmt_misc.
Read the file 'binfmt_misc.txt' in this directory to know
more about the configuration process.
3) Add the following configuration items to binfmt_misc
- (you should really have read binfmt_misc.txt now):
- support for Java applications:
+ (you should really have read ``binfmt_misc.txt`` now):
+ support for Java applications::
+
':Java:M::\xca\xfe\xba\xbe::/usr/local/bin/javawrapper:'
- support for executable Jar files:
+
+ support for executable Jar files::
+
':ExecutableJAR:E::jar::/usr/local/bin/jarwrapper:'
- support for Java Applets:
+
+ support for Java Applets::
+
':Applet:E::html::/usr/bin/appletviewer:'
- or the following, if you want to be more selective:
+
+ or the following, if you want to be more selective::
+
':Applet:M::<!--applet::/usr/bin/appletviewer:'
Of course you have to fix the path names. The path/file names given in this
- document match the Debian 2.1 system. (i.e. jdk installed in /usr,
- custom wrappers from this document in /usr/local)
+ document match the Debian 2.1 system. (i.e. jdk installed in ``/usr``,
+ custom wrappers from this document in ``/usr/local``)
Note, that for the more selective applet support you have to modify
- existing html-files to contain <!--applet--> in the first line
- ('<' has to be the first character!) to let this work!
+ existing html-files to contain ``<!--applet-->`` in the first line
+ (``<`` has to be the first character!) to let this work!
For the compiled Java programs you need a wrapper script like the
following (this is because Java is broken in case of the filename
handling), again fix the path names, both in the script and in the
above given configuration string.
- You, too, need the little program after the script. Compile like
- gcc -O2 -o javaclassname javaclassname.c
- and stick it to /usr/local/bin.
+ You, too, need the little program after the script. Compile like::
+
+ gcc -O2 -o javaclassname javaclassname.c
+
+ and stick it to ``/usr/local/bin``.
Both the javawrapper shellscript and the javaclassname program
were supplied by Colin J. Watson <cjw44@cam.ac.uk>.
-====================== Cut here ===================
-#!/bin/bash
-# /usr/local/bin/javawrapper - the wrapper for binfmt_misc/java
+Javawrapper shell script:
+
+.. code-block:: sh
-if [ -z "$1" ]; then
+ #!/bin/bash
+ # /usr/local/bin/javawrapper - the wrapper for binfmt_misc/java
+
+ if [ -z "$1" ]; then
exec 1>&2
echo Usage: $0 class-file
exit 1
-fi
+ fi
-CLASS=$1
-FQCLASS=`/usr/local/bin/javaclassname $1`
-FQCLASSN=`echo $FQCLASS | sed -e 's/^.*\.\([^.]*\)$/\1/'`
-FQCLASSP=`echo $FQCLASS | sed -e 's-\.-/-g' -e 's-^[^/]*$--' -e 's-/[^/]*$--'`
+ CLASS=$1
+ FQCLASS=`/usr/local/bin/javaclassname $1`
+ FQCLASSN=`echo $FQCLASS | sed -e 's/^.*\.\([^.]*\)$/\1/'`
+ FQCLASSP=`echo $FQCLASS | sed -e 's-\.-/-g' -e 's-^[^/]*$--' -e 's-/[^/]*$--'`
-# for example:
-# CLASS=Test.class
-# FQCLASS=foo.bar.Test
-# FQCLASSN=Test
-# FQCLASSP=foo/bar
+ # for example:
+ # CLASS=Test.class
+ # FQCLASS=foo.bar.Test
+ # FQCLASSN=Test
+ # FQCLASSP=foo/bar
-unset CLASSBASE
+ unset CLASSBASE
-declare -i LINKLEVEL=0
+ declare -i LINKLEVEL=0
-while :; do
+ while :; do
if [ "`basename $CLASS .class`" == "$FQCLASSN" ]; then
# See if this directory works straight off
cd -L `dirname $CLASS`
@@ -119,9 +131,9 @@ while :; do
exit 1
fi
CLASS=`ls --color=no -l $CLASS | sed -e 's/^.* \([^ ]*\)$/\1/'`
-done
+ done
-if [ -z "$CLASSBASE" ]; then
+ if [ -z "$CLASSBASE" ]; then
if [ -z "$FQCLASSP" ]; then
GOODNAME=$FQCLASSN.class
else
@@ -131,96 +143,97 @@ if [ -z "$CLASSBASE" ]; then
echo $0:
echo " $FQCLASS should be in a file called $GOODNAME"
exit 1
-fi
+ fi
-if ! echo $CLASSPATH | grep -q "^\(.*:\)*$CLASSBASE\(:.*\)*"; then
+ if ! echo $CLASSPATH | grep -q "^\(.*:\)*$CLASSBASE\(:.*\)*"; then
# class is not in CLASSPATH, so prepend dir of class to CLASSPATH
if [ -z "${CLASSPATH}" ] ; then
export CLASSPATH=$CLASSBASE
else
export CLASSPATH=$CLASSBASE:$CLASSPATH
fi
-fi
-
-shift
-/usr/bin/java $FQCLASS "$@"
-====================== Cut here ===================
-
-
-====================== Cut here ===================
-/* javaclassname.c
- *
- * Extracts the class name from a Java class file; intended for use in a Java
- * wrapper of the type supported by the binfmt_misc option in the Linux kernel.
- *
- * Copyright (C) 1999 Colin J. Watson <cjw44@cam.ac.uk>.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdarg.h>
-#include <sys/types.h>
-
-/* From Sun's Java VM Specification, as tag entries in the constant pool. */
-
-#define CP_UTF8 1
-#define CP_INTEGER 3
-#define CP_FLOAT 4
-#define CP_LONG 5
-#define CP_DOUBLE 6
-#define CP_CLASS 7
-#define CP_STRING 8
-#define CP_FIELDREF 9
-#define CP_METHODREF 10
-#define CP_INTERFACEMETHODREF 11
-#define CP_NAMEANDTYPE 12
-#define CP_METHODHANDLE 15
-#define CP_METHODTYPE 16
-#define CP_INVOKEDYNAMIC 18
-
-/* Define some commonly used error messages */
-
-#define seek_error() error("%s: Cannot seek\n", program)
-#define corrupt_error() error("%s: Class file corrupt\n", program)
-#define eof_error() error("%s: Unexpected end of file\n", program)
-#define utf8_error() error("%s: Only ASCII 1-255 supported\n", program);
-
-char *program;
-
-long *pool;
-
-u_int8_t read_8(FILE *classfile);
-u_int16_t read_16(FILE *classfile);
-void skip_constant(FILE *classfile, u_int16_t *cur);
-void error(const char *format, ...);
-int main(int argc, char **argv);
-
-/* Reads in an unsigned 8-bit integer. */
-u_int8_t read_8(FILE *classfile)
-{
+ fi
+
+ shift
+ /usr/bin/java $FQCLASS "$@"
+
+javaclassname.c:
+
+.. code-block:: c
+
+ /* javaclassname.c
+ *
+ * Extracts the class name from a Java class file; intended for use in a Java
+ * wrapper of the type supported by the binfmt_misc option in the Linux kernel.
+ *
+ * Copyright (C) 1999 Colin J. Watson <cjw44@cam.ac.uk>.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+ #include <stdlib.h>
+ #include <stdio.h>
+ #include <stdarg.h>
+ #include <sys/types.h>
+
+ /* From Sun's Java VM Specification, as tag entries in the constant pool. */
+
+ #define CP_UTF8 1
+ #define CP_INTEGER 3
+ #define CP_FLOAT 4
+ #define CP_LONG 5
+ #define CP_DOUBLE 6
+ #define CP_CLASS 7
+ #define CP_STRING 8
+ #define CP_FIELDREF 9
+ #define CP_METHODREF 10
+ #define CP_INTERFACEMETHODREF 11
+ #define CP_NAMEANDTYPE 12
+ #define CP_METHODHANDLE 15
+ #define CP_METHODTYPE 16
+ #define CP_INVOKEDYNAMIC 18
+
+ /* Define some commonly used error messages */
+
+ #define seek_error() error("%s: Cannot seek\n", program)
+ #define corrupt_error() error("%s: Class file corrupt\n", program)
+ #define eof_error() error("%s: Unexpected end of file\n", program)
+ #define utf8_error() error("%s: Only ASCII 1-255 supported\n", program);
+
+ char *program;
+
+ long *pool;
+
+ u_int8_t read_8(FILE *classfile);
+ u_int16_t read_16(FILE *classfile);
+ void skip_constant(FILE *classfile, u_int16_t *cur);
+ void error(const char *format, ...);
+ int main(int argc, char **argv);
+
+ /* Reads in an unsigned 8-bit integer. */
+ u_int8_t read_8(FILE *classfile)
+ {
int b = fgetc(classfile);
if(b == EOF)
eof_error();
return (u_int8_t)b;
-}
+ }
-/* Reads in an unsigned 16-bit integer. */
-u_int16_t read_16(FILE *classfile)
-{
+ /* Reads in an unsigned 16-bit integer. */
+ u_int16_t read_16(FILE *classfile)
+ {
int b1, b2;
b1 = fgetc(classfile);
if(b1 == EOF)
@@ -229,11 +242,11 @@ u_int16_t read_16(FILE *classfile)
if(b2 == EOF)
eof_error();
return (u_int16_t)((b1 << 8) | b2);
-}
+ }
-/* Reads in a value from the constant pool. */
-void skip_constant(FILE *classfile, u_int16_t *cur)
-{
+ /* Reads in a value from the constant pool. */
+ void skip_constant(FILE *classfile, u_int16_t *cur)
+ {
u_int16_t len;
int seekerr = 1;
pool[*cur] = ftell(classfile);
@@ -270,19 +283,19 @@ void skip_constant(FILE *classfile, u_int16_t *cur)
}
if(seekerr)
seek_error();
-}
+ }
-void error(const char *format, ...)
-{
+ void error(const char *format, ...)
+ {
va_list ap;
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
exit(1);
-}
+ }
-int main(int argc, char **argv)
-{
+ int main(int argc, char **argv)
+ {
FILE *classfile;
u_int16_t cp_count, i, this_class, classinfo_ptr;
u_int8_t length;
@@ -349,19 +362,19 @@ int main(int argc, char **argv)
free(pool);
fclose(classfile);
return 0;
-}
-====================== Cut here ===================
+ }
+
+jarwrapper::
+ #!/bin/bash
+ # /usr/local/java/bin/jarwrapper - the wrapper for binfmt_misc/jar
-====================== Cut here ===================
-#!/bin/bash
-# /usr/local/java/bin/jarwrapper - the wrapper for binfmt_misc/jar
+ java -jar $1
-java -jar $1
-====================== Cut here ===================
+Now simply ``chmod +x`` the ``.class``, ``.jar`` and/or ``.html`` files you
+want to execute.
-Now simply chmod +x the .class, .jar and/or .html files you want to execute.
To add a Java program to your path best put a symbolic link to the main
.class file into /usr/bin (or another place you like) omitting the .class
extension. The directory containing the original .class file will be
@@ -371,29 +384,36 @@ added to your CLASSPATH during execution.
To test your new setup, enter in the following simple Java app, and name
it "HelloWorld.java":
+.. code-block:: java
+
class HelloWorld {
public static void main(String args[]) {
System.out.println("Hello World!");
}
}
-Now compile the application with:
+Now compile the application with::
+
javac HelloWorld.java
-Set the executable permissions of the binary file, with:
+Set the executable permissions of the binary file, with::
+
chmod 755 HelloWorld.class
-And then execute it:
+And then execute it::
+
./HelloWorld.class
-To execute Java Jar files, simple chmod the *.jar files to include
-the execution bit, then just do
+To execute Java Jar files, simple chmod the ``*.jar`` files to include
+the execution bit, then just do::
+
./Application.jar
-To execute Java Applets, simple chmod the *.html files to include
-the execution bit, then just do
+To execute Java Applets, simple chmod the ``*.html`` files to include
+the execution bit, then just do::
+
./Applet.html
@@ -401,4 +421,3 @@ originally by Brian A. Lantz, brian@lantz.com
heavily edited for binfmt_misc by Richard Günther
new scripts by Colin J. Watson <cjw44@cam.ac.uk>
added executable Jar file support by Kurt Huwig <kurt@iku-netz.de>
-
diff --git a/Documentation/admin-guide/kernel-parameters.rst b/Documentation/admin-guide/kernel-parameters.rst
new file mode 100644
index 0000000..b516164
--- /dev/null
+++ b/Documentation/admin-guide/kernel-parameters.rst
@@ -0,0 +1,209 @@
+The kernel's command-line parameters
+====================================
+
+The following is a consolidated list of the kernel parameters as
+implemented by the __setup(), core_param() and module_param() macros
+and sorted into English Dictionary order (defined as ignoring all
+punctuation and sorting digits before letters in a case insensitive
+manner), and with descriptions where known.
+
+The kernel parses parameters from the kernel command line up to "--";
+if it doesn't recognize a parameter and it doesn't contain a '.', the
+parameter gets passed to init: parameters with '=' go into init's
+environment, others are passed as command line arguments to init.
+Everything after "--" is passed as an argument to init.
+
+Module parameters can be specified in two ways: via the kernel command
+line with a module name prefix, or via modprobe, e.g.::
+
+ (kernel command line) usbcore.blinkenlights=1
+ (modprobe command line) modprobe usbcore blinkenlights=1
+
+Parameters for modules which are built into the kernel need to be
+specified on the kernel command line. modprobe looks through the
+kernel command line (/proc/cmdline) and collects module parameters
+when it loads a module, so the kernel command line can be used for
+loadable modules too.
+
+Hyphens (dashes) and underscores are equivalent in parameter names, so::
+
+ log_buf_len=1M print-fatal-signals=1
+
+can also be entered as::
+
+ log-buf-len=1M print_fatal_signals=1
+
+Double-quotes can be used to protect spaces in values, e.g.::
+
+ param="spaces in here"
+
+cpu lists:
+----------
+
+Some kernel parameters take a list of CPUs as a value, e.g. isolcpus,
+nohz_full, irqaffinity, rcu_nocbs. The format of this list is:
+
+ <cpu number>,...,<cpu number>
+
+or
+
+ <cpu number>-<cpu number>
+ (must be a positive range in ascending order)
+
+or a mixture
+
+<cpu number>,...,<cpu number>-<cpu number>
+
+Note that for the special case of a range one can split the range into equal
+sized groups and for each group use some amount from the beginning of that
+group:
+
+ <cpu number>-cpu number>:<used size>/<group size>
+
+For example one can add to the command line following parameter:
+
+ isolcpus=1,2,10-20,100-2000:2/25
+
+where the final item represents CPUs 100,101,125,126,150,151,...
+
+
+
+This document may not be entirely up to date and comprehensive. The command
+"modinfo -p ${modulename}" shows a current list of all parameters of a loadable
+module. Loadable modules, after being loaded into the running kernel, also
+reveal their parameters in /sys/module/${modulename}/parameters/. Some of these
+parameters may be changed at runtime by the command
+``echo -n ${value} > /sys/module/${modulename}/parameters/${parm}``.
+
+The parameters listed below are only valid if certain kernel build options were
+enabled and if respective hardware is present. The text in square brackets at
+the beginning of each description states the restrictions within which a
+parameter is applicable::
+
+ ACPI ACPI support is enabled.
+ AGP AGP (Accelerated Graphics Port) is enabled.
+ ALSA ALSA sound support is enabled.
+ APIC APIC support is enabled.
+ APM Advanced Power Management support is enabled.
+ ARM ARM architecture is enabled.
+ AVR32 AVR32 architecture is enabled.
+ AX25 Appropriate AX.25 support is enabled.
+ BLACKFIN Blackfin architecture is enabled.
+ CLK Common clock infrastructure is enabled.
+ CMA Contiguous Memory Area support is enabled.
+ DRM Direct Rendering Management support is enabled.
+ DYNAMIC_DEBUG Build in debug messages and enable them at runtime
+ EDD BIOS Enhanced Disk Drive Services (EDD) is enabled
+ EFI EFI Partitioning (GPT) is enabled
+ EIDE EIDE/ATAPI support is enabled.
+ EVM Extended Verification Module
+ FB The frame buffer device is enabled.
+ FTRACE Function tracing enabled.
+ GCOV GCOV profiling is enabled.
+ HW Appropriate hardware is enabled.
+ IA-64 IA-64 architecture is enabled.
+ IMA Integrity measurement architecture is enabled.
+ IOSCHED More than one I/O scheduler is enabled.
+ IP_PNP IP DHCP, BOOTP, or RARP is enabled.
+ IPV6 IPv6 support is enabled.
+ ISAPNP ISA PnP code is enabled.
+ ISDN Appropriate ISDN support is enabled.
+ JOY Appropriate joystick support is enabled.
+ KGDB Kernel debugger support is enabled.
+ KVM Kernel Virtual Machine support is enabled.
+ LIBATA Libata driver is enabled
+ LP Printer support is enabled.
+ LOOP Loopback device support is enabled.
+ M68k M68k architecture is enabled.
+ These options have more detailed description inside of
+ Documentation/m68k/kernel-options.txt.
+ MDA MDA console support is enabled.
+ MIPS MIPS architecture is enabled.
+ MOUSE Appropriate mouse support is enabled.
+ MSI Message Signaled Interrupts (PCI).
+ MTD MTD (Memory Technology Device) support is enabled.
+ NET Appropriate network support is enabled.
+ NUMA NUMA support is enabled.
+ NFS Appropriate NFS support is enabled.
+ OSS OSS sound support is enabled.
+ PV_OPS A paravirtualized kernel is enabled.
+ PARIDE The ParIDE (parallel port IDE) subsystem is enabled.
+ PARISC The PA-RISC architecture is enabled.
+ PCI PCI bus support is enabled.
+ PCIE PCI Express support is enabled.
+ PCMCIA The PCMCIA subsystem is enabled.
+ PNP Plug & Play support is enabled.
+ PPC PowerPC architecture is enabled.
+ PPT Parallel port support is enabled.
+ PS2 Appropriate PS/2 support is enabled.
+ RAM RAM disk support is enabled.
+ S390 S390 architecture is enabled.
+ SCSI Appropriate SCSI support is enabled.
+ A lot of drivers have their options described inside
+ the Documentation/scsi/ sub-directory.
+ SECURITY Different security models are enabled.
+ SELINUX SELinux support is enabled.
+ APPARMOR AppArmor support is enabled.
+ SERIAL Serial support is enabled.
+ SH SuperH architecture is enabled.
+ SMP The kernel is an SMP kernel.
+ SPARC Sparc architecture is enabled.
+ SWSUSP Software suspend (hibernation) is enabled.
+ SUSPEND System suspend states are enabled.
+ TPM TPM drivers are enabled.
+ TS Appropriate touchscreen support is enabled.
+ UMS USB Mass Storage support is enabled.
+ USB USB support is enabled.
+ USBHID USB Human Interface Device support is enabled.
+ V4L Video For Linux support is enabled.
+ VMMIO Driver for memory mapped virtio devices is enabled.
+ VGA The VGA console has been enabled.
+ VT Virtual terminal support is enabled.
+ WDT Watchdog support is enabled.
+ XT IBM PC/XT MFM hard disk support is enabled.
+ X86-32 X86-32, aka i386 architecture is enabled.
+ X86-64 X86-64 architecture is enabled.
+ More X86-64 boot options can be found in
+ Documentation/x86/x86_64/boot-options.txt .
+ X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
+ X86_UV SGI UV support is enabled.
+ XEN Xen support is enabled
+
+In addition, the following text indicates that the option::
+
+ BUGS= Relates to possible processor bugs on the said processor.
+ KNL Is a kernel start-up parameter.
+ BOOT Is a boot loader parameter.
+
+Parameters denoted with BOOT are actually interpreted by the boot
+loader, and have no meaning to the kernel directly.
+Do not modify the syntax of boot loader parameters without extreme
+need or coordination with <Documentation/x86/boot.txt>.
+
+There are also arch-specific kernel-parameters not documented here.
+See for example <Documentation/x86/x86_64/boot-options.txt>.
+
+Note that ALL kernel parameters listed below are CASE SENSITIVE, and that
+a trailing = on the name of any parameter states that that parameter will
+be entered as an environment variable, whereas its absence indicates that
+it will appear as a kernel argument readable via /proc/cmdline by programs
+running once the system is up.
+
+The number of kernel parameters is not limited, but the length of the
+complete command line (parameters including spaces etc.) is limited to
+a fixed number of characters. This limit depends on the architecture
+and is between 256 and 4096 characters. It is defined in the file
+./include/asm/setup.h as COMMAND_LINE_SIZE.
+
+Finally, the [KMG] suffix is commonly described after a number of kernel
+parameter values. These 'K', 'M', and 'G' letters represent the _binary_
+multipliers 'Kilo', 'Mega', and 'Giga', equalling 2^10, 2^20, and 2^30
+bytes respectively. Such letter suffixes can also be entirely omitted:
+
+.. include:: kernel-parameters.txt
+ :literal:
+
+Todo
+----
+
+ Add more DRM drivers.
diff --git a/Documentation/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 37babf9..e48c563 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -1,202 +1,3 @@
- Kernel Parameters
- ~~~~~~~~~~~~~~~~~
-
-The following is a consolidated list of the kernel parameters as
-implemented by the __setup(), core_param() and module_param() macros
-and sorted into English Dictionary order (defined as ignoring all
-punctuation and sorting digits before letters in a case insensitive
-manner), and with descriptions where known.
-
-The kernel parses parameters from the kernel command line up to "--";
-if it doesn't recognize a parameter and it doesn't contain a '.', the
-parameter gets passed to init: parameters with '=' go into init's
-environment, others are passed as command line arguments to init.
-Everything after "--" is passed as an argument to init.
-
-Module parameters can be specified in two ways: via the kernel command
-line with a module name prefix, or via modprobe, e.g.:
-
- (kernel command line) usbcore.blinkenlights=1
- (modprobe command line) modprobe usbcore blinkenlights=1
-
-Parameters for modules which are built into the kernel need to be
-specified on the kernel command line. modprobe looks through the
-kernel command line (/proc/cmdline) and collects module parameters
-when it loads a module, so the kernel command line can be used for
-loadable modules too.
-
-Hyphens (dashes) and underscores are equivalent in parameter names, so
- log_buf_len=1M print-fatal-signals=1
-can also be entered as
- log-buf-len=1M print_fatal_signals=1
-
-Double-quotes can be used to protect spaces in values, e.g.:
- param="spaces in here"
-
-cpu lists:
-----------
-
-Some kernel parameters take a list of CPUs as a value, e.g. isolcpus,
-nohz_full, irqaffinity, rcu_nocbs. The format of this list is:
-
- <cpu number>,...,<cpu number>
-
-or
-
- <cpu number>-<cpu number>
- (must be a positive range in ascending order)
-
-or a mixture
-
-<cpu number>,...,<cpu number>-<cpu number>
-
-Note that for the special case of a range one can split the range into equal
-sized groups and for each group use some amount from the beginning of that
-group:
-
- <cpu number>-cpu number>:<used size>/<group size>
-
-For example one can add to the command line following parameter:
-
- isolcpus=1,2,10-20,100-2000:2/25
-
-where the final item represents CPUs 100,101,125,126,150,151,...
-
-
-
-This document may not be entirely up to date and comprehensive. The command
-"modinfo -p ${modulename}" shows a current list of all parameters of a loadable
-module. Loadable modules, after being loaded into the running kernel, also
-reveal their parameters in /sys/module/${modulename}/parameters/. Some of these
-parameters may be changed at runtime by the command
-"echo -n ${value} > /sys/module/${modulename}/parameters/${parm}".
-
-The parameters listed below are only valid if certain kernel build options were
-enabled and if respective hardware is present. The text in square brackets at
-the beginning of each description states the restrictions within which a
-parameter is applicable:
-
- ACPI ACPI support is enabled.
- AGP AGP (Accelerated Graphics Port) is enabled.
- ALSA ALSA sound support is enabled.
- APIC APIC support is enabled.
- APM Advanced Power Management support is enabled.
- ARM ARM architecture is enabled.
- AVR32 AVR32 architecture is enabled.
- AX25 Appropriate AX.25 support is enabled.
- BLACKFIN Blackfin architecture is enabled.
- CLK Common clock infrastructure is enabled.
- CMA Contiguous Memory Area support is enabled.
- DRM Direct Rendering Management support is enabled.
- DYNAMIC_DEBUG Build in debug messages and enable them at runtime
- EDD BIOS Enhanced Disk Drive Services (EDD) is enabled
- EFI EFI Partitioning (GPT) is enabled
- EIDE EIDE/ATAPI support is enabled.
- EVM Extended Verification Module
- FB The frame buffer device is enabled.
- FTRACE Function tracing enabled.
- GCOV GCOV profiling is enabled.
- HW Appropriate hardware is enabled.
- IA-64 IA-64 architecture is enabled.
- IMA Integrity measurement architecture is enabled.
- IOSCHED More than one I/O scheduler is enabled.
- IP_PNP IP DHCP, BOOTP, or RARP is enabled.
- IPV6 IPv6 support is enabled.
- ISAPNP ISA PnP code is enabled.
- ISDN Appropriate ISDN support is enabled.
- JOY Appropriate joystick support is enabled.
- KGDB Kernel debugger support is enabled.
- KVM Kernel Virtual Machine support is enabled.
- LIBATA Libata driver is enabled
- LP Printer support is enabled.
- LOOP Loopback device support is enabled.
- M68k M68k architecture is enabled.
- These options have more detailed description inside of
- Documentation/m68k/kernel-options.txt.
- MDA MDA console support is enabled.
- MIPS MIPS architecture is enabled.
- MOUSE Appropriate mouse support is enabled.
- MSI Message Signaled Interrupts (PCI).
- MTD MTD (Memory Technology Device) support is enabled.
- NET Appropriate network support is enabled.
- NUMA NUMA support is enabled.
- NFS Appropriate NFS support is enabled.
- OSS OSS sound support is enabled.
- PV_OPS A paravirtualized kernel is enabled.
- PARIDE The ParIDE (parallel port IDE) subsystem is enabled.
- PARISC The PA-RISC architecture is enabled.
- PCI PCI bus support is enabled.
- PCIE PCI Express support is enabled.
- PCMCIA The PCMCIA subsystem is enabled.
- PNP Plug & Play support is enabled.
- PPC PowerPC architecture is enabled.
- PPT Parallel port support is enabled.
- PS2 Appropriate PS/2 support is enabled.
- RAM RAM disk support is enabled.
- S390 S390 architecture is enabled.
- SCSI Appropriate SCSI support is enabled.
- A lot of drivers have their options described inside
- the Documentation/scsi/ sub-directory.
- SECURITY Different security models are enabled.
- SELINUX SELinux support is enabled.
- APPARMOR AppArmor support is enabled.
- SERIAL Serial support is enabled.
- SH SuperH architecture is enabled.
- SMP The kernel is an SMP kernel.
- SPARC Sparc architecture is enabled.
- SWSUSP Software suspend (hibernation) is enabled.
- SUSPEND System suspend states are enabled.
- TPM TPM drivers are enabled.
- TS Appropriate touchscreen support is enabled.
- UMS USB Mass Storage support is enabled.
- USB USB support is enabled.
- USBHID USB Human Interface Device support is enabled.
- V4L Video For Linux support is enabled.
- VMMIO Driver for memory mapped virtio devices is enabled.
- VGA The VGA console has been enabled.
- VT Virtual terminal support is enabled.
- WDT Watchdog support is enabled.
- XT IBM PC/XT MFM hard disk support is enabled.
- X86-32 X86-32, aka i386 architecture is enabled.
- X86-64 X86-64 architecture is enabled.
- More X86-64 boot options can be found in
- Documentation/x86/x86_64/boot-options.txt .
- X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
- X86_UV SGI UV support is enabled.
- XEN Xen support is enabled
-
-In addition, the following text indicates that the option:
-
- BUGS= Relates to possible processor bugs on the said processor.
- KNL Is a kernel start-up parameter.
- BOOT Is a boot loader parameter.
-
-Parameters denoted with BOOT are actually interpreted by the boot
-loader, and have no meaning to the kernel directly.
-Do not modify the syntax of boot loader parameters without extreme
-need or coordination with <Documentation/x86/boot.txt>.
-
-There are also arch-specific kernel-parameters not documented here.
-See for example <Documentation/x86/x86_64/boot-options.txt>.
-
-Note that ALL kernel parameters listed below are CASE SENSITIVE, and that
-a trailing = on the name of any parameter states that that parameter will
-be entered as an environment variable, whereas its absence indicates that
-it will appear as a kernel argument readable via /proc/cmdline by programs
-running once the system is up.
-
-The number of kernel parameters is not limited, but the length of the
-complete command line (parameters including spaces etc.) is limited to
-a fixed number of characters. This limit depends on the architecture
-and is between 256 and 4096 characters. It is defined in the file
-./include/asm/setup.h as COMMAND_LINE_SIZE.
-
-Finally, the [KMG] suffix is commonly described after a number of kernel
-parameter values. These 'K', 'M', and 'G' letters represent the _binary_
-multipliers 'Kilo', 'Mega', and 'Giga', equalling 2^10, 2^20, and 2^30
-bytes respectively. Such letter suffixes can also be entirely omitted.
-
-
acpi= [HW,ACPI,X86,ARM64]
Advanced Configuration and Power Interface
Format: { force | on | off | strict | noirq | rsdt |
@@ -811,7 +612,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
bits, and "f" is flow control ("r" for RTS or
omit it). Default is "9600n8".
- See Documentation/serial-console.txt for more
+ See Documentation/admin-guide/serial-console.rst for more
information. See
Documentation/networking/netconsole.txt for an
alternative.
@@ -2235,7 +2036,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
mce=option [X86-64] See Documentation/x86/x86_64/boot-options.txt
md= [HW] RAID subsystems devices and level
- See Documentation/md.txt.
+ See Documentation/admin-guide/md.rst.
mdacon= [MDA]
Format: <first>,<last>
@@ -2545,7 +2346,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
will be sent.
The default is to send the implementation identification
information.
-
+
nfs.recover_lost_locks =
[NFSv4] Attempt to recover locks that were lost due
to a lease timeout on the server. Please note that
@@ -3318,7 +3119,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
r128= [HW,DRM]
raid= [HW,RAID]
- See Documentation/md.txt.
+ See Documentation/admin-guide/md.rst.
ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
See Documentation/blockdev/ramdisk.txt.
@@ -4197,7 +3998,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
See also Documentation/input/joystick-parport.txt
udbg-immortal [PPC] When debugging early kernel crashes that
- happen after console_init() and before a proper
+ happen after console_init() and before a proper
console driver takes over, this boot options might
help "seeing" what's going on.
@@ -4564,9 +4365,3 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
xirc2ps_cs= [NET,PCMCIA]
Format:
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]
-
-______________________________________________________________________
-
-TODO:
-
- Add more DRM drivers.
diff --git a/Documentation/md.txt b/Documentation/admin-guide/md.rst
index d6e2fcf..e449fb5 100644
--- a/Documentation/md.txt
+++ b/Documentation/admin-guide/md.rst
@@ -1,42 +1,77 @@
-Tools that manage md devices can be found at
- http://www.kernel.org/pub/linux/utils/raid/
-
+RAID arrays
+===========
Boot time assembly of RAID arrays
---------------------------------
+Tools that manage md devices can be found at
+ http://www.kernel.org/pub/linux/utils/raid/
+
+
You can boot with your md device with the following kernel command
lines:
-for old raid arrays without persistent superblocks:
+for old raid arrays without persistent superblocks::
+
md=<md device no.>,<raid level>,<chunk size factor>,<fault level>,dev0,dev1,...,devn
-for raid arrays with persistent superblocks
+for raid arrays with persistent superblocks::
+
md=<md device no.>,dev0,dev1,...,devn
-or, to assemble a partitionable array:
+
+or, to assemble a partitionable array::
+
md=d<md device no.>,dev0,dev1,...,devn
-
-md device no. = the number of the md device ...
- 0 means md0,
- 1 md1,
- 2 md2,
- 3 md3,
- 4 md4
-
-raid level = -1 linear mode
- 0 striped mode
- other modes are only supported with persistent super blocks
-
-chunk size factor = (raid-0 and raid-1 only)
- Set the chunk size as 4k << n.
-
-fault level = totally ignored
-
-dev0-devn: e.g. /dev/hda1,/dev/hdc1,/dev/sda1,/dev/sdb1
-
-A possible loadlin line (Harald Hoyer <HarryH@Royal.Net>) looks like this:
-
-e:\loadlin\loadlin e:\zimage root=/dev/md0 md=0,0,4,0,/dev/hdb2,/dev/hdc3 ro
+
+``md device no.``
++++++++++++++++++
+
+The number of the md device
+
+================= =========
+``md device no.`` device
+================= =========
+ 0 md0
+ 1 md1
+ 2 md2
+ 3 md3
+ 4 md4
+================= =========
+
+``raid level``
+++++++++++++++
+
+level of the RAID array
+
+=============== =============
+``raid level`` level
+=============== =============
+-1 linear mode
+0 striped mode
+=============== =============
+
+other modes are only supported with persistent super blocks
+
+``chunk size factor``
++++++++++++++++++++++
+
+(raid-0 and raid-1 only)
+
+Set the chunk size as 4k << n.
+
+``fault level``
++++++++++++++++
+
+Totally ignored
+
+``dev0`` to ``devn``
+++++++++++++++++++++
+
+e.g. ``/dev/hda1``, ``/dev/hdc1``, ``/dev/sda1``, ``/dev/sdb1``
+
+A possible loadlin line (Harald Hoyer <HarryH@Royal.Net>) looks like this::
+
+ e:\loadlin\loadlin e:\zimage root=/dev/md0 md=0,0,4,0,/dev/hdb2,/dev/hdc3 ro
Boot time autodetection of RAID arrays
@@ -45,10 +80,10 @@ Boot time autodetection of RAID arrays
When md is compiled into the kernel (not as module), partitions of
type 0xfd are scanned and automatically assembled into RAID arrays.
This autodetection may be suppressed with the kernel parameter
-"raid=noautodetect". As of kernel 2.6.9, only drives with a type 0
+``raid=noautodetect``. As of kernel 2.6.9, only drives with a type 0
superblock can be autodetected and run at boot time.
-The kernel parameter "raid=partitionable" (or "raid=part") means
+The kernel parameter ``raid=partitionable`` (or ``raid=part``) means
that all auto-detected arrays are assembled as partitionable.
Boot time assembly of degraded/dirty arrays
@@ -56,22 +91,23 @@ Boot time assembly of degraded/dirty arrays
If a raid5 or raid6 array is both dirty and degraded, it could have
undetectable data corruption. This is because the fact that it is
-'dirty' means that the parity cannot be trusted, and the fact that it
+``dirty`` means that the parity cannot be trusted, and the fact that it
is degraded means that some datablocks are missing and cannot reliably
be reconstructed (due to no parity).
For this reason, md will normally refuse to start such an array. This
requires the sysadmin to take action to explicitly start the array
-despite possible corruption. This is normally done with
+despite possible corruption. This is normally done with::
+
mdadm --assemble --force ....
This option is not really available if the array has the root
filesystem on it. In order to support this booting from such an
-array, md supports a module parameter "start_dirty_degraded" which,
+array, md supports a module parameter ``start_dirty_degraded`` which,
when set to 1, bypassed the checks and will allows dirty degraded
arrays to be started.
-So, to boot with a root filesystem of a dirty degraded raid[56], use
+So, to boot with a root filesystem of a dirty degraded raid 5 or 6, use::
md-mod.start_dirty_degraded=1
@@ -80,30 +116,30 @@ Superblock formats
------------------
The md driver can support a variety of different superblock formats.
-Currently, it supports superblock formats "0.90.0" and the "md-1" format
+Currently, it supports superblock formats ``0.90.0`` and the ``md-1`` format
introduced in the 2.5 development series.
The kernel will autodetect which format superblock is being used.
-Superblock format '0' is treated differently to others for legacy
+Superblock format ``0`` is treated differently to others for legacy
reasons - it is the original superblock format.
General Rules - apply for all superblock formats
------------------------------------------------
-An array is 'created' by writing appropriate superblocks to all
+An array is ``created`` by writing appropriate superblocks to all
devices.
-It is 'assembled' by associating each of these devices with an
+It is ``assembled`` by associating each of these devices with an
particular md virtual device. Once it is completely assembled, it can
be accessed.
An array should be created by a user-space tool. This will write
superblocks to all devices. It will usually mark the array as
-'unclean', or with some devices missing so that the kernel md driver
-can create appropriate redundancy (copying in raid1, parity
-calculation in raid4/5).
+``unclean``, or with some devices missing so that the kernel md driver
+can create appropriate redundancy (copying in raid 1, parity
+calculation in raid 4/5).
When an array is assembled, it is first initialized with the
SET_ARRAY_INFO ioctl. This contains, in particular, a major and minor
@@ -126,13 +162,12 @@ Devices that have failed or are not yet active can be detached from an
array using HOT_REMOVE_DISK.
-Specific Rules that apply to format-0 super block arrays, and
- arrays with no superblock (non-persistent).
--------------------------------------------------------------
+Specific Rules that apply to format-0 super block arrays, and arrays with no superblock (non-persistent)
+--------------------------------------------------------------------------------------------------------
-An array can be 'created' by describing the array (level, chunksize
-etc) in a SET_ARRAY_INFO ioctl. This must have major_version==0 and
-raid_disks != 0.
+An array can be ``created`` by describing the array (level, chunksize
+etc) in a SET_ARRAY_INFO ioctl. This must have ``major_version==0`` and
+``raid_disks != 0``.
Then uninitialized devices can be added with ADD_NEW_DISK. The
structure passed to ADD_NEW_DISK must specify the state of the device
@@ -142,24 +177,26 @@ Once started with RUN_ARRAY, uninitialized spares can be added with
HOT_ADD_DISK.
-
MD devices in sysfs
-------------------
-md devices appear in sysfs (/sys) as regular block devices,
-e.g.
+
+md devices appear in sysfs (``/sys``) as regular block devices,
+e.g.::
+
/sys/block/md0
-Each 'md' device will contain a subdirectory called 'md' which
+Each ``md`` device will contain a subdirectory called ``md`` which
contains further md-specific information about the device.
All md devices contain:
+
level
- a text file indicating the 'raid level'. e.g. raid0, raid1,
+ a text file indicating the ``raid level``. e.g. raid0, raid1,
raid5, linear, multipath, faulty.
If no raid level has been set yet (array is still being
assembled), the value will reflect whatever has been written
to it, which may be a name like the above, or may be a number
- such as '0', '5', etc.
+ such as ``0``, ``5``, etc.
raid_disks
a text file with a simple number indicating the number of devices
@@ -172,10 +209,10 @@ All md devices contain:
A change to this attribute will not be permitted if it would
reduce the size of the array. To reduce the number of drives
in an e.g. raid5, the array size must first be reduced by
- setting the 'array_size' attribute.
+ setting the ``array_size`` attribute.
chunk_size
- This is the size in bytes for 'chunks' and is only relevant to
+ This is the size in bytes for ``chunks`` and is only relevant to
raid levels that involve striping (0,4,5,6,10). The address space
of the array is conceptually divided into chunks and consecutive
chunks are striped onto neighbouring devices.
@@ -183,7 +220,7 @@ All md devices contain:
of 2. This can only be set while assembling an array
layout
- The "layout" for the array for the particular level. This is
+ The ``layout`` for the array for the particular level. This is
simply a number that is interpretted differently by different
levels. It can be written while assembling an array.
@@ -193,22 +230,24 @@ All md devices contain:
devices. Writing a number (in Kilobytes) which is less than
the available size will set the size. Any reconfiguration of the
array (e.g. adding devices) will not cause the size to change.
- Writing the word 'default' will cause the effective size of the
+ Writing the word ``default`` will cause the effective size of the
array to be whatever size is actually available based on
- 'level', 'chunk_size' and 'component_size'.
+ ``level``, ``chunk_size`` and ``component_size``.
This can be used to reduce the size of the array before reducing
the number of devices in a raid4/5/6, or to support external
metadata formats which mandate such clipping.
reshape_position
- This is either "none" or a sector number within the devices of
- the array where "reshape" is up to. If this is set, the three
+ This is either ``none`` or a sector number within the devices of
+ the array where ``reshape`` is up to. If this is set, the three
attributes mentioned above (raid_disks, chunk_size, layout) can
potentially have 2 values, an old and a new value. If these
- values differ, reading the attribute returns
+ values differ, reading the attribute returns::
+
new (old)
- and writing will effect the 'new' value, leaving the 'old'
+
+ and writing will effect the ``new`` value, leaving the ``old``
unchanged.
component_size
@@ -223,9 +262,9 @@ All md devices contain:
metadata_version
This indicates the format that is being used to record metadata
about the array. It can be 0.90 (traditional format), 1.0, 1.1,
- 1.2 (newer format in varying locations) or "none" indicating that
+ 1.2 (newer format in varying locations) or ``none`` indicating that
the kernel isn't managing metadata at all.
- Alternately it can be "external:" followed by a string which
+ Alternately it can be ``external:`` followed by a string which
is set by user-space. This indicates that metadata is managed
by a user-space program. Any device failure or other event that
requires a metadata update will cause array activity to be
@@ -233,9 +272,9 @@ All md devices contain:
resync_start
The point at which resync should start. If no resync is needed,
- this will be a very large number (or 'none' since 2.6.30-rc1). At
+ this will be a very large number (or ``none`` since 2.6.30-rc1). At
array creation it will default to 0, though starting the array as
- 'clean' will set it much larger.
+ ``clean`` will set it much larger.
new_dev
This file can be written but not read. The value written should
@@ -246,10 +285,10 @@ All md devices contain:
safe_mode_delay
When an md array has seen no write requests for a certain period
- of time, it will be marked as 'clean'. When another write
- request arrives, the array is marked as 'dirty' before the write
- commences. This is known as 'safe_mode'.
- The 'certain period' is controlled by this file which stores the
+ of time, it will be marked as ``clean``. When another write
+ request arrives, the array is marked as ``dirty`` before the write
+ commences. This is known as ``safe_mode``.
+ The ``certain period`` is controlled by this file which stores the
period as a number of seconds. The default is 200msec (0.200).
Writing a value of 0 disables safemode.
@@ -260,38 +299,50 @@ All md devices contain:
cannot be explicitly set, and some transitions are not allowed.
Select/poll works on this file. All changes except between
- active_idle and active (which can be frequent and are not
- very interesting) are notified. active->active_idle is
- reported if the metadata is externally managed.
+ Active_idle and active (which can be frequent and are not
+ very interesting) are notified. active->active_idle is
+ reported if the metadata is externally managed.
clear
No devices, no size, no level
+
Writing is equivalent to STOP_ARRAY ioctl
+
inactive
May have some settings, but array is not active
- all IO results in error
+ all IO results in error
+
When written, doesn't tear down array, but just stops it
+
suspended (not supported yet)
All IO requests will block. The array can be reconfigured.
+
Writing this, if accepted, will block until array is quiessent
+
readonly
no resync can happen. no superblocks get written.
- write requests fail
+
+ Write requests fail
+
read-auto
- like readonly, but behaves like 'clean' on a write request.
+ like readonly, but behaves like ``clean`` on a write request.
+
+ clean
+ no pending writes, but otherwise active.
- clean - no pending writes, but otherwise active.
When written to inactive array, starts without resync
+
If a write request arrives then
- if metadata is known, mark 'dirty' and switch to 'active'.
- if not known, block and switch to write-pending
+ if metadata is known, mark ``dirty`` and switch to ``active``.
+ if not known, block and switch to write-pending
+
If written to an active array that has pending writes, then fails.
active
fully active: IO and resync can be happening.
When written to inactive array, starts with resync
write-pending
- clean, but writes are blocked waiting for 'active' to be written.
+ clean, but writes are blocked waiting for ``active`` to be written.
active-idle
like active, but no writes have been seen for a while (safe_mode_delay).
@@ -299,57 +350,71 @@ All md devices contain:
bitmap/location
This indicates where the write-intent bitmap for the array is
stored.
- It can be one of "none", "file" or "[+-]N".
- "file" may later be extended to "file:/file/name"
- "[+-]N" means that many sectors from the start of the metadata.
- This is replicated on all devices. For arrays with externally
- managed metadata, the offset is from the beginning of the
- device.
+
+ It can be one of ``none``, ``file`` or ``[+-]N``.
+ ``file`` may later be extended to ``file:/file/name``
+ ``[+-]N`` means that many sectors from the start of the metadata.
+
+ This is replicated on all devices. For arrays with externally
+ managed metadata, the offset is from the beginning of the
+ device.
+
bitmap/chunksize
The size, in bytes, of the chunk which will be represented by a
single bit. For RAID456, it is a portion of an individual
device. For RAID10, it is a portion of the array. For RAID1, it
is both (they come to the same thing).
+
bitmap/time_base
The time, in seconds, between looking for bits in the bitmap to
be cleared. In the current implementation, a bit will be cleared
- between 2 and 3 times "time_base" after all the covered blocks
+ between 2 and 3 times ``time_base`` after all the covered blocks
are known to be in-sync.
+
bitmap/backlog
When write-mostly devices are active in a RAID1, write requests
to those devices proceed in the background - the filesystem (or
other user of the device) does not have to wait for them.
- 'backlog' sets a limit on the number of concurrent background
+ ``backlog`` sets a limit on the number of concurrent background
writes. If there are more than this, new writes will by
synchronous.
+
bitmap/metadata
- This can be either 'internal' or 'external'.
- 'internal' is the default and means the metadata for the bitmap
- is stored in the first 256 bytes of the allocated space and is
- managed by the md module.
- 'external' means that bitmap metadata is managed externally to
- the kernel (i.e. by some userspace program)
+ This can be either ``internal`` or ``external``.
+
+ ``internal``
+ is the default and means the metadata for the bitmap
+ is stored in the first 256 bytes of the allocated space and is
+ managed by the md module.
+
+ ``external``
+ means that bitmap metadata is managed externally to
+ the kernel (i.e. by some userspace program)
+
bitmap/can_clear
- This is either 'true' or 'false'. If 'true', then bits in the
+ This is either ``true`` or ``false``. If ``true``, then bits in the
bitmap will be cleared when the corresponding blocks are thought
- to be in-sync. If 'false', bits will never be cleared.
- This is automatically set to 'false' if a write happens on a
+ to be in-sync. If ``false``, bits will never be cleared.
+ This is automatically set to ``false`` if a write happens on a
degraded array, or if the array becomes degraded during a write.
When metadata is managed externally, it should be set to true
once the array becomes non-degraded, and this fact has been
recorded in the metadata.
-
-
-
-As component devices are added to an md array, they appear in the 'md'
-directory as new directories named
+
+
+
+As component devices are added to an md array, they appear in the ``md``
+directory as new directories named::
+
dev-XXX
-where XXX is a name that the kernel knows for the device, e.g. hdb1.
+
+where ``XXX`` is a name that the kernel knows for the device, e.g. hdb1.
Each directory contains:
block
- a symlink to the block device in /sys/block, e.g.
+ a symlink to the block device in /sys/block, e.g.::
+
/sys/block/md0/md/dev-hdb1/block -> ../../../../block/hdb/hdb1
super
@@ -358,51 +423,83 @@ Each directory contains:
state
A file recording the current state of the device in the array
- which can be a comma separated list of
- faulty - device has been kicked from active use due to
- a detected fault, or it has unacknowledged bad
- blocks
- in_sync - device is a fully in-sync member of the array
- writemostly - device will only be subject to read
- requests if there are no other options.
- This applies only to raid1 arrays.
- blocked - device has failed, and the failure hasn't been
- acknowledged yet by the metadata handler.
- Writes that would write to this device if
- it were not faulty are blocked.
- spare - device is working, but not a full member.
- This includes spares that are in the process
- of being recovered to
- write_error - device has ever seen a write error.
- want_replacement - device is (mostly) working but probably
- should be replaced, either due to errors or
- due to user request.
- replacement - device is a replacement for another active
- device with same raid_disk.
+ which can be a comma separated list of:
+
+ faulty
+ device has been kicked from active use due to
+ a detected fault, or it has unacknowledged bad
+ blocks
+
+ in_sync
+ device is a fully in-sync member of the array
+
+ writemostly
+ device will only be subject to read
+ requests if there are no other options.
+
+ This applies only to raid1 arrays.
+
+ blocked
+ device has failed, and the failure hasn't been
+ acknowledged yet by the metadata handler.
+
+ Writes that would write to this device if
+ it were not faulty are blocked.
+
+ spare
+ device is working, but not a full member.
+
+ This includes spares that are in the process
+ of being recovered to
+
+ write_error
+ device has ever seen a write error.
+
+ want_replacement
+ device is (mostly) working but probably
+ should be replaced, either due to errors or
+ due to user request.
+
+ replacement
+ device is a replacement for another active
+ device with same raid_disk.
This list may grow in future.
+
This can be written to.
- Writing "faulty" simulates a failure on the device.
- Writing "remove" removes the device from the array.
- Writing "writemostly" sets the writemostly flag.
- Writing "-writemostly" clears the writemostly flag.
- Writing "blocked" sets the "blocked" flag.
- Writing "-blocked" clears the "blocked" flags and allows writes
- to complete and possibly simulates an error.
- Writing "in_sync" sets the in_sync flag.
- Writing "write_error" sets writeerrorseen flag.
- Writing "-write_error" clears writeerrorseen flag.
- Writing "want_replacement" is allowed at any time except to a
- replacement device or a spare. It sets the flag.
- Writing "-want_replacement" is allowed at any time. It clears
- the flag.
- Writing "replacement" or "-replacement" is only allowed before
- starting the array. It sets or clears the flag.
-
-
- This file responds to select/poll. Any change to 'faulty'
- or 'blocked' causes an event.
+
+ Writing ``faulty`` simulates a failure on the device.
+
+ Writing ``remove`` removes the device from the array.
+
+ Writing ``writemostly`` sets the writemostly flag.
+
+ Writing ``-writemostly`` clears the writemostly flag.
+
+ Writing ``blocked`` sets the ``blocked`` flag.
+
+ Writing ``-blocked`` clears the ``blocked`` flags and allows writes
+ to complete and possibly simulates an error.
+
+ Writing ``in_sync`` sets the in_sync flag.
+
+ Writing ``write_error`` sets writeerrorseen flag.
+
+ Writing ``-write_error`` clears writeerrorseen flag.
+
+ Writing ``want_replacement`` is allowed at any time except to a
+ replacement device or a spare. It sets the flag.
+
+ Writing ``-want_replacement`` is allowed at any time. It clears
+ the flag.
+
+ Writing ``replacement`` or ``-replacement`` is only allowed before
+ starting the array. It sets or clears the flag.
+
+
+ This file responds to select/poll. Any change to ``faulty``
+ or ``blocked`` causes an event.
errors
An approximate count of read errors that have been detected on
@@ -417,9 +514,9 @@ Each directory contains:
slot
This gives the role that the device has in the array. It will
- either be 'none' if the device is not active in the array
+ either be ``none`` if the device is not active in the array
(i.e. is a spare or has failed) or an integer less than the
- 'raid_disks' number for the array indicating which position
+ ``raid_disks`` number for the array indicating which position
it currently fills. This can only be set while assembling an
array. A device for which this is set is assumed to be working.
@@ -437,7 +534,7 @@ Each directory contains:
written, it will be rejected.
recovery_start
- When the device is not 'in_sync', this records the number of
+ When the device is not ``in_sync``, this records the number of
sectors from the start of the device which are known to be
correct. This is normally zero, but during a recovery
operation it will steadily increase, and if the recovery is
@@ -447,21 +544,21 @@ Each directory contains:
This can be set whenever the device is not an active member of
the array, either before the array is activated, or before
- the 'slot' is set.
+ the ``slot`` is set.
+
+ Setting this to ``none`` is equivalent to setting ``in_sync``.
+ Setting to any other value also clears the ``in_sync`` flag.
- Setting this to 'none' is equivalent to setting 'in_sync'.
- Setting to any other value also clears the 'in_sync' flag.
-
bad_blocks
This gives the list of all known bad blocks in the form of
start address and length (in sectors respectively). If output
is too big to fit in a page, it will be truncated. Writing
- "sector length" to this file adds new acknowledged (i.e.
+ ``sector length`` to this file adds new acknowledged (i.e.
recorded to disk safely) bad blocks.
unacknowledged_bad_blocks
This gives the list of known-but-not-yet-saved-to-disk bad
- blocks in the same form of 'bad_blocks'. If output is too big
+ blocks in the same form of ``bad_blocks``. If output is too big
to fit in a page, it will be truncated. Writing to this file
adds bad blocks without acknowledging them. This is largely
for testing.
@@ -469,16 +566,18 @@ Each directory contains:
An active md device will also contain an entry for each active device
-in the array. These are named
+in the array. These are named::
rdNN
-where 'NN' is the position in the array, starting from 0.
+where ``NN`` is the position in the array, starting from 0.
So for a 3 drive array there will be rd0, rd1, rd2.
-These are symbolic links to the appropriate 'dev-XXX' entry.
-Thus, for example,
+These are symbolic links to the appropriate ``dev-XXX`` entry.
+Thus, for example::
+
cat /sys/block/md*/md/rd*/state
-will show 'in_sync' on every line.
+
+will show ``in_sync`` on every line.
@@ -488,50 +587,62 @@ also have
sync_action
a text file that can be used to monitor and control the rebuild
process. It contains one word which can be one of:
- resync - redundancy is being recalculated after unclean
- shutdown or creation
- recover - a hot spare is being built to replace a
- failed/missing device
- idle - nothing is happening
- check - A full check of redundancy was requested and is
- happening. This reads all blocks and checks
- them. A repair may also happen for some raid
- levels.
- repair - A full check and repair is happening. This is
- similar to 'resync', but was requested by the
- user, and the write-intent bitmap is NOT used to
- optimise the process.
+
+ resync
+ redundancy is being recalculated after unclean
+ shutdown or creation
+
+ recover
+ a hot spare is being built to replace a
+ failed/missing device
+
+ idle
+ nothing is happening
+ check
+ A full check of redundancy was requested and is
+ happening. This reads all blocks and checks
+ them. A repair may also happen for some raid
+ levels.
+
+ repair
+ A full check and repair is happening. This is
+ similar to ``resync``, but was requested by the
+ user, and the write-intent bitmap is NOT used to
+ optimise the process.
This file is writable, and each of the strings that could be
read are meaningful for writing.
- 'idle' will stop an active resync/recovery etc. There is no
- guarantee that another resync/recovery may not be automatically
- started again, though some event will be needed to trigger
- this.
- 'resync' or 'recovery' can be used to restart the
- corresponding operation if it was stopped with 'idle'.
- 'check' and 'repair' will start the appropriate process
- providing the current state is 'idle'.
+ ``idle`` will stop an active resync/recovery etc. There is no
+ guarantee that another resync/recovery may not be automatically
+ started again, though some event will be needed to trigger
+ this.
+
+ ``resync`` or ``recovery`` can be used to restart the
+ corresponding operation if it was stopped with ``idle``.
+
+ ``check`` and ``repair`` will start the appropriate process
+ providing the current state is ``idle``.
This file responds to select/poll. Any important change in the value
triggers a poll event. Sometimes the value will briefly be
- "recover" if a recovery seems to be needed, but cannot be
- achieved. In that case, the transition to "recover" isn't
+ ``recover`` if a recovery seems to be needed, but cannot be
+ achieved. In that case, the transition to ``recover`` isn't
notified, but the transition away is.
degraded
This contains a count of the number of devices by which the
- arrays is degraded. So an optimal array will show '0'. A
- single failed/missing drive will show '1', etc.
+ arrays is degraded. So an optimal array will show ``0``. A
+ single failed/missing drive will show ``1``, etc.
+
This file responds to select/poll, any increase or decrease
in the count of missing devices will trigger an event.
mismatch_count
- When performing 'check' and 'repair', and possibly when
- performing 'resync', md will count the number of errors that are
- found. The count in 'mismatch_cnt' is the number of sectors
- that were re-written, or (for 'check') would have been
+ When performing ``check`` and ``repair``, and possibly when
+ performing ``resync``, md will count the number of errors that are
+ found. The count in ``mismatch_cnt`` is the number of sectors
+ that were re-written, or (for ``check``) would have been
re-written. As most raid levels work in units of pages rather
than sectors, this may be larger than the number of actual errors
by a factor of the number of sectors in a page.
@@ -542,27 +653,30 @@ also have
would need to check the corresponding blocks. Either individual
numbers or start-end pairs can be written. Multiple numbers
can be separated by a space.
- Note that the numbers are 'bit' numbers, not 'block' numbers.
+
+ Note that the numbers are ``bit`` numbers, not ``block`` numbers.
They should be scaled by the bitmap_chunksize.
- sync_speed_min
- sync_speed_max
- This are similar to /proc/sys/dev/raid/speed_limit_{min,max}
+ sync_speed_min, sync_speed_max
+ This are similar to ``/proc/sys/dev/raid/speed_limit_{min,max}``
however they only apply to the particular array.
- If no value has been written to these, or if the word 'system'
+
+ If no value has been written to these, or if the word ``system``
is written, then the system-wide value is used. If a value,
in kibibytes-per-second is written, then it is used.
+
When the files are read, they show the currently active value
- followed by "(local)" or "(system)" depending on whether it is
+ followed by ``(local)`` or ``(system)`` depending on whether it is
a locally set or system-wide value.
sync_completed
This shows the number of sectors that have been completed of
whatever the current sync_action is, followed by the number of
sectors in total that could need to be processed. The two
- numbers are separated by a '/' thus effectively showing one
+ numbers are separated by a ``/`` thus effectively showing one
value, a fraction of the process that is complete.
- A 'select' on this attribute will return when resync completes,
+
+ A ``select`` on this attribute will return when resync completes,
when it reaches the current sync_max (below) and possibly at
other times.
@@ -570,26 +684,24 @@ also have
This shows the current actual speed, in K/sec, of the current
sync_action. It is averaged over the last 30 seconds.
- suspend_lo
- suspend_hi
+ suspend_lo, suspend_hi
The two values, given as numbers of sectors, indicate a range
within the array where IO will be blocked. This is currently
only supported for raid4/5/6.
- sync_min
- sync_max
+ sync_min, sync_max
The two values, given as numbers of sectors, indicate a range
- within the array where 'check'/'repair' will operate. Must be
- a multiple of chunk_size. When it reaches "sync_max" it will
+ within the array where ``check``/``repair`` will operate. Must be
+ a multiple of chunk_size. When it reaches ``sync_max`` it will
pause, rather than complete.
- You can use 'select' or 'poll' on "sync_completed" to wait for
+ You can use ``select`` or ``poll`` on ``sync_completed`` to wait for
that number to reach sync_max. Then you can either increase
- "sync_max", or can write 'idle' to "sync_action".
+ ``sync_max``, or can write ``idle`` to ``sync_action``.
- The value of 'max' for "sync_max" effectively disables the limit.
+ The value of ``max`` for ``sync_max`` effectively disables the limit.
When a resync is active, the value can only ever be increased,
never decreased.
- The value of '0' is the minimum for "sync_min".
+ The value of ``0`` is the minimum for ``sync_min``.
@@ -598,13 +710,15 @@ personality module that manages it.
These are specific to the implementation of the module and could
change substantially if the implementation changes.
-These currently include
+These currently include:
stripe_cache_size (currently raid5 only)
number of entries in the stripe cache. This is writable, but
there are upper and lower limits (32768, 17). Default is 256.
+
strip_cache_active (currently raid5 only)
number of active entries in the stripe cache
+
preread_bypass_threshold (currently raid5 only)
number of times a stripe requiring preread will be bypassed by
a stripe that does not require preread. For fairness defaults
diff --git a/Documentation/module-signing.txt b/Documentation/admin-guide/module-signing.rst
index f0e3361..27e5949 100644
--- a/Documentation/module-signing.txt
+++ b/Documentation/admin-guide/module-signing.rst
@@ -1,22 +1,21 @@
- ==============================
- KERNEL MODULE SIGNING FACILITY
- ==============================
-
-CONTENTS
-
- - Overview.
- - Configuring module signing.
- - Generating signing keys.
- - Public keys in the kernel.
- - Manually signing modules.
- - Signed modules and stripping.
- - Loading signed modules.
- - Non-valid signatures and unsigned modules.
- - Administering/protecting the private key.
+Kernel module signing facility
+------------------------------
+
+.. CONTENTS
+..
+.. - Overview.
+.. - Configuring module signing.
+.. - Generating signing keys.
+.. - Public keys in the kernel.
+.. - Manually signing modules.
+.. - Signed modules and stripping.
+.. - Loading signed modules.
+.. - Non-valid signatures and unsigned modules.
+.. - Administering/protecting the private key.
========
-OVERVIEW
+Overview
========
The kernel module signing facility cryptographically signs modules during
@@ -36,17 +35,19 @@ SHA-512 (the algorithm is selected by data in the signature).
==========================
-CONFIGURING MODULE SIGNING
+Configuring module signing
==========================
-The module signing facility is enabled by going to the "Enable Loadable Module
-Support" section of the kernel configuration and turning on
+The module signing facility is enabled by going to the
+:menuselection:`Enable Loadable Module Support` section of
+the kernel configuration and turning on::
CONFIG_MODULE_SIG "Module signature verification"
This has a number of options available:
- (1) "Require modules to be validly signed" (CONFIG_MODULE_SIG_FORCE)
+ (1) :menuselection:`Require modules to be validly signed`
+ (``CONFIG_MODULE_SIG_FORCE``)
This specifies how the kernel should deal with a module that has a
signature for which the key is not known or a module that is unsigned.
@@ -64,35 +65,39 @@ This has a number of options available:
cannot be parsed, it will be rejected out of hand.
- (2) "Automatically sign all modules" (CONFIG_MODULE_SIG_ALL)
+ (2) :menuselection:`Automatically sign all modules`
+ (``CONFIG_MODULE_SIG_ALL``)
If this is on then modules will be automatically signed during the
modules_install phase of a build. If this is off, then the modules must
- be signed manually using:
+ be signed manually using::
scripts/sign-file
- (3) "Which hash algorithm should modules be signed with?"
+ (3) :menuselection:`Which hash algorithm should modules be signed with?`
This presents a choice of which hash algorithm the installation phase will
sign the modules with:
- CONFIG_MODULE_SIG_SHA1 "Sign modules with SHA-1"
- CONFIG_MODULE_SIG_SHA224 "Sign modules with SHA-224"
- CONFIG_MODULE_SIG_SHA256 "Sign modules with SHA-256"
- CONFIG_MODULE_SIG_SHA384 "Sign modules with SHA-384"
- CONFIG_MODULE_SIG_SHA512 "Sign modules with SHA-512"
+ =============================== ==========================================
+ ``CONFIG_MODULE_SIG_SHA1`` :menuselection:`Sign modules with SHA-1`
+ ``CONFIG_MODULE_SIG_SHA224`` :menuselection:`Sign modules with SHA-224`
+ ``CONFIG_MODULE_SIG_SHA256`` :menuselection:`Sign modules with SHA-256`
+ ``CONFIG_MODULE_SIG_SHA384`` :menuselection:`Sign modules with SHA-384`
+ ``CONFIG_MODULE_SIG_SHA512`` :menuselection:`Sign modules with SHA-512`
+ =============================== ==========================================
The algorithm selected here will also be built into the kernel (rather
than being a module) so that modules signed with that algorithm can have
their signatures checked without causing a dependency loop.
- (4) "File name or PKCS#11 URI of module signing key" (CONFIG_MODULE_SIG_KEY)
+ (4) :menuselection:`File name or PKCS#11 URI of module signing key`
+ (``CONFIG_MODULE_SIG_KEY``)
Setting this option to something other than its default of
- "certs/signing_key.pem" will disable the autogeneration of signing keys
+ ``certs/signing_key.pem`` will disable the autogeneration of signing keys
and allow the kernel modules to be signed with a key of your choosing.
The string provided should identify a file containing both a private key
and its corresponding X.509 certificate in PEM form, or — on systems where
@@ -102,10 +107,11 @@ This has a number of options available:
If the PEM file containing the private key is encrypted, or if the
PKCS#11 token requries a PIN, this can be provided at build time by
- means of the KBUILD_SIGN_PIN variable.
+ means of the ``KBUILD_SIGN_PIN`` variable.
- (5) "Additional X.509 keys for default system keyring" (CONFIG_SYSTEM_TRUSTED_KEYS)
+ (5) :menuselection:`Additional X.509 keys for default system keyring`
+ (``CONFIG_SYSTEM_TRUSTED_KEYS``)
This option can be set to the filename of a PEM-encoded file containing
additional certificates which will be included in the system keyring by
@@ -116,7 +122,7 @@ packages to the kernel build processes for the tool that does the signing.
=======================
-GENERATING SIGNING KEYS
+Generating signing keys
=======================
Cryptographic keypairs are required to generate and check signatures. A
@@ -126,14 +132,14 @@ it can be deleted or stored securely. The public key gets built into the
kernel so that it can be used to check the signatures as the modules are
loaded.
-Under normal conditions, when CONFIG_MODULE_SIG_KEY is unchanged from its
+Under normal conditions, when ``CONFIG_MODULE_SIG_KEY`` is unchanged from its
default, the kernel build will automatically generate a new keypair using
-openssl if one does not exist in the file:
+openssl if one does not exist in the file::
certs/signing_key.pem
during the building of vmlinux (the public part of the key needs to be built
-into vmlinux) using parameters in the:
+into vmlinux) using parameters in the::
certs/x509.genkey
@@ -142,14 +148,14 @@ file (which is also generated if it does not already exist).
It is strongly recommended that you provide your own x509.genkey file.
Most notably, in the x509.genkey file, the req_distinguished_name section
-should be altered from the default:
+should be altered from the default::
[ req_distinguished_name ]
#O = Unspecified company
CN = Build time autogenerated kernel key
#emailAddress = unspecified.user@unspecified.company
-The generated RSA key size can also be set with:
+The generated RSA key size can also be set with::
[ req ]
default_bits = 4096
@@ -158,23 +164,23 @@ The generated RSA key size can also be set with:
It is also possible to manually generate the key private/public files using the
x509.genkey key generation configuration file in the root node of the Linux
kernel sources tree and the openssl command. The following is an example to
-generate the public/private key files:
+generate the public/private key files::
openssl req -new -nodes -utf8 -sha256 -days 36500 -batch -x509 \
-config x509.genkey -outform PEM -out kernel_key.pem \
-keyout kernel_key.pem
The full pathname for the resulting kernel_key.pem file can then be specified
-in the CONFIG_MODULE_SIG_KEY option, and the certificate and key therein will
+in the ``CONFIG_MODULE_SIG_KEY`` option, and the certificate and key therein will
be used instead of an autogenerated keypair.
=========================
-PUBLIC KEYS IN THE KERNEL
+Public keys in the kernel
=========================
The kernel contains a ring of public keys that can be viewed by root. They're
-in a keyring called ".system_keyring" that can be seen by:
+in a keyring called ".system_keyring" that can be seen by::
[root@deneb ~]# cat /proc/keys
...
@@ -184,27 +190,27 @@ in a keyring called ".system_keyring" that can be seen by:
Beyond the public key generated specifically for module signing, additional
trusted certificates can be provided in a PEM-encoded file referenced by the
-CONFIG_SYSTEM_TRUSTED_KEYS configuration option.
+``CONFIG_SYSTEM_TRUSTED_KEYS`` configuration option.
Further, the architecture code may take public keys from a hardware store and
add those in also (e.g. from the UEFI key database).
-Finally, it is possible to add additional public keys by doing:
+Finally, it is possible to add additional public keys by doing::
keyctl padd asymmetric "" [.system_keyring-ID] <[key-file]
-e.g.:
+e.g.::
keyctl padd asymmetric "" 0x223c7853 <my_public_key.x509
Note, however, that the kernel will only permit keys to be added to
-.system_keyring _if_ the new key's X.509 wrapper is validly signed by a key
+``.system_keyring _if_`` the new key's X.509 wrapper is validly signed by a key
that is already resident in the .system_keyring at the time the key was added.
-=========================
-MANUALLY SIGNING MODULES
-=========================
+========================
+Manually signing modules
+========================
To manually sign a module, use the scripts/sign-file tool available in
the Linux kernel source tree. The script requires 4 arguments:
@@ -214,7 +220,7 @@ the Linux kernel source tree. The script requires 4 arguments:
3. The public key filename
4. The kernel module to be signed
-The following is an example to sign a kernel module:
+The following is an example to sign a kernel module::
scripts/sign-file sha512 kernel-signkey.priv \
kernel-signkey.x509 module.ko
@@ -228,11 +234,11 @@ $KBUILD_SIGN_PIN environment variable.
============================
-SIGNED MODULES AND STRIPPING
+Signed modules and stripping
============================
A signed module has a digital signature simply appended at the end. The string
-"~Module signature appended~." at the end of the module's file confirms that a
+``~Module signature appended~.`` at the end of the module's file confirms that a
signature is present but it does not confirm that the signature is valid!
Signed modules are BRITTLE as the signature is outside of the defined ELF
@@ -242,19 +248,19 @@ debug information present at the time of signing.
======================
-LOADING SIGNED MODULES
+Loading signed modules
======================
-Modules are loaded with insmod, modprobe, init_module() or finit_module(),
-exactly as for unsigned modules as no processing is done in userspace. The
-signature checking is all done within the kernel.
+Modules are loaded with insmod, modprobe, ``init_module()`` or
+``finit_module()``, exactly as for unsigned modules as no processing is
+done in userspace. The signature checking is all done within the kernel.
=========================================
-NON-VALID SIGNATURES AND UNSIGNED MODULES
+Non-valid signatures and unsigned modules
=========================================
-If CONFIG_MODULE_SIG_FORCE is enabled or module.sig_enforce=1 is supplied on
+If ``CONFIG_MODULE_SIG_FORCE`` is enabled or module.sig_enforce=1 is supplied on
the kernel command line, the kernel will only load validly signed modules
for which it has a public key. Otherwise, it will also load modules that are
unsigned. Any module for which the kernel has a key, but which proves to have
@@ -264,7 +270,7 @@ Any module that has an unparseable signature will be rejected.
=========================================
-ADMINISTERING/PROTECTING THE PRIVATE KEY
+Administering/protecting the private key
=========================================
Since the private key is used to sign modules, viruses and malware could use
@@ -275,5 +281,5 @@ in the root node of the kernel source tree.
If you use the same private key to sign modules for multiple kernel
configurations, you must ensure that the module version information is
sufficient to prevent loading a module into a different kernel. Either
-set CONFIG_MODVERSIONS=y or ensure that each configuration has a different
-kernel release string by changing EXTRAVERSION or CONFIG_LOCALVERSION.
+set ``CONFIG_MODVERSIONS=y`` or ensure that each configuration has a different
+kernel release string by changing ``EXTRAVERSION`` or ``CONFIG_LOCALVERSION``.
diff --git a/Documentation/mono.txt b/Documentation/admin-guide/mono.rst
index d01ac60..cdddc09 100644
--- a/Documentation/mono.txt
+++ b/Documentation/admin-guide/mono.rst
@@ -1,5 +1,5 @@
- Mono(tm) Binary Kernel Support for Linux
- -----------------------------------------
+Mono(tm) Binary Kernel Support for Linux
+-----------------------------------------
To configure Linux to automatically execute Mono-based .NET binaries
(in the form of .exe files) without the need to use the mono CLR
@@ -19,22 +19,24 @@ other program after you have done the following:
http://www.go-mono.com/compiling.html
Once the Mono CLR support has been installed, just check that
- /usr/bin/mono (which could be located elsewhere, for example
- /usr/local/bin/mono) is working.
+ ``/usr/bin/mono`` (which could be located elsewhere, for example
+ ``/usr/local/bin/mono``) is working.
2) You have to compile BINFMT_MISC either as a module or into
- the kernel (CONFIG_BINFMT_MISC) and set it up properly.
+ the kernel (``CONFIG_BINFMT_MISC``) and set it up properly.
If you choose to compile it as a module, you will have
to insert it manually with modprobe/insmod, as kmod
- cannot be easily supported with binfmt_misc.
- Read the file 'binfmt_misc.txt' in this directory to know
+ cannot be easily supported with binfmt_misc.
+ Read the file ``binfmt_misc.txt`` in this directory to know
more about the configuration process.
-3) Add the following entries to /etc/rc.local or similar script
+3) Add the following entries to ``/etc/rc.local`` or similar script
to be run at system startup:
-# Insert BINFMT_MISC module into the kernel
-if [ ! -e /proc/sys/fs/binfmt_misc/register ]; then
+ .. code-block:: sh
+
+ # Insert BINFMT_MISC module into the kernel
+ if [ ! -e /proc/sys/fs/binfmt_misc/register ]; then
/sbin/modprobe binfmt_misc
# Some distributions, like Fedora Core, perform
# the following command automatically when the
@@ -43,24 +45,26 @@ if [ ! -e /proc/sys/fs/binfmt_misc/register ]; then
# Thus, it is possible that the following line
# is not needed at all.
mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
-fi
+ fi
-# Register support for .NET CLR binaries
-if [ -e /proc/sys/fs/binfmt_misc/register ]; then
+ # Register support for .NET CLR binaries
+ if [ -e /proc/sys/fs/binfmt_misc/register ]; then
# Replace /usr/bin/mono with the correct pathname to
# the Mono CLR runtime (usually /usr/local/bin/mono
# when compiling from sources or CVS).
echo ':CLR:M::MZ::/usr/bin/mono:' > /proc/sys/fs/binfmt_misc/register
-else
+ else
echo "No binfmt_misc support"
exit 1
-fi
+ fi
-4) Check that .exe binaries can be ran without the need of a
- wrapper script, simply by launching the .exe file directly
- from a command prompt, for example:
+4) Check that ``.exe`` binaries can be ran without the need of a
+ wrapper script, simply by launching the ``.exe`` file directly
+ from a command prompt, for example::
/usr/bin/xsd.exe
- NOTE: If this fails with a permission denied error, check
- that the .exe file has execute permissions.
+ .. note::
+
+ If this fails with a permission denied error, check
+ that the ``.exe`` file has execute permissions.
diff --git a/Documentation/admin-guide/parport.rst b/Documentation/admin-guide/parport.rst
new file mode 100644
index 0000000..ad3f9b8
--- /dev/null
+++ b/Documentation/admin-guide/parport.rst
@@ -0,0 +1,286 @@
+Parport
++++++++
+
+The ``parport`` code provides parallel-port support under Linux. This
+includes the ability to share one port between multiple device
+drivers.
+
+You can pass parameters to the ``parport`` code to override its automatic
+detection of your hardware. This is particularly useful if you want
+to use IRQs, since in general these can't be autoprobed successfully.
+By default IRQs are not used even if they **can** be probed. This is
+because there are a lot of people using the same IRQ for their
+parallel port and a sound card or network card.
+
+The ``parport`` code is split into two parts: generic (which deals with
+port-sharing) and architecture-dependent (which deals with actually
+using the port).
+
+
+Parport as modules
+==================
+
+If you load the `parport`` code as a module, say::
+
+ # insmod parport
+
+to load the generic ``parport`` code. You then must load the
+architecture-dependent code with (for example)::
+
+ # insmod parport_pc io=0x3bc,0x378,0x278 irq=none,7,auto
+
+to tell the ``parport`` code that you want three PC-style ports, one at
+0x3bc with no IRQ, one at 0x378 using IRQ 7, and one at 0x278 with an
+auto-detected IRQ. Currently, PC-style (``parport_pc``), Sun ``bpp``,
+Amiga, Atari, and MFC3 hardware is supported.
+
+PCI parallel I/O card support comes from ``parport_pc``. Base I/O
+addresses should not be specified for supported PCI cards since they
+are automatically detected.
+
+
+modprobe
+--------
+
+If you use modprobe , you will find it useful to add lines as below to a
+configuration file in /etc/modprobe.d/ directory::
+
+ alias parport_lowlevel parport_pc
+ options parport_pc io=0x378,0x278 irq=7,auto
+
+modprobe will load ``parport_pc`` (with the options ``io=0x378,0x278 irq=7,auto``)
+whenever a parallel port device driver (such as ``lp``) is loaded.
+
+Note that these are example lines only! You shouldn't in general need
+to specify any options to ``parport_pc`` in order to be able to use a
+parallel port.
+
+
+Parport probe [optional]
+------------------------
+
+In 2.2 kernels there was a module called ``parport_probe``, which was used
+for collecting IEEE 1284 device ID information. This has now been
+enhanced and now lives with the IEEE 1284 support. When a parallel
+port is detected, the devices that are connected to it are analysed,
+and information is logged like this::
+
+ parport0: Printer, BJC-210 (Canon)
+
+The probe information is available from files in ``/proc/sys/dev/parport/``.
+
+
+Parport linked into the kernel statically
+=========================================
+
+If you compile the ``parport`` code into the kernel, then you can use
+kernel boot parameters to get the same effect. Add something like the
+following to your LILO command line::
+
+ parport=0x3bc parport=0x378,7 parport=0x278,auto,nofifo
+
+You can have many ``parport=...`` statements, one for each port you want
+to add. Adding ``parport=0`` to the kernel command-line will disable
+parport support entirely. Adding ``parport=auto`` to the kernel
+command-line will make ``parport`` use any IRQ lines or DMA channels that
+it auto-detects.
+
+
+Files in /proc
+==============
+
+If you have configured the ``/proc`` filesystem into your kernel, you will
+see a new directory entry: ``/proc/sys/dev/parport``. In there will be a
+directory entry for each parallel port for which parport is
+configured. In each of those directories are a collection of files
+describing that parallel port.
+
+The ``/proc/sys/dev/parport`` directory tree looks like::
+
+ parport
+ |-- default
+ | |-- spintime
+ | `-- timeslice
+ |-- parport0
+ | |-- autoprobe
+ | |-- autoprobe0
+ | |-- autoprobe1
+ | |-- autoprobe2
+ | |-- autoprobe3
+ | |-- devices
+ | | |-- active
+ | | `-- lp
+ | | `-- timeslice
+ | |-- base-addr
+ | |-- irq
+ | |-- dma
+ | |-- modes
+ | `-- spintime
+ `-- parport1
+ |-- autoprobe
+ |-- autoprobe0
+ |-- autoprobe1
+ |-- autoprobe2
+ |-- autoprobe3
+ |-- devices
+ | |-- active
+ | `-- ppa
+ | `-- timeslice
+ |-- base-addr
+ |-- irq
+ |-- dma
+ |-- modes
+ `-- spintime
+
+.. tabularcolumns:: |p{4.0cm}|p{13.5cm}|
+
+======================= =======================================================
+File Contents
+======================= =======================================================
+``devices/active`` A list of the device drivers using that port. A "+"
+ will appear by the name of the device currently using
+ the port (it might not appear against any). The
+ string "none" means that there are no device drivers
+ using that port.
+
+``base-addr`` Parallel port's base address, or addresses if the port
+ has more than one in which case they are separated
+ with tabs. These values might not have any sensible
+ meaning for some ports.
+
+``irq`` Parallel port's IRQ, or -1 if none is being used.
+
+``dma`` Parallel port's DMA channel, or -1 if none is being
+ used.
+
+``modes`` Parallel port's hardware modes, comma-separated,
+ meaning:
+
+ - PCSPP
+ PC-style SPP registers are available.
+
+ - TRISTATE
+ Port is bidirectional.
+
+ - COMPAT
+ Hardware acceleration for printers is
+ available and will be used.
+
+ - EPP
+ Hardware acceleration for EPP protocol
+ is available and will be used.
+
+ - ECP
+ Hardware acceleration for ECP protocol
+ is available and will be used.
+
+ - DMA
+ DMA is available and will be used.
+
+ Note that the current implementation will only take
+ advantage of COMPAT and ECP modes if it has an IRQ
+ line to use.
+
+``autoprobe`` Any IEEE-1284 device ID information that has been
+ acquired from the (non-IEEE 1284.3) device.
+
+``autoprobe[0-3]`` IEEE 1284 device ID information retrieved from
+ daisy-chain devices that conform to IEEE 1284.3.
+
+``spintime`` The number of microseconds to busy-loop while waiting
+ for the peripheral to respond. You might find that
+ adjusting this improves performance, depending on your
+ peripherals. This is a port-wide setting, i.e. it
+ applies to all devices on a particular port.
+
+``timeslice`` The number of milliseconds that a device driver is
+ allowed to keep a port claimed for. This is advisory,
+ and driver can ignore it if it must.
+
+``default/*`` The defaults for spintime and timeslice. When a new
+ port is registered, it picks up the default spintime.
+ When a new device is registered, it picks up the
+ default timeslice.
+======================= =======================================================
+
+Device drivers
+==============
+
+Once the parport code is initialised, you can attach device drivers to
+specific ports. Normally this happens automatically; if the lp driver
+is loaded it will create one lp device for each port found. You can
+override this, though, by using parameters either when you load the lp
+driver::
+
+ # insmod lp parport=0,2
+
+or on the LILO command line::
+
+ lp=parport0 lp=parport2
+
+Both the above examples would inform lp that you want ``/dev/lp0`` to be
+the first parallel port, and /dev/lp1 to be the **third** parallel port,
+with no lp device associated with the second port (parport1). Note
+that this is different to the way older kernels worked; there used to
+be a static association between the I/O port address and the device
+name, so ``/dev/lp0`` was always the port at 0x3bc. This is no longer the
+case - if you only have one port, it will default to being ``/dev/lp0``,
+regardless of base address.
+
+Also:
+
+ * If you selected the IEEE 1284 support at compile time, you can say
+ ``lp=auto`` on the kernel command line, and lp will create devices
+ only for those ports that seem to have printers attached.
+
+ * If you give PLIP the ``timid`` parameter, either with ``plip=timid`` on
+ the command line, or with ``insmod plip timid=1`` when using modules,
+ it will avoid any ports that seem to be in use by other devices.
+
+ * IRQ autoprobing works only for a few port types at the moment.
+
+Reporting printer problems with parport
+=======================================
+
+If you are having problems printing, please go through these steps to
+try to narrow down where the problem area is.
+
+When reporting problems with parport, really you need to give all of
+the messages that ``parport_pc`` spits out when it initialises. There are
+several code paths:
+
+- polling
+- interrupt-driven, protocol in software
+- interrupt-driven, protocol in hardware using PIO
+- interrupt-driven, protocol in hardware using DMA
+
+The kernel messages that ``parport_pc`` logs give an indication of which
+code path is being used. (They could be a lot better actually..)
+
+For normal printer protocol, having IEEE 1284 modes enabled or not
+should not make a difference.
+
+To turn off the 'protocol in hardware' code paths, disable
+``CONFIG_PARPORT_PC_FIFO``. Note that when they are enabled they are not
+necessarily **used**; it depends on whether the hardware is available,
+enabled by the BIOS, and detected by the driver.
+
+So, to start with, disable ``CONFIG_PARPORT_PC_FIFO``, and load ``parport_pc``
+with ``irq=none``. See if printing works then. It really should,
+because this is the simplest code path.
+
+If that works fine, try with ``io=0x378 irq=7`` (adjust for your
+hardware), to make it use interrupt-driven in-software protocol.
+
+If **that** works fine, then one of the hardware modes isn't working
+right. Enable ``CONFIG_FIFO`` (no, it isn't a module option,
+and yes, it should be), set the port to ECP mode in the BIOS and note
+the DMA channel, and try with::
+
+ io=0x378 irq=7 dma=none (for PIO)
+ io=0x378 irq=7 dma=3 (for DMA)
+
+----------
+
+philb@gnu.org
+tim@cyberelk.net
diff --git a/Documentation/ramoops.txt b/Documentation/admin-guide/ramoops.rst
index 26b9f31..4efd7ce 100644
--- a/Documentation/ramoops.txt
+++ b/Documentation/admin-guide/ramoops.rst
@@ -5,34 +5,37 @@ Sergiu Iordache <sergiu@chromium.org>
Updated: 17 November 2011
-0. Introduction
+Introduction
+------------
Ramoops is an oops/panic logger that writes its logs to RAM before the system
crashes. It works by logging oopses and panics in a circular buffer. Ramoops
needs a system with persistent RAM so that the content of that area can
survive after a restart.
-1. Ramoops concepts
+Ramoops concepts
+----------------
Ramoops uses a predefined memory area to store the dump. The start and size
and type of the memory area are set using three variables:
- * "mem_address" for the start
- * "mem_size" for the size. The memory size will be rounded down to a
- power of two.
- * "mem_type" to specifiy if the memory type (default is pgprot_writecombine).
-
-Typically the default value of mem_type=0 should be used as that sets the pstore
-mapping to pgprot_writecombine. Setting mem_type=1 attempts to use
-pgprot_noncached, which only works on some platforms. This is because pstore
+
+ * ``mem_address`` for the start
+ * ``mem_size`` for the size. The memory size will be rounded down to a
+ power of two.
+ * ``mem_type`` to specifiy if the memory type (default is pgprot_writecombine).
+
+Typically the default value of ``mem_type=0`` should be used as that sets the pstore
+mapping to pgprot_writecombine. Setting ``mem_type=1`` attempts to use
+``pgprot_noncached``, which only works on some platforms. This is because pstore
depends on atomic operations. At least on ARM, pgprot_noncached causes the
memory to be mapped strongly ordered, and atomic operations on strongly ordered
memory are implementation defined, and won't work on many ARMs such as omaps.
-The memory area is divided into "record_size" chunks (also rounded down to
-power of two) and each oops/panic writes a "record_size" chunk of
+The memory area is divided into ``record_size`` chunks (also rounded down to
+power of two) and each oops/panic writes a ``record_size`` chunk of
information.
-Dumping both oopses and panics can be done by setting 1 in the "dump_oops"
+Dumping both oopses and panics can be done by setting 1 in the ``dump_oops``
variable while setting 0 in that variable dumps only the panics.
The module uses a counter to record multiple dumps but the counter gets reset
@@ -43,7 +46,8 @@ This might be useful when a hardware reset was used to bring the machine back
to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat
corrupt, but usually it is restorable.
-2. Setting the parameters
+Setting the parameters
+----------------------
Setting the ramoops parameters can be done in several different manners:
@@ -52,12 +56,13 @@ Setting the ramoops parameters can be done in several different manners:
boot and then use the reserved memory for ramoops. For example, assuming a
machine with > 128 MB of memory, the following kernel command line will tell
the kernel to use only the first 128 MB of memory, and place ECC-protected
- ramoops region at 128 MB boundary:
- "mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1"
+ ramoops region at 128 MB boundary::
+
+ mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1
B. Use Device Tree bindings, as described in
- Documentation/device-tree/bindings/reserved-memory/ramoops.txt.
- For example:
+ ``Documentation/device-tree/bindings/reserved-memory/admin-guide/ramoops.rst``.
+ For example::
reserved-memory {
#address-cells = <2>;
@@ -75,58 +80,63 @@ Setting the ramoops parameters can be done in several different manners:
C. Use a platform device and set the platform data. The parameters can then
be set through that platform data. An example of doing that is:
-#include <linux/pstore_ram.h>
-[...]
+ .. code-block:: c
+
+ #include <linux/pstore_ram.h>
+ [...]
-static struct ramoops_platform_data ramoops_data = {
+ static struct ramoops_platform_data ramoops_data = {
.mem_size = <...>,
.mem_address = <...>,
.mem_type = <...>,
.record_size = <...>,
.dump_oops = <...>,
.ecc = <...>,
-};
+ };
-static struct platform_device ramoops_dev = {
+ static struct platform_device ramoops_dev = {
.name = "ramoops",
.dev = {
.platform_data = &ramoops_data,
},
-};
+ };
-[... inside a function ...]
-int ret;
+ [... inside a function ...]
+ int ret;
-ret = platform_device_register(&ramoops_dev);
-if (ret) {
+ ret = platform_device_register(&ramoops_dev);
+ if (ret) {
printk(KERN_ERR "unable to register platform device\n");
return ret;
-}
+ }
You can specify either RAM memory or peripheral devices' memory. However, when
specifying RAM, be sure to reserve the memory by issuing memblock_reserve()
-very early in the architecture code, e.g.:
+very early in the architecture code, e.g.::
-#include <linux/memblock.h>
+ #include <linux/memblock.h>
-memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size);
+ memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size);
-3. Dump format
+Dump format
+-----------
-The data dump begins with a header, currently defined as "====" followed by a
+The data dump begins with a header, currently defined as ``====`` followed by a
timestamp and a new line. The dump then continues with the actual data.
-4. Reading the data
+Reading the data
+----------------
The dump data can be read from the pstore filesystem. The format for these
-files is "dmesg-ramoops-N", where N is the record number in memory. To delete
+files is ``dmesg-ramoops-N``, where N is the record number in memory. To delete
a stored record from RAM, simply unlink the respective pstore file.
-5. Persistent function tracing
+Persistent function tracing
+---------------------------
Persistent function tracing might be useful for debugging software or hardware
-related hangs. The functions call chain log is stored in a "ftrace-ramoops"
-file. Here is an example of usage:
+related hangs. The functions call chain log is stored in a ``ftrace-ramoops``
+file. Here is an example of usage::
# mount -t debugfs debugfs /sys/kernel/debug/
# echo 1 > /sys/kernel/debug/pstore/record_ftrace
diff --git a/REPORTING-BUGS b/Documentation/admin-guide/reporting-bugs.rst
index 914baf9..0c0f269 100644
--- a/REPORTING-BUGS
+++ b/Documentation/admin-guide/reporting-bugs.rst
@@ -1,3 +1,8 @@
+.. _reportingbugs:
+
+Reporting bugs
+++++++++++++++
+
Background
==========
@@ -50,12 +55,13 @@ maintainer replies to you, make sure to 'Reply-all' in order to keep the
public mailing list(s) in the email thread.
If you know which driver is causing issues, you can pass one of the driver
-files to the get_maintainer.pl script:
+files to the get_maintainer.pl script::
+
perl scripts/get_maintainer.pl -f <filename>
If it is a security bug, please copy the Security Contact listed in the
MAINTAINERS file. They can help coordinate bugfix and disclosure. See
-Documentation/SecurityBugs for more information.
+:ref:`Documentation/admin-guide/security-bugs.rst <securitybugs>` for more information.
If you can't figure out which subsystem caused the issue, you should file
a bug in kernel.org bugzilla and send email to
@@ -69,8 +75,9 @@ Tips for reporting bugs
If you haven't reported a bug before, please read:
-http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
-http://www.catb.org/esr/faqs/smart-questions.html
+ http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
+
+ http://www.catb.org/esr/faqs/smart-questions.html
It's REALLY important to report bugs that seem unrelated as separate email
threads or separate bugzilla entries. If you report several unrelated
@@ -87,7 +94,7 @@ step-by-step instructions for how a user can trigger the bug.
If the failure includes an "OOPS:", take a picture of the screen, capture
a netconsole trace, or type the message from your screen into the bug
-report. Please read "Documentation/oops-tracing.txt" before posting your
+report. Please read "Documentation/admin-guide/oops-tracing.rst" before posting your
bug report. This explains what you should do with the "Oops" information
to make it useful to the recipient.
@@ -99,34 +106,34 @@ relevant to your bug, feel free to exclude it.
First run the ver_linux script included as scripts/ver_linux, which
reports the version of some important subsystems. Run this script with
-the command "sh scripts/ver_linux".
+the command ``sh scripts/ver_linux``.
Use that information to fill in all fields of the bug report form, and
post it to the mailing list with a subject of "PROBLEM: <one line
-summary from [1.]>" for easy identification by the developers.
-
-[1.] One line summary of the problem:
-[2.] Full description of the problem/report:
-[3.] Keywords (i.e., modules, networking, kernel):
-[4.] Kernel information
-[4.1.] Kernel version (from /proc/version):
-[4.2.] Kernel .config file:
-[5.] Most recent kernel version which did not have the bug:
-[6.] Output of Oops.. message (if applicable) with symbolic information
- resolved (see Documentation/oops-tracing.txt)
-[7.] A small shell script or example program which triggers the
- problem (if possible)
-[8.] Environment
-[8.1.] Software (add the output of the ver_linux script here)
-[8.2.] Processor information (from /proc/cpuinfo):
-[8.3.] Module information (from /proc/modules):
-[8.4.] Loaded driver and hardware information (/proc/ioports, /proc/iomem)
-[8.5.] PCI information ('lspci -vvv' as root)
-[8.6.] SCSI information (from /proc/scsi/scsi)
-[8.7.] Other information that might be relevant to the problem
- (please look in /proc and include all information that you
- think to be relevant):
-[X.] Other notes, patches, fixes, workarounds:
+summary from [1.]>" for easy identification by the developers::
+
+ [1.] One line summary of the problem:
+ [2.] Full description of the problem/report:
+ [3.] Keywords (i.e., modules, networking, kernel):
+ [4.] Kernel information
+ [4.1.] Kernel version (from /proc/version):
+ [4.2.] Kernel .config file:
+ [5.] Most recent kernel version which did not have the bug:
+ [6.] Output of Oops.. message (if applicable) with symbolic information
+ resolved (see Documentation/admin-guide/oops-tracing.rst)
+ [7.] A small shell script or example program which triggers the
+ problem (if possible)
+ [8.] Environment
+ [8.1.] Software (add the output of the ver_linux script here)
+ [8.2.] Processor information (from /proc/cpuinfo):
+ [8.3.] Module information (from /proc/modules):
+ [8.4.] Loaded driver and hardware information (/proc/ioports, /proc/iomem)
+ [8.5.] PCI information ('lspci -vvv' as root)
+ [8.6.] SCSI information (from /proc/scsi/scsi)
+ [8.7.] Other information that might be relevant to the problem
+ (please look in /proc and include all information that you
+ think to be relevant):
+ [X.] Other notes, patches, fixes, workarounds:
Follow up
@@ -153,7 +160,8 @@ Expectations for kernel maintainers
Linux kernel maintainers are busy, overworked human beings. Some times
they may not be able to address your bug in a day, a week, or two weeks.
If they don't answer your email, they may be on vacation, or at a Linux
-conference. Check the conference schedule at LWN.net for more info:
+conference. Check the conference schedule at https://LWN.net for more info:
+
https://lwn.net/Calendar/
In general, kernel maintainers take 1 to 5 business days to respond to
diff --git a/Documentation/SecurityBugs b/Documentation/admin-guide/security-bugs.rst
index 342d769..4f7414c 100644
--- a/Documentation/SecurityBugs
+++ b/Documentation/admin-guide/security-bugs.rst
@@ -8,8 +8,8 @@ like to know when a security bug is found so that it can be fixed and
disclosed as quickly as possible. Please report security bugs to the
Linux kernel security team.
-1) Contact
-----------
+Contact
+-------
The Linux kernel security team can be contacted by email at
<security@kernel.org>. This is a private list of security officers
@@ -19,12 +19,12 @@ area maintainers to understand and fix the security vulnerability.
As it is with any bug, the more information provided the easier it
will be to diagnose and fix. Please review the procedure outlined in
-REPORTING-BUGS if you are unclear about what information is helpful.
+admin-guide/reporting-bugs.rst if you are unclear about what information is helpful.
Any exploit code is very helpful and will not be released without
consent from the reporter unless it has already been made public.
-2) Disclosure
--------------
+Disclosure
+----------
The goal of the Linux kernel security team is to work with the
bug submitter to bug resolution as well as disclosure. We prefer
@@ -39,8 +39,8 @@ disclosure is from immediate (esp. if it's already publicly known)
to a few weeks. As a basic default policy, we expect report date to
disclosure date to be on the order of 7 days.
-3) Non-disclosure agreements
-----------------------------
+Non-disclosure agreements
+-------------------------
The Linux kernel security team is not a formal body and therefore unable
to enter any non-disclosure agreements.
diff --git a/Documentation/serial-console.txt b/Documentation/admin-guide/serial-console.rst
index 9a7bc8b..a8d1e36 100644
--- a/Documentation/serial-console.txt
+++ b/Documentation/admin-guide/serial-console.rst
@@ -1,15 +1,21 @@
- Linux Serial Console
+.. _serial_console:
+
+Linux Serial Console
+====================
To use a serial port as console you need to compile the support into your
kernel - by default it is not compiled in. For PC style serial ports
-it's the config option next to "Standard/generic (dumb) serial support".
+it's the config option next to menu option:
+
+:menuselection:`Character devices --> Serial drivers --> 8250/16550 and compatible serial support --> Console on 8250/16550 and compatible serial port`
+
You must compile serial support into the kernel and not as a module.
It is possible to specify multiple devices for console output. You can
define a new kernel command line option to select which device(s) to
use for console output.
-The format of this option is:
+The format of this option is::
console=device,options
@@ -28,11 +34,11 @@ The format of this option is:
You can specify multiple console= options on the kernel command line.
Output will appear on all of them. The last device will be used when
-you open /dev/console. So, for example:
+you open ``/dev/console``. So, for example::
console=ttyS1,9600 console=tty0
-defines that opening /dev/console will get you the current foreground
+defines that opening ``/dev/console`` will get you the current foreground
virtual console, and kernel messages will appear on both the VGA
console and the 2nd serial port (ttyS1 or COM2) at 9600 baud.
@@ -44,61 +50,61 @@ first looks for a VGA card and then for a serial port. So if you don't
have a VGA card in your system the first serial port will automatically
become the console.
-You will need to create a new device to use /dev/console. The official
-/dev/console is now character device 5,1.
+You will need to create a new device to use ``/dev/console``. The official
+``/dev/console`` is now character device 5,1.
(You can also use a network device as a console. See
-Documentation/networking/netconsole.txt for information on that.)
+``Documentation/networking/netconsole.txt`` for information on that.)
-Here's an example that will use /dev/ttyS1 (COM2) as the console.
+Here's an example that will use ``/dev/ttyS1`` (COM2) as the console.
Replace the sample values as needed.
-1. Create /dev/console (real console) and /dev/tty0 (master virtual
- console):
+1. Create ``/dev/console`` (real console) and ``/dev/tty0`` (master virtual
+ console)::
- cd /dev
- rm -f console tty0
- mknod -m 622 console c 5 1
- mknod -m 622 tty0 c 4 0
+ cd /dev
+ rm -f console tty0
+ mknod -m 622 console c 5 1
+ mknod -m 622 tty0 c 4 0
2. LILO can also take input from a serial device. This is a very
useful option. To tell LILO to use the serial port:
- In lilo.conf (global section):
+ In lilo.conf (global section)::
- serial = 1,9600n8 (ttyS1, 9600 bd, no parity, 8 bits)
+ serial = 1,9600n8 (ttyS1, 9600 bd, no parity, 8 bits)
3. Adjust to kernel flags for the new kernel,
- again in lilo.conf (kernel section)
+ again in lilo.conf (kernel section)::
- append = "console=ttyS1,9600"
+ append = "console=ttyS1,9600"
4. Make sure a getty runs on the serial port so that you can login to
it once the system is done booting. This is done by adding a line
- like this to /etc/inittab (exact syntax depends on your getty):
+ like this to ``/etc/inittab`` (exact syntax depends on your getty)::
- S1:23:respawn:/sbin/getty -L ttyS1 9600 vt100
+ S1:23:respawn:/sbin/getty -L ttyS1 9600 vt100
-5. Init and /etc/ioctl.save
+5. Init and ``/etc/ioctl.save``
- Sysvinit remembers its stty settings in a file in /etc, called
- `/etc/ioctl.save'. REMOVE THIS FILE before using the serial
+ Sysvinit remembers its stty settings in a file in ``/etc``, called
+ ``/etc/ioctl.save``. REMOVE THIS FILE before using the serial
console for the first time, because otherwise init will probably
set the baudrate to 38400 (baudrate of the virtual console).
-6. /dev/console and X
+6. ``/dev/console`` and X
Programs that want to do something with the virtual console usually
- open /dev/console. If you have created the new /dev/console device,
+ open ``/dev/console``. If you have created the new ``/dev/console`` device,
and your console is NOT the virtual console some programs will fail.
Those are programs that want to access the VT interface, and use
- /dev/console instead of /dev/tty0. Some of those programs are:
+ ``/dev/console instead of /dev/tty0``. Some of those programs are::
- Xfree86, svgalib, gpm, SVGATextMode
+ Xfree86, svgalib, gpm, SVGATextMode
It should be fixed in modern versions of these programs though.
- Note that if you boot without a console= option (or with
- console=/dev/tty0), /dev/console is the same as /dev/tty0. In that
- case everything will still work.
+ Note that if you boot without a ``console=`` option (or with
+ ``console=/dev/tty0``), ``/dev/console`` is the same as ``/dev/tty0``.
+ In that case everything will still work.
7. Thanks
diff --git a/Documentation/admin-guide/sysfs-rules.rst b/Documentation/admin-guide/sysfs-rules.rst
new file mode 100644
index 0000000..abad335
--- /dev/null
+++ b/Documentation/admin-guide/sysfs-rules.rst
@@ -0,0 +1,192 @@
+Rules on how to access information in sysfs
+===========================================
+
+The kernel-exported sysfs exports internal kernel implementation details
+and depends on internal kernel structures and layout. It is agreed upon
+by the kernel developers that the Linux kernel does not provide a stable
+internal API. Therefore, there are aspects of the sysfs interface that
+may not be stable across kernel releases.
+
+To minimize the risk of breaking users of sysfs, which are in most cases
+low-level userspace applications, with a new kernel release, the users
+of sysfs must follow some rules to use an as-abstract-as-possible way to
+access this filesystem. The current udev and HAL programs already
+implement this and users are encouraged to plug, if possible, into the
+abstractions these programs provide instead of accessing sysfs directly.
+
+But if you really do want or need to access sysfs directly, please follow
+the following rules and then your programs should work with future
+versions of the sysfs interface.
+
+- Do not use libsysfs
+ It makes assumptions about sysfs which are not true. Its API does not
+ offer any abstraction, it exposes all the kernel driver-core
+ implementation details in its own API. Therefore it is not better than
+ reading directories and opening the files yourself.
+ Also, it is not actively maintained, in the sense of reflecting the
+ current kernel development. The goal of providing a stable interface
+ to sysfs has failed; it causes more problems than it solves. It
+ violates many of the rules in this document.
+
+- sysfs is always at ``/sys``
+ Parsing ``/proc/mounts`` is a waste of time. Other mount points are a
+ system configuration bug you should not try to solve. For test cases,
+ possibly support a ``SYSFS_PATH`` environment variable to overwrite the
+ application's behavior, but never try to search for sysfs. Never try
+ to mount it, if you are not an early boot script.
+
+- devices are only "devices"
+ There is no such thing like class-, bus-, physical devices,
+ interfaces, and such that you can rely on in userspace. Everything is
+ just simply a "device". Class-, bus-, physical, ... types are just
+ kernel implementation details which should not be expected by
+ applications that look for devices in sysfs.
+
+ The properties of a device are:
+
+ - devpath (``/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0``)
+
+ - identical to the DEVPATH value in the event sent from the kernel
+ at device creation and removal
+ - the unique key to the device at that point in time
+ - the kernel's path to the device directory without the leading
+ ``/sys``, and always starting with a slash
+ - all elements of a devpath must be real directories. Symlinks
+ pointing to /sys/devices must always be resolved to their real
+ target and the target path must be used to access the device.
+ That way the devpath to the device matches the devpath of the
+ kernel used at event time.
+ - using or exposing symlink values as elements in a devpath string
+ is a bug in the application
+
+ - kernel name (``sda``, ``tty``, ``0000:00:1f.2``, ...)
+
+ - a directory name, identical to the last element of the devpath
+ - applications need to handle spaces and characters like ``!`` in
+ the name
+
+ - subsystem (``block``, ``tty``, ``pci``, ...)
+
+ - simple string, never a path or a link
+ - retrieved by reading the "subsystem"-link and using only the
+ last element of the target path
+
+ - driver (``tg3``, ``ata_piix``, ``uhci_hcd``)
+
+ - a simple string, which may contain spaces, never a path or a
+ link
+ - it is retrieved by reading the "driver"-link and using only the
+ last element of the target path
+ - devices which do not have "driver"-link just do not have a
+ driver; copying the driver value in a child device context is a
+ bug in the application
+
+ - attributes
+
+ - the files in the device directory or files below subdirectories
+ of the same device directory
+ - accessing attributes reached by a symlink pointing to another device,
+ like the "device"-link, is a bug in the application
+
+ Everything else is just a kernel driver-core implementation detail
+ that should not be assumed to be stable across kernel releases.
+
+- Properties of parent devices never belong into a child device.
+ Always look at the parent devices themselves for determining device
+ context properties. If the device ``eth0`` or ``sda`` does not have a
+ "driver"-link, then this device does not have a driver. Its value is empty.
+ Never copy any property of the parent-device into a child-device. Parent
+ device properties may change dynamically without any notice to the
+ child device.
+
+- Hierarchy in a single device tree
+ There is only one valid place in sysfs where hierarchy can be examined
+ and this is below: ``/sys/devices.``
+ It is planned that all device directories will end up in the tree
+ below this directory.
+
+- Classification by subsystem
+ There are currently three places for classification of devices:
+ ``/sys/block,`` ``/sys/class`` and ``/sys/bus.`` It is planned that these will
+ not contain any device directories themselves, but only flat lists of
+ symlinks pointing to the unified ``/sys/devices`` tree.
+ All three places have completely different rules on how to access
+ device information. It is planned to merge all three
+ classification directories into one place at ``/sys/subsystem``,
+ following the layout of the bus directories. All buses and
+ classes, including the converted block subsystem, will show up
+ there.
+ The devices belonging to a subsystem will create a symlink in the
+ "devices" directory at ``/sys/subsystem/<name>/devices``,
+
+ If ``/sys/subsystem`` exists, ``/sys/bus``, ``/sys/class`` and ``/sys/block``
+ can be ignored. If it does not exist, you always have to scan all three
+ places, as the kernel is free to move a subsystem from one place to
+ the other, as long as the devices are still reachable by the same
+ subsystem name.
+
+ Assuming ``/sys/class/<subsystem>`` and ``/sys/bus/<subsystem>``, or
+ ``/sys/block`` and ``/sys/class/block`` are not interchangeable is a bug in
+ the application.
+
+- Block
+ The converted block subsystem at ``/sys/class/block`` or
+ ``/sys/subsystem/block`` will contain the links for disks and partitions
+ at the same level, never in a hierarchy. Assuming the block subsystem to
+ contain only disks and not partition devices in the same flat list is
+ a bug in the application.
+
+- "device"-link and <subsystem>:<kernel name>-links
+ Never depend on the "device"-link. The "device"-link is a workaround
+ for the old layout, where class devices are not created in
+ ``/sys/devices/`` like the bus devices. If the link-resolving of a
+ device directory does not end in ``/sys/devices/``, you can use the
+ "device"-link to find the parent devices in ``/sys/devices/``, That is the
+ single valid use of the "device"-link; it must never appear in any
+ path as an element. Assuming the existence of the "device"-link for
+ a device in ``/sys/devices/`` is a bug in the application.
+ Accessing ``/sys/class/net/eth0/device`` is a bug in the application.
+
+ Never depend on the class-specific links back to the ``/sys/class``
+ directory. These links are also a workaround for the design mistake
+ that class devices are not created in ``/sys/devices.`` If a device
+ directory does not contain directories for child devices, these links
+ may be used to find the child devices in ``/sys/class.`` That is the single
+ valid use of these links; they must never appear in any path as an
+ element. Assuming the existence of these links for devices which are
+ real child device directories in the ``/sys/devices`` tree is a bug in
+ the application.
+
+ It is planned to remove all these links when all class device
+ directories live in ``/sys/devices.``
+
+- Position of devices along device chain can change.
+ Never depend on a specific parent device position in the devpath,
+ or the chain of parent devices. The kernel is free to insert devices into
+ the chain. You must always request the parent device you are looking for
+ by its subsystem value. You need to walk up the chain until you find
+ the device that matches the expected subsystem. Depending on a specific
+ position of a parent device or exposing relative paths using ``../`` to
+ access the chain of parents is a bug in the application.
+
+- When reading and writing sysfs device attribute files, avoid dependency
+ on specific error codes wherever possible. This minimizes coupling to
+ the error handling implementation within the kernel.
+
+ In general, failures to read or write sysfs device attributes shall
+ propagate errors wherever possible. Common errors include, but are not
+ limited to:
+
+ ``-EIO``: The read or store operation is not supported, typically
+ returned by the sysfs system itself if the read or store pointer
+ is ``NULL``.
+
+ ``-ENXIO``: The read or store operation failed
+
+ Error codes will not be changed without good reason, and should a change
+ to error codes result in user-space breakage, it will be fixed, or the
+ the offending change will be reverted.
+
+ Userspace applications can, however, expect the format and contents of
+ the attribute files to remain consistent in the absence of a version
+ attribute change in the context of a given attribute.
diff --git a/Documentation/admin-guide/sysrq.rst b/Documentation/admin-guide/sysrq.rst
new file mode 100644
index 0000000..d1712ea
--- /dev/null
+++ b/Documentation/admin-guide/sysrq.rst
@@ -0,0 +1,289 @@
+Linux Magic System Request Key Hacks
+====================================
+
+Documentation for sysrq.c
+
+What is the magic SysRq key?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+It is a 'magical' key combo you can hit which the kernel will respond to
+regardless of whatever else it is doing, unless it is completely locked up.
+
+How do I enable the magic SysRq key?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+You need to say "yes" to 'Magic SysRq key (CONFIG_MAGIC_SYSRQ)' when
+configuring the kernel. When running a kernel with SysRq compiled in,
+/proc/sys/kernel/sysrq controls the functions allowed to be invoked via
+the SysRq key. The default value in this file is set by the
+CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE config symbol, which itself defaults
+to 1. Here is the list of possible values in /proc/sys/kernel/sysrq:
+
+ - 0 - disable sysrq completely
+ - 1 - enable all functions of sysrq
+ - >1 - bitmask of allowed sysrq functions (see below for detailed function
+ description)::
+
+ 2 = 0x2 - enable control of console logging level
+ 4 = 0x4 - enable control of keyboard (SAK, unraw)
+ 8 = 0x8 - enable debugging dumps of processes etc.
+ 16 = 0x10 - enable sync command
+ 32 = 0x20 - enable remount read-only
+ 64 = 0x40 - enable signalling of processes (term, kill, oom-kill)
+ 128 = 0x80 - allow reboot/poweroff
+ 256 = 0x100 - allow nicing of all RT tasks
+
+You can set the value in the file by the following command::
+
+ echo "number" >/proc/sys/kernel/sysrq
+
+The number may be written here either as decimal or as hexadecimal
+with the 0x prefix. CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE must always be
+written in hexadecimal.
+
+Note that the value of ``/proc/sys/kernel/sysrq`` influences only the invocation
+via a keyboard. Invocation of any operation via ``/proc/sysrq-trigger`` is
+always allowed (by a user with admin privileges).
+
+How do I use the magic SysRq key?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+On x86 - You press the key combo :kbd:`ALT-SysRq-<command key>`.
+
+.. note::
+ Some
+ keyboards may not have a key labeled 'SysRq'. The 'SysRq' key is
+ also known as the 'Print Screen' key. Also some keyboards cannot
+ handle so many keys being pressed at the same time, so you might
+ have better luck with press :kbd:`Alt`, press :kbd:`SysRq`,
+ release :kbd:`SysRq`, press :kbd:`<command key>`, release everything.
+
+On SPARC - You press :kbd:`ALT-STOP-<command key>`, I believe.
+
+On the serial console (PC style standard serial ports only)
+ You send a ``BREAK``, then within 5 seconds a command key. Sending
+ ``BREAK`` twice is interpreted as a normal BREAK.
+
+On PowerPC
+ Press :kbd:`ALT - Print Screen` (or :kbd:`F13`) - :kbd:`<command key>`,
+ :kbd:`Print Screen` (or :kbd:`F13`) - :kbd:`<command key>` may suffice.
+
+On other
+ If you know of the key combos for other architectures, please
+ let me know so I can add them to this section.
+
+On all
+ write a character to /proc/sysrq-trigger. e.g.::
+
+ echo t > /proc/sysrq-trigger
+
+What are the 'command' keys?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+=========== ===================================================================
+Command Function
+=========== ===================================================================
+``b`` Will immediately reboot the system without syncing or unmounting
+ your disks.
+
+``c`` Will perform a system crash by a NULL pointer dereference.
+ A crashdump will be taken if configured.
+
+``d`` Shows all locks that are held.
+
+``e`` Send a SIGTERM to all processes, except for init.
+
+``f`` Will call the oom killer to kill a memory hog process, but do not
+ panic if nothing can be killed.
+
+``g`` Used by kgdb (kernel debugger)
+
+``h`` Will display help (actually any other key than those listed
+ here will display help. but ``h`` is easy to remember :-)
+
+``i`` Send a SIGKILL to all processes, except for init.
+
+``j`` Forcibly "Just thaw it" - filesystems frozen by the FIFREEZE ioctl.
+
+``k`` Secure Access Key (SAK) Kills all programs on the current virtual
+ console. NOTE: See important comments below in SAK section.
+
+``l`` Shows a stack backtrace for all active CPUs.
+
+``m`` Will dump current memory info to your console.
+
+``n`` Used to make RT tasks nice-able
+
+``o`` Will shut your system off (if configured and supported).
+
+``p`` Will dump the current registers and flags to your console.
+
+``q`` Will dump per CPU lists of all armed hrtimers (but NOT regular
+ timer_list timers) and detailed information about all
+ clockevent devices.
+
+``r`` Turns off keyboard raw mode and sets it to XLATE.
+
+``s`` Will attempt to sync all mounted filesystems.
+
+``t`` Will dump a list of current tasks and their information to your
+ console.
+
+``u`` Will attempt to remount all mounted filesystems read-only.
+
+``v`` Forcefully restores framebuffer console
+``v`` Causes ETM buffer dump [ARM-specific]
+
+``w`` Dumps tasks that are in uninterruptable (blocked) state.
+
+``x`` Used by xmon interface on ppc/powerpc platforms.
+ Show global PMU Registers on sparc64.
+ Dump all TLB entries on MIPS.
+
+``y`` Show global CPU Registers [SPARC-64 specific]
+
+``z`` Dump the ftrace buffer
+
+``0``-``9`` Sets the console log level, controlling which kernel messages
+ will be printed to your console. (``0``, for example would make
+ it so that only emergency messages like PANICs or OOPSes would
+ make it to your console.)
+=========== ===================================================================
+
+Okay, so what can I use them for?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Well, unraw(r) is very handy when your X server or a svgalib program crashes.
+
+sak(k) (Secure Access Key) is useful when you want to be sure there is no
+trojan program running at console which could grab your password
+when you would try to login. It will kill all programs on given console,
+thus letting you make sure that the login prompt you see is actually
+the one from init, not some trojan program.
+
+.. important::
+
+ In its true form it is not a true SAK like the one in a
+ c2 compliant system, and it should not be mistaken as
+ such.
+
+It seems others find it useful as (System Attention Key) which is
+useful when you want to exit a program that will not let you switch consoles.
+(For example, X or a svgalib program.)
+
+``reboot(b)`` is good when you're unable to shut down. But you should also
+``sync(s)`` and ``umount(u)`` first.
+
+``crash(c)`` can be used to manually trigger a crashdump when the system is hung.
+Note that this just triggers a crash if there is no dump mechanism available.
+
+``sync(s)`` is great when your system is locked up, it allows you to sync your
+disks and will certainly lessen the chance of data loss and fscking. Note
+that the sync hasn't taken place until you see the "OK" and "Done" appear
+on the screen. (If the kernel is really in strife, you may not ever get the
+OK or Done message...)
+
+``umount(u)`` is basically useful in the same ways as ``sync(s)``. I generally
+``sync(s)``, ``umount(u)``, then ``reboot(b)`` when my system locks. It's saved
+me many a fsck. Again, the unmount (remount read-only) hasn't taken place until
+you see the "OK" and "Done" message appear on the screen.
+
+The loglevels ``0``-``9`` are useful when your console is being flooded with
+kernel messages you do not want to see. Selecting ``0`` will prevent all but
+the most urgent kernel messages from reaching your console. (They will
+still be logged if syslogd/klogd are alive, though.)
+
+``term(e)`` and ``kill(i)`` are useful if you have some sort of runaway process
+you are unable to kill any other way, especially if it's spawning other
+processes.
+
+"just thaw ``it(j)``" is useful if your system becomes unresponsive due to a
+frozen (probably root) filesystem via the FIFREEZE ioctl.
+
+Sometimes SysRq seems to get 'stuck' after using it, what can I do?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+That happens to me, also. I've found that tapping shift, alt, and control
+on both sides of the keyboard, and hitting an invalid sysrq sequence again
+will fix the problem. (i.e., something like :kbd:`alt-sysrq-z`). Switching to
+another virtual console (:kbd:`ALT+Fn`) and then back again should also help.
+
+I hit SysRq, but nothing seems to happen, what's wrong?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+There are some keyboards that produce a different keycode for SysRq than the
+pre-defined value of 99 (see ``KEY_SYSRQ`` in ``include/linux/input.h``), or
+which don't have a SysRq key at all. In these cases, run ``showkey -s`` to find
+an appropriate scancode sequence, and use ``setkeycodes <sequence> 99`` to map
+this sequence to the usual SysRq code (e.g., ``setkeycodes e05b 99``). It's
+probably best to put this command in a boot script. Oh, and by the way, you
+exit ``showkey`` by not typing anything for ten seconds.
+
+I want to add SysRQ key events to a module, how does it work?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In order to register a basic function with the table, you must first include
+the header ``include/linux/sysrq.h``, this will define everything else you need.
+Next, you must create a ``sysrq_key_op`` struct, and populate it with A) the key
+handler function you will use, B) a help_msg string, that will print when SysRQ
+prints help, and C) an action_msg string, that will print right before your
+handler is called. Your handler must conform to the prototype in 'sysrq.h'.
+
+After the ``sysrq_key_op`` is created, you can call the kernel function
+``register_sysrq_key(int key, struct sysrq_key_op *op_p);`` this will
+register the operation pointed to by ``op_p`` at table key 'key',
+if that slot in the table is blank. At module unload time, you must call
+the function ``unregister_sysrq_key(int key, struct sysrq_key_op *op_p)``, which
+will remove the key op pointed to by 'op_p' from the key 'key', if and only if
+it is currently registered in that slot. This is in case the slot has been
+overwritten since you registered it.
+
+The Magic SysRQ system works by registering key operations against a key op
+lookup table, which is defined in 'drivers/tty/sysrq.c'. This key table has
+a number of operations registered into it at compile time, but is mutable,
+and 2 functions are exported for interface to it::
+
+ register_sysrq_key and unregister_sysrq_key.
+
+Of course, never ever leave an invalid pointer in the table. I.e., when
+your module that called register_sysrq_key() exits, it must call
+unregister_sysrq_key() to clean up the sysrq key table entry that it used.
+Null pointers in the table are always safe. :)
+
+If for some reason you feel the need to call the handle_sysrq function from
+within a function called by handle_sysrq, you must be aware that you are in
+a lock (you are also in an interrupt handler, which means don't sleep!), so
+you must call ``__handle_sysrq_nolock`` instead.
+
+When I hit a SysRq key combination only the header appears on the console?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Sysrq output is subject to the same console loglevel control as all
+other console output. This means that if the kernel was booted 'quiet'
+as is common on distro kernels the output may not appear on the actual
+console, even though it will appear in the dmesg buffer, and be accessible
+via the dmesg command and to the consumers of ``/proc/kmsg``. As a specific
+exception the header line from the sysrq command is passed to all console
+consumers as if the current loglevel was maximum. If only the header
+is emitted it is almost certain that the kernel loglevel is too low.
+Should you require the output on the console channel then you will need
+to temporarily up the console loglevel using :kbd:`alt-sysrq-8` or::
+
+ echo 8 > /proc/sysrq-trigger
+
+Remember to return the loglevel to normal after triggering the sysrq
+command you are interested in.
+
+I have more questions, who can I ask?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Just ask them on the linux-kernel mailing list:
+ linux-kernel@vger.kernel.org
+
+Credits
+~~~~~~~
+
+Written by Mydraal <vulpyne@vulpyne.net>
+Updated by Adam Sulmicki <adam@cfar.umd.edu>
+Updated by Jeremy M. Dolan <jmd@turbogeek.org> 2001/01/28 10:15:59
+Added to by Crutcher Dunnavant <crutcher+kernel@datastacks.com>
diff --git a/Documentation/admin-guide/tainted-kernels.rst b/Documentation/admin-guide/tainted-kernels.rst
new file mode 100644
index 0000000..1df03b5
--- /dev/null
+++ b/Documentation/admin-guide/tainted-kernels.rst
@@ -0,0 +1,59 @@
+Tainted kernels
+---------------
+
+Some oops reports contain the string **'Tainted: '** after the program
+counter. This indicates that the kernel has been tainted by some
+mechanism. The string is followed by a series of position-sensitive
+characters, each representing a particular tainted value.
+
+ 1) 'G' if all modules loaded have a GPL or compatible license, 'P' if
+ any proprietary module has been loaded. Modules without a
+ MODULE_LICENSE or with a MODULE_LICENSE that is not recognised by
+ insmod as GPL compatible are assumed to be proprietary.
+
+ 2) ``F`` if any module was force loaded by ``insmod -f``, ``' '`` if all
+ modules were loaded normally.
+
+ 3) ``S`` if the oops occurred on an SMP kernel running on hardware that
+ hasn't been certified as safe to run multiprocessor.
+ Currently this occurs only on various Athlons that are not
+ SMP capable.
+
+ 4) ``R`` if a module was force unloaded by ``rmmod -f``, ``' '`` if all
+ modules were unloaded normally.
+
+ 5) ``M`` if any processor has reported a Machine Check Exception,
+ ``' '`` if no Machine Check Exceptions have occurred.
+
+ 6) ``B`` if a page-release function has found a bad page reference or
+ some unexpected page flags.
+
+ 7) ``U`` if a user or user application specifically requested that the
+ Tainted flag be set, ``' '`` otherwise.
+
+ 8) ``D`` if the kernel has died recently, i.e. there was an OOPS or BUG.
+
+ 9) ``A`` if the ACPI table has been overridden.
+
+ 10) ``W`` if a warning has previously been issued by the kernel.
+ (Though some warnings may set more specific taint flags.)
+
+ 11) ``C`` if a staging driver has been loaded.
+
+ 12) ``I`` if the kernel is working around a severe bug in the platform
+ firmware (BIOS or similar).
+
+ 13) ``O`` if an externally-built ("out-of-tree") module has been loaded.
+
+ 14) ``E`` if an unsigned module has been loaded in a kernel supporting
+ module signature.
+
+ 15) ``L`` if a soft lockup has previously occurred on the system.
+
+ 16) ``K`` if the kernel has been live patched.
+
+The primary reason for the **'Tainted: '** string is to tell kernel
+debuggers if this is a clean kernel or if anything unusual has
+occurred. Tainting is permanent: even if an offending module is
+unloaded, the tainted value remains to indicate that the kernel is not
+trustworthy.
diff --git a/Documentation/unicode.txt b/Documentation/admin-guide/unicode.rst
index 4a33f81..4e5c3df 100644
--- a/Documentation/unicode.txt
+++ b/Documentation/admin-guide/unicode.rst
@@ -1,12 +1,16 @@
+Unicode support
+===============
+
Last update: 2005-01-17, version 1.4
This file is maintained by H. Peter Anvin <unicode@lanana.org> as part
of the Linux Assigned Names And Numbers Authority (LANANA) project.
The current version can be found at:
- http://www.lanana.org/docs/unicode/unicode.txt
+ http://www.lanana.org/docs/unicode/admin-guide/unicode.rst
- ------------------------
+Introdution
+-----------
The Linux kernel code has been rewritten to use Unicode to map
characters to fonts. By downloading a single Unicode-to-font table,
@@ -16,12 +20,14 @@ the font as indicated.
This changes the semantics of the eight-bit character tables subtly.
The four character tables are now:
+=============== =============================== ================
Map symbol Map name Escape code (G0)
-
+=============== =============================== ================
LAT1_MAP Latin-1 (ISO 8859-1) ESC ( B
GRAF_MAP DEC VT100 pseudographics ESC ( 0
IBMPC_MAP IBM code page 437 ESC ( U
USER_MAP User defined ESC ( K
+=============== =============================== ================
In particular, ESC ( U is no longer "straight to font", since the font
might be completely different than the IBM character set. This
@@ -55,10 +61,12 @@ In addition, the following characters not present in Unicode 1.1.4
have been defined; these are used by the DEC VT graphics map. [v1.2]
THIS USE IS OBSOLETE AND SHOULD NO LONGER BE USED; PLEASE SEE BELOW.
+====== ======================================
U+F800 DEC VT GRAPHICS HORIZONTAL LINE SCAN 1
U+F801 DEC VT GRAPHICS HORIZONTAL LINE SCAN 3
U+F803 DEC VT GRAPHICS HORIZONTAL LINE SCAN 7
U+F804 DEC VT GRAPHICS HORIZONTAL LINE SCAN 9
+====== ======================================
The DEC VT220 uses a 6x10 character matrix, and these characters form
a smooth progression in the DEC VT graphics character set. I have
@@ -74,10 +82,12 @@ keyboard symbols that are unlikely to ever be added to Unicode proper
since they are horribly vendor-specific. This, of course, is an
excellent example of horrible design.
+====== ======================================
U+F810 KEYBOARD SYMBOL FLYING FLAG
U+F811 KEYBOARD SYMBOL PULLDOWN MENU
U+F812 KEYBOARD SYMBOL OPEN APPLE
U+F813 KEYBOARD SYMBOL SOLID APPLE
+====== ======================================
Klingon language support
------------------------
@@ -99,8 +109,10 @@ of the dingbats/symbols/forms type and this is a language, I have
located it at the end, on a 16-cell boundary in keeping with standard
Unicode practice.
-NOTE: This range is now officially managed by the ConScript Unicode
-Registry. The normative reference is at:
+.. note::
+
+ This range is now officially managed by the ConScript Unicode
+ Registry. The normative reference is at:
http://www.evertype.com/standards/csur/klingon.html
@@ -112,6 +124,7 @@ However, since the set of symbols appear to be consistent throughout,
with only the actual shapes being different, in keeping with standard
Unicode practice these differences are considered font variants.
+====== =======================================================
U+F8D0 KLINGON LETTER A
U+F8D1 KLINGON LETTER B
U+F8D2 KLINGON LETTER CH
@@ -155,6 +168,7 @@ U+F8F9 KLINGON DIGIT NINE
U+F8FD KLINGON COMMA
U+F8FE KLINGON FULL STOP
U+F8FF KLINGON SYMBOL FOR EMPIRE
+====== =======================================================
Other Fictional and Artificial Scripts
--------------------------------------
diff --git a/Documentation/admin-guide/vga-softcursor.rst b/Documentation/admin-guide/vga-softcursor.rst
new file mode 100644
index 0000000..a663a74
--- /dev/null
+++ b/Documentation/admin-guide/vga-softcursor.rst
@@ -0,0 +1,66 @@
+Software cursor for VGA
+=======================
+
+by Pavel Machek <pavel@atrey.karlin.mff.cuni.cz>
+and Martin Mares <mj@atrey.karlin.mff.cuni.cz>
+
+Linux now has some ability to manipulate cursor appearance. Normally, you
+can set the size of hardware cursor (and also work around some ugly bugs in
+those miserable Trident cards [#f1]_. You can now play a few new tricks:
+you can make your cursor look
+
+like a non-blinking red block, make it inverse background of the character it's
+over or to highlight that character and still choose whether the original
+hardware cursor should remain visible or not. There may be other things I have
+never thought of.
+
+The cursor appearance is controlled by a ``<ESC>[?1;2;3c`` escape sequence
+where 1, 2 and 3 are parameters described below. If you omit any of them,
+they will default to zeroes.
+
+first Parameter
+ specifies cursor size::
+
+ 0=default
+ 1=invisible
+ 2=underline,
+ ...
+ 8=full block
+ + 16 if you want the software cursor to be applied
+ + 32 if you want to always change the background color
+ + 64 if you dislike having the background the same as the
+ foreground.
+
+ Highlights are ignored for the last two flags.
+
+second parameter
+ selects character attribute bits you want to change
+ (by simply XORing them with the value of this parameter). On standard
+ VGA, the high four bits specify background and the low four the
+ foreground. In both groups, low three bits set color (as in normal
+ color codes used by the console) and the most significant one turns
+ on highlight (or sometimes blinking -- it depends on the configuration
+ of your VGA).
+
+third parameter
+ consists of character attribute bits you want to set.
+
+ Bit setting takes place before bit toggling, so you can simply clear a
+ bit by including it in both the set mask and the toggle mask.
+
+.. [#f1] see ``#define TRIDENT_GLITCH`` in ``drivers/video/vgacon.c``.
+
+Examples
+--------
+
+To get normal blinking underline, use::
+
+ echo -e '\033[?2c'
+
+To get blinking block, use::
+
+ echo -e '\033[?6c'
+
+To get red non-blinking block, use::
+
+ echo -e '\033[?17;0;64c'
diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting
index 83c1df2..259f00a 100644
--- a/Documentation/arm/Booting
+++ b/Documentation/arm/Booting
@@ -51,7 +51,7 @@ As an alternative, the boot loader can pass the relevant 'console='
option to the kernel via the tagged lists specifying the port, and
serial format options as described in
- Documentation/kernel-parameters.txt.
+ Documentation/admin-guide/kernel-parameters.rst.
3. Detect the machine type
diff --git a/Documentation/atomic_ops.txt b/Documentation/atomic_ops.txt
index c9d1cac..6c5e8a9 100644
--- a/Documentation/atomic_ops.txt
+++ b/Documentation/atomic_ops.txt
@@ -16,7 +16,7 @@ will fail. Something like the following should suffice:
typedef struct { long counter; } atomic_long_t;
Historically, counter has been declared volatile. This is now discouraged.
-See Documentation/volatile-considered-harmful.txt for the complete rationale.
+See Documentation/process/volatile-considered-harmful.rst for the complete rationale.
local_t is very similar to atomic_t. If the counter is per CPU and only
updated by one CPU, local_t is probably more appropriate. Please see
@@ -90,10 +90,10 @@ compiler optimizes the section accessing atomic_t variables.
Properly aligned pointers, longs, ints, and chars (and unsigned
equivalents) may be atomically loaded from and stored to in the same
-sense as described for atomic_read() and atomic_set(). The ACCESS_ONCE()
-macro should be used to prevent the compiler from using optimizations
-that might otherwise optimize accesses out of existence on the one hand,
-or that might create unsolicited accesses on the other.
+sense as described for atomic_read() and atomic_set(). The READ_ONCE()
+and WRITE_ONCE() macros should be used to prevent the compiler from using
+optimizations that might otherwise optimize accesses out of existence on
+the one hand, or that might create unsolicited accesses on the other.
For example consider the following code:
@@ -112,7 +112,7 @@ the following:
If you don't want the compiler to do this (and you probably don't), then
you should use something like the following:
- while (ACCESS_ONCE(a) < 0)
+ while (READ_ONCE(a) < 0)
do_something();
Alternatively, you could place a barrier() call in the loop.
@@ -141,7 +141,7 @@ of registers: reloading from variable a could save a flush to the
stack and later reload. To prevent the compiler from attacking your
code in this manner, write the following:
- tmp_a = ACCESS_ONCE(a);
+ tmp_a = READ_ONCE(a);
do_something_with(tmp_a);
do_something_else_with(tmp_a);
@@ -166,14 +166,14 @@ that expected b to never have the value 42 if a was zero. To prevent
the compiler from doing this, write something like:
if (a)
- ACCESS_ONCE(b) = 9;
+ WRITE_ONCE(b, 9);
else
- ACCESS_ONCE(b) = 42;
+ WRITE_ONCE(b, 42);
Don't even -think- about doing this without proper use of memory barriers,
locks, or atomic operations if variable a can change at runtime!
-*** WARNING: ACCESS_ONCE() DOES NOT IMPLY A BARRIER! ***
+*** WARNING: READ_ONCE() OR WRITE_ONCE() DO NOT IMPLY A BARRIER! ***
Now, we move onto the atomic operation interfaces typically implemented with
the help of assembly code.
diff --git a/Documentation/bad_memory.txt b/Documentation/bad_memory.txt
deleted file mode 100644
index df84162..0000000
--- a/Documentation/bad_memory.txt
+++ /dev/null
@@ -1,45 +0,0 @@
-March 2008
-Jan-Simon Moeller, dl9pf@gmx.de
-
-
-How to deal with bad memory e.g. reported by memtest86+ ?
-#########################################################
-
-There are three possibilities I know of:
-
-1) Reinsert/swap the memory modules
-
-2) Buy new modules (best!) or try to exchange the memory
- if you have spare-parts
-
-3) Use BadRAM or memmap
-
-This Howto is about number 3) .
-
-
-BadRAM
-######
-BadRAM is the actively developed and available as kernel-patch
-here: http://rick.vanrein.org/linux/badram/
-
-For more details see the BadRAM documentation.
-
-memmap
-######
-
-memmap is already in the kernel and usable as kernel-parameter at
-boot-time. Its syntax is slightly strange and you may need to
-calculate the values by yourself!
-
-Syntax to exclude a memory area (see kernel-parameters.txt for details):
-memmap=<size>$<address>
-
-Example: memtest86+ reported here errors at address 0x18691458, 0x18698424 and
- some others. All had 0x1869xxxx in common, so I chose a pattern of
- 0x18690000,0xffff0000.
-
-With the numbers of the example above:
-memmap=64K$0x18690000
- or
-memmap=0x10000$0x18690000
-
diff --git a/Documentation/basic_profiling.txt b/Documentation/basic_profiling.txt
deleted file mode 100644
index 8764e9f..0000000
--- a/Documentation/basic_profiling.txt
+++ /dev/null
@@ -1,56 +0,0 @@
-These instructions are deliberately very basic. If you want something clever,
-go read the real docs ;-) Please don't add more stuff, but feel free to
-correct my mistakes ;-) (mbligh@aracnet.com)
-Thanks to John Levon, Dave Hansen, et al. for help writing this.
-
-<test> is the thing you're trying to measure.
-Make sure you have the correct System.map / vmlinux referenced!
-
-It is probably easiest to use "make install" for linux and hack
-/sbin/installkernel to copy vmlinux to /boot, in addition to vmlinuz,
-config, System.map, which are usually installed by default.
-
-Readprofile
------------
-A recent readprofile command is needed for 2.6, such as found in util-linux
-2.12a, which can be downloaded from:
-
-http://www.kernel.org/pub/linux/utils/util-linux/
-
-Most distributions will ship it already.
-
-Add "profile=2" to the kernel command line.
-
-clear readprofile -r
- <test>
-dump output readprofile -m /boot/System.map > captured_profile
-
-Oprofile
---------
-
-Get the source (see Changes for required version) from
-http://oprofile.sourceforge.net/ and add "idle=poll" to the kernel command
-line.
-
-Configure with CONFIG_PROFILING=y and CONFIG_OPROFILE=y & reboot on new kernel
-
-./configure --with-kernel-support
-make install
-
-For superior results, be sure to enable the local APIC. If opreport sees
-a 0Hz CPU, APIC was not on. Be aware that idle=poll may mean a performance
-penalty.
-
-One time setup:
- opcontrol --setup --vmlinux=/boot/vmlinux
-
-clear opcontrol --reset
-start opcontrol --start
- <test>
-stop opcontrol --stop
-dump output opreport > output_file
-
-To only report on the kernel, run opreport -l /boot/vmlinux > output_file
-
-A reset is needed to clear old statistics, which survive a reboot.
-
diff --git a/Documentation/binfmt_misc.txt b/Documentation/binfmt_misc.txt
deleted file mode 100644
index ec83bbc..0000000
--- a/Documentation/binfmt_misc.txt
+++ /dev/null
@@ -1,131 +0,0 @@
- Kernel Support for miscellaneous (your favourite) Binary Formats v1.1
- =====================================================================
-
-This Kernel feature allows you to invoke almost (for restrictions see below)
-every program by simply typing its name in the shell.
-This includes for example compiled Java(TM), Python or Emacs programs.
-
-To achieve this you must tell binfmt_misc which interpreter has to be invoked
-with which binary. Binfmt_misc recognises the binary-type by matching some bytes
-at the beginning of the file with a magic byte sequence (masking out specified
-bits) you have supplied. Binfmt_misc can also recognise a filename extension
-aka '.com' or '.exe'.
-
-First you must mount binfmt_misc:
- mount binfmt_misc -t binfmt_misc /proc/sys/fs/binfmt_misc
-
-To actually register a new binary type, you have to set up a string looking like
-:name:type:offset:magic:mask:interpreter:flags (where you can choose the ':'
-upon your needs) and echo it to /proc/sys/fs/binfmt_misc/register.
-
-Here is what the fields mean:
- - 'name' is an identifier string. A new /proc file will be created with this
- name below /proc/sys/fs/binfmt_misc; cannot contain slashes '/' for obvious
- reasons.
- - 'type' is the type of recognition. Give 'M' for magic and 'E' for extension.
- - 'offset' is the offset of the magic/mask in the file, counted in bytes. This
- defaults to 0 if you omit it (i.e. you write ':name:type::magic...'). Ignored
- when using filename extension matching.
- - 'magic' is the byte sequence binfmt_misc is matching for. The magic string
- may contain hex-encoded characters like \x0a or \xA4. Note that you must
- escape any NUL bytes; parsing halts at the first one. In a shell environment
- you might have to write \\x0a to prevent the shell from eating your \.
- If you chose filename extension matching, this is the extension to be
- recognised (without the '.', the \x0a specials are not allowed). Extension
- matching is case sensitive, and slashes '/' are not allowed!
- - 'mask' is an (optional, defaults to all 0xff) mask. You can mask out some
- bits from matching by supplying a string like magic and as long as magic.
- The mask is anded with the byte sequence of the file. Note that you must
- escape any NUL bytes; parsing halts at the first one. Ignored when using
- filename extension matching.
- - 'interpreter' is the program that should be invoked with the binary as first
- argument (specify the full path)
- - 'flags' is an optional field that controls several aspects of the invocation
- of the interpreter. It is a string of capital letters, each controls a
- certain aspect. The following flags are supported -
- 'P' - preserve-argv[0]. Legacy behavior of binfmt_misc is to overwrite
- the original argv[0] with the full path to the binary. When this
- flag is included, binfmt_misc will add an argument to the argument
- vector for this purpose, thus preserving the original argv[0].
- e.g. If your interp is set to /bin/foo and you run `blah` (which is
- in /usr/local/bin), then the kernel will execute /bin/foo with
- argv[] set to ["/bin/foo", "/usr/local/bin/blah", "blah"]. The
- interp has to be aware of this so it can execute /usr/local/bin/blah
- with argv[] set to ["blah"].
- 'O' - open-binary. Legacy behavior of binfmt_misc is to pass the full path
- of the binary to the interpreter as an argument. When this flag is
- included, binfmt_misc will open the file for reading and pass its
- descriptor as an argument, instead of the full path, thus allowing
- the interpreter to execute non-readable binaries. This feature
- should be used with care - the interpreter has to be trusted not to
- emit the contents of the non-readable binary.
- 'C' - credentials. Currently, the behavior of binfmt_misc is to calculate
- the credentials and security token of the new process according to
- the interpreter. When this flag is included, these attributes are
- calculated according to the binary. It also implies the 'O' flag.
- This feature should be used with care as the interpreter
- will run with root permissions when a setuid binary owned by root
- is run with binfmt_misc.
- 'F' - fix binary. The usual behaviour of binfmt_misc is to spawn the
- binary lazily when the misc format file is invoked. However,
- this doesn't work very well in the face of mount namespaces and
- changeroots, so the F mode opens the binary as soon as the
- emulation is installed and uses the opened image to spawn the
- emulator, meaning it is always available once installed,
- regardless of how the environment changes.
-
-
-There are some restrictions:
- - the whole register string may not exceed 1920 characters
- - the magic must reside in the first 128 bytes of the file, i.e.
- offset+size(magic) has to be less than 128
- - the interpreter string may not exceed 127 characters
-
-To use binfmt_misc you have to mount it first. You can mount it with
-"mount -t binfmt_misc none /proc/sys/fs/binfmt_misc" command, or you can add
-a line "none /proc/sys/fs/binfmt_misc binfmt_misc defaults 0 0" to your
-/etc/fstab so it auto mounts on boot.
-
-You may want to add the binary formats in one of your /etc/rc scripts during
-boot-up. Read the manual of your init program to figure out how to do this
-right.
-
-Think about the order of adding entries! Later added entries are matched first!
-
-
-A few examples (assumed you are in /proc/sys/fs/binfmt_misc):
-
-- enable support for em86 (like binfmt_em86, for Alpha AXP only):
- echo ':i386:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x03:\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' > register
- echo ':i486:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x06:\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' > register
-
-- enable support for packed DOS applications (pre-configured dosemu hdimages):
- echo ':DEXE:M::\x0eDEX::/usr/bin/dosexec:' > register
-
-- enable support for Windows executables using wine:
- echo ':DOSWin:M::MZ::/usr/local/bin/wine:' > register
-
-For java support see Documentation/java.txt
-
-
-You can enable/disable binfmt_misc or one binary type by echoing 0 (to disable)
-or 1 (to enable) to /proc/sys/fs/binfmt_misc/status or /proc/.../the_name.
-Catting the file tells you the current status of binfmt_misc/the entry.
-
-You can remove one entry or all entries by echoing -1 to /proc/.../the_name
-or /proc/sys/fs/binfmt_misc/status.
-
-
-HINTS:
-======
-
-If you want to pass special arguments to your interpreter, you can
-write a wrapper script for it. See Documentation/java.txt for an
-example.
-
-Your interpreter should NOT look in the PATH for the filename; the kernel
-passes it the full filename (or the file descriptor) to use. Using $PATH can
-cause unexpected behaviour and can be a security hazard.
-
-
-Richard Günther <rguenth@tat.physik.uni-tuebingen.de>
diff --git a/Documentation/blockdev/cciss.txt b/Documentation/blockdev/cciss.txt
index b79d0a1..3a5477c 100644
--- a/Documentation/blockdev/cciss.txt
+++ b/Documentation/blockdev/cciss.txt
@@ -184,7 +184,7 @@ infrequently used and the primary purpose of Smart Array controllers is to
act as a RAID controller for disk drives, so the vast majority of commands
are allocated for disk devices. However, if you have more than a few tape
drives attached to a smart array, the default number of commands may not be
-enought (for example, if you have 8 tape drives, you could only rewind 6
+enough (for example, if you have 8 tape drives, you could only rewind 6
at one time with the default number of commands.) The cciss_tape_cmds module
parameter allows more commands (up to 16 more) to be allocated for use by
tape drives. For example:
diff --git a/Documentation/blockdev/ramdisk.txt b/Documentation/blockdev/ramdisk.txt
index fe2ef97..501e12e 100644
--- a/Documentation/blockdev/ramdisk.txt
+++ b/Documentation/blockdev/ramdisk.txt
@@ -14,7 +14,7 @@ Contents:
The RAM disk driver is a way to use main system memory as a block device. It
is required for initrd, an initial filesystem used if you need to load modules
-in order to access the root filesystem (see Documentation/initrd.txt). It can
+in order to access the root filesystem (see Documentation/admin-guide/initrd.rst). It can
also be used for a temporary filesystem for crypto work, since the contents
are erased on reboot.
diff --git a/Documentation/braille-console.txt b/Documentation/braille-console.txt
deleted file mode 100644
index d0d042c..0000000
--- a/Documentation/braille-console.txt
+++ /dev/null
@@ -1,34 +0,0 @@
- Linux Braille Console
-
-To get early boot messages on a braille device (before userspace screen
-readers can start), you first need to compile the support for the usual serial
-console (see serial-console.txt), and for braille device (in Device Drivers -
-Accessibility).
-
-Then you need to specify a console=brl, option on the kernel command line, the
-format is:
-
- console=brl,serial_options...
-
-where serial_options... are the same as described in serial-console.txt
-
-So for instance you can use console=brl,ttyS0 if the braille device is connected
-to the first serial port, and console=brl,ttyS0,115200 to override the baud rate
-to 115200, etc.
-
-By default, the braille device will just show the last kernel message (console
-mode). To review previous messages, press the Insert key to switch to the VT
-review mode. In review mode, the arrow keys permit to browse in the VT content,
-page up/down keys go at the top/bottom of the screen, and the home key goes back
-to the cursor, hence providing very basic screen reviewing facility.
-
-Sound feedback can be obtained by adding the braille_console.sound=1 kernel
-parameter.
-
-For simplicity, only one braille console can be enabled, other uses of
-console=brl,... will be discarded. Also note that it does not interfere with
-the console selection mechanism described in serial-console.txt
-
-For now, only the VisioBraille device is supported.
-
-Samuel Thibault <samuel.thibault@ens-lyon.org>
diff --git a/Documentation/cgroup-v1/00-INDEX b/Documentation/cgroup-v1/00-INDEX
index 106885a..13e0c85 100644
--- a/Documentation/cgroup-v1/00-INDEX
+++ b/Documentation/cgroup-v1/00-INDEX
@@ -8,7 +8,7 @@ cpuacct.txt
- CPU Accounting Controller; account CPU usage for groups of tasks.
cpusets.txt
- documents the cpusets feature; assign CPUs and Mem to a set of tasks.
-devices.txt
+admin-guide/devices.rst
- Device Whitelist Controller; description, interface and security.
freezer-subsystem.txt
- checkpointing; rationale to not use signals, interface.
diff --git a/Documentation/circular-buffers.txt b/Documentation/circular-buffers.txt
index 88951b1..4a824d2 100644
--- a/Documentation/circular-buffers.txt
+++ b/Documentation/circular-buffers.txt
@@ -161,7 +161,7 @@ The producer will look something like this:
unsigned long head = buffer->head;
/* The spin_unlock() and next spin_lock() provide needed ordering. */
- unsigned long tail = ACCESS_ONCE(buffer->tail);
+ unsigned long tail = READ_ONCE(buffer->tail);
if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
/* insert one item into the buffer */
@@ -222,7 +222,7 @@ This will instruct the CPU to make sure the index is up to date before reading
the new item, and then it shall make sure the CPU has finished reading the item
before it writes the new tail pointer, which will erase the item.
-Note the use of ACCESS_ONCE() and smp_load_acquire() to read the
+Note the use of READ_ONCE() and smp_load_acquire() to read the
opposition index. This prevents the compiler from discarding and
reloading its cached value - which some compilers will do across
smp_read_barrier_depends(). This isn't strictly needed if you can
diff --git a/Documentation/conf.py b/Documentation/conf.py
index bf6f310..ba38bcf 100644
--- a/Documentation/conf.py
+++ b/Documentation/conf.py
@@ -34,10 +34,10 @@ from load_config import loadConfig
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
-extensions = ['kernel-doc', 'rstFlatTable', 'kernel_include', 'cdomain']
+extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain']
# The name of the math extension changed on Sphinx 1.4
-if minor > 3:
+if major == 1 and minor > 3:
extensions.append("sphinx.ext.imgmath")
else:
extensions.append("sphinx.ext.pngmath")
@@ -136,7 +136,7 @@ pygments_style = 'sphinx'
todo_include_todos = False
primary_domain = 'C'
-highlight_language = 'guess'
+highlight_language = 'none'
# -- Options for HTML output ----------------------------------------------
@@ -332,18 +332,30 @@ latex_elements = {
'''
}
+# Fix reference escape troubles with Sphinx 1.4.x
+if major == 1 and minor > 3:
+ latex_elements['preamble'] += '\\renewcommand*{\\DUrole}[2]{ #2 }\n'
+
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
+ ('admin-guide/index', 'linux-user.tex', 'Linux Kernel User Documentation',
+ 'The kernel development community', 'manual'),
+ ('core-api/index', 'core-api.tex', 'The kernel core API manual',
+ 'The kernel development community', 'manual'),
+ ('driver-api/index', 'driver-api.tex', 'The kernel driver API manual',
+ 'The kernel development community', 'manual'),
('kernel-documentation', 'kernel-documentation.tex', 'The Linux Kernel Documentation',
'The kernel development community', 'manual'),
- ('development-process/index', 'development-process.tex', 'Linux Kernel Development Documentation',
+ ('process/index', 'development-process.tex', 'Linux Kernel Development Documentation',
'The kernel development community', 'manual'),
('gpu/index', 'gpu.tex', 'Linux GPU Driver Developer\'s Guide',
'The kernel development community', 'manual'),
('media/index', 'media.tex', 'Linux Media Subsystem Documentation',
'The kernel development community', 'manual'),
+ ('security/index', 'security.tex', 'The kernel security subsystem manual',
+ 'The kernel development community', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
diff --git a/Documentation/core-api/conf.py b/Documentation/core-api/conf.py
new file mode 100644
index 0000000..db1f765
--- /dev/null
+++ b/Documentation/core-api/conf.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8; mode: python -*-
+
+project = "Core-API Documentation"
+
+tags.add("subproject")
+
+latex_documents = [
+ ('index', 'core-api.tex', project,
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst
new file mode 100644
index 0000000..f7ef7fd
--- /dev/null
+++ b/Documentation/core-api/index.rst
@@ -0,0 +1,17 @@
+======================
+Core-API Documentation
+======================
+
+Kernel and driver related documentation.
+
+.. toctree::
+ :maxdepth: 1
+
+ workqueue
+
+.. only:: subproject
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/workqueue.txt b/Documentation/core-api/workqueue.rst
index c49e317..ffdec94 100644
--- a/Documentation/workqueue.txt
+++ b/Documentation/core-api/workqueue.rst
@@ -1,21 +1,14 @@
-
+====================================
Concurrency Managed Workqueue (cmwq)
+====================================
-September, 2010 Tejun Heo <tj@kernel.org>
- Florian Mickler <florian@mickler.org>
-
-CONTENTS
-
-1. Introduction
-2. Why cmwq?
-3. The Design
-4. Application Programming Interface (API)
-5. Example Execution Scenarios
-6. Guidelines
-7. Debugging
+:Date: September, 2010
+:Author: Tejun Heo <tj@kernel.org>
+:Author: Florian Mickler <florian@mickler.org>
-1. Introduction
+Introduction
+============
There are many cases where an asynchronous process execution context
is needed and the workqueue (wq) API is the most commonly used
@@ -32,7 +25,8 @@ there is no work item left on the workqueue the worker becomes idle.
When a new work item gets queued, the worker begins executing again.
-2. Why cmwq?
+Why cmwq?
+=========
In the original wq implementation, a multi threaded (MT) wq had one
worker thread per CPU and a single threaded (ST) wq had one worker
@@ -71,7 +65,8 @@ focus on the following goals.
the API users don't need to worry about such details.
-3. The Design
+The Design
+==========
In order to ease the asynchronous execution of functions a new
abstraction, the work item, is introduced.
@@ -102,7 +97,7 @@ aspects of the way the work items are executed by setting flags on the
workqueue they are putting the work item on. These flags include
things like CPU locality, concurrency limits, priority and more. To
get a detailed overview refer to the API description of
-alloc_workqueue() below.
+``alloc_workqueue()`` below.
When a work item is queued to a workqueue, the target worker-pool is
determined according to the queue parameters and workqueue attributes
@@ -136,7 +131,7 @@ them.
For unbound workqueues, the number of backing pools is dynamic.
Unbound workqueue can be assigned custom attributes using
-apply_workqueue_attrs() and workqueue will automatically create
+``apply_workqueue_attrs()`` and workqueue will automatically create
backing worker pools matching the attributes. The responsibility of
regulating concurrency level is on the users. There is also a flag to
mark a bound wq to ignore the concurrency management. Please refer to
@@ -151,94 +146,95 @@ pressure. Else it is possible that the worker-pool deadlocks waiting
for execution contexts to free up.
-4. Application Programming Interface (API)
+Application Programming Interface (API)
+=======================================
-alloc_workqueue() allocates a wq. The original create_*workqueue()
-functions are deprecated and scheduled for removal. alloc_workqueue()
-takes three arguments - @name, @flags and @max_active. @name is the
-name of the wq and also used as the name of the rescuer thread if
-there is one.
+``alloc_workqueue()`` allocates a wq. The original
+``create_*workqueue()`` functions are deprecated and scheduled for
+removal. ``alloc_workqueue()`` takes three arguments - @``name``,
+``@flags`` and ``@max_active``. ``@name`` is the name of the wq and
+also used as the name of the rescuer thread if there is one.
A wq no longer manages execution resources but serves as a domain for
-forward progress guarantee, flush and work item attributes. @flags
-and @max_active control how work items are assigned execution
+forward progress guarantee, flush and work item attributes. ``@flags``
+and ``@max_active`` control how work items are assigned execution
resources, scheduled and executed.
-@flags:
-
- WQ_UNBOUND
-
- Work items queued to an unbound wq are served by the special
- worker-pools which host workers which are not bound to any
- specific CPU. This makes the wq behave as a simple execution
- context provider without concurrency management. The unbound
- worker-pools try to start execution of work items as soon as
- possible. Unbound wq sacrifices locality but is useful for
- the following cases.
-
- * Wide fluctuation in the concurrency level requirement is
- expected and using bound wq may end up creating large number
- of mostly unused workers across different CPUs as the issuer
- hops through different CPUs.
-
- * Long running CPU intensive workloads which can be better
- managed by the system scheduler.
-
- WQ_FREEZABLE
-
- A freezable wq participates in the freeze phase of the system
- suspend operations. Work items on the wq are drained and no
- new work item starts execution until thawed.
-
- WQ_MEM_RECLAIM
-
- All wq which might be used in the memory reclaim paths _MUST_
- have this flag set. The wq is guaranteed to have at least one
- execution context regardless of memory pressure.
-
- WQ_HIGHPRI
- Work items of a highpri wq are queued to the highpri
- worker-pool of the target cpu. Highpri worker-pools are
- served by worker threads with elevated nice level.
-
- Note that normal and highpri worker-pools don't interact with
- each other. Each maintain its separate pool of workers and
- implements concurrency management among its workers.
-
- WQ_CPU_INTENSIVE
-
- Work items of a CPU intensive wq do not contribute to the
- concurrency level. In other words, runnable CPU intensive
- work items will not prevent other work items in the same
- worker-pool from starting execution. This is useful for bound
- work items which are expected to hog CPU cycles so that their
- execution is regulated by the system scheduler.
-
- Although CPU intensive work items don't contribute to the
- concurrency level, start of their executions is still
- regulated by the concurrency management and runnable
- non-CPU-intensive work items can delay execution of CPU
- intensive work items.
-
- This flag is meaningless for unbound wq.
-
-Note that the flag WQ_NON_REENTRANT no longer exists as all workqueues
-are now non-reentrant - any work item is guaranteed to be executed by
-at most one worker system-wide at any given time.
-
-@max_active:
-
-@max_active determines the maximum number of execution contexts per
-CPU which can be assigned to the work items of a wq. For example,
-with @max_active of 16, at most 16 work items of the wq can be
+``flags``
+---------
+
+``WQ_UNBOUND``
+ Work items queued to an unbound wq are served by the special
+ worker-pools which host workers which are not bound to any
+ specific CPU. This makes the wq behave as a simple execution
+ context provider without concurrency management. The unbound
+ worker-pools try to start execution of work items as soon as
+ possible. Unbound wq sacrifices locality but is useful for
+ the following cases.
+
+ * Wide fluctuation in the concurrency level requirement is
+ expected and using bound wq may end up creating large number
+ of mostly unused workers across different CPUs as the issuer
+ hops through different CPUs.
+
+ * Long running CPU intensive workloads which can be better
+ managed by the system scheduler.
+
+``WQ_FREEZABLE``
+ A freezable wq participates in the freeze phase of the system
+ suspend operations. Work items on the wq are drained and no
+ new work item starts execution until thawed.
+
+``WQ_MEM_RECLAIM``
+ All wq which might be used in the memory reclaim paths **MUST**
+ have this flag set. The wq is guaranteed to have at least one
+ execution context regardless of memory pressure.
+
+``WQ_HIGHPRI``
+ Work items of a highpri wq are queued to the highpri
+ worker-pool of the target cpu. Highpri worker-pools are
+ served by worker threads with elevated nice level.
+
+ Note that normal and highpri worker-pools don't interact with
+ each other. Each maintain its separate pool of workers and
+ implements concurrency management among its workers.
+
+``WQ_CPU_INTENSIVE``
+ Work items of a CPU intensive wq do not contribute to the
+ concurrency level. In other words, runnable CPU intensive
+ work items will not prevent other work items in the same
+ worker-pool from starting execution. This is useful for bound
+ work items which are expected to hog CPU cycles so that their
+ execution is regulated by the system scheduler.
+
+ Although CPU intensive work items don't contribute to the
+ concurrency level, start of their executions is still
+ regulated by the concurrency management and runnable
+ non-CPU-intensive work items can delay execution of CPU
+ intensive work items.
+
+ This flag is meaningless for unbound wq.
+
+Note that the flag ``WQ_NON_REENTRANT`` no longer exists as all
+workqueues are now non-reentrant - any work item is guaranteed to be
+executed by at most one worker system-wide at any given time.
+
+
+``max_active``
+--------------
+
+``@max_active`` determines the maximum number of execution contexts
+per CPU which can be assigned to the work items of a wq. For example,
+with ``@max_active`` of 16, at most 16 work items of the wq can be
executing at the same time per CPU.
-Currently, for a bound wq, the maximum limit for @max_active is 512
-and the default value used when 0 is specified is 256. For an unbound
-wq, the limit is higher of 512 and 4 * num_possible_cpus(). These
-values are chosen sufficiently high such that they are not the
-limiting factor while providing protection in runaway cases.
+Currently, for a bound wq, the maximum limit for ``@max_active`` is
+512 and the default value used when 0 is specified is 256. For an
+unbound wq, the limit is higher of 512 and 4 *
+``num_possible_cpus()``. These values are chosen sufficiently high
+such that they are not the limiting factor while providing protection
+in runaway cases.
The number of active work items of a wq is usually regulated by the
users of the wq, more specifically, by how many work items the users
@@ -247,13 +243,14 @@ throttling the number of active work items, specifying '0' is
recommended.
Some users depend on the strict execution ordering of ST wq. The
-combination of @max_active of 1 and WQ_UNBOUND is used to achieve this
-behavior. Work items on such wq are always queued to the unbound
-worker-pools and only one work item can be active at any given time thus
-achieving the same ordering property as ST wq.
+combination of ``@max_active`` of 1 and ``WQ_UNBOUND`` is used to
+achieve this behavior. Work items on such wq are always queued to the
+unbound worker-pools and only one work item can be active at any given
+time thus achieving the same ordering property as ST wq.
-5. Example Execution Scenarios
+Example Execution Scenarios
+===========================
The following example execution scenarios try to illustrate how cmwq
behave under different configurations.
@@ -265,7 +262,7 @@ behave under different configurations.
Ignoring all other tasks, works and processing overhead, and assuming
simple FIFO scheduling, the following is one highly simplified version
-of possible sequences of events with the original wq.
+of possible sequences of events with the original wq. ::
TIME IN MSECS EVENT
0 w0 starts and burns CPU
@@ -279,7 +276,7 @@ of possible sequences of events with the original wq.
40 w2 sleeps
50 w2 wakes up and finishes
-And with cmwq with @max_active >= 3,
+And with cmwq with ``@max_active`` >= 3, ::
TIME IN MSECS EVENT
0 w0 starts and burns CPU
@@ -293,7 +290,7 @@ And with cmwq with @max_active >= 3,
20 w1 wakes up and finishes
25 w2 wakes up and finishes
-If @max_active == 2,
+If ``@max_active`` == 2, ::
TIME IN MSECS EVENT
0 w0 starts and burns CPU
@@ -308,7 +305,7 @@ If @max_active == 2,
35 w2 wakes up and finishes
Now, let's assume w1 and w2 are queued to a different wq q1 which has
-WQ_CPU_INTENSIVE set,
+``WQ_CPU_INTENSIVE`` set, ::
TIME IN MSECS EVENT
0 w0 starts and burns CPU
@@ -322,13 +319,15 @@ WQ_CPU_INTENSIVE set,
25 w2 wakes up and finishes
-6. Guidelines
+Guidelines
+==========
-* Do not forget to use WQ_MEM_RECLAIM if a wq may process work items
- which are used during memory reclaim. Each wq with WQ_MEM_RECLAIM
- set has an execution context reserved for it. If there is
- dependency among multiple work items used during memory reclaim,
- they should be queued to separate wq each with WQ_MEM_RECLAIM.
+* Do not forget to use ``WQ_MEM_RECLAIM`` if a wq may process work
+ items which are used during memory reclaim. Each wq with
+ ``WQ_MEM_RECLAIM`` set has an execution context reserved for it. If
+ there is dependency among multiple work items used during memory
+ reclaim, they should be queued to separate wq each with
+ ``WQ_MEM_RECLAIM``.
* Unless strict ordering is required, there is no need to use ST wq.
@@ -337,30 +336,31 @@ WQ_CPU_INTENSIVE set,
well under the default limit.
* A wq serves as a domain for forward progress guarantee
- (WQ_MEM_RECLAIM, flush and work item attributes. Work items which
- are not involved in memory reclaim and don't need to be flushed as a
- part of a group of work items, and don't require any special
- attribute, can use one of the system wq. There is no difference in
- execution characteristics between using a dedicated wq and a system
- wq.
+ (``WQ_MEM_RECLAIM``, flush and work item attributes. Work items
+ which are not involved in memory reclaim and don't need to be
+ flushed as a part of a group of work items, and don't require any
+ special attribute, can use one of the system wq. There is no
+ difference in execution characteristics between using a dedicated wq
+ and a system wq.
* Unless work items are expected to consume a huge amount of CPU
cycles, using a bound wq is usually beneficial due to the increased
level of locality in wq operations and work item execution.
-7. Debugging
+Debugging
+=========
Because the work functions are executed by generic worker threads
there are a few tricks needed to shed some light on misbehaving
workqueue users.
-Worker threads show up in the process list as:
+Worker threads show up in the process list as: ::
-root 5671 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/0:1]
-root 5672 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/1:2]
-root 5673 0.0 0.0 0 0 ? S 12:12 0:00 [kworker/0:0]
-root 5674 0.0 0.0 0 0 ? S 12:13 0:00 [kworker/1:0]
+ root 5671 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/0:1]
+ root 5672 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/1:2]
+ root 5673 0.0 0.0 0 0 ? S 12:12 0:00 [kworker/0:0]
+ root 5674 0.0 0.0 0 0 ? S 12:13 0:00 [kworker/1:0]
If kworkers are going crazy (using too much cpu), there are two types
of possible problems:
@@ -368,7 +368,7 @@ of possible problems:
1. Something being scheduled in rapid succession
2. A single work item that consumes lots of cpu cycles
-The first one can be tracked using tracing:
+The first one can be tracked using tracing: ::
$ echo workqueue:workqueue_queue_work > /sys/kernel/debug/tracing/set_event
$ cat /sys/kernel/debug/tracing/trace_pipe > out.txt
@@ -380,9 +380,15 @@ the output and the offender can be determined with the work item
function.
For the second type of problems it should be possible to just check
-the stack trace of the offending worker thread.
+the stack trace of the offending worker thread. ::
$ cat /proc/THE_OFFENDING_KWORKER/stack
The work item's function should be trivially visible in the stack
trace.
+
+
+Kernel Inline Documentations Reference
+======================================
+
+.. kernel-doc:: include/linux/workqueue.h
diff --git a/Documentation/cpu-hotplug.txt b/Documentation/cpu-hotplug.txt
index dd68821..d02e8a4 100644
--- a/Documentation/cpu-hotplug.txt
+++ b/Documentation/cpu-hotplug.txt
@@ -84,9 +84,9 @@ are added or removed anytime. Trimming it accurately for your system needs
upfront can save some boot time memory. See below for how we use heuristics
in x86_64 case to keep this under check.
-cpu_online_mask: Bitmap of all CPUs currently online. Its set in __cpu_up()
-after a cpu is available for kernel scheduling and ready to receive
-interrupts from devices. Its cleared when a cpu is brought down using
+cpu_online_mask: Bitmap of all CPUs currently online. It's set in __cpu_up()
+after a CPU is available for kernel scheduling and ready to receive
+interrupts from devices. It's cleared when a CPU is brought down using
__cpu_disable(), before which all OS services including interrupts are
migrated to another target CPU.
@@ -181,7 +181,7 @@ To support physical addition/removal, one would need some BIOS hooks and
the platform should have something like an attention button in PCI hotplug.
CONFIG_ACPI_HOTPLUG_CPU enables ACPI support for physical add/remove of CPUs.
-Q: How do i logically offline a CPU?
+Q: How do I logically offline a CPU?
A: Do the following.
#echo 0 > /sys/devices/system/cpu/cpuX/online
@@ -191,15 +191,15 @@ Once the logical offline is successful, check
#cat /proc/interrupts
You should now not see the CPU that you removed. Also online file will report
-the state as 0 when a cpu if offline and 1 when its online.
+the state as 0 when a CPU is offline and 1 when it's online.
#To display the current cpu state.
#cat /sys/devices/system/cpu/cpuX/online
-Q: Why can't i remove CPU0 on some systems?
+Q: Why can't I remove CPU0 on some systems?
A: Some architectures may have some special dependency on a certain CPU.
-For e.g in IA64 platforms we have ability to sent platform interrupts to the
+For e.g in IA64 platforms we have ability to send platform interrupts to the
OS. a.k.a Corrected Platform Error Interrupts (CPEI). In current ACPI
specifications, we didn't have a way to change the target CPU. Hence if the
current ACPI version doesn't support such re-direction, we disable that CPU
@@ -231,7 +231,7 @@ either by CONFIG_BOOTPARAM_HOTPLUG_CPU0 or by kernel parameter cpu0_hotplug.
--Fenghua Yu <fenghua.yu@intel.com>
-Q: How do i find out if a particular CPU is not removable?
+Q: How do I find out if a particular CPU is not removable?
A: Depending on the implementation, some architectures may show this by the
absence of the "online" file. This is done if it can be determined ahead of
time that this CPU cannot be removed.
@@ -250,7 +250,7 @@ A: The following happen, listed in no particular order :-)
- All processes are migrated away from this outgoing CPU to new CPUs.
The new CPU is chosen from each process' current cpuset, which may be
a subset of all online CPUs.
-- All interrupts targeted to this CPU is migrated to a new CPU
+- All interrupts targeted to this CPU are migrated to a new CPU
- timers/bottom half/task lets are also migrated to a new CPU
- Once all services are migrated, kernel calls an arch specific routine
__cpu_disable() to perform arch specific cleanup.
@@ -259,10 +259,10 @@ A: The following happen, listed in no particular order :-)
CPU is being offlined).
"It is expected that each service cleans up when the CPU_DOWN_PREPARE
- notifier is called, when CPU_DEAD is called its expected there is nothing
+ notifier is called, when CPU_DEAD is called it's expected there is nothing
running on behalf of this CPU that was offlined"
-Q: If i have some kernel code that needs to be aware of CPU arrival and
+Q: If I have some kernel code that needs to be aware of CPU arrival and
departure, how to i arrange for proper notification?
A: This is what you would need in your kernel code to receive notifications.
@@ -311,7 +311,7 @@ things will happen if a notifier in path sent a BAD notify code.
Q: I don't see my action being called for all CPUs already up and running?
A: Yes, CPU notifiers are called only when new CPUs are on-lined or offlined.
- If you need to perform some action for each cpu already in the system, then
+ If you need to perform some action for each CPU already in the system, then
do this:
for_each_online_cpu(i) {
@@ -363,8 +363,8 @@ A: Yes, CPU notifiers are called only when new CPUs are on-lined or offlined.
callbacks as well as initialize the already online CPUs.
-Q: If i would like to develop cpu hotplug support for a new architecture,
- what do i need at a minimum?
+Q: If I would like to develop CPU hotplug support for a new architecture,
+ what do I need at a minimum?
A: The following are what is required for CPU hotplug infrastructure to work
correctly.
@@ -382,8 +382,8 @@ A: The following are what is required for CPU hotplug infrastructure to work
per_cpu state to be set, to ensure the processor
dead routine is called to be sure positively.
-Q: I need to ensure that a particular cpu is not removed when there is some
- work specific to this cpu is in progress.
+Q: I need to ensure that a particular CPU is not removed when there is some
+ work specific to this CPU in progress.
A: There are two ways. If your code can be run in interrupt context, use
smp_call_function_single(), otherwise use work_on_cpu(). Note that
work_on_cpu() is slow, and can fail due to out of memory:
diff --git a/Documentation/dev-tools/conf.py b/Documentation/dev-tools/conf.py
new file mode 100644
index 0000000..7faafa3
--- /dev/null
+++ b/Documentation/dev-tools/conf.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8; mode: python -*-
+
+project = "Development tools for the kernel"
+
+tags.add("subproject")
+
+latex_documents = [
+ ('index', 'dev-tools.tex', project,
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/dev-tools/gcov.rst b/Documentation/dev-tools/gcov.rst
index 19eedfe..69a7d90 100644
--- a/Documentation/dev-tools/gcov.rst
+++ b/Documentation/dev-tools/gcov.rst
@@ -201,7 +201,9 @@ Appendix A: gather_on_build.sh
------------------------------
Sample script to gather coverage meta files on the build machine
-(see 6a)::
+(see 6a):
+
+.. code-block:: sh
#!/bin/bash
@@ -232,7 +234,9 @@ Appendix B: gather_on_test.sh
-----------------------------
Sample script to gather coverage data files on the test machine
-(see 6b)::
+(see 6b):
+
+.. code-block:: sh
#!/bin/bash -e
diff --git a/Documentation/dev-tools/tools.rst b/Documentation/dev-tools/index.rst
index 824ae8e..07d8811 100644
--- a/Documentation/dev-tools/tools.rst
+++ b/Documentation/dev-tools/index.rst
@@ -23,3 +23,11 @@ whole; patches welcome!
kmemleak
kmemcheck
gdb-kernel-debugging
+
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/dev-tools/kcov.rst b/Documentation/dev-tools/kcov.rst
index aca0e27..2c41b71 100644
--- a/Documentation/dev-tools/kcov.rst
+++ b/Documentation/dev-tools/kcov.rst
@@ -24,7 +24,9 @@ Profiling data will only become accessible once debugfs has been mounted::
mount -t debugfs none /sys/kernel/debug
-The following program demonstrates kcov usage from within a test program::
+The following program demonstrates kcov usage from within a test program:
+
+.. code-block:: c
#include <stdio.h>
#include <stddef.h>
diff --git a/Documentation/development-process/index.rst b/Documentation/development-process/index.rst
deleted file mode 100644
index c37475d..0000000
--- a/Documentation/development-process/index.rst
+++ /dev/null
@@ -1,9 +0,0 @@
-Linux Kernel Development Documentation
-======================================
-
-Contents:
-
-.. toctree::
- :maxdepth: 2
-
- development-process
diff --git a/Documentation/device-mapper/dm-raid.txt b/Documentation/device-mapper/dm-raid.txt
index c75b64a..9bd531a 100644
--- a/Documentation/device-mapper/dm-raid.txt
+++ b/Documentation/device-mapper/dm-raid.txt
@@ -17,7 +17,7 @@ The target is named "raid" and it accepts the following parameters:
raid0 RAID0 striping (no resilience)
raid1 RAID1 mirroring
raid4 RAID4 with dedicated last parity disk
- raid5_n RAID5 with dedicated last parity disk suporting takeover
+ raid5_n RAID5 with dedicated last parity disk supporting takeover
Same as raid4
-Transitory layout
raid5_la RAID5 left asymmetric
@@ -36,7 +36,7 @@ The target is named "raid" and it accepts the following parameters:
- rotating parity N (right-to-left) with data continuation
raid6_n_6 RAID6 with dedicate parity disks
- parity and Q-syndrome on the last 2 disks;
- laylout for takeover from/to raid4/raid5_n
+ layout for takeover from/to raid4/raid5_n
raid6_la_6 Same as "raid_la" plus dedicated last Q-syndrome disk
- layout for takeover from raid5_la from/to raid6
raid6_ra_6 Same as "raid5_ra" dedicated last Q-syndrome disk
@@ -137,8 +137,8 @@ The target is named "raid" and it accepts the following parameters:
device removal (negative value) or device addition (positive
value) to any reshape supporting raid levels 4/5/6 and 10.
RAID levels 4/5/6 allow for addition of devices (metadata
- and data device tupel), raid10_near and raid10_offset only
- allow for device addtion. raid10_far does not support any
+ and data device tuple), raid10_near and raid10_offset only
+ allow for device addition. raid10_far does not support any
reshaping at all.
A minimum of devices have to be kept to enforce resilience,
which is 3 devices for raid4/5 and 4 devices for raid6.
diff --git a/Documentation/devicetree/bindings/rtc/maxim,ds3231.txt b/Documentation/devicetree/bindings/rtc/maxim,ds3231.txt
index ddef330..1ad4c1c 100644
--- a/Documentation/devicetree/bindings/rtc/maxim,ds3231.txt
+++ b/Documentation/devicetree/bindings/rtc/maxim,ds3231.txt
@@ -1,7 +1,7 @@
* Maxim DS3231 Real Time Clock
Required properties:
-see: Documentation/devicetree/bindings/i2c/trivial-devices.txt
+see: Documentation/devicetree/bindings/i2c/trivial-admin-guide/devices.rst
Optional property:
- #clock-cells: Should be 1.
diff --git a/Documentation/devicetree/bindings/rtc/pcf8563.txt b/Documentation/devicetree/bindings/rtc/pcf8563.txt
index 72f6d2c..086c998 100644
--- a/Documentation/devicetree/bindings/rtc/pcf8563.txt
+++ b/Documentation/devicetree/bindings/rtc/pcf8563.txt
@@ -3,7 +3,7 @@
Philips PCF8563/Epson RTC8564 Real Time Clock
Required properties:
-see: Documentation/devicetree/bindings/i2c/trivial-devices.txt
+see: Documentation/devicetree/bindings/i2c/trivial-admin-guide/devices.rst
Optional property:
- #clock-cells: Should be 0.
diff --git a/Documentation/devicetree/bindings/submitting-patches.txt b/Documentation/devicetree/bindings/submitting-patches.txt
index 7d44eae..274058c 100644
--- a/Documentation/devicetree/bindings/submitting-patches.txt
+++ b/Documentation/devicetree/bindings/submitting-patches.txt
@@ -3,7 +3,7 @@
I. For patch submitters
- 0) Normal patch submission rules from Documentation/SubmittingPatches
+ 0) Normal patch submission rules from Documentation/process/submitting-patches.rst
applies.
1) The Documentation/ portion of the patch should be a separate patch.
diff --git a/Documentation/driver-api/conf.py b/Documentation/driver-api/conf.py
new file mode 100644
index 0000000..202726d
--- /dev/null
+++ b/Documentation/driver-api/conf.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8; mode: python -*-
+
+project = "The Linux driver implementer's API guide"
+
+tags.add("subproject")
+
+latex_documents = [
+ ('index', 'driver-api.tex', project,
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index 8e259c5d..743828e 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -20,7 +20,17 @@ available subsections can be seen below.
sound
frame-buffer
input
+ usb
spi
i2c
hsi
miscellaneous
+ vme
+
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/driver-api/infrastructure.rst b/Documentation/driver-api/infrastructure.rst
index 5d50d67..a0d65eb 100644
--- a/Documentation/driver-api/infrastructure.rst
+++ b/Documentation/driver-api/infrastructure.rst
@@ -86,10 +86,10 @@ reservation
fence
~~~~~
-.. kernel-doc:: drivers/dma-buf/fence.c
+.. kernel-doc:: drivers/dma-buf/dma-fence.c
:export:
-.. kernel-doc:: include/linux/fence.h
+.. kernel-doc:: include/linux/dma-fence.h
:internal:
.. kernel-doc:: drivers/dma-buf/seqno-fence.c
@@ -98,10 +98,10 @@ fence
.. kernel-doc:: include/linux/seqno-fence.h
:internal:
-.. kernel-doc:: drivers/dma-buf/fence-array.c
+.. kernel-doc:: drivers/dma-buf/dma-fence-array.c
:export:
-.. kernel-doc:: include/linux/fence-array.h
+.. kernel-doc:: include/linux/dma-fence-array.h
:internal:
.. kernel-doc:: drivers/dma-buf/reservation.c
diff --git a/Documentation/driver-api/usb.rst b/Documentation/driver-api/usb.rst
new file mode 100644
index 0000000..851cc40b
--- /dev/null
+++ b/Documentation/driver-api/usb.rst
@@ -0,0 +1,748 @@
+===========================
+The Linux-USB Host Side API
+===========================
+
+Introduction to USB on Linux
+============================
+
+A Universal Serial Bus (USB) is used to connect a host, such as a PC or
+workstation, to a number of peripheral devices. USB uses a tree
+structure, with the host as the root (the system's master), hubs as
+interior nodes, and peripherals as leaves (and slaves). Modern PCs
+support several such trees of USB devices, usually
+a few USB 3.0 (5 GBit/s) or USB 3.1 (10 GBit/s) and some legacy
+USB 2.0 (480 MBit/s) busses just in case.
+
+That master/slave asymmetry was designed-in for a number of reasons, one
+being ease of use. It is not physically possible to mistake upstream and
+downstream or it does not matter with a type C plug (or they are built into the
+peripheral). Also, the host software doesn't need to deal with
+distributed auto-configuration since the pre-designated master node
+manages all that.
+
+Kernel developers added USB support to Linux early in the 2.2 kernel
+series and have been developing it further since then. Besides support
+for each new generation of USB, various host controllers gained support,
+new drivers for peripherals have been added and advanced features for latency
+measurement and improved power management introduced.
+
+Linux can run inside USB devices as well as on the hosts that control
+the devices. But USB device drivers running inside those peripherals
+don't do the same things as the ones running inside hosts, so they've
+been given a different name: *gadget drivers*. This document does not
+cover gadget drivers.
+
+USB Host-Side API Model
+=======================
+
+Host-side drivers for USB devices talk to the "usbcore" APIs. There are
+two. One is intended for *general-purpose* drivers (exposed through
+driver frameworks), and the other is for drivers that are *part of the
+core*. Such core drivers include the *hub* driver (which manages trees
+of USB devices) and several different kinds of *host controller
+drivers*, which control individual busses.
+
+The device model seen by USB drivers is relatively complex.
+
+- USB supports four kinds of data transfers (control, bulk, interrupt,
+ and isochronous). Two of them (control and bulk) use bandwidth as
+ it's available, while the other two (interrupt and isochronous) are
+ scheduled to provide guaranteed bandwidth.
+
+- The device description model includes one or more "configurations"
+ per device, only one of which is active at a time. Devices are supposed
+ to be capable of operating at lower than their top
+ speeds and may provide a BOS descriptor showing the lowest speed they
+ remain fully operational at.
+
+- From USB 3.0 on configurations have one or more "functions", which
+ provide a common functionality and are grouped together for purposes
+ of power management.
+
+- Configurations or functions have one or more "interfaces", each of which may have
+ "alternate settings". Interfaces may be standardized by USB "Class"
+ specifications, or may be specific to a vendor or device.
+
+ USB device drivers actually bind to interfaces, not devices. Think of
+ them as "interface drivers", though you may not see many devices
+ where the distinction is important. *Most USB devices are simple,
+ with only one function, one configuration, one interface, and one alternate
+ setting.*
+
+- Interfaces have one or more "endpoints", each of which supports one
+ type and direction of data transfer such as "bulk out" or "interrupt
+ in". The entire configuration may have up to sixteen endpoints in
+ each direction, allocated as needed among all the interfaces.
+
+- Data transfer on USB is packetized; each endpoint has a maximum
+ packet size. Drivers must often be aware of conventions such as
+ flagging the end of bulk transfers using "short" (including zero
+ length) packets.
+
+- The Linux USB API supports synchronous calls for control and bulk
+ messages. It also supports asynchronous calls for all kinds of data
+ transfer, using request structures called "URBs" (USB Request
+ Blocks).
+
+Accordingly, the USB Core API exposed to device drivers covers quite a
+lot of territory. You'll probably need to consult the USB 3.0
+specification, available online from www.usb.org at no cost, as well as
+class or device specifications.
+
+The only host-side drivers that actually touch hardware (reading/writing
+registers, handling IRQs, and so on) are the HCDs. In theory, all HCDs
+provide the same functionality through the same API. In practice, that's
+becoming more true, but there are still differences
+that crop up especially with fault handling on the less common controllers.
+Different controllers don't
+necessarily report the same aspects of failures, and recovery from
+faults (including software-induced ones like unlinking an URB) isn't yet
+fully consistent. Device driver authors should make a point of doing
+disconnect testing (while the device is active) with each different host
+controller driver, to make sure drivers don't have bugs of their own as
+well as to make sure they aren't relying on some HCD-specific behavior.
+
+USB-Standard Types
+==================
+
+In ``<linux/usb/ch9.h>`` you will find the USB data types defined in
+chapter 9 of the USB specification. These data types are used throughout
+USB, and in APIs including this host side API, gadget APIs, and usbfs.
+
+.. kernel-doc:: include/linux/usb/ch9.h
+ :internal:
+
+Host-Side Data Types and Macros
+===============================
+
+The host side API exposes several layers to drivers, some of which are
+more necessary than others. These support lifecycle models for host side
+drivers and devices, and support passing buffers through usbcore to some
+HCD that performs the I/O for the device driver.
+
+.. kernel-doc:: include/linux/usb.h
+ :internal:
+
+USB Core APIs
+=============
+
+There are two basic I/O models in the USB API. The most elemental one is
+asynchronous: drivers submit requests in the form of an URB, and the
+URB's completion callback handles the next step. All USB transfer types
+support that model, although there are special cases for control URBs
+(which always have setup and status stages, but may not have a data
+stage) and isochronous URBs (which allow large packets and include
+per-packet fault reports). Built on top of that is synchronous API
+support, where a driver calls a routine that allocates one or more URBs,
+submits them, and waits until they complete. There are synchronous
+wrappers for single-buffer control and bulk transfers (which are awkward
+to use in some driver disconnect scenarios), and for scatterlist based
+streaming i/o (bulk or interrupt).
+
+USB drivers need to provide buffers that can be used for DMA, although
+they don't necessarily need to provide the DMA mapping themselves. There
+are APIs to use used when allocating DMA buffers, which can prevent use
+of bounce buffers on some systems. In some cases, drivers may be able to
+rely on 64bit DMA to eliminate another kind of bounce buffer.
+
+.. kernel-doc:: drivers/usb/core/urb.c
+ :export:
+
+.. kernel-doc:: drivers/usb/core/message.c
+ :export:
+
+.. kernel-doc:: drivers/usb/core/file.c
+ :export:
+
+.. kernel-doc:: drivers/usb/core/driver.c
+ :export:
+
+.. kernel-doc:: drivers/usb/core/usb.c
+ :export:
+
+.. kernel-doc:: drivers/usb/core/hub.c
+ :export:
+
+Host Controller APIs
+====================
+
+These APIs are only for use by host controller drivers, most of which
+implement standard register interfaces such as XHCI, EHCI, OHCI, or UHCI. UHCI
+was one of the first interfaces, designed by Intel and also used by VIA;
+it doesn't do much in hardware. OHCI was designed later, to have the
+hardware do more work (bigger transfers, tracking protocol state, and so
+on). EHCI was designed with USB 2.0; its design has features that
+resemble OHCI (hardware does much more work) as well as UHCI (some parts
+of ISO support, TD list processing). XHCI was designed with USB 3.0. It
+continues to shift support for functionality into hardware.
+
+There are host controllers other than the "big three", although most PCI
+based controllers (and a few non-PCI based ones) use one of those
+interfaces. Not all host controllers use DMA; some use PIO, and there is
+also a simulator and a virtual host controller to pipe USB over the network.
+
+The same basic APIs are available to drivers for all those controllers.
+For historical reasons they are in two layers: :c:type:`struct
+usb_bus <usb_bus>` is a rather thin layer that became available
+in the 2.2 kernels, while :c:type:`struct usb_hcd <usb_hcd>`
+is a more featureful layer
+that lets HCDs share common code, to shrink driver size and
+significantly reduce hcd-specific behaviors.
+
+.. kernel-doc:: drivers/usb/core/hcd.c
+ :export:
+
+.. kernel-doc:: drivers/usb/core/hcd-pci.c
+ :export:
+
+.. kernel-doc:: drivers/usb/core/buffer.c
+ :internal:
+
+The USB Filesystem (usbfs)
+==========================
+
+This chapter presents the Linux *usbfs*. You may prefer to avoid writing
+new kernel code for your USB driver; that's the problem that usbfs set
+out to solve. User mode device drivers are usually packaged as
+applications or libraries, and may use usbfs through some programming
+library that wraps it. Such libraries include
+`libusb <http://libusb.sourceforge.net>`__ for C/C++, and
+`jUSB <http://jUSB.sourceforge.net>`__ for Java.
+
+ **Note**
+
+ This particular documentation is incomplete, especially with respect
+ to the asynchronous mode. As of kernel 2.5.66 the code and this
+ (new) documentation need to be cross-reviewed.
+
+Configure usbfs into Linux kernels by enabling the *USB filesystem*
+option (CONFIG_USB_DEVICEFS), and you get basic support for user mode
+USB device drivers. Until relatively recently it was often (confusingly)
+called *usbdevfs* although it wasn't solving what *devfs* was. Every USB
+device will appear in usbfs, regardless of whether or not it has a
+kernel driver.
+
+What files are in "usbfs"?
+--------------------------
+
+Conventionally mounted at ``/proc/bus/usb``, usbfs features include:
+
+- ``/proc/bus/usb/devices`` ... a text file showing each of the USB
+ devices on known to the kernel, and their configuration descriptors.
+ You can also poll() this to learn about new devices.
+
+- ``/proc/bus/usb/BBB/DDD`` ... magic files exposing the each device's
+ configuration descriptors, and supporting a series of ioctls for
+ making device requests, including I/O to devices. (Purely for access
+ by programs.)
+
+Each bus is given a number (BBB) based on when it was enumerated; within
+each bus, each device is given a similar number (DDD). Those BBB/DDD
+paths are not "stable" identifiers; expect them to change even if you
+always leave the devices plugged in to the same hub port. *Don't even
+think of saving these in application configuration files.* Stable
+identifiers are available, for user mode applications that want to use
+them. HID and networking devices expose these stable IDs, so that for
+example you can be sure that you told the right UPS to power down its
+second server. "usbfs" doesn't (yet) expose those IDs.
+
+Mounting and Access Control
+---------------------------
+
+There are a number of mount options for usbfs, which will be of most
+interest to you if you need to override the default access control
+policy. That policy is that only root may read or write device files
+(``/proc/bus/BBB/DDD``) although anyone may read the ``devices`` or
+``drivers`` files. I/O requests to the device also need the
+CAP_SYS_RAWIO capability,
+
+The significance of that is that by default, all user mode device
+drivers need super-user privileges. You can change modes or ownership in
+a driver setup when the device hotplugs, or maye just start the driver
+right then, as a privileged server (or some activity within one). That's
+the most secure approach for multi-user systems, but for single user
+systems ("trusted" by that user) it's more convenient just to grant
+everyone all access (using the *devmode=0666* option) so the driver can
+start whenever it's needed.
+
+The mount options for usbfs, usable in /etc/fstab or in command line
+invocations of *mount*, are:
+
+*busgid*\ =NNNNN
+ Controls the GID used for the /proc/bus/usb/BBB directories.
+ (Default: 0)
+
+*busmode*\ =MMM
+ Controls the file mode used for the /proc/bus/usb/BBB directories.
+ (Default: 0555)
+
+*busuid*\ =NNNNN
+ Controls the UID used for the /proc/bus/usb/BBB directories.
+ (Default: 0)
+
+*devgid*\ =NNNNN
+ Controls the GID used for the /proc/bus/usb/BBB/DDD files. (Default:
+ 0)
+
+*devmode*\ =MMM
+ Controls the file mode used for the /proc/bus/usb/BBB/DDD files.
+ (Default: 0644)
+
+*devuid*\ =NNNNN
+ Controls the UID used for the /proc/bus/usb/BBB/DDD files. (Default:
+ 0)
+
+*listgid*\ =NNNNN
+ Controls the GID used for the /proc/bus/usb/devices and drivers
+ files. (Default: 0)
+
+*listmode*\ =MMM
+ Controls the file mode used for the /proc/bus/usb/devices and
+ drivers files. (Default: 0444)
+
+*listuid*\ =NNNNN
+ Controls the UID used for the /proc/bus/usb/devices and drivers
+ files. (Default: 0)
+
+Note that many Linux distributions hard-wire the mount options for usbfs
+in their init scripts, such as ``/etc/rc.d/rc.sysinit``, rather than
+making it easy to set this per-system policy in ``/etc/fstab``.
+
+/proc/bus/usb/devices
+---------------------
+
+This file is handy for status viewing tools in user mode, which can scan
+the text format and ignore most of it. More detailed device status
+(including class and vendor status) is available from device-specific
+files. For information about the current format of this file, see the
+``Documentation/usb/proc_usb_info.txt`` file in your Linux kernel
+sources.
+
+This file, in combination with the poll() system call, can also be used
+to detect when devices are added or removed:
+
+::
+
+ int fd;
+ struct pollfd pfd;
+
+ fd = open("/proc/bus/usb/devices", O_RDONLY);
+ pfd = { fd, POLLIN, 0 };
+ for (;;) {
+ /* The first time through, this call will return immediately. */
+ poll(&pfd, 1, -1);
+
+ /* To see what's changed, compare the file's previous and current
+ contents or scan the filesystem. (Scanning is more precise.) */
+ }
+
+Note that this behavior is intended to be used for informational and
+debug purposes. It would be more appropriate to use programs such as
+udev or HAL to initialize a device or start a user-mode helper program,
+for instance.
+
+/proc/bus/usb/BBB/DDD
+---------------------
+
+Use these files in one of these basic ways:
+
+*They can be read,* producing first the device descriptor (18 bytes) and
+then the descriptors for the current configuration. See the USB 2.0 spec
+for details about those binary data formats. You'll need to convert most
+multibyte values from little endian format to your native host byte
+order, although a few of the fields in the device descriptor (both of
+the BCD-encoded fields, and the vendor and product IDs) will be
+byteswapped for you. Note that configuration descriptors include
+descriptors for interfaces, altsettings, endpoints, and maybe additional
+class descriptors.
+
+*Perform USB operations* using *ioctl()* requests to make endpoint I/O
+requests (synchronously or asynchronously) or manage the device. These
+requests need the CAP_SYS_RAWIO capability, as well as filesystem
+access permissions. Only one ioctl request can be made on one of these
+device files at a time. This means that if you are synchronously reading
+an endpoint from one thread, you won't be able to write to a different
+endpoint from another thread until the read completes. This works for
+*half duplex* protocols, but otherwise you'd use asynchronous i/o
+requests.
+
+Life Cycle of User Mode Drivers
+-------------------------------
+
+Such a driver first needs to find a device file for a device it knows
+how to handle. Maybe it was told about it because a ``/sbin/hotplug``
+event handling agent chose that driver to handle the new device. Or
+maybe it's an application that scans all the /proc/bus/usb device files,
+and ignores most devices. In either case, it should :c:func:`read()`
+all the descriptors from the device file, and check them against what it
+knows how to handle. It might just reject everything except a particular
+vendor and product ID, or need a more complex policy.
+
+Never assume there will only be one such device on the system at a time!
+If your code can't handle more than one device at a time, at least
+detect when there's more than one, and have your users choose which
+device to use.
+
+Once your user mode driver knows what device to use, it interacts with
+it in either of two styles. The simple style is to make only control
+requests; some devices don't need more complex interactions than those.
+(An example might be software using vendor-specific control requests for
+some initialization or configuration tasks, with a kernel driver for the
+rest.)
+
+More likely, you need a more complex style driver: one using non-control
+endpoints, reading or writing data and claiming exclusive use of an
+interface. *Bulk* transfers are easiest to use, but only their sibling
+*interrupt* transfers work with low speed devices. Both interrupt and
+*isochronous* transfers offer service guarantees because their bandwidth
+is reserved. Such "periodic" transfers are awkward to use through usbfs,
+unless you're using the asynchronous calls. However, interrupt transfers
+can also be used in a synchronous "one shot" style.
+
+Your user-mode driver should never need to worry about cleaning up
+request state when the device is disconnected, although it should close
+its open file descriptors as soon as it starts seeing the ENODEV errors.
+
+The ioctl() Requests
+--------------------
+
+To use these ioctls, you need to include the following headers in your
+userspace program:
+
+::
+
+ #include <linux/usb.h>
+ #include <linux/usbdevice_fs.h>
+ #include <asm/byteorder.h>
+
+The standard USB device model requests, from "Chapter 9" of the USB 2.0
+specification, are automatically included from the ``<linux/usb/ch9.h>``
+header.
+
+Unless noted otherwise, the ioctl requests described here will update
+the modification time on the usbfs file to which they are applied
+(unless they fail). A return of zero indicates success; otherwise, a
+standard USB error code is returned. (These are documented in
+``Documentation/usb/error-codes.txt`` in your kernel sources.)
+
+Each of these files multiplexes access to several I/O streams, one per
+endpoint. Each device has one control endpoint (endpoint zero) which
+supports a limited RPC style RPC access. Devices are configured by
+hub_wq (in the kernel) setting a device-wide *configuration* that
+affects things like power consumption and basic functionality. The
+endpoints are part of USB *interfaces*, which may have *altsettings*
+affecting things like which endpoints are available. Many devices only
+have a single configuration and interface, so drivers for them will
+ignore configurations and altsettings.
+
+Management/Status Requests
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A number of usbfs requests don't deal very directly with device I/O.
+They mostly relate to device management and status. These are all
+synchronous requests.
+
+USBDEVFS_CLAIMINTERFACE
+ This is used to force usbfs to claim a specific interface, which has
+ not previously been claimed by usbfs or any other kernel driver. The
+ ioctl parameter is an integer holding the number of the interface
+ (bInterfaceNumber from descriptor).
+
+ Note that if your driver doesn't claim an interface before trying to
+ use one of its endpoints, and no other driver has bound to it, then
+ the interface is automatically claimed by usbfs.
+
+ This claim will be released by a RELEASEINTERFACE ioctl, or by
+ closing the file descriptor. File modification time is not updated
+ by this request.
+
+USBDEVFS_CONNECTINFO
+ Says whether the device is lowspeed. The ioctl parameter points to a
+ structure like this:
+
+ ::
+
+ struct usbdevfs_connectinfo {
+ unsigned int devnum;
+ unsigned char slow;
+ };
+
+ File modification time is not updated by this request.
+
+ *You can't tell whether a "not slow" device is connected at high
+ speed (480 MBit/sec) or just full speed (12 MBit/sec).* You should
+ know the devnum value already, it's the DDD value of the device file
+ name.
+
+USBDEVFS_GETDRIVER
+ Returns the name of the kernel driver bound to a given interface (a
+ string). Parameter is a pointer to this structure, which is
+ modified:
+
+ ::
+
+ struct usbdevfs_getdriver {
+ unsigned int interface;
+ char driver[USBDEVFS_MAXDRIVERNAME + 1];
+ };
+
+ File modification time is not updated by this request.
+
+USBDEVFS_IOCTL
+ Passes a request from userspace through to a kernel driver that has
+ an ioctl entry in the *struct usb_driver* it registered.
+
+ ::
+
+ struct usbdevfs_ioctl {
+ int ifno;
+ int ioctl_code;
+ void *data;
+ };
+
+ /* user mode call looks like this.
+ * 'request' becomes the driver->ioctl() 'code' parameter.
+ * the size of 'param' is encoded in 'request', and that data
+ * is copied to or from the driver->ioctl() 'buf' parameter.
+ */
+ static int
+ usbdev_ioctl (int fd, int ifno, unsigned request, void *param)
+ {
+ struct usbdevfs_ioctl wrapper;
+
+ wrapper.ifno = ifno;
+ wrapper.ioctl_code = request;
+ wrapper.data = param;
+
+ return ioctl (fd, USBDEVFS_IOCTL, &wrapper);
+ }
+
+ File modification time is not updated by this request.
+
+ This request lets kernel drivers talk to user mode code through
+ filesystem operations even when they don't create a character or
+ block special device. It's also been used to do things like ask
+ devices what device special file should be used. Two pre-defined
+ ioctls are used to disconnect and reconnect kernel drivers, so that
+ user mode code can completely manage binding and configuration of
+ devices.
+
+USBDEVFS_RELEASEINTERFACE
+ This is used to release the claim usbfs made on interface, either
+ implicitly or because of a USBDEVFS_CLAIMINTERFACE call, before the
+ file descriptor is closed. The ioctl parameter is an integer holding
+ the number of the interface (bInterfaceNumber from descriptor); File
+ modification time is not updated by this request.
+
+ **Warning**
+
+ *No security check is made to ensure that the task which made
+ the claim is the one which is releasing it. This means that user
+ mode driver may interfere other ones.*
+
+USBDEVFS_RESETEP
+ Resets the data toggle value for an endpoint (bulk or interrupt) to
+ DATA0. The ioctl parameter is an integer endpoint number (1 to 15,
+ as identified in the endpoint descriptor), with USB_DIR_IN added
+ if the device's endpoint sends data to the host.
+
+ **Warning**
+
+ *Avoid using this request. It should probably be removed.* Using
+ it typically means the device and driver will lose toggle
+ synchronization. If you really lost synchronization, you likely
+ need to completely handshake with the device, using a request
+ like CLEAR_HALT or SET_INTERFACE.
+
+USBDEVFS_DROP_PRIVILEGES
+ This is used to relinquish the ability to do certain operations
+ which are considered to be privileged on a usbfs file descriptor.
+ This includes claiming arbitrary interfaces, resetting a device on
+ which there are currently claimed interfaces from other users, and
+ issuing USBDEVFS_IOCTL calls. The ioctl parameter is a 32 bit mask
+ of interfaces the user is allowed to claim on this file descriptor.
+ You may issue this ioctl more than one time to narrow said mask.
+
+Synchronous I/O Support
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Synchronous requests involve the kernel blocking until the user mode
+request completes, either by finishing successfully or by reporting an
+error. In most cases this is the simplest way to use usbfs, although as
+noted above it does prevent performing I/O to more than one endpoint at
+a time.
+
+USBDEVFS_BULK
+ Issues a bulk read or write request to the device. The ioctl
+ parameter is a pointer to this structure:
+
+ ::
+
+ struct usbdevfs_bulktransfer {
+ unsigned int ep;
+ unsigned int len;
+ unsigned int timeout; /* in milliseconds */
+ void *data;
+ };
+
+ The "ep" value identifies a bulk endpoint number (1 to 15, as
+ identified in an endpoint descriptor), masked with USB_DIR_IN when
+ referring to an endpoint which sends data to the host from the
+ device. The length of the data buffer is identified by "len"; Recent
+ kernels support requests up to about 128KBytes. *FIXME say how read
+ length is returned, and how short reads are handled.*.
+
+USBDEVFS_CLEAR_HALT
+ Clears endpoint halt (stall) and resets the endpoint toggle. This is
+ only meaningful for bulk or interrupt endpoints. The ioctl parameter
+ is an integer endpoint number (1 to 15, as identified in an endpoint
+ descriptor), masked with USB_DIR_IN when referring to an endpoint
+ which sends data to the host from the device.
+
+ Use this on bulk or interrupt endpoints which have stalled,
+ returning *-EPIPE* status to a data transfer request. Do not issue
+ the control request directly, since that could invalidate the host's
+ record of the data toggle.
+
+USBDEVFS_CONTROL
+ Issues a control request to the device. The ioctl parameter points
+ to a structure like this:
+
+ ::
+
+ struct usbdevfs_ctrltransfer {
+ __u8 bRequestType;
+ __u8 bRequest;
+ __u16 wValue;
+ __u16 wIndex;
+ __u16 wLength;
+ __u32 timeout; /* in milliseconds */
+ void *data;
+ };
+
+ The first eight bytes of this structure are the contents of the
+ SETUP packet to be sent to the device; see the USB 2.0 specification
+ for details. The bRequestType value is composed by combining a
+ USB_TYPE_\* value, a USB_DIR_\* value, and a USB_RECIP_\*
+ value (from *<linux/usb.h>*). If wLength is nonzero, it describes
+ the length of the data buffer, which is either written to the device
+ (USB_DIR_OUT) or read from the device (USB_DIR_IN).
+
+ At this writing, you can't transfer more than 4 KBytes of data to or
+ from a device; usbfs has a limit, and some host controller drivers
+ have a limit. (That's not usually a problem.) *Also* there's no way
+ to say it's not OK to get a short read back from the device.
+
+USBDEVFS_RESET
+ Does a USB level device reset. The ioctl parameter is ignored. After
+ the reset, this rebinds all device interfaces. File modification
+ time is not updated by this request.
+
+ **Warning**
+
+ *Avoid using this call* until some usbcore bugs get fixed, since
+ it does not fully synchronize device, interface, and driver (not
+ just usbfs) state.
+
+USBDEVFS_SETINTERFACE
+ Sets the alternate setting for an interface. The ioctl parameter is
+ a pointer to a structure like this:
+
+ ::
+
+ struct usbdevfs_setinterface {
+ unsigned int interface;
+ unsigned int altsetting;
+ };
+
+ File modification time is not updated by this request.
+
+ Those struct members are from some interface descriptor applying to
+ the current configuration. The interface number is the
+ bInterfaceNumber value, and the altsetting number is the
+ bAlternateSetting value. (This resets each endpoint in the
+ interface.)
+
+USBDEVFS_SETCONFIGURATION
+ Issues the :c:func:`usb_set_configuration()` call for the
+ device. The parameter is an integer holding the number of a
+ configuration (bConfigurationValue from descriptor). File
+ modification time is not updated by this request.
+
+ **Warning**
+
+ *Avoid using this call* until some usbcore bugs get fixed, since
+ it does not fully synchronize device, interface, and driver (not
+ just usbfs) state.
+
+Asynchronous I/O Support
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+As mentioned above, there are situations where it may be important to
+initiate concurrent operations from user mode code. This is particularly
+important for periodic transfers (interrupt and isochronous), but it can
+be used for other kinds of USB requests too. In such cases, the
+asynchronous requests described here are essential. Rather than
+submitting one request and having the kernel block until it completes,
+the blocking is separate.
+
+These requests are packaged into a structure that resembles the URB used
+by kernel device drivers. (No POSIX Async I/O support here, sorry.) It
+identifies the endpoint type (USBDEVFS_URB_TYPE_\*), endpoint
+(number, masked with USB_DIR_IN as appropriate), buffer and length,
+and a user "context" value serving to uniquely identify each request.
+(It's usually a pointer to per-request data.) Flags can modify requests
+(not as many as supported for kernel drivers).
+
+Each request can specify a realtime signal number (between SIGRTMIN and
+SIGRTMAX, inclusive) to request a signal be sent when the request
+completes.
+
+When usbfs returns these urbs, the status value is updated, and the
+buffer may have been modified. Except for isochronous transfers, the
+actual_length is updated to say how many bytes were transferred; if the
+USBDEVFS_URB_DISABLE_SPD flag is set ("short packets are not OK"), if
+fewer bytes were read than were requested then you get an error report.
+
+::
+
+ struct usbdevfs_iso_packet_desc {
+ unsigned int length;
+ unsigned int actual_length;
+ unsigned int status;
+ };
+
+ struct usbdevfs_urb {
+ unsigned char type;
+ unsigned char endpoint;
+ int status;
+ unsigned int flags;
+ void *buffer;
+ int buffer_length;
+ int actual_length;
+ int start_frame;
+ int number_of_packets;
+ int error_count;
+ unsigned int signr;
+ void *usercontext;
+ struct usbdevfs_iso_packet_desc iso_frame_desc[];
+ };
+
+For these asynchronous requests, the file modification time reflects
+when the request was initiated. This contrasts with their use with the
+synchronous requests, where it reflects when requests complete.
+
+USBDEVFS_DISCARDURB
+ *TBS* File modification time is not updated by this request.
+
+USBDEVFS_DISCSIGNAL
+ *TBS* File modification time is not updated by this request.
+
+USBDEVFS_REAPURB
+ *TBS* File modification time is not updated by this request.
+
+USBDEVFS_REAPURBNDELAY
+ *TBS* File modification time is not updated by this request.
+
+USBDEVFS_SUBMITURB
+ *TBS*
diff --git a/Documentation/vme_api.txt b/Documentation/driver-api/vme.rst
index 9000655..89776fb 100644
--- a/Documentation/vme_api.txt
+++ b/Documentation/driver-api/vme.rst
@@ -1,13 +1,15 @@
- VME Device Driver API
- =====================
+VME Device Drivers
+==================
Driver registration
-===================
+-------------------
As with other subsystems within the Linux kernel, VME device drivers register
with the VME subsystem, typically called from the devices init routine. This is
achieved via a call to the following function:
+.. code-block:: c
+
int vme_register_driver (struct vme_driver *driver, unsigned int ndevs);
If driver registration is successful this function returns zero, if an error
@@ -17,6 +19,8 @@ A pointer to a structure of type 'vme_driver' must be provided to the
registration function. Along with ndevs, which is the number of devices your
driver is able to support. The structure is as follows:
+.. code-block:: c
+
struct vme_driver {
struct list_head node;
const char *name;
@@ -38,6 +42,8 @@ with the driver. The match function should return 1 if a device should be
probed and 0 otherwise. This example match function (from vme_user.c) limits
the number of devices probed to one:
+.. code-block:: c
+
#define USER_BUS_MAX 1
...
static int vme_user_match(struct vme_dev *vdev)
@@ -51,6 +57,8 @@ The '.probe' element should contain a pointer to the probe routine. The
probe routine is passed a 'struct vme_dev' pointer as an argument. The
'struct vme_dev' structure looks like the following:
+.. code-block:: c
+
struct vme_dev {
int num;
struct vme_bridge *bridge;
@@ -66,11 +74,13 @@ dev->bridge->num.
A function is also provided to unregister the driver from the VME core and is
usually called from the device driver's exit routine:
+.. code-block:: c
+
void vme_unregister_driver (struct vme_driver *driver);
Resource management
-===================
+-------------------
Once a driver has registered with the VME core the provided match routine will
be called the number of times specified during the registration. If a match
@@ -86,6 +96,8 @@ specific window or DMA channel (which may be used by a different driver) this
driver allows a resource to be assigned based on the required attributes of the
driver in question:
+.. code-block:: c
+
struct vme_resource * vme_master_request(struct vme_dev *dev,
u32 aspace, u32 cycle, u32 width);
@@ -112,6 +124,8 @@ Functions are also provided to free window allocations once they are no longer
required. These functions should be passed the pointer to the resource provided
during resource allocation:
+.. code-block:: c
+
void vme_master_free(struct vme_resource *res);
void vme_slave_free(struct vme_resource *res);
@@ -120,7 +134,7 @@ during resource allocation:
Master windows
-==============
+--------------
Master windows provide access from the local processor[s] out onto the VME bus.
The number of windows available and the available access modes is dependent on
@@ -128,11 +142,13 @@ the underlying chipset. A window must be configured before it can be used.
Master window configuration
----------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once a master window has been assigned the following functions can be used to
configure it and retrieve the current settings:
+.. code-block:: c
+
int vme_master_set (struct vme_resource *res, int enabled,
unsigned long long base, unsigned long long size, u32 aspace,
u32 cycle, u32 width);
@@ -149,11 +165,13 @@ These functions return 0 on success or an error code should the call fail.
Master window access
---------------------
+~~~~~~~~~~~~~~~~~~~~
The following functions can be used to read from and write to configured master
windows. These functions return the number of bytes copied:
+.. code-block:: c
+
ssize_t vme_master_read(struct vme_resource *res, void *buf,
size_t count, loff_t offset);
@@ -164,6 +182,8 @@ In addition to simple reads and writes, a function is provided to do a
read-modify-write transaction. This function returns the original value of the
VME bus location :
+.. code-block:: c
+
unsigned int vme_master_rmw (struct vme_resource *res,
unsigned int mask, unsigned int compare, unsigned int swap,
loff_t offset);
@@ -175,12 +195,14 @@ the value of swap is written the specified offset.
Parts of a VME window can be mapped into user space memory using the following
function:
+.. code-block:: c
+
int vme_master_mmap(struct vme_resource *resource,
struct vm_area_struct *vma)
Slave windows
-=============
+-------------
Slave windows provide devices on the VME bus access into mapped portions of the
local memory. The number of windows available and the access modes that can be
@@ -189,11 +211,13 @@ it can be used.
Slave window configuration
---------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~
Once a slave window has been assigned the following functions can be used to
configure it and retrieve the current settings:
+.. code-block:: c
+
int vme_slave_set (struct vme_resource *res, int enabled,
unsigned long long base, unsigned long long size,
dma_addr_t mem, u32 aspace, u32 cycle);
@@ -210,13 +234,15 @@ These functions return 0 on success or an error code should the call fail.
Slave window buffer allocation
-------------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions are provided to allow the user to allocate and free a contiguous
buffers which will be accessible by the VME bridge. These functions do not have
to be used, other methods can be used to allocate a buffer, though care must be
taken to ensure that they are contiguous and accessible by the VME bridge:
+.. code-block:: c
+
void * vme_alloc_consistent(struct vme_resource *res, size_t size,
dma_addr_t *mem);
@@ -225,14 +251,14 @@ taken to ensure that they are contiguous and accessible by the VME bridge:
Slave window access
--------------------
+~~~~~~~~~~~~~~~~~~~
Slave windows map local memory onto the VME bus, the standard methods for
accessing memory should be used.
DMA channels
-============
+------------
The VME DMA transfer provides the ability to run link-list DMA transfers. The
API introduces the concept of DMA lists. Each DMA list is a link-list which can
@@ -241,29 +267,35 @@ executed, reused and destroyed.
List Management
----------------
+~~~~~~~~~~~~~~~
The following functions are provided to create and destroy DMA lists. Execution
of a list will not automatically destroy the list, thus enabling a list to be
reused for repetitive tasks:
+.. code-block:: c
+
struct vme_dma_list *vme_new_dma_list(struct vme_resource *res);
int vme_dma_list_free(struct vme_dma_list *list);
List Population
----------------
+~~~~~~~~~~~~~~~
An item can be added to a list using the following function ( the source and
destination attributes need to be created before calling this function, this is
covered under "Transfer Attributes"):
+.. code-block:: c
+
int vme_dma_list_add(struct vme_dma_list *list,
struct vme_dma_attr *src, struct vme_dma_attr *dest,
size_t count);
-NOTE: The detailed attributes of the transfers source and destination
+.. note::
+
+ The detailed attributes of the transfers source and destination
are not checked until an entry is added to a DMA list, the request
for a DMA channel purely checks the directions in which the
controller is expected to transfer data. As a result it is
@@ -271,7 +303,7 @@ NOTE: The detailed attributes of the transfers source and destination
source or destination is in an unsupported VME address space.
Transfer Attributes
--------------------
+~~~~~~~~~~~~~~~~~~~
The attributes for the source and destination are handled separately from adding
an item to a list. This is due to the diverse attributes required for each type
@@ -280,33 +312,43 @@ and pattern sources and destinations (where appropriate):
Pattern source:
+.. code-block:: c
+
struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type);
PCI source or destination:
+.. code-block:: c
+
struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t mem);
VME source or destination:
+.. code-block:: c
+
struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long base,
u32 aspace, u32 cycle, u32 width);
The following function should be used to free an attribute:
+.. code-block:: c
+
void vme_dma_free_attribute(struct vme_dma_attr *attr);
List Execution
---------------
+~~~~~~~~~~~~~~
The following function queues a list for execution. The function will return
once the list has been executed:
+.. code-block:: c
+
int vme_dma_list_exec(struct vme_dma_list *list);
Interrupts
-==========
+----------
The VME API provides functions to attach and detach callbacks to specific VME
level and status ID combinations and for the generation of VME interrupts with
@@ -314,13 +356,15 @@ specific VME level and status IDs.
Attaching Interrupt Handlers
-----------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following functions can be used to attach and free a specific VME level and
status ID combination. Any given combination can only be assigned a single
callback function. A void pointer parameter is provided, the value of which is
passed to the callback function, the use of this pointer is user undefined:
+.. code-block:: c
+
int vme_irq_request(struct vme_dev *dev, int level, int statid,
void (*callback)(int, int, void *), void *priv);
@@ -329,31 +373,37 @@ passed to the callback function, the use of this pointer is user undefined:
The callback parameters are as follows. Care must be taken in writing a callback
function, callback functions run in interrupt context:
+.. code-block:: c
+
void callback(int level, int statid, void *priv);
Interrupt Generation
---------------------
+~~~~~~~~~~~~~~~~~~~~
The following function can be used to generate a VME interrupt at a given VME
level and VME status ID:
+.. code-block:: c
+
int vme_irq_generate(struct vme_dev *dev, int level, int statid);
Location monitors
-=================
+-----------------
The VME API provides the following functionality to configure the location
monitor.
Location Monitor Management
----------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following functions are provided to request the use of a block of location
monitors and to free them after they are no longer required:
+.. code-block:: c
+
struct vme_resource * vme_lm_request(struct vme_dev *dev);
void vme_lm_free(struct vme_resource * res);
@@ -362,15 +412,19 @@ Each block may provide a number of location monitors, monitoring adjacent
locations. The following function can be used to determine how many locations
are provided:
+.. code-block:: c
+
int vme_lm_count(struct vme_resource * res);
Location Monitor Configuration
-------------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once a bank of location monitors has been allocated, the following functions
are provided to configure the location and mode of the location monitor:
+.. code-block:: c
+
int vme_lm_set(struct vme_resource *res, unsigned long long base,
u32 aspace, u32 cycle);
@@ -379,12 +433,14 @@ are provided to configure the location and mode of the location monitor:
Location Monitor Use
---------------------
+~~~~~~~~~~~~~~~~~~~~
The following functions allow a callback to be attached and detached from each
location monitor location. Each location monitor can monitor a number of
adjacent locations:
+.. code-block:: c
+
int vme_lm_attach(struct vme_resource *res, int num,
void (*callback)(void *));
@@ -392,22 +448,27 @@ adjacent locations:
The callback function is declared as follows.
+.. code-block:: c
+
void callback(void *data);
Slot Detection
-==============
+--------------
This function returns the slot ID of the provided bridge.
+.. code-block:: c
+
int vme_slot_num(struct vme_dev *dev);
Bus Detection
-=============
+-------------
This function returns the bus ID of the provided bridge.
- int vme_bus_num(struct vme_dev *dev);
+.. code-block:: c
+ int vme_bus_num(struct vme_dev *dev);
diff --git a/Documentation/dynamic-debug-howto.txt b/Documentation/dynamic-debug-howto.txt
deleted file mode 100644
index 9417871..0000000
--- a/Documentation/dynamic-debug-howto.txt
+++ /dev/null
@@ -1,340 +0,0 @@
-
-Introduction
-============
-
-This document describes how to use the dynamic debug (dyndbg) feature.
-
-Dynamic debug is designed to allow you to dynamically enable/disable
-kernel code to obtain additional kernel information. Currently, if
-CONFIG_DYNAMIC_DEBUG is set, then all pr_debug()/dev_dbg() and
-print_hex_dump_debug()/print_hex_dump_bytes() calls can be dynamically
-enabled per-callsite.
-
-If CONFIG_DYNAMIC_DEBUG is not set, print_hex_dump_debug() is just
-shortcut for print_hex_dump(KERN_DEBUG).
-
-For print_hex_dump_debug()/print_hex_dump_bytes(), format string is
-its 'prefix_str' argument, if it is constant string; or "hexdump"
-in case 'prefix_str' is build dynamically.
-
-Dynamic debug has even more useful features:
-
- * Simple query language allows turning on and off debugging
- statements by matching any combination of 0 or 1 of:
-
- - source filename
- - function name
- - line number (including ranges of line numbers)
- - module name
- - format string
-
- * Provides a debugfs control file: <debugfs>/dynamic_debug/control
- which can be read to display the complete list of known debug
- statements, to help guide you
-
-Controlling dynamic debug Behaviour
-===================================
-
-The behaviour of pr_debug()/dev_dbg()s are controlled via writing to a
-control file in the 'debugfs' filesystem. Thus, you must first mount
-the debugfs filesystem, in order to make use of this feature.
-Subsequently, we refer to the control file as:
-<debugfs>/dynamic_debug/control. For example, if you want to enable
-printing from source file 'svcsock.c', line 1603 you simply do:
-
-nullarbor:~ # echo 'file svcsock.c line 1603 +p' >
- <debugfs>/dynamic_debug/control
-
-If you make a mistake with the syntax, the write will fail thus:
-
-nullarbor:~ # echo 'file svcsock.c wtf 1 +p' >
- <debugfs>/dynamic_debug/control
--bash: echo: write error: Invalid argument
-
-Viewing Dynamic Debug Behaviour
-===========================
-
-You can view the currently configured behaviour of all the debug
-statements via:
-
-nullarbor:~ # cat <debugfs>/dynamic_debug/control
-# filename:lineno [module]function flags format
-/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:323 [svcxprt_rdma]svc_rdma_cleanup =_ "SVCRDMA Module Removed, deregister RPC RDMA transport\012"
-/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:341 [svcxprt_rdma]svc_rdma_init =_ "\011max_inline : %d\012"
-/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:340 [svcxprt_rdma]svc_rdma_init =_ "\011sq_depth : %d\012"
-/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:338 [svcxprt_rdma]svc_rdma_init =_ "\011max_requests : %d\012"
-...
-
-
-You can also apply standard Unix text manipulation filters to this
-data, e.g.
-
-nullarbor:~ # grep -i rdma <debugfs>/dynamic_debug/control | wc -l
-62
-
-nullarbor:~ # grep -i tcp <debugfs>/dynamic_debug/control | wc -l
-42
-
-The third column shows the currently enabled flags for each debug
-statement callsite (see below for definitions of the flags). The
-default value, with no flags enabled, is "=_". So you can view all
-the debug statement callsites with any non-default flags:
-
-nullarbor:~ # awk '$3 != "=_"' <debugfs>/dynamic_debug/control
-# filename:lineno [module]function flags format
-/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c:1603 [sunrpc]svc_send p "svc_process: st_sendto returned %d\012"
-
-
-Command Language Reference
-==========================
-
-At the lexical level, a command comprises a sequence of words separated
-by spaces or tabs. So these are all equivalent:
-
-nullarbor:~ # echo -c 'file svcsock.c line 1603 +p' >
- <debugfs>/dynamic_debug/control
-nullarbor:~ # echo -c ' file svcsock.c line 1603 +p ' >
- <debugfs>/dynamic_debug/control
-nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
- <debugfs>/dynamic_debug/control
-
-Command submissions are bounded by a write() system call.
-Multiple commands can be written together, separated by ';' or '\n'.
-
- ~# echo "func pnpacpi_get_resources +p; func pnp_assign_mem +p" \
- > <debugfs>/dynamic_debug/control
-
-If your query set is big, you can batch them too:
-
- ~# cat query-batch-file > <debugfs>/dynamic_debug/control
-
-A another way is to use wildcard. The match rule support '*' (matches
-zero or more characters) and '?' (matches exactly one character).For
-example, you can match all usb drivers:
-
- ~# echo "file drivers/usb/* +p" > <debugfs>/dynamic_debug/control
-
-At the syntactical level, a command comprises a sequence of match
-specifications, followed by a flags change specification.
-
-command ::= match-spec* flags-spec
-
-The match-spec's are used to choose a subset of the known pr_debug()
-callsites to which to apply the flags-spec. Think of them as a query
-with implicit ANDs between each pair. Note that an empty list of
-match-specs will select all debug statement callsites.
-
-A match specification comprises a keyword, which controls the
-attribute of the callsite to be compared, and a value to compare
-against. Possible keywords are:
-
-match-spec ::= 'func' string |
- 'file' string |
- 'module' string |
- 'format' string |
- 'line' line-range
-
-line-range ::= lineno |
- '-'lineno |
- lineno'-' |
- lineno'-'lineno
-// Note: line-range cannot contain space, e.g.
-// "1-30" is valid range but "1 - 30" is not.
-
-lineno ::= unsigned-int
-
-The meanings of each keyword are:
-
-func
- The given string is compared against the function name
- of each callsite. Example:
-
- func svc_tcp_accept
-
-file
- The given string is compared against either the full pathname, the
- src-root relative pathname, or the basename of the source file of
- each callsite. Examples:
-
- file svcsock.c
- file kernel/freezer.c
- file /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c
-
-module
- The given string is compared against the module name
- of each callsite. The module name is the string as
- seen in "lsmod", i.e. without the directory or the .ko
- suffix and with '-' changed to '_'. Examples:
-
- module sunrpc
- module nfsd
-
-format
- The given string is searched for in the dynamic debug format
- string. Note that the string does not need to match the
- entire format, only some part. Whitespace and other
- special characters can be escaped using C octal character
- escape \ooo notation, e.g. the space character is \040.
- Alternatively, the string can be enclosed in double quote
- characters (") or single quote characters (').
- Examples:
-
- format svcrdma: // many of the NFS/RDMA server pr_debugs
- format readahead // some pr_debugs in the readahead cache
- format nfsd:\040SETATTR // one way to match a format with whitespace
- format "nfsd: SETATTR" // a neater way to match a format with whitespace
- format 'nfsd: SETATTR' // yet another way to match a format with whitespace
-
-line
- The given line number or range of line numbers is compared
- against the line number of each pr_debug() callsite. A single
- line number matches the callsite line number exactly. A
- range of line numbers matches any callsite between the first
- and last line number inclusive. An empty first number means
- the first line in the file, an empty line number means the
- last number in the file. Examples:
-
- line 1603 // exactly line 1603
- line 1600-1605 // the six lines from line 1600 to line 1605
- line -1605 // the 1605 lines from line 1 to line 1605
- line 1600- // all lines from line 1600 to the end of the file
-
-The flags specification comprises a change operation followed
-by one or more flag characters. The change operation is one
-of the characters:
-
- - remove the given flags
- + add the given flags
- = set the flags to the given flags
-
-The flags are:
-
- p enables the pr_debug() callsite.
- f Include the function name in the printed message
- l Include line number in the printed message
- m Include module name in the printed message
- t Include thread ID in messages not generated from interrupt context
- _ No flags are set. (Or'd with others on input)
-
-For print_hex_dump_debug() and print_hex_dump_bytes(), only 'p' flag
-have meaning, other flags ignored.
-
-For display, the flags are preceded by '='
-(mnemonic: what the flags are currently equal to).
-
-Note the regexp ^[-+=][flmpt_]+$ matches a flags specification.
-To clear all flags at once, use "=_" or "-flmpt".
-
-
-Debug messages during Boot Process
-==================================
-
-To activate debug messages for core code and built-in modules during
-the boot process, even before userspace and debugfs exists, use
-dyndbg="QUERY", module.dyndbg="QUERY", or ddebug_query="QUERY"
-(ddebug_query is obsoleted by dyndbg, and deprecated). QUERY follows
-the syntax described above, but must not exceed 1023 characters. Your
-bootloader may impose lower limits.
-
-These dyndbg params are processed just after the ddebug tables are
-processed, as part of the arch_initcall. Thus you can enable debug
-messages in all code run after this arch_initcall via this boot
-parameter.
-
-On an x86 system for example ACPI enablement is a subsys_initcall and
- dyndbg="file ec.c +p"
-will show early Embedded Controller transactions during ACPI setup if
-your machine (typically a laptop) has an Embedded Controller.
-PCI (or other devices) initialization also is a hot candidate for using
-this boot parameter for debugging purposes.
-
-If foo module is not built-in, foo.dyndbg will still be processed at
-boot time, without effect, but will be reprocessed when module is
-loaded later. dyndbg_query= and bare dyndbg= are only processed at
-boot.
-
-
-Debug Messages at Module Initialization Time
-============================================
-
-When "modprobe foo" is called, modprobe scans /proc/cmdline for
-foo.params, strips "foo.", and passes them to the kernel along with
-params given in modprobe args or /etc/modprob.d/*.conf files,
-in the following order:
-
-1. # parameters given via /etc/modprobe.d/*.conf
- options foo dyndbg=+pt
- options foo dyndbg # defaults to +p
-
-2. # foo.dyndbg as given in boot args, "foo." is stripped and passed
- foo.dyndbg=" func bar +p; func buz +mp"
-
-3. # args to modprobe
- modprobe foo dyndbg==pmf # override previous settings
-
-These dyndbg queries are applied in order, with last having final say.
-This allows boot args to override or modify those from /etc/modprobe.d
-(sensible, since 1 is system wide, 2 is kernel or boot specific), and
-modprobe args to override both.
-
-In the foo.dyndbg="QUERY" form, the query must exclude "module foo".
-"foo" is extracted from the param-name, and applied to each query in
-"QUERY", and only 1 match-spec of each type is allowed.
-
-The dyndbg option is a "fake" module parameter, which means:
-
-- modules do not need to define it explicitly
-- every module gets it tacitly, whether they use pr_debug or not
-- it doesn't appear in /sys/module/$module/parameters/
- To see it, grep the control file, or inspect /proc/cmdline.
-
-For CONFIG_DYNAMIC_DEBUG kernels, any settings given at boot-time (or
-enabled by -DDEBUG flag during compilation) can be disabled later via
-the sysfs interface if the debug messages are no longer needed:
-
- echo "module module_name -p" > <debugfs>/dynamic_debug/control
-
-Examples
-========
-
-// enable the message at line 1603 of file svcsock.c
-nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
- <debugfs>/dynamic_debug/control
-
-// enable all the messages in file svcsock.c
-nullarbor:~ # echo -n 'file svcsock.c +p' >
- <debugfs>/dynamic_debug/control
-
-// enable all the messages in the NFS server module
-nullarbor:~ # echo -n 'module nfsd +p' >
- <debugfs>/dynamic_debug/control
-
-// enable all 12 messages in the function svc_process()
-nullarbor:~ # echo -n 'func svc_process +p' >
- <debugfs>/dynamic_debug/control
-
-// disable all 12 messages in the function svc_process()
-nullarbor:~ # echo -n 'func svc_process -p' >
- <debugfs>/dynamic_debug/control
-
-// enable messages for NFS calls READ, READLINK, READDIR and READDIR+.
-nullarbor:~ # echo -n 'format "nfsd: READ" +p' >
- <debugfs>/dynamic_debug/control
-
-// enable messages in files of which the paths include string "usb"
-nullarbor:~ # echo -n '*usb* +p' > <debugfs>/dynamic_debug/control
-
-// enable all messages
-nullarbor:~ # echo -n '+p' > <debugfs>/dynamic_debug/control
-
-// add module, function to all enabled messages
-nullarbor:~ # echo -n '+mf' > <debugfs>/dynamic_debug/control
-
-// boot-args example, with newlines and comments for readability
-Kernel command line: ...
- // see whats going on in dyndbg=value processing
- dynamic_debug.verbose=1
- // enable pr_debugs in 2 builtins, #cmt is stripped
- dyndbg="module params +p #cmt ; module sys +p"
- // enable pr_debugs in 2 functions in a module loaded later
- pc87360.dyndbg="func pc87360_init_device +p; func pc87360_find +p"
diff --git a/Documentation/filesystems/locks.txt b/Documentation/filesystems/locks.txt
index 2cf8108..5368690 100644
--- a/Documentation/filesystems/locks.txt
+++ b/Documentation/filesystems/locks.txt
@@ -19,7 +19,7 @@ forever.
This should not cause problems for anybody, since everybody using a
2.1.x kernel should have updated their C library to a suitable version
-anyway (see the file "Documentation/Changes".)
+anyway (see the file "Documentation/process/changes.rst".)
1.2 Allow Mixed Locks Again
---------------------------
diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt
index 0b2883b..5efae00 100644
--- a/Documentation/filesystems/nfs/nfsroot.txt
+++ b/Documentation/filesystems/nfs/nfsroot.txt
@@ -11,7 +11,7 @@ Updated 2006 by Horms <horms@verge.net.au>
In order to use a diskless system, such as an X-terminal or printer server
for example, it is necessary for the root filesystem to be present on a
non-disk device. This may be an initramfs (see Documentation/filesystems/
-ramfs-rootfs-initramfs.txt), a ramdisk (see Documentation/initrd.txt) or a
+ramfs-rootfs-initramfs.txt), a ramdisk (see Documentation/admin-guide/initrd.rst) or a
filesystem mounted via NFS. The following text describes on how to use NFS
for the root filesystem. For the rest of this text 'client' means the
diskless system, and 'server' means the NFS server.
@@ -284,7 +284,7 @@ They depend on various facilities being available:
"kernel <relative-path-below /tftpboot>". The nfsroot parameters
are passed to the kernel by adding them to the "append" line.
It is common to use serial console in conjunction with pxeliunx,
- see Documentation/serial-console.txt for more information.
+ see Documentation/admin-guide/serial-console.rst for more information.
For more information on isolinux, including how to create bootdisks
for prebuilt kernels, see http://syslinux.zytor.com/
diff --git a/Documentation/frv/booting.txt b/Documentation/frv/booting.txt
index 9bdf4b4..cd9dc1d 100644
--- a/Documentation/frv/booting.txt
+++ b/Documentation/frv/booting.txt
@@ -119,7 +119,7 @@ separated by spaces:
253:0 Device with major 253 and minor 0
Authoritative information can be found in
- "Documentation/kernel-parameters.txt".
+ "Documentation/admin-guide/kernel-parameters.rst".
(*) rw
diff --git a/Documentation/gpu/conf.py b/Documentation/gpu/conf.py
index 6314d17..1757b04 100644
--- a/Documentation/gpu/conf.py
+++ b/Documentation/gpu/conf.py
@@ -3,3 +3,8 @@
project = "Linux GPU Driver Developer's Guide"
tags.add("subproject")
+
+latex_documents = [
+ ('index', 'gpu.tex', project,
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/gpu/drm-kms.rst b/Documentation/gpu/drm-kms.rst
index 53b872c..38af5d1 100644
--- a/Documentation/gpu/drm-kms.rst
+++ b/Documentation/gpu/drm-kms.rst
@@ -215,7 +215,7 @@ Connectors state change detection must be cleanup up with a call to
Output discovery and initialization example
-------------------------------------------
-::
+.. code-block:: c
void intel_crt_init(struct drm_device *dev)
{
diff --git a/Documentation/gpu/drm-mm.rst b/Documentation/gpu/drm-mm.rst
index bca8085..cb5daff 100644
--- a/Documentation/gpu/drm-mm.rst
+++ b/Documentation/gpu/drm-mm.rst
@@ -45,7 +45,7 @@ the radeon_ttm.c file for an example of usage.
The ttm_global_reference structure is made up of several fields:
-::
+.. code-block:: c
struct ttm_global_reference {
enum ttm_global_types global_type;
diff --git a/Documentation/gpu/index.rst b/Documentation/gpu/index.rst
index be0dafc..367d7c3 100644
--- a/Documentation/gpu/index.rst
+++ b/Documentation/gpu/index.rst
@@ -14,7 +14,7 @@ Linux GPU Driver Developer's Guide
vga-switcheroo
vgaarbiter
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/hwmon/submitting-patches b/Documentation/hwmon/submitting-patches
index 57f6030..f88221b 100644
--- a/Documentation/hwmon/submitting-patches
+++ b/Documentation/hwmon/submitting-patches
@@ -10,10 +10,10 @@ increase the chances of your change being accepted.
----------
* It should be unnecessary to mention, but please read and follow
- Documentation/SubmitChecklist
- Documentation/SubmittingDrivers
- Documentation/SubmittingPatches
- Documentation/CodingStyle
+ Documentation/process/submit-checklist.rst
+ Documentation/process/submitting-drivers.rst
+ Documentation/process/submitting-patches.rst
+ Documentation/process/coding-style.rst
* Please run your patch through 'checkpatch --strict'. There should be no
errors, no warnings, and few if any check messages. If there are any
diff --git a/Documentation/index.rst b/Documentation/index.rst
index 115c551..286d92b 100644
--- a/Documentation/index.rst
+++ b/Documentation/index.rst
@@ -3,23 +3,71 @@
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
-Welcome to The Linux Kernel's documentation!
-============================================
+Welcome to The Linux Kernel's documentation
+===========================================
-Contents:
+This is the top level of the kernel's documentation tree. Kernel
+documentation, like the kernel itself, is very much a work in progress;
+that is especially true as we work to integrate our many scattered
+documents into a coherent whole. Please note that improvements to the
+documentation are welcome; join the linux-doc list at vger.kernel.org if
+you want to help out.
+
+User-oriented documentation
+---------------------------
+
+The following manuals are written for *users* of the kernel — those who are
+trying to get it to work optimally on a given system.
.. toctree::
:maxdepth: 2
+ admin-guide/index
+
+Introduction to kernel development
+----------------------------------
+
+These manuals contain overall information about how to develop the kernel.
+The kernel community is quite large, with thousands of developers
+contributing over the course of a year. As with any large community,
+knowing how things are done will make the process of getting your changes
+merged much easier.
+
+.. toctree::
+ :maxdepth: 2
+
+ process/index
+ dev-tools/index
kernel-documentation
- development-process/index
- dev-tools/tools
+
+Kernel API documentation
+------------------------
+
+These books get into the details of how specific kernel subsystems work
+from the point of view of a kernel developer. Much of the information here
+is taken directly from the kernel source, with supplemental material added
+as needed (or at least as we managed to add it — probably *not* all that is
+needed).
+
+.. toctree::
+ :maxdepth: 2
+
driver-api/index
+ core-api/index
media/index
gpu/index
80211/index
+ security/index
sound/index
+Korean translations
+-------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ translations/ko_KR/index
+
Indices and tables
==================
diff --git a/Documentation/isdn/README b/Documentation/isdn/README
index cfb1884..32d4e80 100644
--- a/Documentation/isdn/README
+++ b/Documentation/isdn/README
@@ -332,7 +332,7 @@ README for the ISDN-subsystem
4. Device-inodes
The major and minor numbers and their names are described in
- Documentation/devices.txt. The major numbers are:
+ Documentation/admin-guide/devices.rst. The major numbers are:
43 for the ISDN-tty's.
44 for the ISDN-callout-tty's.
diff --git a/Documentation/kernel-documentation.rst b/Documentation/kernel-documentation.rst
index 10cc7dd..c66ab93 100644
--- a/Documentation/kernel-documentation.rst
+++ b/Documentation/kernel-documentation.rst
@@ -1,6 +1,6 @@
-==========================
-Linux Kernel Documentation
-==========================
+=================================
+How to write kernel documentation
+=================================
Introduction
============
diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt
index bbc3a8b..df31e30 100644
--- a/Documentation/kernel-per-CPU-kthreads.txt
+++ b/Documentation/kernel-per-CPU-kthreads.txt
@@ -264,7 +264,7 @@ To reduce its OS jitter, do at least one of the following:
kthreads from being created in the first place.
2. Boot with "nosoftlockup=0", which will also prevent these kthreads
from being created. Other related watchdog and softlockup boot
- parameters may be found in Documentation/kernel-parameters.txt
+ parameters may be found in Documentation/admin-guide/kernel-parameters.rst
and Documentation/watchdog/watchdog-parameters.txt.
3. Echo a zero to /proc/sys/kernel/watchdog to disable the
watchdog timer.
diff --git a/Documentation/kselftest.txt b/Documentation/kselftest.txt
index 54bee77..e5c7254 100644
--- a/Documentation/kselftest.txt
+++ b/Documentation/kselftest.txt
@@ -70,6 +70,17 @@ To install selftests in an user specified location:
$ cd tools/testing/selftests
$ ./kselftest_install.sh install_dir
+Running installed selftests
+===========================
+
+Kselftest install as well as the Kselftest tarball provide a script
+named "run_kselftest.sh" to run the tests.
+
+You can simply do the following to run the installed Kselftests. Please
+note some tests will require root privileges.
+
+cd kselftest
+./run_kselftest.sh
Contributing new tests
======================
diff --git a/Documentation/lockup-watchdogs.txt b/Documentation/lockup-watchdogs.txt
index 4a6e33e..c8b8378 100644
--- a/Documentation/lockup-watchdogs.txt
+++ b/Documentation/lockup-watchdogs.txt
@@ -11,7 +11,7 @@ details), without giving other tasks a chance to run. The current
stack trace is displayed upon detection and, by default, the system
will stay locked up. Alternatively, the kernel can be configured to
panic; a sysctl, "kernel.softlockup_panic", a kernel parameter,
-"softlockup_panic" (see "Documentation/kernel-parameters.txt" for
+"softlockup_panic" (see "Documentation/admin-guide/kernel-parameters.rst" for
details), and a compile option, "BOOTPARAM_SOFTLOCKUP_PANIC", are
provided for this.
@@ -23,7 +23,7 @@ upon detection and the system will stay locked up unless the default
behavior is changed, which can be done through a sysctl,
'hardlockup_panic', a compile time knob, "BOOTPARAM_HARDLOCKUP_PANIC",
and a kernel parameter, "nmi_watchdog"
-(see "Documentation/kernel-parameters.txt" for details).
+(see "Documentation/admin-guide/kernel-parameters.rst" for details).
The panic option can be used in combination with panic_timeout (this
timeout is set through the confusingly named "kernel.panic" sysctl),
diff --git a/Documentation/m68k/kernel-options.txt b/Documentation/m68k/kernel-options.txt
index eaf32a1..79d2124 100644
--- a/Documentation/m68k/kernel-options.txt
+++ b/Documentation/m68k/kernel-options.txt
@@ -139,7 +139,7 @@ follows:
PARTUUID=00112233-4455-6677-8899-AABBCCDDEEFF/PARTNROFF=-2
Authoritative information can be found in
-"Documentation/kernel-parameters.txt".
+"Documentation/admin-guide/kernel-parameters.rst".
2.2) ro, rw
diff --git a/Documentation/magic-number.txt b/Documentation/magic-number.txt
deleted file mode 100644
index 28befed..0000000
--- a/Documentation/magic-number.txt
+++ /dev/null
@@ -1,158 +0,0 @@
-This file is a registry of magic numbers which are in use. When you
-add a magic number to a structure, you should also add it to this
-file, since it is best if the magic numbers used by various structures
-are unique.
-
-It is a *very* good idea to protect kernel data structures with magic
-numbers. This allows you to check at run time whether (a) a structure
-has been clobbered, or (b) you've passed the wrong structure to a
-routine. This last is especially useful --- particularly when you are
-passing pointers to structures via a void * pointer. The tty code,
-for example, does this frequently to pass driver-specific and line
-discipline-specific structures back and forth.
-
-The way to use magic numbers is to declare then at the beginning of
-the structure, like so:
-
-struct tty_ldisc {
- int magic;
- ...
-};
-
-Please follow this discipline when you are adding future enhancements
-to the kernel! It has saved me countless hours of debugging,
-especially in the screwy cases where an array has been overrun and
-structures following the array have been overwritten. Using this
-discipline, these cases get detected quickly and safely.
-
- Theodore Ts'o
- 31 Mar 94
-
-The magic table is current to Linux 2.1.55.
-
- Michael Chastain
- <mailto:mec@shout.net>
- 22 Sep 1997
-
-Now it should be up to date with Linux 2.1.112. Because
-we are in feature freeze time it is very unlikely that
-something will change before 2.2.x. The entries are
-sorted by number field.
-
- Krzysztof G. Baranowski
- <mailto: kgb@knm.org.pl>
- 29 Jul 1998
-
-Updated the magic table to Linux 2.5.45. Right over the feature freeze,
-but it is possible that some new magic numbers will sneak into the
-kernel before 2.6.x yet.
-
- Petr Baudis
- <pasky@ucw.cz>
- 03 Nov 2002
-
-Updated the magic table to Linux 2.5.74.
-
- Fabian Frederick
- <ffrederick@users.sourceforge.net>
- 09 Jul 2003
-
-
-Magic Name Number Structure File
-===========================================================================
-PG_MAGIC 'P' pg_{read,write}_hdr include/linux/pg.h
-CMAGIC 0x0111 user include/linux/a.out.h
-MKISS_DRIVER_MAGIC 0x04bf mkiss_channel drivers/net/mkiss.h
-HDLC_MAGIC 0x239e n_hdlc drivers/char/n_hdlc.c
-APM_BIOS_MAGIC 0x4101 apm_user arch/x86/kernel/apm_32.c
-CYCLADES_MAGIC 0x4359 cyclades_port include/linux/cyclades.h
-DB_MAGIC 0x4442 fc_info drivers/net/iph5526_novram.c
-DL_MAGIC 0x444d fc_info drivers/net/iph5526_novram.c
-FASYNC_MAGIC 0x4601 fasync_struct include/linux/fs.h
-FF_MAGIC 0x4646 fc_info drivers/net/iph5526_novram.c
-ISICOM_MAGIC 0x4d54 isi_port include/linux/isicom.h
-PTY_MAGIC 0x5001 drivers/char/pty.c
-PPP_MAGIC 0x5002 ppp include/linux/if_pppvar.h
-SERIAL_MAGIC 0x5301 async_struct include/linux/serial.h
-SSTATE_MAGIC 0x5302 serial_state include/linux/serial.h
-SLIP_MAGIC 0x5302 slip drivers/net/slip.h
-STRIP_MAGIC 0x5303 strip drivers/net/strip.c
-X25_ASY_MAGIC 0x5303 x25_asy drivers/net/x25_asy.h
-SIXPACK_MAGIC 0x5304 sixpack drivers/net/hamradio/6pack.h
-AX25_MAGIC 0x5316 ax_disp drivers/net/mkiss.h
-TTY_MAGIC 0x5401 tty_struct include/linux/tty.h
-MGSL_MAGIC 0x5401 mgsl_info drivers/char/synclink.c
-TTY_DRIVER_MAGIC 0x5402 tty_driver include/linux/tty_driver.h
-MGSLPC_MAGIC 0x5402 mgslpc_info drivers/char/pcmcia/synclink_cs.c
-TTY_LDISC_MAGIC 0x5403 tty_ldisc include/linux/tty_ldisc.h
-USB_SERIAL_MAGIC 0x6702 usb_serial drivers/usb/serial/usb-serial.h
-FULL_DUPLEX_MAGIC 0x6969 drivers/net/ethernet/dec/tulip/de2104x.c
-USB_BLUETOOTH_MAGIC 0x6d02 usb_bluetooth drivers/usb/class/bluetty.c
-RFCOMM_TTY_MAGIC 0x6d02 net/bluetooth/rfcomm/tty.c
-USB_SERIAL_PORT_MAGIC 0x7301 usb_serial_port drivers/usb/serial/usb-serial.h
-CG_MAGIC 0x00090255 ufs_cylinder_group include/linux/ufs_fs.h
-RPORT_MAGIC 0x00525001 r_port drivers/char/rocket_int.h
-LSEMAGIC 0x05091998 lse drivers/fc4/fc.c
-GDTIOCTL_MAGIC 0x06030f07 gdth_iowr_str drivers/scsi/gdth_ioctl.h
-RIEBL_MAGIC 0x09051990 drivers/net/atarilance.c
-NBD_REQUEST_MAGIC 0x12560953 nbd_request include/linux/nbd.h
-RED_MAGIC2 0x170fc2a5 (any) mm/slab.c
-BAYCOM_MAGIC 0x19730510 baycom_state drivers/net/baycom_epp.c
-ISDN_X25IFACE_MAGIC 0x1e75a2b9 isdn_x25iface_proto_data
- drivers/isdn/isdn_x25iface.h
-ECP_MAGIC 0x21504345 cdkecpsig include/linux/cdk.h
-LSOMAGIC 0x27091997 lso drivers/fc4/fc.c
-LSMAGIC 0x2a3b4d2a ls drivers/fc4/fc.c
-WANPIPE_MAGIC 0x414C4453 sdla_{dump,exec} include/linux/wanpipe.h
-CS_CARD_MAGIC 0x43525553 cs_card sound/oss/cs46xx.c
-LABELCL_MAGIC 0x4857434c labelcl_info_s include/asm/ia64/sn/labelcl.h
-ISDN_ASYNC_MAGIC 0x49344C01 modem_info include/linux/isdn.h
-CTC_ASYNC_MAGIC 0x49344C01 ctc_tty_info drivers/s390/net/ctctty.c
-ISDN_NET_MAGIC 0x49344C02 isdn_net_local_s drivers/isdn/i4l/isdn_net_lib.h
-SAVEKMSG_MAGIC2 0x4B4D5347 savekmsg arch/*/amiga/config.c
-CS_STATE_MAGIC 0x4c4f4749 cs_state sound/oss/cs46xx.c
-SLAB_C_MAGIC 0x4f17a36d kmem_cache mm/slab.c
-COW_MAGIC 0x4f4f4f4d cow_header_v1 arch/um/drivers/ubd_user.c
-I810_CARD_MAGIC 0x5072696E i810_card sound/oss/i810_audio.c
-TRIDENT_CARD_MAGIC 0x5072696E trident_card sound/oss/trident.c
-ROUTER_MAGIC 0x524d4157 wan_device [in wanrouter.h pre 3.9]
-SAVEKMSG_MAGIC1 0x53415645 savekmsg arch/*/amiga/config.c
-GDA_MAGIC 0x58464552 gda arch/mips/include/asm/sn/gda.h
-RED_MAGIC1 0x5a2cf071 (any) mm/slab.c
-EEPROM_MAGIC_VALUE 0x5ab478d2 lanai_dev drivers/atm/lanai.c
-HDLCDRV_MAGIC 0x5ac6e778 hdlcdrv_state include/linux/hdlcdrv.h
-PCXX_MAGIC 0x5c6df104 channel drivers/char/pcxx.h
-KV_MAGIC 0x5f4b565f kernel_vars_s arch/mips/include/asm/sn/klkernvars.h
-I810_STATE_MAGIC 0x63657373 i810_state sound/oss/i810_audio.c
-TRIDENT_STATE_MAGIC 0x63657373 trient_state sound/oss/trident.c
-M3_CARD_MAGIC 0x646e6f50 m3_card sound/oss/maestro3.c
-FW_HEADER_MAGIC 0x65726F66 fw_header drivers/atm/fore200e.h
-SLOT_MAGIC 0x67267321 slot drivers/hotplug/cpqphp.h
-SLOT_MAGIC 0x67267322 slot drivers/hotplug/acpiphp.h
-LO_MAGIC 0x68797548 nbd_device include/linux/nbd.h
-OPROFILE_MAGIC 0x6f70726f super_block drivers/oprofile/oprofilefs.h
-M3_STATE_MAGIC 0x734d724d m3_state sound/oss/maestro3.c
-VMALLOC_MAGIC 0x87654320 snd_alloc_track sound/core/memory.c
-KMALLOC_MAGIC 0x87654321 snd_alloc_track sound/core/memory.c
-PWC_MAGIC 0x89DC10AB pwc_device drivers/usb/media/pwc.h
-NBD_REPLY_MAGIC 0x96744668 nbd_reply include/linux/nbd.h
-ENI155_MAGIC 0xa54b872d midway_eprom drivers/atm/eni.h
-CODA_MAGIC 0xC0DAC0DA coda_file_info fs/coda/coda_fs_i.h
-DPMEM_MAGIC 0xc0ffee11 gdt_pci_sram drivers/scsi/gdth.h
-YAM_MAGIC 0xF10A7654 yam_port drivers/net/hamradio/yam.c
-CCB_MAGIC 0xf2691ad2 ccb drivers/scsi/ncr53c8xx.c
-QUEUE_MAGIC_FREE 0xf7e1c9a3 queue_entry drivers/scsi/arm/queue.c
-QUEUE_MAGIC_USED 0xf7e1cc33 queue_entry drivers/scsi/arm/queue.c
-HTB_CMAGIC 0xFEFAFEF1 htb_class net/sched/sch_htb.c
-NMI_MAGIC 0x48414d4d455201 nmi_s arch/mips/include/asm/sn/nmi.h
-
-Note that there are also defined special per-driver magic numbers in sound
-memory management. See include/sound/sndmagic.h for complete list of them. Many
-OSS sound drivers have their magic numbers constructed from the soundcard PCI
-ID - these are not listed here as well.
-
-IrDA subsystem also uses large number of own magic numbers, see
-include/net/irda/irda.h for a complete list of them.
-
-HFS is another larger user of magic numbers - you can find them in
-fs/hfs/hfs.h.
diff --git a/Documentation/media/.gitignore b/Documentation/media/.gitignore
new file mode 100644
index 0000000..a136337
--- /dev/null
+++ b/Documentation/media/.gitignore
@@ -0,0 +1 @@
+*.pdf
diff --git a/Documentation/media/Makefile b/Documentation/media/Makefile
index a7fb352..c22a30b 100644
--- a/Documentation/media/Makefile
+++ b/Documentation/media/Makefile
@@ -10,8 +10,35 @@ FILES = audio.h.rst ca.h.rst dmx.h.rst frontend.h.rst net.h.rst video.h.rst \
TARGETS := $(addprefix $(BUILDDIR)/, $(FILES))
-.PHONY: all
+IMAGES = \
+ typical_media_device.svg \
+ uapi/dvb/dvbstb.svg \
+ uapi/v4l/constraints.svg \
+ uapi/v4l/subdev-image-processing-full.svg \
+ uapi/v4l/subdev-image-processing-scaling-multi-source.svg \
+ uapi/v4l/subdev-image-processing-crop.svg \
+
+IMGTGT := $(patsubst %.png,%.pdf,$(patsubst %.svg,%.pdf,$(IMAGES)))
+IMGPDF := $(patsubst %,$(SRC_DIR)/%,$(IMGTGT))
+
+cmd = $(echo-cmd) $(cmd_$(1))
+
+quiet_cmd_genpdf = GENPDF $2
+ cmd_genpdf = convert $2 $3
+
+%.pdf: %.svg
+ @$(call cmd,genpdf,$<,$@)
+
+.PHONY: all html epub xml latex
+
all: $(BUILDDIR) ${TARGETS}
+html: all
+epub: all
+xml: all
+latex: $(IMGPDF) all
+
+clean:
+ -rm -f $(IMGTGT) 2>/dev/null
$(BUILDDIR):
$(Q)mkdir -p $@
@@ -58,4 +85,4 @@ $(BUILDDIR)/lirc.h.rst: ${UAPI}/lirc.h ${PARSER} $(SRC_DIR)/lirc.h.rst.exception
@$($(quiet)gen_rst)
cleandocs:
- -rm ${TARGETS}
+ -rm -f ${TARGETS}
diff --git a/Documentation/media/index.rst b/Documentation/media/index.rst
index e347a3e..7f8f0af 100644
--- a/Documentation/media/index.rst
+++ b/Documentation/media/index.rst
@@ -1,11 +1,6 @@
Linux Media Subsystem Documentation
===================================
-.. Sphinx 1.4.x has a definition for DUrole that doesn't work on alltt blocks
-.. raw:: latex
-
- \renewcommand*{\DUrole}[2]{ #2 }
-
Contents:
.. toctree::
diff --git a/Documentation/media/intro.rst b/Documentation/media/intro.rst
index f6086c1..8f7490c 100644
--- a/Documentation/media/intro.rst
+++ b/Documentation/media/intro.rst
@@ -13,8 +13,8 @@ A typical media device hardware is shown at :ref:`typical_media_device`.
.. _typical_media_device:
-.. figure:: media_api_files/typical_media_device.*
- :alt: typical_media_device.svg
+.. figure:: typical_media_device.*
+ :alt: typical_media_device.pdf / typical_media_device.svg
:align: center
Typical Media Device
diff --git a/Documentation/media/media_api_files/typical_media_device.pdf b/Documentation/media/media_api_files/typical_media_device.pdf
deleted file mode 100644
index d000d80..0000000
--- a/Documentation/media/media_api_files/typical_media_device.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/media_api_files/typical_media_device.svg b/Documentation/media/typical_media_device.svg
index f0c82f7..f0c82f7 100644
--- a/Documentation/media/media_api_files/typical_media_device.svg
+++ b/Documentation/media/typical_media_device.svg
diff --git a/Documentation/media/uapi/dvb/dvbstb.svg b/Documentation/media/uapi/dvb/dvbstb.svg
new file mode 100644
index 0000000..c4140fb
--- /dev/null
+++ b/Documentation/media/uapi/dvb/dvbstb.svg
@@ -0,0 +1,651 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg
+ xmlns:dc="http://purl.org/dc/elements/1.1/"
+ xmlns:cc="http://creativecommons.org/ns#"
+ xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+ xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+ version="1.2"
+ width="237.70221mm"
+ height="126.28221mm"
+ viewBox="0 0 23770.221 12628.221"
+ preserveAspectRatio="xMidYMid"
+ xml:space="preserve"
+ id="svg2"
+ inkscape:version="0.91 r13725"
+ sodipodi:docname="dvbstb.svg"
+ style="fill-rule:evenodd;stroke-width:28.22200012;stroke-linejoin:round"><metadata
+ id="metadata519"><rdf:RDF><cc:Work
+ rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
+ rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title /></cc:Work></rdf:RDF></metadata><sodipodi:namedview
+ pagecolor="#ffffff"
+ bordercolor="#666666"
+ borderopacity="1"
+ objecttolerance="10"
+ gridtolerance="10"
+ guidetolerance="10"
+ inkscape:pageopacity="0"
+ inkscape:pageshadow="2"
+ inkscape:window-width="1920"
+ inkscape:window-height="997"
+ id="namedview517"
+ showgrid="false"
+ inkscape:zoom="1.0818519"
+ inkscape:cx="411.31718"
+ inkscape:cy="274.87517"
+ inkscape:window-x="1920"
+ inkscape:window-y="30"
+ inkscape:window-maximized="1"
+ inkscape:current-layer="svg2"
+ fit-margin-top="0"
+ fit-margin-left="0"
+ fit-margin-right="0"
+ fit-margin-bottom="0" /><defs
+ class="ClipPathGroup"
+ id="defs4" /><defs
+ id="defs9" /><defs
+ id="defs90" /><defs
+ id="defs113" /><defs
+ class="TextShapeIndex"
+ id="defs124" /><defs
+ class="EmbeddedBulletChars"
+ id="defs128" /><defs
+ class="TextEmbeddedBitmaps"
+ id="defs157" /><rect
+ class="BoundingBox"
+ x="5355.1108"
+ y="13.111"
+ width="18403"
+ height="9603"
+ id="rect197"
+ style="fill:none;stroke:none" /><path
+ d="m 14556.111,9614.111 -9200,0 0,-9600 18400,0 0,9600 -9200,0 z"
+ id="path199"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 14556.111,9614.111 -9200,0 0,-9600 18400,0 0,9600 -9200,0 z"
+ id="path201"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><rect
+ class="BoundingBox"
+ x="13.111"
+ y="4013.1111"
+ width="4544"
+ height="2403"
+ id="rect206"
+ style="fill:none;stroke:none" /><path
+ d="m 2285.111,6414.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path208"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 2285.111,6414.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path210"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text212"
+ y="-4585.8892"
+ x="-2443.8889"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan214"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="1281.111"
+ y="5435.1108"
+ id="tspan216"><tspan
+ id="tspan218"
+ style="fill:#000000;stroke:none">Antena</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="6213.1108"
+ y="1813.111"
+ width="4544"
+ height="2403"
+ id="rect223"
+ style="fill:none;stroke:none" /><path
+ d="m 8485.111,4214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path225"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 8485.111,4214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path227"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text229"
+ x="-2443.8889"
+ y="-4585.8892"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan231"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="7217.1108"
+ y="3235.1111"
+ id="tspan233"><tspan
+ id="tspan235"
+ style="fill:#000000;stroke:none">Frontend</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="12113.111"
+ y="1813.111"
+ width="4544"
+ height="2403"
+ id="rect240"
+ style="fill:none;stroke:none" /><path
+ d="m 14385.111,4214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path242"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 14385.111,4214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path244"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text246"
+ x="-2443.8889"
+ y="-4585.8892"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan248"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="13944.111"
+ y="3235.1111"
+ id="tspan250"><tspan
+ id="tspan252"
+ style="fill:#000000;stroke:none">CA</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="18113.111"
+ y="1813.111"
+ width="4544"
+ height="2403"
+ id="rect257"
+ style="fill:none;stroke:none" /><path
+ d="m 20385.111,4214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path259"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 20385.111,4214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path261"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text263"
+ x="-2443.8889"
+ y="-4585.8892"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan265"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="19384.111"
+ y="3235.1111"
+ id="tspan267"><tspan
+ id="tspan269"
+ style="fill:#000000;stroke:none">Demux</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="6113.1108"
+ y="5813.1108"
+ width="4544"
+ height="2403"
+ id="rect274"
+ style="fill:none;stroke:none" /><path
+ d="m 8385.111,8214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path276"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 8385.111,8214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path278"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text280"
+ x="-2443.8889"
+ y="-4585.8892"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan282"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="7733.1108"
+ y="7235.1108"
+ id="tspan284"><tspan
+ id="tspan286"
+ style="fill:#000000;stroke:none">SEC</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="12213.111"
+ y="5813.1108"
+ width="4544"
+ height="2403"
+ id="rect291"
+ style="fill:none;stroke:none" /><path
+ d="m 14485.111,8214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path293"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 14485.111,8214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path295"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text297"
+ x="-2443.8889"
+ y="-4585.8892"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan299"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="13676.111"
+ y="7235.1108"
+ id="tspan301"><tspan
+ id="tspan303"
+ style="fill:#000000;stroke:none">Audio</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="18113.111"
+ y="5813.1108"
+ width="4544"
+ height="2403"
+ id="rect308"
+ style="fill:none;stroke:none" /><path
+ d="m 20385.111,8214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path310"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 20385.111,8214.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path312"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text314"
+ x="-2443.8889"
+ y="-4585.8892"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan316"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="19583.111"
+ y="7235.1108"
+ id="tspan318"><tspan
+ id="tspan320"
+ style="fill:#000000;stroke:none">Video</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="15213.111"
+ y="10213.111"
+ width="4544"
+ height="2403"
+ id="rect325"
+ style="fill:none;stroke:none" /><path
+ d="m 17485.111,12614.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path327"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 17485.111,12614.111 -2271,0 0,-2400 4541,0 0,2400 -2270,0 z"
+ id="path329"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><text
+ class="TextShape"
+ id="text331"
+ x="-2443.8889"
+ y="-4585.8892"><tspan
+ class="TextParagraph"
+ font-size="635px"
+ font-weight="400"
+ id="tspan333"
+ style="font-weight:400;font-size:635px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="17076.111"
+ y="11635.111"
+ id="tspan335"><tspan
+ id="tspan337"
+ style="fill:#000000;stroke:none">TV</tspan></tspan></tspan></text>
+<rect
+ class="BoundingBox"
+ x="4555.1108"
+ y="3014.1111"
+ width="1661"
+ height="2202"
+ id="rect342"
+ style="fill:none;stroke:none" /><path
+ d="m 4556.111,5214.111 1400,-1857"
+ id="path344"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 6215.111,3014.111 -391,269 240,181 151,-450 z"
+ id="path346"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /><rect
+ class="BoundingBox"
+ x="4555.1108"
+ y="5213.1108"
+ width="1561"
+ height="1802"
+ id="rect351"
+ style="fill:none;stroke:none" /><path
+ d="m 4556.111,5214.111 1277,1475"
+ id="path353"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 6115.111,7014.111 -181,-438 -227,196 408,242 z"
+ id="path355"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /><rect
+ class="BoundingBox"
+ x="10755.111"
+ y="2864.1111"
+ width="1361"
+ height="301"
+ id="rect360"
+ style="fill:none;stroke:none" /><path
+ d="m 10756.111,3014.111 929,0"
+ id="path362"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 12115.111,3014.111 -450,-150 0,300 450,-150 z"
+ id="path364"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /><rect
+ class="BoundingBox"
+ x="16655.111"
+ y="2864.1111"
+ width="1461"
+ height="301"
+ id="rect369"
+ style="fill:none;stroke:none" /><path
+ d="m 16656.111,3014.111 1029,0"
+ id="path371"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18115.111,3014.111 -450,-150 0,300 450,-150 z"
+ id="path373"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /><rect
+ class="BoundingBox"
+ x="20235.111"
+ y="4213.1108"
+ width="301"
+ height="1602"
+ id="rect378"
+ style="fill:none;stroke:none" /><path
+ d="m 20385.111,4214.111 0,1170"
+ id="path380"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 20385.111,5814.111 150,-450 -300,0 150,450 z"
+ id="path382"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /><rect
+ class="BoundingBox"
+ x="17485.111"
+ y="8213.1113"
+ width="2902"
+ height="2002"
+ id="rect387"
+ style="fill:none;stroke:none" /><path
+ d="m 20385.111,8214.111 -2546,1756"
+ id="path389"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17485.111,10214.111 456,-132 -171,-247 -285,379 z"
+ id="path391"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /><rect
+ class="BoundingBox"
+ x="14484.111"
+ y="8213.1113"
+ width="3002"
+ height="2002"
+ id="rect396"
+ style="fill:none;stroke:none" /><path
+ d="m 14485.111,8214.111 2642,1761"
+ id="path398"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17485.111,10214.111 -291,-374 -167,249 458,125 z"
+ id="path400"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /><rect
+ class="BoundingBox"
+ x="14485.111"
+ y="4213.1108"
+ width="5902"
+ height="1629"
+ id="rect405"
+ style="fill:none;stroke:none" /><path
+ d="m 20385.111,4214.111 -51,14"
+ id="path407"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 20283.111,4242.111 -52,14"
+ id="path409"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 20180.111,4270.111 -51,13"
+ id="path411"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 20078.111,4297.111 -52,14"
+ id="path413"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19975.111,4325.111 -51,14"
+ id="path415"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19873.111,4353.111 -52,14"
+ id="path417"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19770.111,4381.111 -51,14"
+ id="path419"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19668.111,4409.111 -52,13"
+ id="path421"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19565.111,4436.111 -51,14"
+ id="path423"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19463.111,4464.111 -52,14"
+ id="path425"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19360.111,4492.111 -51,14"
+ id="path427"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19258.111,4520.111 -52,14"
+ id="path429"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19155.111,4547.111 -51,14"
+ id="path431"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 19053.111,4575.111 -52,14"
+ id="path433"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18950.111,4603.111 -51,14"
+ id="path435"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18848.111,4631.111 -51,14"
+ id="path437"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18745.111,4659.111 -51,14"
+ id="path439"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18643.111,4686.111 -51,14"
+ id="path441"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18540.111,4714.111 -51,14"
+ id="path443"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18438.111,4742.111 -51,14"
+ id="path445"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18335.111,4770.111 -51,14"
+ id="path447"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18233.111,4798.111 -51,14"
+ id="path449"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18130.111,4825.111 -51,14"
+ id="path451"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 18028.111,4853.111 -51,14"
+ id="path453"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17925.111,4881.111 -51,14"
+ id="path455"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17823.111,4909.111 -51,14"
+ id="path457"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17720.111,4937.111 -51,13"
+ id="path459"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17618.111,4964.111 -51,14"
+ id="path461"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17516.111,4992.111 -52,14"
+ id="path463"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17413.111,5020.111 -51,14"
+ id="path465"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17311.111,5048.111 -52,14"
+ id="path467"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17208.111,5076.111 -51,13"
+ id="path469"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17106.111,5103.111 -52,14"
+ id="path471"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 17003.111,5131.111 -51,14"
+ id="path473"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16901.111,5159.111 -52,14"
+ id="path475"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16798.111,5187.111 -51,14"
+ id="path477"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16696.111,5214.111 -52,14"
+ id="path479"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16593.111,5242.111 -51,14"
+ id="path481"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16491.111,5270.111 -52,14"
+ id="path483"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16388.111,5298.111 -51,14"
+ id="path485"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16286.111,5326.111 -52,14"
+ id="path487"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16183.111,5353.111 -51,14"
+ id="path489"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 16081.111,5381.111 -51,14"
+ id="path491"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15978.111,5409.111 -51,14"
+ id="path493"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15876.111,5437.111 -51,14"
+ id="path495"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15773.111,5465.111 -51,14"
+ id="path497"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15671.111,5492.111 -51,14"
+ id="path499"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15568.111,5520.111 -51,14"
+ id="path501"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15466.111,5548.111 -51,14"
+ id="path503"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15363.111,5576.111 -51,14"
+ id="path505"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15261.111,5604.111 -51,13"
+ id="path507"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15158.111,5631.111 -51,14"
+ id="path509"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 15056.111,5659.111 -51,14"
+ id="path511"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 14953.111,5687.111 -51,14"
+ id="path513"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000" /><path
+ d="m 14485.111,5814.111 474,27 -79,-290 -395,263 z"
+ id="path515"
+ inkscape:connector-curvature="0"
+ style="fill:#000000;stroke:none" /></svg> \ No newline at end of file
diff --git a/Documentation/media/uapi/dvb/intro.rst b/Documentation/media/uapi/dvb/intro.rst
index b61081d..2ed5c23 100644
--- a/Documentation/media/uapi/dvb/intro.rst
+++ b/Documentation/media/uapi/dvb/intro.rst
@@ -55,8 +55,8 @@ Overview
.. _stb_components:
-.. figure:: intro_files/dvbstb.*
- :alt: dvbstb.pdf / dvbstb.png
+.. figure:: dvbstb.*
+ :alt: dvbstb.pdf / dvbstb.svg
:align: center
Components of a DVB card/STB
diff --git a/Documentation/media/uapi/dvb/intro_files/dvbstb.pdf b/Documentation/media/uapi/dvb/intro_files/dvbstb.pdf
deleted file mode 100644
index 0fa75d9..0000000
--- a/Documentation/media/uapi/dvb/intro_files/dvbstb.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/dvb/intro_files/dvbstb.png b/Documentation/media/uapi/dvb/intro_files/dvbstb.png
deleted file mode 100644
index 9b8f372..0000000
--- a/Documentation/media/uapi/dvb/intro_files/dvbstb.png
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/subdev-formats_files/bayer.png b/Documentation/media/uapi/v4l/bayer.png
index 9b15fb2..9b15fb2 100644
--- a/Documentation/media/uapi/v4l/subdev-formats_files/bayer.png
+++ b/Documentation/media/uapi/v4l/bayer.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/constraints.svg b/Documentation/media/uapi/v4l/constraints.svg
new file mode 100644
index 0000000..f710ee4
--- /dev/null
+++ b/Documentation/media/uapi/v4l/constraints.svg
@@ -0,0 +1,346 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg
+ xmlns:dc="http://purl.org/dc/elements/1.1/"
+ xmlns:cc="http://creativecommons.org/ns#"
+ xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+ xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+ version="1.2"
+ width="249.00998mm"
+ height="143.00999mm"
+ viewBox="0 0 24900.998 14300.999"
+ preserveAspectRatio="xMidYMid"
+ xml:space="preserve"
+ id="svg2"
+ inkscape:version="0.91 r13725"
+ sodipodi:docname="constraints.svg"
+ style="fill-rule:evenodd;stroke-width:28.22200012;stroke-linejoin:round"><metadata
+ id="metadata325"><rdf:RDF><cc:Work
+ rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
+ rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title /></cc:Work></rdf:RDF></metadata><sodipodi:namedview
+ pagecolor="#ffffff"
+ bordercolor="#666666"
+ borderopacity="1"
+ objecttolerance="10"
+ gridtolerance="10"
+ guidetolerance="10"
+ inkscape:pageopacity="0"
+ inkscape:pageshadow="2"
+ inkscape:window-width="1920"
+ inkscape:window-height="997"
+ id="namedview323"
+ showgrid="false"
+ inkscape:zoom="1.0818519"
+ inkscape:cx="270.29272"
+ inkscape:cy="249.83854"
+ inkscape:window-x="1920"
+ inkscape:window-y="30"
+ inkscape:window-maximized="1"
+ inkscape:current-layer="svg2"
+ fit-margin-top="0"
+ fit-margin-left="0"
+ fit-margin-right="0"
+ fit-margin-bottom="0" /><defs
+ class="ClipPathGroup"
+ id="defs4"><marker
+ inkscape:isstock="true"
+ style="overflow:visible"
+ id="marker6261"
+ refX="0"
+ refY="0"
+ orient="auto"
+ inkscape:stockid="Arrow1Mend"><path
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ style="fill:#ff0000;fill-opacity:1;fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1"
+ d="M 0,0 5,-5 -12.5,0 5,5 0,0 Z"
+ id="path6263"
+ inkscape:connector-curvature="0" /></marker><marker
+ inkscape:stockid="Arrow1Mend"
+ orient="auto"
+ refY="0"
+ refX="0"
+ id="marker6125"
+ style="overflow:visible"
+ inkscape:isstock="true"
+ inkscape:collect="always"><path
+ id="path6127"
+ d="M 0,0 5,-5 -12.5,0 5,5 0,0 Z"
+ style="fill:#ff0000;fill-opacity:1;fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1"
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ inkscape:connector-curvature="0" /></marker><marker
+ inkscape:isstock="true"
+ style="overflow:visible"
+ id="marker6001"
+ refX="0"
+ refY="0"
+ orient="auto"
+ inkscape:stockid="Arrow1Mend"
+ inkscape:collect="always"><path
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ style="fill:#ff0000;fill-opacity:1;fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1"
+ d="M 0,0 5,-5 -12.5,0 5,5 0,0 Z"
+ id="path6003"
+ inkscape:connector-curvature="0" /></marker><marker
+ inkscape:stockid="Arrow1Mend"
+ orient="auto"
+ refY="0"
+ refX="0"
+ id="marker5693"
+ style="overflow:visible"
+ inkscape:isstock="true"
+ inkscape:collect="always"><path
+ id="path5695"
+ d="M 0,0 5,-5 -12.5,0 5,5 0,0 Z"
+ style="fill:#ff0000;fill-opacity:1;fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1"
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ inkscape:connector-curvature="0" /></marker><marker
+ inkscape:isstock="true"
+ style="overflow:visible"
+ id="marker5575"
+ refX="0"
+ refY="0"
+ orient="auto"
+ inkscape:stockid="Arrow1Mend"
+ inkscape:collect="always"><path
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ style="fill:#000080;fill-opacity:1;fill-rule:evenodd;stroke:#000080;stroke-width:1pt;stroke-opacity:1"
+ d="M 0,0 5,-5 -12.5,0 5,5 0,0 Z"
+ id="path5577"
+ inkscape:connector-curvature="0" /></marker><marker
+ inkscape:stockid="Arrow1Mend"
+ orient="auto"
+ refY="0"
+ refX="0"
+ id="marker5469"
+ style="overflow:visible"
+ inkscape:isstock="true"
+ inkscape:collect="always"><path
+ id="path5471"
+ d="M 0,0 5,-5 -12.5,0 5,5 0,0 Z"
+ style="fill:#000080;fill-opacity:1;fill-rule:evenodd;stroke:#000080;stroke-width:1pt;stroke-opacity:1"
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ inkscape:connector-curvature="0" /></marker><marker
+ inkscape:stockid="Arrow1Mend"
+ orient="auto"
+ refY="0"
+ refX="0"
+ id="marker5259"
+ style="overflow:visible"
+ inkscape:isstock="true"><path
+ id="path5261"
+ d="M 0,0 5,-5 -12.5,0 5,5 0,0 Z"
+ style="fill:#000080;fill-opacity:1;fill-rule:evenodd;stroke:#000080;stroke-width:1pt;stroke-opacity:1"
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ inkscape:connector-curvature="0" /></marker><marker
+ inkscape:stockid="Arrow2Mend"
+ orient="auto"
+ refY="0"
+ refX="0"
+ id="Arrow2Mend"
+ style="overflow:visible"
+ inkscape:isstock="true"><path
+ id="path4241"
+ style="fill:#000080;fill-opacity:1;fill-rule:evenodd;stroke:#000080;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
+ d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
+ transform="scale(-0.6,-0.6)"
+ inkscape:connector-curvature="0" /></marker></defs><defs
+ id="defs9" /><defs
+ id="defs100" /><defs
+ id="defs123" /><defs
+ class="TextShapeIndex"
+ id="defs134" /><defs
+ class="EmbeddedBulletChars"
+ id="defs138" /><defs
+ class="TextEmbeddedBitmaps"
+ id="defs167" /><g
+ class="com.sun.star.drawing.CustomShape"
+ id="g204"
+ transform="translate(-1350,-3250)"><g
+ id="id6"><rect
+ class="BoundingBox"
+ x="1350"
+ y="3250"
+ width="24901"
+ height="14301"
+ id="rect207"
+ style="fill:none;stroke:none" /><path
+ d="m 13800,17500 -12400,0 0,-14200 24800,0 0,14200 -12400,0 z"
+ id="path209"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 13800,17500 -12400,0 0,-14200 24800,0 0,14200 -12400,0 z"
+ id="path211"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#ff0000;stroke-width:100;stroke-linejoin:round" /><text
+ class="TextShape"
+ id="text213"><tspan
+ class="TextParagraph"
+ font-size="846px"
+ font-weight="400"
+ id="tspan215"
+ style="font-weight:400;font-size:846px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="1652"
+ y="17093"
+ id="tspan217"><tspan
+ id="tspan219"
+ style="fill:#ff0000;stroke:none" /><tspan
+ id="tspan221"
+ style="fill:#ff0000;stroke:none">V4L2_SEL_FLAG_GE</tspan></tspan></tspan></text>
+</g></g><rect
+ class="BoundingBox"
+ x="3000"
+ y="2200"
+ width="18101"
+ height="10101"
+ id="rect226"
+ style="fill:none;stroke:none" /><path
+ d="m 12050,12250 -9000,0 0,-10000 18000,0 0,10000 -9000,0 z"
+ id="path228"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 12050,12250 -9000,0 0,-10000 18000,0 0,10000 -9000,0 z"
+ id="path230"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000000;stroke-width:100;stroke-linejoin:round" /><text
+ class="TextShape"
+ id="text232"
+ x="-1350"
+ y="-3250"><tspan
+ class="TextParagraph"
+ font-size="987px"
+ font-weight="400"
+ id="tspan234"
+ style="font-weight:400;font-size:987px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="3227"
+ y="11503"
+ id="tspan236"><tspan
+ id="tspan238"
+ style="fill:#000000;stroke:none" /><tspan
+ id="tspan240"
+ style="fill:#000000;stroke:none">ORIGINAL</tspan></tspan></tspan></text>
+<g
+ class="com.sun.star.drawing.CustomShape"
+ id="g242"
+ transform="translate(-1350,-3250)"><g
+ id="id8"><rect
+ class="BoundingBox"
+ x="7050"
+ y="7950"
+ width="7901"
+ height="5501"
+ id="rect245"
+ style="fill:none;stroke:none" /><path
+ d="m 11000,13400 -3900,0 0,-5400 7800,0 0,5400 -3900,0 z"
+ id="path247"
+ inkscape:connector-curvature="0"
+ style="fill:#ffffff;stroke:none" /><path
+ d="m 11000,13400 -3900,0 0,-5400 7800,0 0,5400 -3900,0 z"
+ id="path249"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#3465a4;stroke-width:100;stroke-linejoin:round" /><text
+ class="TextShape"
+ id="text251"><tspan
+ class="TextParagraph"
+ font-size="776px"
+ font-weight="400"
+ id="tspan253"
+ style="font-weight:400;font-size:776px;font-family:'Liberation Sans', sans-serif"><tspan
+ class="TextPosition"
+ x="7228"
+ y="10969"
+ id="tspan255"><tspan
+ id="tspan257"
+ style="fill:#000080;stroke:none">V4L2_SEL_FLAG_LE</tspan></tspan></tspan></text>
+</g></g><rect
+ class="BoundingBox"
+ x="13700"
+ y="7100"
+ width="7101"
+ height="101"
+ id="rect262"
+ style="fill:none;stroke:none" /><path
+ d="m 20750,7150 -7000,0"
+ id="path264"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000080;stroke-width:99.99134064;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#Arrow2Mend)" /><rect
+ class="BoundingBox"
+ x="3400"
+ y="7100"
+ width="2101"
+ height="101"
+ id="rect269"
+ style="fill:none;stroke:none" /><path
+ d="m 3450,7150 2000,0"
+ id="path271"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000080;stroke-width:100;stroke-linejoin:round;marker-end:url(#marker5575)" /><rect
+ class="BoundingBox"
+ x="9800"
+ y="2900"
+ width="101"
+ height="1501"
+ id="rect276"
+ style="fill:none;stroke:none" /><path
+ d="m 9850,2950 0,1400"
+ id="path278"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000080;stroke-width:100;stroke-linejoin:round;marker-end:url(#marker5259)" /><rect
+ class="BoundingBox"
+ x="9600"
+ y="10600"
+ width="101"
+ height="1301"
+ id="rect283"
+ style="fill:none;stroke:none" /><path
+ d="m 9650,11850 0,-1200"
+ id="path285"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#000080;stroke-width:100;stroke-linejoin:round;marker-end:url(#marker5469)" /><rect
+ class="BoundingBox"
+ x="450"
+ y="6850"
+ width="2051"
+ height="601"
+ id="rect290"
+ style="fill:none;stroke:none" /><path
+ d="m 2450,7150 -2000.8696,0"
+ id="path292"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#ff0000;stroke-width:132.48202515;stroke-linejoin:round;marker-end:url(#marker6125)" /><rect
+ class="BoundingBox"
+ x="21600"
+ y="6750"
+ width="2651"
+ height="601"
+ id="rect299"
+ style="fill:none;stroke:none" /><path
+ d="m 21650,7050 2522.609,0"
+ id="path301"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#ff0000;stroke-width:120.40660858;stroke-linejoin:round;marker-end:url(#marker6001)" /><rect
+ class="BoundingBox"
+ x="9550"
+ y="550"
+ width="601"
+ height="1451"
+ id="rect308"
+ style="fill:none;stroke:none" /><path
+ d="m 9836.957,1950 0,-1453.0435"
+ id="path310"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#ff0000;stroke-width:164.03721619;stroke-linejoin:round;marker-end:url(#marker6261)" /><rect
+ class="BoundingBox"
+ x="9350"
+ y="12500"
+ width="601"
+ height="1451"
+ id="rect317"
+ style="fill:none;stroke:none" /><path
+ d="m 9650,12550 0,1505.217"
+ id="path319"
+ inkscape:connector-curvature="0"
+ style="fill:none;stroke:#ff0000;stroke-width:166.95626831;stroke-linejoin:round;marker-end:url(#marker5693)" /></svg> \ No newline at end of file
diff --git a/Documentation/media/uapi/v4l/crop.png b/Documentation/media/uapi/v4l/crop.png
new file mode 100644
index 0000000..225998c
--- /dev/null
+++ b/Documentation/media/uapi/v4l/crop.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/crop.rst b/Documentation/media/uapi/v4l/crop.rst
index 3ea733a..578c6f3 100644
--- a/Documentation/media/uapi/v4l/crop.rst
+++ b/Documentation/media/uapi/v4l/crop.rst
@@ -53,8 +53,8 @@ Cropping Structures
.. _crop-scale:
-.. figure:: crop_files/crop.*
- :alt: crop.pdf / crop.gif
+.. figure:: crop.png
+ :alt: crop.png
:align: center
Image Cropping, Insertion and Scaling
diff --git a/Documentation/media/uapi/v4l/crop_files/crop.gif b/Documentation/media/uapi/v4l/crop_files/crop.gif
deleted file mode 100644
index 3b9e7d8..0000000
--- a/Documentation/media/uapi/v4l/crop_files/crop.gif
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/crop_files/crop.pdf b/Documentation/media/uapi/v4l/crop_files/crop.pdf
deleted file mode 100644
index c9fb81c..0000000
--- a/Documentation/media/uapi/v4l/crop_files/crop.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi.rst b/Documentation/media/uapi/v4l/dev-raw-vbi.rst
index b82d837..f81d906 100644
--- a/Documentation/media/uapi/v4l/dev-raw-vbi.rst
+++ b/Documentation/media/uapi/v4l/dev-raw-vbi.rst
@@ -221,8 +221,8 @@ and always returns default parameters as :ref:`VIDIOC_G_FMT <VIDIOC_G_FMT>` does
.. _vbi-hsync:
-.. figure:: dev-raw-vbi_files/vbi_hsync.*
- :alt: vbi_hsync.pdf / vbi_hsync.gif
+.. figure:: vbi_hsync.png
+ :alt: vbi_hsync.png
:align: center
**Figure 4.1. Line synchronization**
@@ -230,8 +230,8 @@ and always returns default parameters as :ref:`VIDIOC_G_FMT <VIDIOC_G_FMT>` does
.. _vbi-525:
-.. figure:: dev-raw-vbi_files/vbi_525.*
- :alt: vbi_525.pdf / vbi_525.gif
+.. figure:: vbi_525.png
+ :alt: vbi_525.png
:align: center
**Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL)**
@@ -240,8 +240,8 @@ and always returns default parameters as :ref:`VIDIOC_G_FMT <VIDIOC_G_FMT>` does
.. _vbi-625:
-.. figure:: dev-raw-vbi_files/vbi_625.*
- :alt: vbi_625.pdf / vbi_625.gif
+.. figure:: vbi_625.png
+ :alt: vbi_625.png
:align: center
**Figure 4.3. ITU-R 625 line numbering**
diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.gif b/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.gif
deleted file mode 100644
index 5580b69..0000000
--- a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.gif
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.pdf b/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.pdf
deleted file mode 100644
index 0bae283..0000000
--- a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_525.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.gif b/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.gif
deleted file mode 100644
index 34e3251..0000000
--- a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.gif
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.pdf b/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.pdf
deleted file mode 100644
index bf29b95..0000000
--- a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_625.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.gif b/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.gif
deleted file mode 100644
index b02434d..0000000
--- a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.gif
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.pdf b/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.pdf
deleted file mode 100644
index 200b668..0000000
--- a/Documentation/media/uapi/v4l/dev-raw-vbi_files/vbi_hsync.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-subdev.rst b/Documentation/media/uapi/v4l/dev-subdev.rst
index fb4d0d4..c18e9c5 100644
--- a/Documentation/media/uapi/v4l/dev-subdev.rst
+++ b/Documentation/media/uapi/v4l/dev-subdev.rst
@@ -99,8 +99,8 @@ the video sensor and the host image processing hardware.
.. _pipeline-scaling:
-.. figure:: dev-subdev_files/pipeline.*
- :alt: pipeline.pdf / pipeline.png
+.. figure:: pipeline.png
+ :alt: pipeline.png
:align: center
Image Format Negotiation on Pipelines
@@ -404,8 +404,8 @@ selection will refer to the sink pad format dimensions instead.
.. _subdev-image-processing-crop:
-.. figure:: dev-subdev_files/subdev-image-processing-crop.*
- :alt: subdev-image-processing-crop.svg
+.. figure:: subdev-image-processing-crop.*
+ :alt: subdev-image-processing-crop.pdf / subdev-image-processing-crop.svg
:align: center
**Figure 4.5. Image processing in subdevs: simple crop example**
@@ -421,8 +421,8 @@ pad.
.. _subdev-image-processing-scaling-multi-source:
-.. figure:: dev-subdev_files/subdev-image-processing-scaling-multi-source.*
- :alt: subdev-image-processing-scaling-multi-source.svg
+.. figure:: subdev-image-processing-scaling-multi-source.*
+ :alt: subdev-image-processing-scaling-multi-source.pdf / subdev-image-processing-scaling-multi-source.svg
:align: center
**Figure 4.6. Image processing in subdevs: scaling with multiple sources**
@@ -437,8 +437,8 @@ an area at location specified by the source crop rectangle from it.
.. _subdev-image-processing-full:
-.. figure:: dev-subdev_files/subdev-image-processing-full.*
- :alt: subdev-image-processing-full.svg
+.. figure:: subdev-image-processing-full.*
+ :alt: subdev-image-processing-full.pdf / subdev-image-processing-full.svg
:align: center
**Figure 4.7. Image processing in subdevs: scaling and composition with multiple sinks and sources**
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/pipeline.pdf b/Documentation/media/uapi/v4l/dev-subdev_files/pipeline.pdf
deleted file mode 100644
index ee3e37f..0000000
--- a/Documentation/media/uapi/v4l/dev-subdev_files/pipeline.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-crop.pdf b/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-crop.pdf
deleted file mode 100644
index 29a806f..0000000
--- a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-crop.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-full.pdf b/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-full.pdf
deleted file mode 100644
index b78a8e8..0000000
--- a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-full.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-scaling-multi-source.pdf b/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-scaling-multi-source.pdf
deleted file mode 100644
index 8f7a95b..0000000
--- a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-scaling-multi-source.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/diff-v4l.rst b/Documentation/media/uapi/v4l/diff-v4l.rst
index 76b2eca..8209eeb 100644
--- a/Documentation/media/uapi/v4l/diff-v4l.rst
+++ b/Documentation/media/uapi/v4l/diff-v4l.rst
@@ -648,12 +648,12 @@ microcode programming. A new interface for MPEG compression and playback
devices is documented in :ref:`extended-controls`.
.. [#f1]
- According to Documentation/devices.txt these should be symbolic links
+ According to Documentation/admin-guide/devices.rst these should be symbolic links
to ``/dev/video0``. Note the original bttv interface is not
compatible with V4L or V4L2.
.. [#f2]
- According to ``Documentation/devices.txt`` a symbolic link to
+ According to ``Documentation/admin-guide/devices.rst`` a symbolic link to
``/dev/radio0``.
.. [#f3]
diff --git a/Documentation/media/uapi/v4l/field-order.rst b/Documentation/media/uapi/v4l/field-order.rst
index 50779a6..a7e1b4d 100644
--- a/Documentation/media/uapi/v4l/field-order.rst
+++ b/Documentation/media/uapi/v4l/field-order.rst
@@ -141,8 +141,8 @@ enum v4l2_field
Field Order, Top Field First Transmitted
========================================
-.. figure:: field-order_files/fieldseq_tb.*
- :alt: fieldseq_tb.pdf / fieldseq_tb.gif
+.. figure:: fieldseq_tb.png
+ :alt: fieldseq_tb.png
:align: center
@@ -151,7 +151,7 @@ Field Order, Top Field First Transmitted
Field Order, Bottom Field First Transmitted
===========================================
-.. figure:: field-order_files/fieldseq_bt.*
- :alt: fieldseq_bt.pdf / fieldseq_bt.gif
+.. figure:: fieldseq_bt.png
+ :alt: fieldseq_bt.png
:align: center
diff --git a/Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.gif b/Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.gif
deleted file mode 100644
index 60e8569..0000000
--- a/Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.gif
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.pdf b/Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.pdf
deleted file mode 100644
index 26598b2..0000000
--- a/Documentation/media/uapi/v4l/field-order_files/fieldseq_bt.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.gif b/Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.gif
deleted file mode 100644
index 718492f..0000000
--- a/Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.gif
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.pdf b/Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.pdf
deleted file mode 100644
index 4965b22..0000000
--- a/Documentation/media/uapi/v4l/field-order_files/fieldseq_tb.pdf
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/uapi/v4l/fieldseq_bt.png b/Documentation/media/uapi/v4l/fieldseq_bt.png
new file mode 100644
index 0000000..888ce6f
--- /dev/null
+++ b/Documentation/media/uapi/v4l/fieldseq_bt.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/fieldseq_tb.png b/Documentation/media/uapi/v4l/fieldseq_tb.png
new file mode 100644
index 0000000..b694262
--- /dev/null
+++ b/Documentation/media/uapi/v4l/fieldseq_tb.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/pixfmt-nv12mt_files/nv12mt.png b/Documentation/media/uapi/v4l/nv12mt.png
index 4140186..4140186 100644
--- a/Documentation/media/uapi/v4l/pixfmt-nv12mt_files/nv12mt.png
+++ b/Documentation/media/uapi/v4l/nv12mt.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/pixfmt-nv12mt_files/nv12mt_example.png b/Documentation/media/uapi/v4l/nv12mt_example.png
index 7775f5d..7775f5d 100644
--- a/Documentation/media/uapi/v4l/pixfmt-nv12mt_files/nv12mt_example.png
+++ b/Documentation/media/uapi/v4l/nv12mt_example.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/pipeline.png b/Documentation/media/uapi/v4l/pipeline.png
index f19b86c..f19b86c 100644
--- a/Documentation/media/uapi/v4l/dev-subdev_files/pipeline.png
+++ b/Documentation/media/uapi/v4l/pipeline.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst b/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst
index 9f250a1..c8a77bc 100644
--- a/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst
@@ -33,7 +33,7 @@ Layout of macroblocks in memory is presented in the following figure.
.. _nv12mt:
-.. figure:: pixfmt-nv12mt_files/nv12mt.*
+.. figure:: nv12mt.png
:alt: nv12mt.png
:align: center
@@ -50,7 +50,7 @@ interleaved. Height of the buffer is aligned to 32.
.. _nv12mt_ex:
-.. figure:: pixfmt-nv12mt_files/nv12mt_example.*
+.. figure:: nv12mt_example.png
:alt: nv12mt_example.png
:align: center
diff --git a/Documentation/media/uapi/v4l/selection-api-003.rst b/Documentation/media/uapi/v4l/selection-api-003.rst
index 15cb3b7..207349c 100644
--- a/Documentation/media/uapi/v4l/selection-api-003.rst
+++ b/Documentation/media/uapi/v4l/selection-api-003.rst
@@ -7,7 +7,7 @@ Selection targets
.. _sel-targets-capture:
-.. figure:: selection-api-003_files/selection.*
+.. figure:: selection.png
:alt: selection.png
:align: center
diff --git a/Documentation/media/uapi/v4l/selection-api-003_files/selection.png b/Documentation/media/uapi/v4l/selection.png
index bfc523e..bfc523e 100644
--- a/Documentation/media/uapi/v4l/selection-api-003_files/selection.png
+++ b/Documentation/media/uapi/v4l/selection.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/subdev-formats.rst b/Documentation/media/uapi/v4l/subdev-formats.rst
index e144370..2f9c135 100644
--- a/Documentation/media/uapi/v4l/subdev-formats.rst
+++ b/Documentation/media/uapi/v4l/subdev-formats.rst
@@ -1514,23 +1514,28 @@ be named ``MEDIA_BUS_FMT_SRGGB10_2X8_PADHI_LE``.
.. _bayer-patterns:
-.. figure:: subdev-formats_files/bayer.*
+.. figure:: bayer.png
:alt: bayer.png
:align: center
**Figure 4.8 Bayer Patterns**
-
-
The following table lists existing packed Bayer formats. The data
organization is given as an example for the first pixel only.
+.. HACK: ideally, we would be using adjustbox here. However, Sphinx
+.. is a very bad behaviored guy: if the table has more than 30 cols,
+.. it switches to long table, and there's no way to override it.
+
+
.. raw:: latex
- \newline\newline\begin{adjustbox}{width=\columnwidth}
+ \begingroup
+ \tiny
+ \setlength{\tabcolsep}{2pt}
-.. tabularcolumns:: |p{7.6cm}|p{1.6cm}|p{0.7cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|p{0.5cm}|
+.. tabularcolumns:: |p{4.0cm}|p{0.7cm}|p{0.3cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|
.. _v4l2-mbus-pixelcode-bayer:
@@ -2314,7 +2319,7 @@ organization is given as an example for the first pixel only.
.. raw:: latex
- \end{adjustbox}\newline\newline
+ \endgroup
Packed YUV Formats
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-crop.svg b/Documentation/media/uapi/v4l/subdev-image-processing-crop.svg
index 18b0f5d..18b0f5d 100644
--- a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-crop.svg
+++ b/Documentation/media/uapi/v4l/subdev-image-processing-crop.svg
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-full.svg b/Documentation/media/uapi/v4l/subdev-image-processing-full.svg
index 3322cf4..3322cf4 100644
--- a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-full.svg
+++ b/Documentation/media/uapi/v4l/subdev-image-processing-full.svg
diff --git a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-scaling-multi-source.svg b/Documentation/media/uapi/v4l/subdev-image-processing-scaling-multi-source.svg
index 2340c0f..2340c0f 100644
--- a/Documentation/media/uapi/v4l/dev-subdev_files/subdev-image-processing-scaling-multi-source.svg
+++ b/Documentation/media/uapi/v4l/subdev-image-processing-scaling-multi-source.svg
diff --git a/Documentation/media/uapi/v4l/vbi_525.png b/Documentation/media/uapi/v4l/vbi_525.png
new file mode 100644
index 0000000..24937db
--- /dev/null
+++ b/Documentation/media/uapi/v4l/vbi_525.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/vbi_625.png b/Documentation/media/uapi/v4l/vbi_625.png
new file mode 100644
index 0000000..25c671a
--- /dev/null
+++ b/Documentation/media/uapi/v4l/vbi_625.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/vbi_hsync.png b/Documentation/media/uapi/v4l/vbi_hsync.png
new file mode 100644
index 0000000..b04ae50
--- /dev/null
+++ b/Documentation/media/uapi/v4l/vbi_hsync.png
Binary files differ
diff --git a/Documentation/media/uapi/v4l/vidioc-g-selection.rst b/Documentation/media/uapi/v4l/vidioc-g-selection.rst
index 3145a91..deb1f6f 100644
--- a/Documentation/media/uapi/v4l/vidioc-g-selection.rst
+++ b/Documentation/media/uapi/v4l/vidioc-g-selection.rst
@@ -129,8 +129,8 @@ Selection targets and flags are documented in
.. _sel-const-adjust:
-.. figure:: vidioc-g-selection_files/constraints.*
- :alt: constraints.png
+.. figure:: constraints.*
+ :alt: constraints.pdf / constraints.svg
:align: center
Size adjustments with constraint flags.
diff --git a/Documentation/media/uapi/v4l/vidioc-g-selection_files/constraints.png b/Documentation/media/uapi/v4l/vidioc-g-selection_files/constraints.png
deleted file mode 100644
index 20228d2..0000000
--- a/Documentation/media/uapi/v4l/vidioc-g-selection_files/constraints.png
+++ /dev/null
Binary files differ
diff --git a/Documentation/media/v4l-drivers/bttv.rst b/Documentation/media/v4l-drivers/bttv.rst
index 7abc1c9..bc63b12 100644
--- a/Documentation/media/v4l-drivers/bttv.rst
+++ b/Documentation/media/v4l-drivers/bttv.rst
@@ -304,10 +304,10 @@ bug. It is very helpful if you can tell where exactly it broke
With a hard freeze you probably doesn't find anything in the logfiles.
The only way to capture any kernel messages is to hook up a serial
console and let some terminal application log the messages. /me uses
-screen. See Documentation/serial-console.txt for details on setting
+screen. See Documentation/admin-guide/serial-console.rst for details on setting
up a serial console.
-Read Documentation/oops-tracing.txt to learn how to get any useful
+Read Documentation/admin-guide/oops-tracing.rst to learn how to get any useful
information out of a register+stack dump printed by the kernel on
protection faults (so-called "kernel oops").
diff --git a/Documentation/memory-hotplug.txt b/Documentation/memory-hotplug.txt
index 0d7cb95..5de846d 100644
--- a/Documentation/memory-hotplug.txt
+++ b/Documentation/memory-hotplug.txt
@@ -324,7 +324,7 @@ guarantee that the memory block contains only migratable pages.
Now, a boot option for making a memory block which consists of migratable pages
is supported. By specifying "kernelcore=" or "movablecore=" boot option, you can
create ZONE_MOVABLE...a zone which is just used for movable pages.
-(See also Documentation/kernel-parameters.txt)
+(See also Documentation/admin-guide/kernel-parameters.rst)
Assume the system has "TOTAL" amount of memory at boot time, this boot option
creates ZONE_MOVABLE as following.
diff --git a/Documentation/networking/netconsole.txt b/Documentation/networking/netconsole.txt
index 30409a3..296ea00 100644
--- a/Documentation/networking/netconsole.txt
+++ b/Documentation/networking/netconsole.txt
@@ -200,7 +200,7 @@ priority messages to the console. You can change this at runtime using:
or by specifying "debug" on the kernel command line at boot, to send
all kernel messages to the console. A specific value for this parameter
can also be set using the "loglevel" kernel boot option. See the
-dmesg(8) man page and Documentation/kernel-parameters.txt for details.
+dmesg(8) man page and Documentation/admin-guide/kernel-parameters.rst for details.
Netconsole was designed to be as instantaneous as possible, to
enable the logging of even the most critical kernel bugs. It works
diff --git a/Documentation/networking/netdev-FAQ.txt b/Documentation/networking/netdev-FAQ.txt
index a20b2fa..247a30b 100644
--- a/Documentation/networking/netdev-FAQ.txt
+++ b/Documentation/networking/netdev-FAQ.txt
@@ -136,14 +136,14 @@ A: Normally Greg Kroah-Hartman collects stable commits himself, but
Q: I see a network patch and I think it should be backported to stable.
Should I request it via "stable@vger.kernel.org" like the references in
- the kernel's Documentation/stable_kernel_rules.txt file say?
+ the kernel's Documentation/process/stable-kernel-rules.rst file say?
A: No, not for networking. Check the stable queues as per above 1st to see
if it is already queued. If not, then send a mail to netdev, listing
the upstream commit ID and why you think it should be a stable candidate.
Before you jump to go do the above, do note that the normal stable rules
- in Documentation/stable_kernel_rules.txt still apply. So you need to
+ in Documentation/process/stable-kernel-rules.rst still apply. So you need to
explicitly indicate why it is a critical fix and exactly what users are
impacted. In addition, you need to convince yourself that you _really_
think it has been overlooked, vs. having been considered and rejected.
@@ -165,7 +165,7 @@ A: No. See above answer. In short, if you think it really belongs in
If you think there is some valid information relating to it being in
stable that does _not_ belong in the commit log, then use the three
- dash marker line as described in Documentation/SubmittingPatches to
+ dash marker line as described in Documentation/process/submitting-patches.rst to
temporarily embed that information into the patch that you send.
Q: Someone said that the comment style and coding convention is different
@@ -220,5 +220,5 @@ A: Attention to detail. Re-read your own work as if you were the
If it is your first patch, mail it to yourself so you can test apply
it to an unpatched tree to confirm infrastructure didn't mangle it.
- Finally, go back and read Documentation/SubmittingPatches to be
+ Finally, go back and read Documentation/process/submitting-patches.rst to be
sure you are not repeating some common mistake documented there.
diff --git a/Documentation/networking/vortex.txt b/Documentation/networking/vortex.txt
index 97282da..ad3dead 100644
--- a/Documentation/networking/vortex.txt
+++ b/Documentation/networking/vortex.txt
@@ -364,7 +364,7 @@ steps you should take:
- The contents of your report will vary a lot depending upon the
problem. If it's a kernel crash then you should refer to the
- REPORTING-BUGS file.
+ admin-guide/reporting-bugs.rst file.
But for most problems it is useful to provide the following:
diff --git a/Documentation/oops-tracing.txt b/Documentation/oops-tracing.txt
deleted file mode 100644
index f3ac05c..0000000
--- a/Documentation/oops-tracing.txt
+++ /dev/null
@@ -1,279 +0,0 @@
-NOTE: ksymoops is useless on 2.6. Please use the Oops in its original format
-(from dmesg, etc). Ignore any references in this or other docs to "decoding
-the Oops" or "running it through ksymoops". If you post an Oops from 2.6 that
-has been run through ksymoops, people will just tell you to repost it.
-
-Quick Summary
--------------
-
-Find the Oops and send it to the maintainer of the kernel area that seems to be
-involved with the problem. Don't worry too much about getting the wrong person.
-If you are unsure send it to the person responsible for the code relevant to
-what you were doing. If it occurs repeatably try and describe how to recreate
-it. That's worth even more than the oops.
-
-If you are totally stumped as to whom to send the report, send it to
-linux-kernel@vger.kernel.org. Thanks for your help in making Linux as
-stable as humanly possible.
-
-Where is the Oops?
-----------------------
-
-Normally the Oops text is read from the kernel buffers by klogd and
-handed to syslogd which writes it to a syslog file, typically
-/var/log/messages (depends on /etc/syslog.conf). Sometimes klogd dies,
-in which case you can run dmesg > file to read the data from the kernel
-buffers and save it. Or you can cat /proc/kmsg > file, however you
-have to break in to stop the transfer, kmsg is a "never ending file".
-If the machine has crashed so badly that you cannot enter commands or
-the disk is not available then you have three options :-
-
-(1) Hand copy the text from the screen and type it in after the machine
- has restarted. Messy but it is the only option if you have not
- planned for a crash. Alternatively, you can take a picture of
- the screen with a digital camera - not nice, but better than
- nothing. If the messages scroll off the top of the console, you
- may find that booting with a higher resolution (eg, vga=791)
- will allow you to read more of the text. (Caveat: This needs vesafb,
- so won't help for 'early' oopses)
-
-(2) Boot with a serial console (see Documentation/serial-console.txt),
- run a null modem to a second machine and capture the output there
- using your favourite communication program. Minicom works well.
-
-(3) Use Kdump (see Documentation/kdump/kdump.txt),
- extract the kernel ring buffer from old memory with using dmesg
- gdbmacro in Documentation/kdump/gdbmacros.txt.
-
-
-Full Information
-----------------
-
-NOTE: the message from Linus below applies to 2.4 kernel. I have preserved it
-for historical reasons, and because some of the information in it still
-applies. Especially, please ignore any references to ksymoops.
-
-From: Linus Torvalds <torvalds@osdl.org>
-
-How to track down an Oops.. [originally a mail to linux-kernel]
-
-The main trick is having 5 years of experience with those pesky oops
-messages ;-)
-
-Actually, there are things you can do that make this easier. I have two
-separate approaches:
-
- gdb /usr/src/linux/vmlinux
- gdb> disassemble <offending_function>
-
-That's the easy way to find the problem, at least if the bug-report is
-well made (like this one was - run through ksymoops to get the
-information of which function and the offset in the function that it
-happened in).
-
-Oh, it helps if the report happens on a kernel that is compiled with the
-same compiler and similar setups.
-
-The other thing to do is disassemble the "Code:" part of the bug report:
-ksymoops will do this too with the correct tools, but if you don't have
-the tools you can just do a silly program:
-
- char str[] = "\xXX\xXX\xXX...";
- main(){}
-
-and compile it with gcc -g and then do "disassemble str" (where the "XX"
-stuff are the values reported by the Oops - you can just cut-and-paste
-and do a replace of spaces to "\x" - that's what I do, as I'm too lazy
-to write a program to automate this all).
-
-Alternatively, you can use the shell script in scripts/decodecode.
-Its usage is: decodecode < oops.txt
-
-The hex bytes that follow "Code:" may (in some architectures) have a series
-of bytes that precede the current instruction pointer as well as bytes at and
-following the current instruction pointer. In some cases, one instruction
-byte or word is surrounded by <> or (), as in "<86>" or "(f00d)". These
-<> or () markings indicate the current instruction pointer. Example from
-i386, split into multiple lines for readability:
-
-Code: f9 0f 8d f9 00 00 00 8d 42 0c e8 dd 26 11 c7 a1 60 ea 2b f9 8b 50 08 a1
-64 ea 2b f9 8d 34 82 8b 1e 85 db 74 6d 8b 15 60 ea 2b f9 <8b> 43 04 39 42 54
-7e 04 40 89 42 54 8b 43 04 3b 05 00 f6 52 c0
-
-Finally, if you want to see where the code comes from, you can do
-
- cd /usr/src/linux
- make fs/buffer.s # or whatever file the bug happened in
-
-and then you get a better idea of what happens than with the gdb
-disassembly.
-
-Now, the trick is just then to combine all the data you have: the C
-sources (and general knowledge of what it _should_ do), the assembly
-listing and the code disassembly (and additionally the register dump you
-also get from the "oops" message - that can be useful to see _what_ the
-corrupted pointers were, and when you have the assembler listing you can
-also match the other registers to whatever C expressions they were used
-for).
-
-Essentially, you just look at what doesn't match (in this case it was the
-"Code" disassembly that didn't match with what the compiler generated).
-Then you need to find out _why_ they don't match. Often it's simple - you
-see that the code uses a NULL pointer and then you look at the code and
-wonder how the NULL pointer got there, and if it's a valid thing to do
-you just check against it..
-
-Now, if somebody gets the idea that this is time-consuming and requires
-some small amount of concentration, you're right. Which is why I will
-mostly just ignore any panic reports that don't have the symbol table
-info etc looked up: it simply gets too hard to look it up (I have some
-programs to search for specific patterns in the kernel code segment, and
-sometimes I have been able to look up those kinds of panics too, but
-that really requires pretty good knowledge of the kernel just to be able
-to pick out the right sequences etc..)
-
-_Sometimes_ it happens that I just see the disassembled code sequence
-from the panic, and I know immediately where it's coming from. That's when
-I get worried that I've been doing this for too long ;-)
-
- Linus
-
-
----------------------------------------------------------------------------
-Notes on Oops tracing with klogd:
-
-In order to help Linus and the other kernel developers there has been
-substantial support incorporated into klogd for processing protection
-faults. In order to have full support for address resolution at least
-version 1.3-pl3 of the sysklogd package should be used.
-
-When a protection fault occurs the klogd daemon automatically
-translates important addresses in the kernel log messages to their
-symbolic equivalents. This translated kernel message is then
-forwarded through whatever reporting mechanism klogd is using. The
-protection fault message can be simply cut out of the message files
-and forwarded to the kernel developers.
-
-Two types of address resolution are performed by klogd. The first is
-static translation and the second is dynamic translation. Static
-translation uses the System.map file in much the same manner that
-ksymoops does. In order to do static translation the klogd daemon
-must be able to find a system map file at daemon initialization time.
-See the klogd man page for information on how klogd searches for map
-files.
-
-Dynamic address translation is important when kernel loadable modules
-are being used. Since memory for kernel modules is allocated from the
-kernel's dynamic memory pools there are no fixed locations for either
-the start of the module or for functions and symbols in the module.
-
-The kernel supports system calls which allow a program to determine
-which modules are loaded and their location in memory. Using these
-system calls the klogd daemon builds a symbol table which can be used
-to debug a protection fault which occurs in a loadable kernel module.
-
-At the very minimum klogd will provide the name of the module which
-generated the protection fault. There may be additional symbolic
-information available if the developer of the loadable module chose to
-export symbol information from the module.
-
-Since the kernel module environment can be dynamic there must be a
-mechanism for notifying the klogd daemon when a change in module
-environment occurs. There are command line options available which
-allow klogd to signal the currently executing daemon that symbol
-information should be refreshed. See the klogd manual page for more
-information.
-
-A patch is included with the sysklogd distribution which modifies the
-modules-2.0.0 package to automatically signal klogd whenever a module
-is loaded or unloaded. Applying this patch provides essentially
-seamless support for debugging protection faults which occur with
-kernel loadable modules.
-
-The following is an example of a protection fault in a loadable module
-processed by klogd:
----------------------------------------------------------------------------
-Aug 29 09:51:01 blizard kernel: Unable to handle kernel paging request at virtual address f15e97cc
-Aug 29 09:51:01 blizard kernel: current->tss.cr3 = 0062d000, %cr3 = 0062d000
-Aug 29 09:51:01 blizard kernel: *pde = 00000000
-Aug 29 09:51:01 blizard kernel: Oops: 0002
-Aug 29 09:51:01 blizard kernel: CPU: 0
-Aug 29 09:51:01 blizard kernel: EIP: 0010:[oops:_oops+16/3868]
-Aug 29 09:51:01 blizard kernel: EFLAGS: 00010212
-Aug 29 09:51:01 blizard kernel: eax: 315e97cc ebx: 003a6f80 ecx: 001be77b edx: 00237c0c
-Aug 29 09:51:01 blizard kernel: esi: 00000000 edi: bffffdb3 ebp: 00589f90 esp: 00589f8c
-Aug 29 09:51:01 blizard kernel: ds: 0018 es: 0018 fs: 002b gs: 002b ss: 0018
-Aug 29 09:51:01 blizard kernel: Process oops_test (pid: 3374, process nr: 21, stackpage=00589000)
-Aug 29 09:51:01 blizard kernel: Stack: 315e97cc 00589f98 0100b0b4 bffffed4 0012e38e 00240c64 003a6f80 00000001
-Aug 29 09:51:01 blizard kernel: 00000000 00237810 bfffff00 0010a7fa 00000003 00000001 00000000 bfffff00
-Aug 29 09:51:01 blizard kernel: bffffdb3 bffffed4 ffffffda 0000002b 0007002b 0000002b 0000002b 00000036
-Aug 29 09:51:01 blizard kernel: Call Trace: [oops:_oops_ioctl+48/80] [_sys_ioctl+254/272] [_system_call+82/128]
-Aug 29 09:51:01 blizard kernel: Code: c7 00 05 00 00 00 eb 08 90 90 90 90 90 90 90 90 89 ec 5d c3
----------------------------------------------------------------------------
-
-Dr. G.W. Wettstein Oncology Research Div. Computing Facility
-Roger Maris Cancer Center INTERNET: greg@wind.rmcc.com
-820 4th St. N.
-Fargo, ND 58122
-Phone: 701-234-7556
-
-
----------------------------------------------------------------------------
-Tainted kernels:
-
-Some oops reports contain the string 'Tainted: ' after the program
-counter. This indicates that the kernel has been tainted by some
-mechanism. The string is followed by a series of position-sensitive
-characters, each representing a particular tainted value.
-
- 1: 'G' if all modules loaded have a GPL or compatible license, 'P' if
- any proprietary module has been loaded. Modules without a
- MODULE_LICENSE or with a MODULE_LICENSE that is not recognised by
- insmod as GPL compatible are assumed to be proprietary.
-
- 2: 'F' if any module was force loaded by "insmod -f", ' ' if all
- modules were loaded normally.
-
- 3: 'S' if the oops occurred on an SMP kernel running on hardware that
- hasn't been certified as safe to run multiprocessor.
- Currently this occurs only on various Athlons that are not
- SMP capable.
-
- 4: 'R' if a module was force unloaded by "rmmod -f", ' ' if all
- modules were unloaded normally.
-
- 5: 'M' if any processor has reported a Machine Check Exception,
- ' ' if no Machine Check Exceptions have occurred.
-
- 6: 'B' if a page-release function has found a bad page reference or
- some unexpected page flags.
-
- 7: 'U' if a user or user application specifically requested that the
- Tainted flag be set, ' ' otherwise.
-
- 8: 'D' if the kernel has died recently, i.e. there was an OOPS or BUG.
-
- 9: 'A' if the ACPI table has been overridden.
-
- 10: 'W' if a warning has previously been issued by the kernel.
- (Though some warnings may set more specific taint flags.)
-
- 11: 'C' if a staging driver has been loaded.
-
- 12: 'I' if the kernel is working around a severe bug in the platform
- firmware (BIOS or similar).
-
- 13: 'O' if an externally-built ("out-of-tree") module has been loaded.
-
- 14: 'E' if an unsigned module has been loaded in a kernel supporting
- module signature.
-
- 15: 'L' if a soft lockup has previously occurred on the system.
-
- 16: 'K' if the kernel has been live patched.
-
-The primary reason for the 'Tainted: ' string is to tell kernel
-debuggers if this is a clean kernel or if anything unusual has
-occurred. Tainting is permanent: even if an offending module is
-unloaded, the tainted value remains to indicate that the kernel is not
-trustworthy.
diff --git a/Documentation/parport.txt b/Documentation/parport.txt
deleted file mode 100644
index c208e43..0000000
--- a/Documentation/parport.txt
+++ /dev/null
@@ -1,267 +0,0 @@
-The `parport' code provides parallel-port support under Linux. This
-includes the ability to share one port between multiple device
-drivers.
-
-You can pass parameters to the parport code to override its automatic
-detection of your hardware. This is particularly useful if you want
-to use IRQs, since in general these can't be autoprobed successfully.
-By default IRQs are not used even if they _can_ be probed. This is
-because there are a lot of people using the same IRQ for their
-parallel port and a sound card or network card.
-
-The parport code is split into two parts: generic (which deals with
-port-sharing) and architecture-dependent (which deals with actually
-using the port).
-
-
-Parport as modules
-==================
-
-If you load the parport code as a module, say
-
- # insmod parport
-
-to load the generic parport code. You then must load the
-architecture-dependent code with (for example):
-
- # insmod parport_pc io=0x3bc,0x378,0x278 irq=none,7,auto
-
-to tell the parport code that you want three PC-style ports, one at
-0x3bc with no IRQ, one at 0x378 using IRQ 7, and one at 0x278 with an
-auto-detected IRQ. Currently, PC-style (parport_pc), Sun `bpp',
-Amiga, Atari, and MFC3 hardware is supported.
-
-PCI parallel I/O card support comes from parport_pc. Base I/O
-addresses should not be specified for supported PCI cards since they
-are automatically detected.
-
-
-modprobe
---------
-
-If you use modprobe , you will find it useful to add lines as below to a
-configuration file in /etc/modprobe.d/ directory:.
-
- alias parport_lowlevel parport_pc
- options parport_pc io=0x378,0x278 irq=7,auto
-
-modprobe will load parport_pc (with the options "io=0x378,0x278 irq=7,auto")
-whenever a parallel port device driver (such as lp) is loaded.
-
-Note that these are example lines only! You shouldn't in general need
-to specify any options to parport_pc in order to be able to use a
-parallel port.
-
-
-Parport probe [optional]
--------------
-
-In 2.2 kernels there was a module called parport_probe, which was used
-for collecting IEEE 1284 device ID information. This has now been
-enhanced and now lives with the IEEE 1284 support. When a parallel
-port is detected, the devices that are connected to it are analysed,
-and information is logged like this:
-
- parport0: Printer, BJC-210 (Canon)
-
-The probe information is available from files in /proc/sys/dev/parport/.
-
-
-Parport linked into the kernel statically
-=========================================
-
-If you compile the parport code into the kernel, then you can use
-kernel boot parameters to get the same effect. Add something like the
-following to your LILO command line:
-
- parport=0x3bc parport=0x378,7 parport=0x278,auto,nofifo
-
-You can have many `parport=...' statements, one for each port you want
-to add. Adding `parport=0' to the kernel command-line will disable
-parport support entirely. Adding `parport=auto' to the kernel
-command-line will make parport use any IRQ lines or DMA channels that
-it auto-detects.
-
-
-Files in /proc
-==============
-
-If you have configured the /proc filesystem into your kernel, you will
-see a new directory entry: /proc/sys/dev/parport. In there will be a
-directory entry for each parallel port for which parport is
-configured. In each of those directories are a collection of files
-describing that parallel port.
-
-The /proc/sys/dev/parport directory tree looks like:
-
-parport
-|-- default
-| |-- spintime
-| `-- timeslice
-|-- parport0
-| |-- autoprobe
-| |-- autoprobe0
-| |-- autoprobe1
-| |-- autoprobe2
-| |-- autoprobe3
-| |-- devices
-| | |-- active
-| | `-- lp
-| | `-- timeslice
-| |-- base-addr
-| |-- irq
-| |-- dma
-| |-- modes
-| `-- spintime
-`-- parport1
- |-- autoprobe
- |-- autoprobe0
- |-- autoprobe1
- |-- autoprobe2
- |-- autoprobe3
- |-- devices
- | |-- active
- | `-- ppa
- | `-- timeslice
- |-- base-addr
- |-- irq
- |-- dma
- |-- modes
- `-- spintime
-
-
-File: Contents:
-
-devices/active A list of the device drivers using that port. A "+"
- will appear by the name of the device currently using
- the port (it might not appear against any). The
- string "none" means that there are no device drivers
- using that port.
-
-base-addr Parallel port's base address, or addresses if the port
- has more than one in which case they are separated
- with tabs. These values might not have any sensible
- meaning for some ports.
-
-irq Parallel port's IRQ, or -1 if none is being used.
-
-dma Parallel port's DMA channel, or -1 if none is being
- used.
-
-modes Parallel port's hardware modes, comma-separated,
- meaning:
-
- PCSPP PC-style SPP registers are available.
- TRISTATE Port is bidirectional.
- COMPAT Hardware acceleration for printers is
- available and will be used.
- EPP Hardware acceleration for EPP protocol
- is available and will be used.
- ECP Hardware acceleration for ECP protocol
- is available and will be used.
- DMA DMA is available and will be used.
-
- Note that the current implementation will only take
- advantage of COMPAT and ECP modes if it has an IRQ
- line to use.
-
-autoprobe Any IEEE-1284 device ID information that has been
- acquired from the (non-IEEE 1284.3) device.
-
-autoprobe[0-3] IEEE 1284 device ID information retrieved from
- daisy-chain devices that conform to IEEE 1284.3.
-
-spintime The number of microseconds to busy-loop while waiting
- for the peripheral to respond. You might find that
- adjusting this improves performance, depending on your
- peripherals. This is a port-wide setting, i.e. it
- applies to all devices on a particular port.
-
-timeslice The number of milliseconds that a device driver is
- allowed to keep a port claimed for. This is advisory,
- and driver can ignore it if it must.
-
-default/* The defaults for spintime and timeslice. When a new
- port is registered, it picks up the default spintime.
- When a new device is registered, it picks up the
- default timeslice.
-
-Device drivers
-==============
-
-Once the parport code is initialised, you can attach device drivers to
-specific ports. Normally this happens automatically; if the lp driver
-is loaded it will create one lp device for each port found. You can
-override this, though, by using parameters either when you load the lp
-driver:
-
- # insmod lp parport=0,2
-
-or on the LILO command line:
-
- lp=parport0 lp=parport2
-
-Both the above examples would inform lp that you want /dev/lp0 to be
-the first parallel port, and /dev/lp1 to be the _third_ parallel port,
-with no lp device associated with the second port (parport1). Note
-that this is different to the way older kernels worked; there used to
-be a static association between the I/O port address and the device
-name, so /dev/lp0 was always the port at 0x3bc. This is no longer the
-case - if you only have one port, it will default to being /dev/lp0,
-regardless of base address.
-
-Also:
-
- * If you selected the IEEE 1284 support at compile time, you can say
- `lp=auto' on the kernel command line, and lp will create devices
- only for those ports that seem to have printers attached.
-
- * If you give PLIP the `timid' parameter, either with `plip=timid' on
- the command line, or with `insmod plip timid=1' when using modules,
- it will avoid any ports that seem to be in use by other devices.
-
- * IRQ autoprobing works only for a few port types at the moment.
-
-Reporting printer problems with parport
-=======================================
-
-If you are having problems printing, please go through these steps to
-try to narrow down where the problem area is.
-
-When reporting problems with parport, really you need to give all of
-the messages that parport_pc spits out when it initialises. There are
-several code paths:
-
-o polling
-o interrupt-driven, protocol in software
-o interrupt-driven, protocol in hardware using PIO
-o interrupt-driven, protocol in hardware using DMA
-
-The kernel messages that parport_pc logs give an indication of which
-code path is being used. (They could be a lot better actually..)
-
-For normal printer protocol, having IEEE 1284 modes enabled or not
-should not make a difference.
-
-To turn off the 'protocol in hardware' code paths, disable
-CONFIG_PARPORT_PC_FIFO. Note that when they are enabled they are not
-necessarily _used_; it depends on whether the hardware is available,
-enabled by the BIOS, and detected by the driver.
-
-So, to start with, disable CONFIG_PARPORT_PC_FIFO, and load parport_pc
-with 'irq=none'. See if printing works then. It really should,
-because this is the simplest code path.
-
-If that works fine, try with 'io=0x378 irq=7' (adjust for your
-hardware), to make it use interrupt-driven in-software protocol.
-
-If _that_ works fine, then one of the hardware modes isn't working
-right. Enable CONFIG_PARPORT_PC_FIFO (no, it isn't a module option,
-and yes, it should be), set the port to ECP mode in the BIOS and note
-the DMA channel, and try with:
-
- io=0x378 irq=7 dma=none (for PIO)
- io=0x378 irq=7 dma=3 (for DMA)
---
-philb@gnu.org
-tim@cyberelk.net
diff --git a/Documentation/power/00-INDEX b/Documentation/power/00-INDEX
index ad04cc8..7cb6085 100644
--- a/Documentation/power/00-INDEX
+++ b/Documentation/power/00-INDEX
@@ -6,7 +6,7 @@ basic-pm-debugging.txt
- Debugging suspend and resume
charger-manager.txt
- Battery charger management.
-devices.txt
+admin-guide/devices.rst
- How drivers interact with system-wide power management
drivers-testing.txt
- Testing suspend and resume support in device drivers
diff --git a/Documentation/power/pci.txt b/Documentation/power/pci.txt
index 4455888..85c746c 100644
--- a/Documentation/power/pci.txt
+++ b/Documentation/power/pci.txt
@@ -8,7 +8,7 @@ management. Based on previous work by Patrick Mochel <mochel@transmeta.com>
This document only covers the aspects of power management specific to PCI
devices. For general description of the kernel's interfaces related to device
-power management refer to Documentation/power/devices.txt and
+power management refer to Documentation/power/admin-guide/devices.rst and
Documentation/power/runtime_pm.txt.
---------------------------------------------------------------------------
@@ -417,7 +417,7 @@ pm->runtime_idle() callback.
2.4. System-Wide Power Transitions
----------------------------------
There are a few different types of system-wide power transitions, described in
-Documentation/power/devices.txt. Each of them requires devices to be handled
+Documentation/power/admin-guide/devices.rst. Each of them requires devices to be handled
in a specific way and the PM core executes subsystem-level power management
callbacks for this purpose. They are executed in phases such that each phase
involves executing the same subsystem-level callback for every device belonging
@@ -623,7 +623,7 @@ System restore requires a hibernation image to be loaded into memory and the
pre-hibernation memory contents to be restored before the pre-hibernation system
activity can be resumed.
-As described in Documentation/power/devices.txt, the hibernation image is loaded
+As described in Documentation/power/admin-guide/devices.rst, the hibernation image is loaded
into memory by a fresh instance of the kernel, called the boot kernel, which in
turn is loaded and run by a boot loader in the usual way. After the boot kernel
has loaded the image, it needs to replace its own code and data with the code
@@ -677,7 +677,7 @@ controlling the runtime power management of their devices.
At the time of this writing there are two ways to define power management
callbacks for a PCI device driver, the recommended one, based on using a
-dev_pm_ops structure described in Documentation/power/devices.txt, and the
+dev_pm_ops structure described in Documentation/power/admin-guide/devices.rst, and the
"legacy" one, in which the .suspend(), .suspend_late(), .resume_early(), and
.resume() callbacks from struct pci_driver are used. The legacy approach,
however, doesn't allow one to define runtime power management callbacks and is
@@ -1046,5 +1046,5 @@ PCI Local Bus Specification, Rev. 3.0
PCI Bus Power Management Interface Specification, Rev. 1.2
Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b
PCI Express Base Specification, Rev. 2.0
-Documentation/power/devices.txt
+Documentation/power/admin-guide/devices.rst
Documentation/power/runtime_pm.txt
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
index 1fd1fbe..4870980 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.txt
@@ -674,7 +674,7 @@ left in runtime suspend. If that happens, the PM core will not execute any
system suspend and resume callbacks for all of those devices, except for the
complete callback, which is then entirely responsible for handling the device
as appropriate. This only applies to system suspend transitions that are not
-related to hibernation (see Documentation/power/devices.txt for more
+related to hibernation (see Documentation/power/admin-guide/devices.rst for more
information).
The PM core does its best to reduce the probability of race conditions between
diff --git a/Documentation/power/swsusp-dmcrypt.txt b/Documentation/power/swsusp-dmcrypt.txt
index 59931b4..b802fbf 100644
--- a/Documentation/power/swsusp-dmcrypt.txt
+++ b/Documentation/power/swsusp-dmcrypt.txt
@@ -8,7 +8,7 @@ Some prerequisites:
You know how dm-crypt works. If not, visit the following web page:
http://www.saout.de/misc/dm-crypt/
You have read Documentation/power/swsusp.txt and understand it.
-You did read Documentation/initrd.txt and know how an initrd works.
+You did read Documentation/admin-guide/initrd.rst and know how an initrd works.
You know how to create or how to modify an initrd.
Now your system is properly set up, your disk is encrypted except for
diff --git a/Documentation/development-process/1.Intro.rst b/Documentation/process/1.Intro.rst
index 22642b3..22642b3 100644
--- a/Documentation/development-process/1.Intro.rst
+++ b/Documentation/process/1.Intro.rst
diff --git a/Documentation/development-process/2.Process.rst b/Documentation/process/2.Process.rst
index ce5561b..ce5561b 100644
--- a/Documentation/development-process/2.Process.rst
+++ b/Documentation/process/2.Process.rst
diff --git a/Documentation/development-process/3.Early-stage.rst b/Documentation/process/3.Early-stage.rst
index af2c0af..af2c0af 100644
--- a/Documentation/development-process/3.Early-stage.rst
+++ b/Documentation/process/3.Early-stage.rst
diff --git a/Documentation/development-process/4.Coding.rst b/Documentation/process/4.Coding.rst
index 9d5cef9..983d628 100644
--- a/Documentation/development-process/4.Coding.rst
+++ b/Documentation/process/4.Coding.rst
@@ -22,7 +22,7 @@ Coding style
************
The kernel has long had a standard coding style, described in
-Documentation/CodingStyle. For much of that time, the policies described
+Documentation/process/coding-style.rst. For much of that time, the policies described
in that file were taken as being, at most, advisory. As a result, there is
a substantial amount of code in the kernel which does not meet the coding
style guidelines. The presence of that code leads to two independent
@@ -343,7 +343,7 @@ user-space developers to know what they are working with. See
Documentation/ABI/README for a description of how this documentation should
be formatted and what information needs to be provided.
-The file Documentation/kernel-parameters.txt describes all of the kernel's
+The file Documentation/admin-guide/kernel-parameters.rst describes all of the kernel's
boot-time parameters. Any patch which adds new parameters should add the
appropriate entries to this file.
diff --git a/Documentation/development-process/5.Posting.rst b/Documentation/process/5.Posting.rst
index b511ddf..1b7728b 100644
--- a/Documentation/development-process/5.Posting.rst
+++ b/Documentation/process/5.Posting.rst
@@ -9,8 +9,8 @@ kernel. Unsurprisingly, the kernel development community has evolved a set
of conventions and procedures which are used in the posting of patches;
following them will make life much easier for everybody involved. This
document will attempt to cover these expectations in reasonable detail;
-more information can also be found in the files SubmittingPatches,
-SubmittingDrivers, and SubmitChecklist in the kernel documentation
+more information can also be found in the files process/submitting-patches.rst,
+process/submitting-drivers.rst, and process/submit-checklist.rst in the kernel documentation
directory.
@@ -198,7 +198,7 @@ pass it to diff with the "-X" option.
The tags mentioned above are used to describe how various developers have
been associated with the development of this patch. They are described in
-detail in the SubmittingPatches document; what follows here is a brief
+detail in the process/submitting-patches.rst document; what follows here is a brief
summary. Each of these lines has the format:
::
@@ -210,7 +210,7 @@ The tags in common use are:
- Signed-off-by: this is a developer's certification that he or she has
the right to submit the patch for inclusion into the kernel. It is an
agreement to the Developer's Certificate of Origin, the full text of
- which can be found in Documentation/SubmittingPatches. Code without a
+ which can be found in Documentation/process/submitting-patches.rst. Code without a
proper signoff cannot be merged into the mainline.
- Acked-by: indicates an agreement by another developer (often a
@@ -221,7 +221,7 @@ The tags in common use are:
it to work.
- Reviewed-by: the named developer has reviewed the patch for correctness;
- see the reviewer's statement in Documentation/SubmittingPatches for more
+ see the reviewer's statement in Documentation/process/submitting-patches.rst for more
detail.
- Reported-by: names a user who reported a problem which is fixed by this
@@ -248,7 +248,7 @@ take care of:
be examined in any detail. If there is any doubt at all, mail the patch
to yourself and convince yourself that it shows up intact.
- Documentation/email-clients.txt has some helpful hints on making
+ Documentation/process/email-clients.rst has some helpful hints on making
specific mail clients work for sending patches.
- Are you sure your patch is free of silly mistakes? You should always
diff --git a/Documentation/development-process/6.Followthrough.rst b/Documentation/process/6.Followthrough.rst
index a173cd5..a173cd5 100644
--- a/Documentation/development-process/6.Followthrough.rst
+++ b/Documentation/process/6.Followthrough.rst
diff --git a/Documentation/development-process/7.AdvancedTopics.rst b/Documentation/process/7.AdvancedTopics.rst
index 81d61c5..172733c 100644
--- a/Documentation/development-process/7.AdvancedTopics.rst
+++ b/Documentation/process/7.AdvancedTopics.rst
@@ -176,5 +176,3 @@ security issues, duplication of code found elsewhere, adequate
documentation, adverse effects on performance, user-space ABI changes, etc.
All types of review, if they lead to better code going into the kernel, are
welcome and worthwhile.
-
-
diff --git a/Documentation/development-process/8.Conclusion.rst b/Documentation/process/8.Conclusion.rst
index 23ec7cb..1c7f54c 100644
--- a/Documentation/development-process/8.Conclusion.rst
+++ b/Documentation/process/8.Conclusion.rst
@@ -5,9 +5,9 @@ For more information
There are numerous sources of information on Linux kernel development and
related topics. First among those will always be the Documentation
-directory found in the kernel source distribution. The top-level HOWTO
-file is an important starting point; SubmittingPatches and
-SubmittingDrivers are also something which all kernel developers should
+directory found in the kernel source distribution. The top-level process/howto.rst
+file is an important starting point; process/submitting-patches.rst and
+process/submitting-drivers.rst are also something which all kernel developers should
read. Many internal kernel APIs are documented using the kerneldoc
mechanism; "make htmldocs" or "make pdfdocs" can be used to generate those
documents in HTML or PDF format (though the version of TeX shipped by some
diff --git a/Documentation/adding-syscalls.txt b/Documentation/process/adding-syscalls.rst
index bbb31e0..8cc25a0 100644
--- a/Documentation/adding-syscalls.txt
+++ b/Documentation/process/adding-syscalls.rst
@@ -3,7 +3,7 @@ Adding a New System Call
This document describes what's involved in adding a new system call to the
Linux kernel, over and above the normal submission advice in
-Documentation/SubmittingPatches.
+:ref:`Documentation/process/submitting-patches.rst <submittingpatches>`.
System Call Alternatives
@@ -19,30 +19,33 @@ interface.
object, it may make more sense to create a new filesystem or device. This
also makes it easier to encapsulate the new functionality in a kernel module
rather than requiring it to be built into the main kernel.
+
- If the new functionality involves operations where the kernel notifies
userspace that something has happened, then returning a new file
descriptor for the relevant object allows userspace to use
- poll/select/epoll to receive that notification.
- - However, operations that don't map to read(2)/write(2)-like operations
- have to be implemented as ioctl(2) requests, which can lead to a
- somewhat opaque API.
+ ``poll``/``select``/``epoll`` to receive that notification.
+ - However, operations that don't map to
+ :manpage:`read(2)`/:manpage:`write(2)`-like operations
+ have to be implemented as :manpage:`ioctl(2)` requests, which can lead
+ to a somewhat opaque API.
+
- If you're just exposing runtime system information, a new node in sysfs
- (see Documentation/filesystems/sysfs.txt) or the /proc filesystem may be
- more appropriate. However, access to these mechanisms requires that the
+ (see ``Documentation/filesystems/sysfs.txt``) or the ``/proc`` filesystem may
+ be more appropriate. However, access to these mechanisms requires that the
relevant filesystem is mounted, which might not always be the case (e.g.
in a namespaced/sandboxed/chrooted environment). Avoid adding any API to
debugfs, as this is not considered a 'production' interface to userspace.
- If the operation is specific to a particular file or file descriptor, then
- an additional fcntl(2) command option may be more appropriate. However,
- fcntl(2) is a multiplexing system call that hides a lot of complexity, so
+ an additional :manpage:`fcntl(2)` command option may be more appropriate. However,
+ :manpage:`fcntl(2)` is a multiplexing system call that hides a lot of complexity, so
this option is best for when the new function is closely analogous to
- existing fcntl(2) functionality, or the new functionality is very simple
+ existing :manpage:`fcntl(2)` functionality, or the new functionality is very simple
(for example, getting/setting a simple flag related to a file descriptor).
- If the operation is specific to a particular task or process, then an
- additional prctl(2) command option may be more appropriate. As with
- fcntl(2), this system call is a complicated multiplexor so is best reserved
- for near-analogs of existing prctl() commands or getting/setting a simple
- flag related to a process.
+ additional :manpage:`prctl(2)` command option may be more appropriate. As
+ with :manpage:`fcntl(2)`, this system call is a complicated multiplexor so
+ is best reserved for near-analogs of existing ``prctl()`` commands or
+ getting/setting a simple flag related to a process.
Designing the API: Planning for Extension
@@ -54,15 +57,16 @@ interface on the kernel mailing list, and it's important to plan for future
extensions of the interface.
(The syscall table is littered with historical examples where this wasn't done,
-together with the corresponding follow-up system calls -- eventfd/eventfd2,
-dup2/dup3, inotify_init/inotify_init1, pipe/pipe2, renameat/renameat2 -- so
+together with the corresponding follow-up system calls --
+``eventfd``/``eventfd2``, ``dup2``/``dup3``, ``inotify_init``/``inotify_init1``,
+``pipe``/``pipe2``, ``renameat``/``renameat2`` -- so
learn from the history of the kernel and plan for extensions from the start.)
For simpler system calls that only take a couple of arguments, the preferred
way to allow for future extensibility is to include a flags argument to the
system call. To make sure that userspace programs can safely use flags
between kernel versions, check whether the flags value holds any unknown
-flags, and reject the system call (with EINVAL) if it does:
+flags, and reject the system call (with ``EINVAL``) if it does::
if (flags & ~(THING_FLAG1 | THING_FLAG2 | THING_FLAG3))
return -EINVAL;
@@ -72,7 +76,7 @@ flags, and reject the system call (with EINVAL) if it does:
For more sophisticated system calls that involve a larger number of arguments,
it's preferred to encapsulate the majority of the arguments into a structure
that is passed in by pointer. Such a structure can cope with future extension
-by including a size argument in the structure:
+by including a size argument in the structure::
struct xyzzy_params {
u32 size; /* userspace sets p->size = sizeof(struct xyzzy_params) */
@@ -81,19 +85,19 @@ by including a size argument in the structure:
u64 param_3;
};
-As long as any subsequently added field, say param_4, is designed so that a
+As long as any subsequently added field, say ``param_4``, is designed so that a
zero value gives the previous behaviour, then this allows both directions of
version mismatch:
- To cope with a later userspace program calling an older kernel, the kernel
code should check that any memory beyond the size of the structure that it
- expects is zero (effectively checking that param_4 == 0).
+ expects is zero (effectively checking that ``param_4 == 0``).
- To cope with an older userspace program calling a newer kernel, the kernel
code can zero-extend a smaller instance of the structure (effectively
- setting param_4 = 0).
+ setting ``param_4 = 0``).
-See perf_event_open(2) and the perf_copy_attr() function (in
-kernel/events/core.c) for an example of this approach.
+See :manpage:`perf_event_open(2)` and the ``perf_copy_attr()`` function (in
+``kernel/events/core.c``) for an example of this approach.
Designing the API: Other Considerations
@@ -104,57 +108,60 @@ should use a file descriptor as the handle for that object -- don't invent a
new type of userspace object handle when the kernel already has mechanisms and
well-defined semantics for using file descriptors.
-If your new xyzzy(2) system call does return a new file descriptor, then the
-flags argument should include a value that is equivalent to setting O_CLOEXEC
-on the new FD. This makes it possible for userspace to close the timing
-window between xyzzy() and calling fcntl(fd, F_SETFD, FD_CLOEXEC), where an
-unexpected fork() and execve() in another thread could leak a descriptor to
+If your new :manpage:`xyzzy(2)` system call does return a new file descriptor,
+then the flags argument should include a value that is equivalent to setting
+``O_CLOEXEC`` on the new FD. This makes it possible for userspace to close
+the timing window between ``xyzzy()`` and calling
+``fcntl(fd, F_SETFD, FD_CLOEXEC)``, where an unexpected ``fork()`` and
+``execve()`` in another thread could leak a descriptor to
the exec'ed program. (However, resist the temptation to re-use the actual value
-of the O_CLOEXEC constant, as it is architecture-specific and is part of a
-numbering space of O_* flags that is fairly full.)
+of the ``O_CLOEXEC`` constant, as it is architecture-specific and is part of a
+numbering space of ``O_*`` flags that is fairly full.)
If your system call returns a new file descriptor, you should also consider
-what it means to use the poll(2) family of system calls on that file
+what it means to use the :manpage:`poll(2)` family of system calls on that file
descriptor. Making a file descriptor ready for reading or writing is the
normal way for the kernel to indicate to userspace that an event has
occurred on the corresponding kernel object.
-If your new xyzzy(2) system call involves a filename argument:
+If your new :manpage:`xyzzy(2)` system call involves a filename argument::
int sys_xyzzy(const char __user *path, ..., unsigned int flags);
-you should also consider whether an xyzzyat(2) version is more appropriate:
+you should also consider whether an :manpage:`xyzzyat(2)` version is more appropriate::
int sys_xyzzyat(int dfd, const char __user *path, ..., unsigned int flags);
This allows more flexibility for how userspace specifies the file in question;
in particular it allows userspace to request the functionality for an
-already-opened file descriptor using the AT_EMPTY_PATH flag, effectively giving
-an fxyzzy(3) operation for free:
+already-opened file descriptor using the ``AT_EMPTY_PATH`` flag, effectively
+giving an :manpage:`fxyzzy(3)` operation for free::
- xyzzyat(AT_FDCWD, path, ..., 0) is equivalent to xyzzy(path,...)
- xyzzyat(fd, "", ..., AT_EMPTY_PATH) is equivalent to fxyzzy(fd, ...)
-(For more details on the rationale of the *at() calls, see the openat(2) man
-page; for an example of AT_EMPTY_PATH, see the fstatat(2) man page.)
-
-If your new xyzzy(2) system call involves a parameter describing an offset
-within a file, make its type loff_t so that 64-bit offsets can be supported
-even on 32-bit architectures.
-
-If your new xyzzy(2) system call involves privileged functionality, it needs
-to be governed by the appropriate Linux capability bit (checked with a call to
-capable()), as described in the capabilities(7) man page. Choose an existing
-capability bit that governs related functionality, but try to avoid combining
-lots of only vaguely related functions together under the same bit, as this
-goes against capabilities' purpose of splitting the power of root. In
-particular, avoid adding new uses of the already overly-general CAP_SYS_ADMIN
-capability.
-
-If your new xyzzy(2) system call manipulates a process other than the calling
-process, it should be restricted (using a call to ptrace_may_access()) so that
-only a calling process with the same permissions as the target process, or
-with the necessary capabilities, can manipulate the target process.
+(For more details on the rationale of the \*at() calls, see the
+:manpage:`openat(2)` man page; for an example of AT_EMPTY_PATH, see the
+:manpage:`fstatat(2)` man page.)
+
+If your new :manpage:`xyzzy(2)` system call involves a parameter describing an
+offset within a file, make its type ``loff_t`` so that 64-bit offsets can be
+supported even on 32-bit architectures.
+
+If your new :manpage:`xyzzy(2)` system call involves privileged functionality,
+it needs to be governed by the appropriate Linux capability bit (checked with
+a call to ``capable()``), as described in the :manpage:`capabilities(7)` man
+page. Choose an existing capability bit that governs related functionality,
+but try to avoid combining lots of only vaguely related functions together
+under the same bit, as this goes against capabilities' purpose of splitting
+the power of root. In particular, avoid adding new uses of the already
+overly-general ``CAP_SYS_ADMIN`` capability.
+
+If your new :manpage:`xyzzy(2)` system call manipulates a process other than
+the calling process, it should be restricted (using a call to
+``ptrace_may_access()``) so that only a calling process with the same
+permissions as the target process, or with the necessary capabilities, can
+manipulate the target process.
Finally, be aware that some non-x86 architectures have an easier time if
system call parameters that are explicitly 64-bit fall on odd-numbered
@@ -175,7 +182,7 @@ distinct commits (each of which is described further below):
- Wiring up of the new system call for one particular architecture, usually
x86 (including all of x86_64, x86_32 and x32).
- A demonstration of the use of the new system call in userspace via a
- selftest in tools/testing/selftests/.
+ selftest in ``tools/testing/selftests/``.
- A draft man-page for the new system call, either as plain text in the
cover letter, or as a patch to the (separate) man-pages repository.
@@ -186,24 +193,24 @@ be cc'ed to linux-api@vger.kernel.org.
Generic System Call Implementation
----------------------------------
-The main entry point for your new xyzzy(2) system call will be called
-sys_xyzzy(), but you add this entry point with the appropriate
-SYSCALL_DEFINEn() macro rather than explicitly. The 'n' indicates the number
-of arguments to the system call, and the macro takes the system call name
+The main entry point for your new :manpage:`xyzzy(2)` system call will be called
+``sys_xyzzy()``, but you add this entry point with the appropriate
+``SYSCALL_DEFINEn()`` macro rather than explicitly. The 'n' indicates the
+number of arguments to the system call, and the macro takes the system call name
followed by the (type, name) pairs for the parameters as arguments. Using
this macro allows metadata about the new system call to be made available for
other tools.
The new entry point also needs a corresponding function prototype, in
-include/linux/syscalls.h, marked as asmlinkage to match the way that system
-calls are invoked:
+``include/linux/syscalls.h``, marked as asmlinkage to match the way that system
+calls are invoked::
asmlinkage long sys_xyzzy(...);
Some architectures (e.g. x86) have their own architecture-specific syscall
tables, but several other architectures share a generic syscall table. Add your
new system call to the generic list by adding an entry to the list in
-include/uapi/asm-generic/unistd.h:
+``include/uapi/asm-generic/unistd.h``::
#define __NR_xyzzy 292
__SYSCALL(__NR_xyzzy, sys_xyzzy)
@@ -212,30 +219,30 @@ Also update the __NR_syscalls count to reflect the additional system call, and
note that if multiple new system calls are added in the same merge window,
your new syscall number may get adjusted to resolve conflicts.
-The file kernel/sys_ni.c provides a fallback stub implementation of each system
-call, returning -ENOSYS. Add your new system call here too:
+The file ``kernel/sys_ni.c`` provides a fallback stub implementation of each
+system call, returning ``-ENOSYS``. Add your new system call here too::
cond_syscall(sys_xyzzy);
Your new kernel functionality, and the system call that controls it, should
-normally be optional, so add a CONFIG option (typically to init/Kconfig) for
-it. As usual for new CONFIG options:
+normally be optional, so add a ``CONFIG`` option (typically to
+``init/Kconfig``) for it. As usual for new ``CONFIG`` options:
- Include a description of the new functionality and system call controlled
by the option.
- Make the option depend on EXPERT if it should be hidden from normal users.
- Make any new source files implementing the function dependent on the CONFIG
- option in the Makefile (e.g. "obj-$(CONFIG_XYZZY_SYSCALL) += xyzzy.c").
+ option in the Makefile (e.g. ``obj-$(CONFIG_XYZZY_SYSCALL) += xyzzy.c``).
- Double check that the kernel still builds with the new CONFIG option turned
off.
To summarize, you need a commit that includes:
- - CONFIG option for the new function, normally in init/Kconfig
- - SYSCALL_DEFINEn(xyzzy, ...) for the entry point
- - corresponding prototype in include/linux/syscalls.h
- - generic table entry in include/uapi/asm-generic/unistd.h
- - fallback stub in kernel/sys_ni.c
+ - ``CONFIG`` option for the new function, normally in ``init/Kconfig``
+ - ``SYSCALL_DEFINEn(xyzzy, ...)`` for the entry point
+ - corresponding prototype in ``include/linux/syscalls.h``
+ - generic table entry in ``include/uapi/asm-generic/unistd.h``
+ - fallback stub in ``kernel/sys_ni.c``
x86 System Call Implementation
@@ -244,11 +251,11 @@ x86 System Call Implementation
To wire up your new system call for x86 platforms, you need to update the
master syscall tables. Assuming your new system call isn't special in some
way (see below), this involves a "common" entry (for x86_64 and x32) in
-arch/x86/entry/syscalls/syscall_64.tbl:
+arch/x86/entry/syscalls/syscall_64.tbl::
333 common xyzzy sys_xyzzy
-and an "i386" entry in arch/x86/entry/syscalls/syscall_32.tbl:
+and an "i386" entry in ``arch/x86/entry/syscalls/syscall_32.tbl``::
380 i386 xyzzy sys_xyzzy
@@ -267,48 +274,49 @@ However, there are a couple of situations where a compatibility layer is
needed to cope with size differences between 32-bit and 64-bit.
The first is if the 64-bit kernel also supports 32-bit userspace programs, and
-so needs to parse areas of (__user) memory that could hold either 32-bit or
+so needs to parse areas of (``__user``) memory that could hold either 32-bit or
64-bit values. In particular, this is needed whenever a system call argument
is:
- a pointer to a pointer
- - a pointer to a struct containing a pointer (e.g. struct iovec __user *)
- - a pointer to a varying sized integral type (time_t, off_t, long, ...)
+ - a pointer to a struct containing a pointer (e.g. ``struct iovec __user *``)
+ - a pointer to a varying sized integral type (``time_t``, ``off_t``,
+ ``long``, ...)
- a pointer to a struct containing a varying sized integral type.
The second situation that requires a compatibility layer is if one of the
system call's arguments has a type that is explicitly 64-bit even on a 32-bit
-architecture, for example loff_t or __u64. In this case, a value that arrives
-at a 64-bit kernel from a 32-bit application will be split into two 32-bit
-values, which then need to be re-assembled in the compatibility layer.
+architecture, for example ``loff_t`` or ``__u64``. In this case, a value that
+arrives at a 64-bit kernel from a 32-bit application will be split into two
+32-bit values, which then need to be re-assembled in the compatibility layer.
(Note that a system call argument that's a pointer to an explicit 64-bit type
-does *not* need a compatibility layer; for example, splice(2)'s arguments of
-type loff_t __user * do not trigger the need for a compat_ system call.)
+does **not** need a compatibility layer; for example, :manpage:`splice(2)`'s arguments of
+type ``loff_t __user *`` do not trigger the need for a ``compat_`` system call.)
-The compatibility version of the system call is called compat_sys_xyzzy(), and
-is added with the COMPAT_SYSCALL_DEFINEn() macro, analogously to
+The compatibility version of the system call is called ``compat_sys_xyzzy()``,
+and is added with the ``COMPAT_SYSCALL_DEFINEn()`` macro, analogously to
SYSCALL_DEFINEn. This version of the implementation runs as part of a 64-bit
kernel, but expects to receive 32-bit parameter values and does whatever is
-needed to deal with them. (Typically, the compat_sys_ version converts the
-values to 64-bit versions and either calls on to the sys_ version, or both of
+needed to deal with them. (Typically, the ``compat_sys_`` version converts the
+values to 64-bit versions and either calls on to the ``sys_`` version, or both of
them call a common inner implementation function.)
The compat entry point also needs a corresponding function prototype, in
-include/linux/compat.h, marked as asmlinkage to match the way that system
-calls are invoked:
+``include/linux/compat.h``, marked as asmlinkage to match the way that system
+calls are invoked::
asmlinkage long compat_sys_xyzzy(...);
If the system call involves a structure that is laid out differently on 32-bit
-and 64-bit systems, say struct xyzzy_args, then the include/linux/compat.h
-header file should also include a compat version of the structure (struct
-compat_xyzzy_args) where each variable-size field has the appropriate compat_
-type that corresponds to the type in struct xyzzy_args. The
-compat_sys_xyzzy() routine can then use this compat_ structure to parse the
-arguments from a 32-bit invocation.
+and 64-bit systems, say ``struct xyzzy_args``, then the include/linux/compat.h
+header file should also include a compat version of the structure (``struct
+compat_xyzzy_args``) where each variable-size field has the appropriate
+``compat_`` type that corresponds to the type in ``struct xyzzy_args``. The
+``compat_sys_xyzzy()`` routine can then use this ``compat_`` structure to
+parse the arguments from a 32-bit invocation.
-For example, if there are fields:
+For example, if there are fields::
struct xyzzy_args {
const char __user *ptr;
@@ -317,7 +325,7 @@ For example, if there are fields:
/* ... */
};
-in struct xyzzy_args, then struct compat_xyzzy_args would have:
+in struct xyzzy_args, then struct compat_xyzzy_args would have::
struct compat_xyzzy_args {
compat_uptr_t ptr;
@@ -327,18 +335,19 @@ in struct xyzzy_args, then struct compat_xyzzy_args would have:
};
The generic system call list also needs adjusting to allow for the compat
-version; the entry in include/uapi/asm-generic/unistd.h should use
-__SC_COMP rather than __SYSCALL:
+version; the entry in ``include/uapi/asm-generic/unistd.h`` should use
+``__SC_COMP`` rather than ``__SYSCALL``::
#define __NR_xyzzy 292
__SC_COMP(__NR_xyzzy, sys_xyzzy, compat_sys_xyzzy)
To summarize, you need:
- - a COMPAT_SYSCALL_DEFINEn(xyzzy, ...) for the compat entry point
- - corresponding prototype in include/linux/compat.h
- - (if needed) 32-bit mapping struct in include/linux/compat.h
- - instance of __SC_COMP not __SYSCALL in include/uapi/asm-generic/unistd.h
+ - a ``COMPAT_SYSCALL_DEFINEn(xyzzy, ...)`` for the compat entry point
+ - corresponding prototype in ``include/linux/compat.h``
+ - (if needed) 32-bit mapping struct in ``include/linux/compat.h``
+ - instance of ``__SC_COMP`` not ``__SYSCALL`` in
+ ``include/uapi/asm-generic/unistd.h``
Compatibility System Calls (x86)
@@ -347,9 +356,9 @@ Compatibility System Calls (x86)
To wire up the x86 architecture of a system call with a compatibility version,
the entries in the syscall tables need to be adjusted.
-First, the entry in arch/x86/entry/syscalls/syscall_32.tbl gets an extra
+First, the entry in ``arch/x86/entry/syscalls/syscall_32.tbl`` gets an extra
column to indicate that a 32-bit userspace program running on a 64-bit kernel
-should hit the compat entry point:
+should hit the compat entry point::
380 i386 xyzzy sys_xyzzy compat_sys_xyzzy
@@ -359,8 +368,8 @@ should either match the 64-bit version or the 32-bit version.
If there's a pointer-to-a-pointer involved, the decision is easy: x32 is
ILP32, so the layout should match the 32-bit version, and the entry in
-arch/x86/entry/syscalls/syscall_64.tbl is split so that x32 programs hit the
-compatibility wrapper:
+``arch/x86/entry/syscalls/syscall_64.tbl`` is split so that x32 programs hit
+the compatibility wrapper::
333 64 xyzzy sys_xyzzy
...
@@ -384,8 +393,9 @@ stack the same and most of the registers the same as before the system call,
and with the same virtual memory space.
However, a few system calls do things differently. They might return to a
-different location (rt_sigreturn) or change the memory space (fork/vfork/clone)
-or even architecture (execve/execveat) of the program.
+different location (``rt_sigreturn``) or change the memory space
+(``fork``/``vfork``/``clone``) or even architecture (``execve``/``execveat``)
+of the program.
To allow for this, the kernel implementation of the system call may need to
save and restore additional registers to the kernel stack, allowing complete
@@ -395,31 +405,31 @@ This is arch-specific, but typically involves defining assembly entry points
that save/restore additional registers and invoke the real system call entry
point.
-For x86_64, this is implemented as a stub_xyzzy entry point in
-arch/x86/entry/entry_64.S, and the entry in the syscall table
-(arch/x86/entry/syscalls/syscall_64.tbl) is adjusted to match:
+For x86_64, this is implemented as a ``stub_xyzzy`` entry point in
+``arch/x86/entry/entry_64.S``, and the entry in the syscall table
+(``arch/x86/entry/syscalls/syscall_64.tbl``) is adjusted to match::
333 common xyzzy stub_xyzzy
The equivalent for 32-bit programs running on a 64-bit kernel is normally
-called stub32_xyzzy and implemented in arch/x86/entry/entry_64_compat.S,
+called ``stub32_xyzzy`` and implemented in ``arch/x86/entry/entry_64_compat.S``,
with the corresponding syscall table adjustment in
-arch/x86/entry/syscalls/syscall_32.tbl:
+``arch/x86/entry/syscalls/syscall_32.tbl``::
380 i386 xyzzy sys_xyzzy stub32_xyzzy
If the system call needs a compatibility layer (as in the previous section)
-then the stub32_ version needs to call on to the compat_sys_ version of the
-system call rather than the native 64-bit version. Also, if the x32 ABI
+then the ``stub32_`` version needs to call on to the ``compat_sys_`` version
+of the system call rather than the native 64-bit version. Also, if the x32 ABI
implementation is not common with the x86_64 version, then its syscall
-table will also need to invoke a stub that calls on to the compat_sys_
+table will also need to invoke a stub that calls on to the ``compat_sys_``
version.
For completeness, it's also nice to set up a mapping so that user-mode Linux
still works -- its syscall table will reference stub_xyzzy, but the UML build
-doesn't include arch/x86/entry/entry_64.S implementation (because UML
+doesn't include ``arch/x86/entry/entry_64.S`` implementation (because UML
simulates registers etc). Fixing this is as simple as adding a #define to
-arch/x86/um/sys_call_table_64.c:
+``arch/x86/um/sys_call_table_64.c``::
#define stub_xyzzy sys_xyzzy
@@ -432,9 +442,9 @@ occasional exception that may need updating for your particular system call.
The audit subsystem is one such special case; it includes (arch-specific)
functions that classify some special types of system call -- specifically
-file open (open/openat), program execution (execve/exeveat) or socket
-multiplexor (socketcall) operations. If your new system call is analogous to
-one of these, then the audit system should be updated.
+file open (``open``/``openat``), program execution (``execve``/``exeveat``) or
+socket multiplexor (``socketcall``) operations. If your new system call is
+analogous to one of these, then the audit system should be updated.
More generally, if there is an existing system call that is analogous to your
new system call, it's worth doing a kernel-wide grep for the existing system
@@ -447,10 +457,10 @@ Testing
A new system call should obviously be tested; it is also useful to provide
reviewers with a demonstration of how user space programs will use the system
call. A good way to combine these aims is to include a simple self-test
-program in a new directory under tools/testing/selftests/.
+program in a new directory under ``tools/testing/selftests/``.
For a new system call, there will obviously be no libc wrapper function and so
-the test will need to invoke it using syscall(); also, if the system call
+the test will need to invoke it using ``syscall()``; also, if the system call
involves a new userspace-visible structure, the corresponding header will need
to be installed to compile the test.
@@ -461,6 +471,7 @@ and x32 (-mx32) ABI program.
For more extensive and thorough testing of new functionality, you should also
consider adding tests to the Linux Test Project, or to the xfstests project
for filesystem-related changes.
+
- https://linux-test-project.github.io/
- git://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git
@@ -487,12 +498,14 @@ References and Sources
arguments: https://lwn.net/Articles/311630/
- Pair of LWN articles from David Drysdale that describe the system call
implementation paths in detail for v3.14:
+
- https://lwn.net/Articles/604287/
- https://lwn.net/Articles/604515/
+
- Architecture-specific requirements for system calls are discussed in the
- syscall(2) man-page:
+ :manpage:`syscall(2)` man-page:
http://man7.org/linux/man-pages/man2/syscall.2.html#NOTES
- - Collated emails from Linus Torvalds discussing the problems with ioctl():
+ - Collated emails from Linus Torvalds discussing the problems with ``ioctl()``:
http://yarchive.net/comp/linux/ioctl.html
- "How to not invent kernel interfaces", Arnd Bergmann,
http://www.ukuug.org/events/linux2007/2007/papers/Bergmann.pdf
@@ -507,17 +520,19 @@ References and Sources
commit: https://lkml.org/lkml/2014/11/19/254
- Suggestion from Greg Kroah-Hartman that it's good for new system calls to
come with a man-page & selftest: https://lkml.org/lkml/2014/3/19/710
- - Discussion from Michael Kerrisk of new system call vs. prctl(2) extension:
+ - Discussion from Michael Kerrisk of new system call vs. :manpage:`prctl(2)` extension:
https://lkml.org/lkml/2014/6/3/411
- Suggestion from Ingo Molnar that system calls that involve multiple
arguments should encapsulate those arguments in a struct, which includes a
size field for future extensibility: https://lkml.org/lkml/2015/7/30/117
- Numbering oddities arising from (re-)use of O_* numbering space flags:
+
- commit 75069f2b5bfb ("vfs: renumber FMODE_NONOTIFY and add to uniqueness
check")
- commit 12ed2e36c98a ("fanotify: FMODE_NONOTIFY and __O_SYNC in sparc
conflict")
- commit bb458c644a59 ("Safer ABI for O_TMPFILE")
+
- Discussion from Matthew Wilcox about restrictions on 64-bit arguments:
https://lkml.org/lkml/2008/12/12/187
- Recommendation from Greg Kroah-Hartman that unknown flags should be
diff --git a/Documentation/applying-patches.txt b/Documentation/process/applying-patches.rst
index 02ce492..87825cf 100644
--- a/Documentation/applying-patches.txt
+++ b/Documentation/process/applying-patches.rst
@@ -9,6 +9,10 @@ Original by:
Last update:
2016-09-14
+.. note::
+
+ This document is obsolete. In most cases, rather than using ``patch``
+ manually, you'll almost certainly want to look at using Git instead.
A frequently asked question on the Linux Kernel Mailing List is how to apply
a patch to the kernel or, more specifically, what base kernel a patch for
@@ -427,7 +431,7 @@ The -mm patches are experimental patches released by Andrew Morton.
In the past, -mm tree were used to also test subsystem patches, but this
function is now done via the
-:ref:`linux-next <https://www.kernel.org/doc/man-pages/linux-next.html>`
+`linux-next <https://www.kernel.org/doc/man-pages/linux-next.html>`
tree. The Subsystem maintainers push their patches first to linux-next,
and, during the merge window, sends them directly to Linus.
@@ -462,4 +466,3 @@ the kernel.
Thank you's to Randy Dunlap, Rolf Eike Beer, Linus Torvalds, Bodo Eggert,
Johannes Stezenbach, Grant Coady, Pavel Machek and others that I may have
forgotten for their reviews and contributions to this document.
-
diff --git a/Documentation/Changes b/Documentation/process/changes.rst
index 22797a1..56ce661 100644
--- a/Documentation/Changes
+++ b/Documentation/process/changes.rst
@@ -1,6 +1,6 @@
.. _changes:
-Minimal requerements to compile the Kernel
+Minimal requirements to compile the Kernel
++++++++++++++++++++++++++++++++++++++++++
Intro
diff --git a/Documentation/CodeOfConflict b/Documentation/process/code-of-conflict.rst
index 49a8ecc..47b6de76 100644
--- a/Documentation/CodeOfConflict
+++ b/Documentation/process/code-of-conflict.rst
@@ -19,7 +19,8 @@ please contact the Linux Foundation's Technical Advisory Board at
will work to resolve the issue to the best of their ability. For more
information on who is on the Technical Advisory Board and what their
role is, please see:
- http://www.linuxfoundation.org/projects/linux/tab
+
+ - http://www.linuxfoundation.org/projects/linux/tab
As a reviewer of code, please strive to keep things civil and focused on
the technical issues involved. We are all humans, and frustrations can
diff --git a/Documentation/process/coding-style.rst b/Documentation/process/coding-style.rst
new file mode 100644
index 0000000..3e79051
--- /dev/null
+++ b/Documentation/process/coding-style.rst
@@ -0,0 +1,1062 @@
+.. _codingstyle:
+
+Linux kernel coding style
+=========================
+
+This is a short document describing the preferred coding style for the
+linux kernel. Coding style is very personal, and I won't **force** my
+views on anybody, but this is what goes for anything that I have to be
+able to maintain, and I'd prefer it for most other things too. Please
+at least consider the points made here.
+
+First off, I'd suggest printing out a copy of the GNU coding standards,
+and NOT read it. Burn them, it's a great symbolic gesture.
+
+Anyway, here goes:
+
+
+1) Indentation
+--------------
+
+Tabs are 8 characters, and thus indentations are also 8 characters.
+There are heretic movements that try to make indentations 4 (or even 2!)
+characters deep, and that is akin to trying to define the value of PI to
+be 3.
+
+Rationale: The whole idea behind indentation is to clearly define where
+a block of control starts and ends. Especially when you've been looking
+at your screen for 20 straight hours, you'll find it a lot easier to see
+how the indentation works if you have large indentations.
+
+Now, some people will claim that having 8-character indentations makes
+the code move too far to the right, and makes it hard to read on a
+80-character terminal screen. The answer to that is that if you need
+more than 3 levels of indentation, you're screwed anyway, and should fix
+your program.
+
+In short, 8-char indents make things easier to read, and have the added
+benefit of warning you when you're nesting your functions too deep.
+Heed that warning.
+
+The preferred way to ease multiple indentation levels in a switch statement is
+to align the ``switch`` and its subordinate ``case`` labels in the same column
+instead of ``double-indenting`` the ``case`` labels. E.g.:
+
+.. code-block:: c
+
+ switch (suffix) {
+ case 'G':
+ case 'g':
+ mem <<= 30;
+ break;
+ case 'M':
+ case 'm':
+ mem <<= 20;
+ break;
+ case 'K':
+ case 'k':
+ mem <<= 10;
+ /* fall through */
+ default:
+ break;
+ }
+
+Don't put multiple statements on a single line unless you have
+something to hide:
+
+.. code-block:: c
+
+ if (condition) do_this;
+ do_something_everytime;
+
+Don't put multiple assignments on a single line either. Kernel coding style
+is super simple. Avoid tricky expressions.
+
+Outside of comments, documentation and except in Kconfig, spaces are never
+used for indentation, and the above example is deliberately broken.
+
+Get a decent editor and don't leave whitespace at the end of lines.
+
+
+2) Breaking long lines and strings
+----------------------------------
+
+Coding style is all about readability and maintainability using commonly
+available tools.
+
+The limit on the length of lines is 80 columns and this is a strongly
+preferred limit.
+
+Statements longer than 80 columns will be broken into sensible chunks, unless
+exceeding 80 columns significantly increases readability and does not hide
+information. Descendants are always substantially shorter than the parent and
+are placed substantially to the right. The same applies to function headers
+with a long argument list. However, never break user-visible strings such as
+printk messages, because that breaks the ability to grep for them.
+
+
+3) Placing Braces and Spaces
+----------------------------
+
+The other issue that always comes up in C styling is the placement of
+braces. Unlike the indent size, there are few technical reasons to
+choose one placement strategy over the other, but the preferred way, as
+shown to us by the prophets Kernighan and Ritchie, is to put the opening
+brace last on the line, and put the closing brace first, thusly:
+
+.. code-block:: c
+
+ if (x is true) {
+ we do y
+ }
+
+This applies to all non-function statement blocks (if, switch, for,
+while, do). E.g.:
+
+.. code-block:: c
+
+ switch (action) {
+ case KOBJ_ADD:
+ return "add";
+ case KOBJ_REMOVE:
+ return "remove";
+ case KOBJ_CHANGE:
+ return "change";
+ default:
+ return NULL;
+ }
+
+However, there is one special case, namely functions: they have the
+opening brace at the beginning of the next line, thus:
+
+.. code-block:: c
+
+ int function(int x)
+ {
+ body of function
+ }
+
+Heretic people all over the world have claimed that this inconsistency
+is ... well ... inconsistent, but all right-thinking people know that
+(a) K&R are **right** and (b) K&R are right. Besides, functions are
+special anyway (you can't nest them in C).
+
+Note that the closing brace is empty on a line of its own, **except** in
+the cases where it is followed by a continuation of the same statement,
+ie a ``while`` in a do-statement or an ``else`` in an if-statement, like
+this:
+
+.. code-block:: c
+
+ do {
+ body of do-loop
+ } while (condition);
+
+and
+
+.. code-block:: c
+
+ if (x == y) {
+ ..
+ } else if (x > y) {
+ ...
+ } else {
+ ....
+ }
+
+Rationale: K&R.
+
+Also, note that this brace-placement also minimizes the number of empty
+(or almost empty) lines, without any loss of readability. Thus, as the
+supply of new-lines on your screen is not a renewable resource (think
+25-line terminal screens here), you have more empty lines to put
+comments on.
+
+Do not unnecessarily use braces where a single statement will do.
+
+.. code-block:: c
+
+ if (condition)
+ action();
+
+and
+
+.. code-block:: none
+
+ if (condition)
+ do_this();
+ else
+ do_that();
+
+This does not apply if only one branch of a conditional statement is a single
+statement; in the latter case use braces in both branches:
+
+.. code-block:: c
+
+ if (condition) {
+ do_this();
+ do_that();
+ } else {
+ otherwise();
+ }
+
+3.1) Spaces
+***********
+
+Linux kernel style for use of spaces depends (mostly) on
+function-versus-keyword usage. Use a space after (most) keywords. The
+notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
+somewhat like functions (and are usually used with parentheses in Linux,
+although they are not required in the language, as in: ``sizeof info`` after
+``struct fileinfo info;`` is declared).
+
+So use a space after these keywords::
+
+ if, switch, case, for, do, while
+
+but not with sizeof, typeof, alignof, or __attribute__. E.g.,
+
+.. code-block:: c
+
+
+ s = sizeof(struct file);
+
+Do not add spaces around (inside) parenthesized expressions. This example is
+**bad**:
+
+.. code-block:: c
+
+
+ s = sizeof( struct file );
+
+When declaring pointer data or a function that returns a pointer type, the
+preferred use of ``*`` is adjacent to the data name or function name and not
+adjacent to the type name. Examples:
+
+.. code-block:: c
+
+
+ char *linux_banner;
+ unsigned long long memparse(char *ptr, char **retptr);
+ char *match_strdup(substring_t *s);
+
+Use one space around (on each side of) most binary and ternary operators,
+such as any of these::
+
+ = + - < > * / % | & ^ <= >= == != ? :
+
+but no space after unary operators::
+
+ & * + - ~ ! sizeof typeof alignof __attribute__ defined
+
+no space before the postfix increment & decrement unary operators::
+
+ ++ --
+
+no space after the prefix increment & decrement unary operators::
+
+ ++ --
+
+and no space around the ``.`` and ``->`` structure member operators.
+
+Do not leave trailing whitespace at the ends of lines. Some editors with
+``smart`` indentation will insert whitespace at the beginning of new lines as
+appropriate, so you can start typing the next line of code right away.
+However, some such editors do not remove the whitespace if you end up not
+putting a line of code there, such as if you leave a blank line. As a result,
+you end up with lines containing trailing whitespace.
+
+Git will warn you about patches that introduce trailing whitespace, and can
+optionally strip the trailing whitespace for you; however, if applying a series
+of patches, this may make later patches in the series fail by changing their
+context lines.
+
+
+4) Naming
+---------
+
+C is a Spartan language, and so should your naming be. Unlike Modula-2
+and Pascal programmers, C programmers do not use cute names like
+ThisVariableIsATemporaryCounter. A C programmer would call that
+variable ``tmp``, which is much easier to write, and not the least more
+difficult to understand.
+
+HOWEVER, while mixed-case names are frowned upon, descriptive names for
+global variables are a must. To call a global function ``foo`` is a
+shooting offense.
+
+GLOBAL variables (to be used only if you **really** need them) need to
+have descriptive names, as do global functions. If you have a function
+that counts the number of active users, you should call that
+``count_active_users()`` or similar, you should **not** call it ``cntusr()``.
+
+Encoding the type of a function into the name (so-called Hungarian
+notation) is brain damaged - the compiler knows the types anyway and can
+check those, and it only confuses the programmer. No wonder MicroSoft
+makes buggy programs.
+
+LOCAL variable names should be short, and to the point. If you have
+some random integer loop counter, it should probably be called ``i``.
+Calling it ``loop_counter`` is non-productive, if there is no chance of it
+being mis-understood. Similarly, ``tmp`` can be just about any type of
+variable that is used to hold a temporary value.
+
+If you are afraid to mix up your local variable names, you have another
+problem, which is called the function-growth-hormone-imbalance syndrome.
+See chapter 6 (Functions).
+
+
+5) Typedefs
+-----------
+
+Please don't use things like ``vps_t``.
+It's a **mistake** to use typedef for structures and pointers. When you see a
+
+.. code-block:: c
+
+
+ vps_t a;
+
+in the source, what does it mean?
+In contrast, if it says
+
+.. code-block:: c
+
+ struct virtual_container *a;
+
+you can actually tell what ``a`` is.
+
+Lots of people think that typedefs ``help readability``. Not so. They are
+useful only for:
+
+ (a) totally opaque objects (where the typedef is actively used to **hide**
+ what the object is).
+
+ Example: ``pte_t`` etc. opaque objects that you can only access using
+ the proper accessor functions.
+
+ .. note::
+
+ Opaqueness and ``accessor functions`` are not good in themselves.
+ The reason we have them for things like pte_t etc. is that there
+ really is absolutely **zero** portably accessible information there.
+
+ (b) Clear integer types, where the abstraction **helps** avoid confusion
+ whether it is ``int`` or ``long``.
+
+ u8/u16/u32 are perfectly fine typedefs, although they fit into
+ category (d) better than here.
+
+ .. note::
+
+ Again - there needs to be a **reason** for this. If something is
+ ``unsigned long``, then there's no reason to do
+
+ typedef unsigned long myflags_t;
+
+ but if there is a clear reason for why it under certain circumstances
+ might be an ``unsigned int`` and under other configurations might be
+ ``unsigned long``, then by all means go ahead and use a typedef.
+
+ (c) when you use sparse to literally create a **new** type for
+ type-checking.
+
+ (d) New types which are identical to standard C99 types, in certain
+ exceptional circumstances.
+
+ Although it would only take a short amount of time for the eyes and
+ brain to become accustomed to the standard types like ``uint32_t``,
+ some people object to their use anyway.
+
+ Therefore, the Linux-specific ``u8/u16/u32/u64`` types and their
+ signed equivalents which are identical to standard types are
+ permitted -- although they are not mandatory in new code of your
+ own.
+
+ When editing existing code which already uses one or the other set
+ of types, you should conform to the existing choices in that code.
+
+ (e) Types safe for use in userspace.
+
+ In certain structures which are visible to userspace, we cannot
+ require C99 types and cannot use the ``u32`` form above. Thus, we
+ use __u32 and similar types in all structures which are shared
+ with userspace.
+
+Maybe there are other cases too, but the rule should basically be to NEVER
+EVER use a typedef unless you can clearly match one of those rules.
+
+In general, a pointer, or a struct that has elements that can reasonably
+be directly accessed should **never** be a typedef.
+
+
+6) Functions
+------------
+
+Functions should be short and sweet, and do just one thing. They should
+fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24,
+as we all know), and do one thing and do that well.
+
+The maximum length of a function is inversely proportional to the
+complexity and indentation level of that function. So, if you have a
+conceptually simple function that is just one long (but simple)
+case-statement, where you have to do lots of small things for a lot of
+different cases, it's OK to have a longer function.
+
+However, if you have a complex function, and you suspect that a
+less-than-gifted first-year high-school student might not even
+understand what the function is all about, you should adhere to the
+maximum limits all the more closely. Use helper functions with
+descriptive names (you can ask the compiler to in-line them if you think
+it's performance-critical, and it will probably do a better job of it
+than you would have done).
+
+Another measure of the function is the number of local variables. They
+shouldn't exceed 5-10, or you're doing something wrong. Re-think the
+function, and split it into smaller pieces. A human brain can
+generally easily keep track of about 7 different things, anything more
+and it gets confused. You know you're brilliant, but maybe you'd like
+to understand what you did 2 weeks from now.
+
+In source files, separate functions with one blank line. If the function is
+exported, the **EXPORT** macro for it should follow immediately after the
+closing function brace line. E.g.:
+
+.. code-block:: c
+
+ int system_is_up(void)
+ {
+ return system_state == SYSTEM_RUNNING;
+ }
+ EXPORT_SYMBOL(system_is_up);
+
+In function prototypes, include parameter names with their data types.
+Although this is not required by the C language, it is preferred in Linux
+because it is a simple way to add valuable information for the reader.
+
+
+7) Centralized exiting of functions
+-----------------------------------
+
+Albeit deprecated by some people, the equivalent of the goto statement is
+used frequently by compilers in form of the unconditional jump instruction.
+
+The goto statement comes in handy when a function exits from multiple
+locations and some common work such as cleanup has to be done. If there is no
+cleanup needed then just return directly.
+
+Choose label names which say what the goto does or why the goto exists. An
+example of a good name could be ``out_free_buffer:`` if the goto frees ``buffer``.
+Avoid using GW-BASIC names like ``err1:`` and ``err2:``, as you would have to
+renumber them if you ever add or remove exit paths, and they make correctness
+difficult to verify anyway.
+
+The rationale for using gotos is:
+
+- unconditional statements are easier to understand and follow
+- nesting is reduced
+- errors by not updating individual exit points when making
+ modifications are prevented
+- saves the compiler work to optimize redundant code away ;)
+
+.. code-block:: c
+
+ int fun(int a)
+ {
+ int result = 0;
+ char *buffer;
+
+ buffer = kmalloc(SIZE, GFP_KERNEL);
+ if (!buffer)
+ return -ENOMEM;
+
+ if (condition1) {
+ while (loop1) {
+ ...
+ }
+ result = 1;
+ goto out_free_buffer;
+ }
+ ...
+ out_free_buffer:
+ kfree(buffer);
+ return result;
+ }
+
+A common type of bug to be aware of is ``one err bugs`` which look like this:
+
+.. code-block:: c
+
+ err:
+ kfree(foo->bar);
+ kfree(foo);
+ return ret;
+
+The bug in this code is that on some exit paths ``foo`` is NULL. Normally the
+fix for this is to split it up into two error labels ``err_free_bar:`` and
+``err_free_foo:``:
+
+.. code-block:: c
+
+ err_free_bar:
+ kfree(foo->bar);
+ err_free_foo:
+ kfree(foo);
+ return ret;
+
+Ideally you should simulate errors to test all exit paths.
+
+
+8) Commenting
+-------------
+
+Comments are good, but there is also a danger of over-commenting. NEVER
+try to explain HOW your code works in a comment: it's much better to
+write the code so that the **working** is obvious, and it's a waste of
+time to explain badly written code.
+
+Generally, you want your comments to tell WHAT your code does, not HOW.
+Also, try to avoid putting comments inside a function body: if the
+function is so complex that you need to separately comment parts of it,
+you should probably go back to chapter 6 for a while. You can make
+small comments to note or warn about something particularly clever (or
+ugly), but try to avoid excess. Instead, put the comments at the head
+of the function, telling people what it does, and possibly WHY it does
+it.
+
+When commenting the kernel API functions, please use the kernel-doc format.
+See the files Documentation/kernel-documentation.rst and scripts/kernel-doc
+for details.
+
+The preferred style for long (multi-line) comments is:
+
+.. code-block:: c
+
+ /*
+ * This is the preferred style for multi-line
+ * comments in the Linux kernel source code.
+ * Please use it consistently.
+ *
+ * Description: A column of asterisks on the left side,
+ * with beginning and ending almost-blank lines.
+ */
+
+For files in net/ and drivers/net/ the preferred style for long (multi-line)
+comments is a little different.
+
+.. code-block:: c
+
+ /* The preferred comment style for files in net/ and drivers/net
+ * looks like this.
+ *
+ * It is nearly the same as the generally preferred comment style,
+ * but there is no initial almost-blank line.
+ */
+
+It's also important to comment data, whether they are basic types or derived
+types. To this end, use just one data declaration per line (no commas for
+multiple data declarations). This leaves you room for a small comment on each
+item, explaining its use.
+
+
+9) You've made a mess of it
+---------------------------
+
+That's OK, we all do. You've probably been told by your long-time Unix
+user helper that ``GNU emacs`` automatically formats the C sources for
+you, and you've noticed that yes, it does do that, but the defaults it
+uses are less than desirable (in fact, they are worse than random
+typing - an infinite number of monkeys typing into GNU emacs would never
+make a good program).
+
+So, you can either get rid of GNU emacs, or change it to use saner
+values. To do the latter, you can stick the following in your .emacs file:
+
+.. code-block:: none
+
+ (defun c-lineup-arglist-tabs-only (ignored)
+ "Line up argument lists by tabs, not spaces"
+ (let* ((anchor (c-langelem-pos c-syntactic-element))
+ (column (c-langelem-2nd-pos c-syntactic-element))
+ (offset (- (1+ column) anchor))
+ (steps (floor offset c-basic-offset)))
+ (* (max steps 1)
+ c-basic-offset)))
+
+ (add-hook 'c-mode-common-hook
+ (lambda ()
+ ;; Add kernel style
+ (c-add-style
+ "linux-tabs-only"
+ '("linux" (c-offsets-alist
+ (arglist-cont-nonempty
+ c-lineup-gcc-asm-reg
+ c-lineup-arglist-tabs-only))))))
+
+ (add-hook 'c-mode-hook
+ (lambda ()
+ (let ((filename (buffer-file-name)))
+ ;; Enable kernel mode for the appropriate files
+ (when (and filename
+ (string-match (expand-file-name "~/src/linux-trees")
+ filename))
+ (setq indent-tabs-mode t)
+ (setq show-trailing-whitespace t)
+ (c-set-style "linux-tabs-only")))))
+
+This will make emacs go better with the kernel coding style for C
+files below ``~/src/linux-trees``.
+
+But even if you fail in getting emacs to do sane formatting, not
+everything is lost: use ``indent``.
+
+Now, again, GNU indent has the same brain-dead settings that GNU emacs
+has, which is why you need to give it a few command line options.
+However, that's not too bad, because even the makers of GNU indent
+recognize the authority of K&R (the GNU people aren't evil, they are
+just severely misguided in this matter), so you just give indent the
+options ``-kr -i8`` (stands for ``K&R, 8 character indents``), or use
+``scripts/Lindent``, which indents in the latest style.
+
+``indent`` has a lot of options, and especially when it comes to comment
+re-formatting you may want to take a look at the man page. But
+remember: ``indent`` is not a fix for bad programming.
+
+
+10) Kconfig configuration files
+-------------------------------
+
+For all of the Kconfig* configuration files throughout the source tree,
+the indentation is somewhat different. Lines under a ``config`` definition
+are indented with one tab, while help text is indented an additional two
+spaces. Example::
+
+ config AUDIT
+ bool "Auditing support"
+ depends on NET
+ help
+ Enable auditing infrastructure that can be used with another
+ kernel subsystem, such as SELinux (which requires this for
+ logging of avc messages output). Does not do system-call
+ auditing without CONFIG_AUDITSYSCALL.
+
+Seriously dangerous features (such as write support for certain
+filesystems) should advertise this prominently in their prompt string::
+
+ config ADFS_FS_RW
+ bool "ADFS write support (DANGEROUS)"
+ depends on ADFS_FS
+ ...
+
+For full documentation on the configuration files, see the file
+Documentation/kbuild/kconfig-language.txt.
+
+
+11) Data structures
+-------------------
+
+Data structures that have visibility outside the single-threaded
+environment they are created and destroyed in should always have
+reference counts. In the kernel, garbage collection doesn't exist (and
+outside the kernel garbage collection is slow and inefficient), which
+means that you absolutely **have** to reference count all your uses.
+
+Reference counting means that you can avoid locking, and allows multiple
+users to have access to the data structure in parallel - and not having
+to worry about the structure suddenly going away from under them just
+because they slept or did something else for a while.
+
+Note that locking is **not** a replacement for reference counting.
+Locking is used to keep data structures coherent, while reference
+counting is a memory management technique. Usually both are needed, and
+they are not to be confused with each other.
+
+Many data structures can indeed have two levels of reference counting,
+when there are users of different ``classes``. The subclass count counts
+the number of subclass users, and decrements the global count just once
+when the subclass count goes to zero.
+
+Examples of this kind of ``multi-level-reference-counting`` can be found in
+memory management (``struct mm_struct``: mm_users and mm_count), and in
+filesystem code (``struct super_block``: s_count and s_active).
+
+Remember: if another thread can find your data structure, and you don't
+have a reference count on it, you almost certainly have a bug.
+
+
+12) Macros, Enums and RTL
+-------------------------
+
+Names of macros defining constants and labels in enums are capitalized.
+
+.. code-block:: c
+
+ #define CONSTANT 0x12345
+
+Enums are preferred when defining several related constants.
+
+CAPITALIZED macro names are appreciated but macros resembling functions
+may be named in lower case.
+
+Generally, inline functions are preferable to macros resembling functions.
+
+Macros with multiple statements should be enclosed in a do - while block:
+
+.. code-block:: c
+
+ #define macrofun(a, b, c) \
+ do { \
+ if (a == 5) \
+ do_this(b, c); \
+ } while (0)
+
+Things to avoid when using macros:
+
+1) macros that affect control flow:
+
+.. code-block:: c
+
+ #define FOO(x) \
+ do { \
+ if (blah(x) < 0) \
+ return -EBUGGERED; \
+ } while (0)
+
+is a **very** bad idea. It looks like a function call but exits the ``calling``
+function; don't break the internal parsers of those who will read the code.
+
+2) macros that depend on having a local variable with a magic name:
+
+.. code-block:: c
+
+ #define FOO(val) bar(index, val)
+
+might look like a good thing, but it's confusing as hell when one reads the
+code and it's prone to breakage from seemingly innocent changes.
+
+3) macros with arguments that are used as l-values: FOO(x) = y; will
+bite you if somebody e.g. turns FOO into an inline function.
+
+4) forgetting about precedence: macros defining constants using expressions
+must enclose the expression in parentheses. Beware of similar issues with
+macros using parameters.
+
+.. code-block:: c
+
+ #define CONSTANT 0x4000
+ #define CONSTEXP (CONSTANT | 3)
+
+5) namespace collisions when defining local variables in macros resembling
+functions:
+
+.. code-block:: c
+
+ #define FOO(x) \
+ ({ \
+ typeof(x) ret; \
+ ret = calc_ret(x); \
+ (ret); \
+ })
+
+ret is a common name for a local variable - __foo_ret is less likely
+to collide with an existing variable.
+
+The cpp manual deals with macros exhaustively. The gcc internals manual also
+covers RTL which is used frequently with assembly language in the kernel.
+
+
+13) Printing kernel messages
+----------------------------
+
+Kernel developers like to be seen as literate. Do mind the spelling
+of kernel messages to make a good impression. Do not use crippled
+words like ``dont``; use ``do not`` or ``don't`` instead. Make the messages
+concise, clear, and unambiguous.
+
+Kernel messages do not have to be terminated with a period.
+
+Printing numbers in parentheses (%d) adds no value and should be avoided.
+
+There are a number of driver model diagnostic macros in <linux/device.h>
+which you should use to make sure messages are matched to the right device
+and driver, and are tagged with the right level: dev_err(), dev_warn(),
+dev_info(), and so forth. For messages that aren't associated with a
+particular device, <linux/printk.h> defines pr_notice(), pr_info(),
+pr_warn(), pr_err(), etc.
+
+Coming up with good debugging messages can be quite a challenge; and once
+you have them, they can be a huge help for remote troubleshooting. However
+debug message printing is handled differently than printing other non-debug
+messages. While the other pr_XXX() functions print unconditionally,
+pr_debug() does not; it is compiled out by default, unless either DEBUG is
+defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also,
+and a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to
+the ones already enabled by DEBUG.
+
+Many subsystems have Kconfig debug options to turn on -DDEBUG in the
+corresponding Makefile; in other cases specific files #define DEBUG. And
+when a debug message should be unconditionally printed, such as if it is
+already inside a debug-related #ifdef section, printk(KERN_DEBUG ...) can be
+used.
+
+
+14) Allocating memory
+---------------------
+
+The kernel provides the following general purpose memory allocators:
+kmalloc(), kzalloc(), kmalloc_array(), kcalloc(), vmalloc(), and
+vzalloc(). Please refer to the API documentation for further information
+about them.
+
+The preferred form for passing a size of a struct is the following:
+
+.. code-block:: c
+
+ p = kmalloc(sizeof(*p), ...);
+
+The alternative form where struct name is spelled out hurts readability and
+introduces an opportunity for a bug when the pointer variable type is changed
+but the corresponding sizeof that is passed to a memory allocator is not.
+
+Casting the return value which is a void pointer is redundant. The conversion
+from void pointer to any other pointer type is guaranteed by the C programming
+language.
+
+The preferred form for allocating an array is the following:
+
+.. code-block:: c
+
+ p = kmalloc_array(n, sizeof(...), ...);
+
+The preferred form for allocating a zeroed array is the following:
+
+.. code-block:: c
+
+ p = kcalloc(n, sizeof(...), ...);
+
+Both forms check for overflow on the allocation size n * sizeof(...),
+and return NULL if that occurred.
+
+
+15) The inline disease
+----------------------
+
+There appears to be a common misperception that gcc has a magic "make me
+faster" speedup option called ``inline``. While the use of inlines can be
+appropriate (for example as a means of replacing macros, see Chapter 12), it
+very often is not. Abundant use of the inline keyword leads to a much bigger
+kernel, which in turn slows the system as a whole down, due to a bigger
+icache footprint for the CPU and simply because there is less memory
+available for the pagecache. Just think about it; a pagecache miss causes a
+disk seek, which easily takes 5 milliseconds. There are a LOT of cpu cycles
+that can go into these 5 milliseconds.
+
+A reasonable rule of thumb is to not put inline at functions that have more
+than 3 lines of code in them. An exception to this rule are the cases where
+a parameter is known to be a compiletime constant, and as a result of this
+constantness you *know* the compiler will be able to optimize most of your
+function away at compile time. For a good example of this later case, see
+the kmalloc() inline function.
+
+Often people argue that adding inline to functions that are static and used
+only once is always a win since there is no space tradeoff. While this is
+technically correct, gcc is capable of inlining these automatically without
+help, and the maintenance issue of removing the inline when a second user
+appears outweighs the potential value of the hint that tells gcc to do
+something it would have done anyway.
+
+
+16) Function return values and names
+------------------------------------
+
+Functions can return values of many different kinds, and one of the
+most common is a value indicating whether the function succeeded or
+failed. Such a value can be represented as an error-code integer
+(-Exxx = failure, 0 = success) or a ``succeeded`` boolean (0 = failure,
+non-zero = success).
+
+Mixing up these two sorts of representations is a fertile source of
+difficult-to-find bugs. If the C language included a strong distinction
+between integers and booleans then the compiler would find these mistakes
+for us... but it doesn't. To help prevent such bugs, always follow this
+convention::
+
+ If the name of a function is an action or an imperative command,
+ the function should return an error-code integer. If the name
+ is a predicate, the function should return a "succeeded" boolean.
+
+For example, ``add work`` is a command, and the add_work() function returns 0
+for success or -EBUSY for failure. In the same way, ``PCI device present`` is
+a predicate, and the pci_dev_present() function returns 1 if it succeeds in
+finding a matching device or 0 if it doesn't.
+
+All EXPORTed functions must respect this convention, and so should all
+public functions. Private (static) functions need not, but it is
+recommended that they do.
+
+Functions whose return value is the actual result of a computation, rather
+than an indication of whether the computation succeeded, are not subject to
+this rule. Generally they indicate failure by returning some out-of-range
+result. Typical examples would be functions that return pointers; they use
+NULL or the ERR_PTR mechanism to report failure.
+
+
+17) Don't re-invent the kernel macros
+-------------------------------------
+
+The header file include/linux/kernel.h contains a number of macros that
+you should use, rather than explicitly coding some variant of them yourself.
+For example, if you need to calculate the length of an array, take advantage
+of the macro
+
+.. code-block:: c
+
+ #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+
+Similarly, if you need to calculate the size of some structure member, use
+
+.. code-block:: c
+
+ #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
+
+There are also min() and max() macros that do strict type checking if you
+need them. Feel free to peruse that header file to see what else is already
+defined that you shouldn't reproduce in your code.
+
+
+18) Editor modelines and other cruft
+------------------------------------
+
+Some editors can interpret configuration information embedded in source files,
+indicated with special markers. For example, emacs interprets lines marked
+like this:
+
+.. code-block:: c
+
+ -*- mode: c -*-
+
+Or like this:
+
+.. code-block:: c
+
+ /*
+ Local Variables:
+ compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
+ End:
+ */
+
+Vim interprets markers that look like this:
+
+.. code-block:: c
+
+ /* vim:set sw=8 noet */
+
+Do not include any of these in source files. People have their own personal
+editor configurations, and your source files should not override them. This
+includes markers for indentation and mode configuration. People may use their
+own custom mode, or may have some other magic method for making indentation
+work correctly.
+
+
+19) Inline assembly
+-------------------
+
+In architecture-specific code, you may need to use inline assembly to interface
+with CPU or platform functionality. Don't hesitate to do so when necessary.
+However, don't use inline assembly gratuitously when C can do the job. You can
+and should poke hardware from C when possible.
+
+Consider writing simple helper functions that wrap common bits of inline
+assembly, rather than repeatedly writing them with slight variations. Remember
+that inline assembly can use C parameters.
+
+Large, non-trivial assembly functions should go in .S files, with corresponding
+C prototypes defined in C header files. The C prototypes for assembly
+functions should use ``asmlinkage``.
+
+You may need to mark your asm statement as volatile, to prevent GCC from
+removing it if GCC doesn't notice any side effects. You don't always need to
+do so, though, and doing so unnecessarily can limit optimization.
+
+When writing a single inline assembly statement containing multiple
+instructions, put each instruction on a separate line in a separate quoted
+string, and end each string except the last with \n\t to properly indent the
+next instruction in the assembly output:
+
+.. code-block:: c
+
+ asm ("magic %reg1, #42\n\t"
+ "more_magic %reg2, %reg3"
+ : /* outputs */ : /* inputs */ : /* clobbers */);
+
+
+20) Conditional Compilation
+---------------------------
+
+Wherever possible, don't use preprocessor conditionals (#if, #ifdef) in .c
+files; doing so makes code harder to read and logic harder to follow. Instead,
+use such conditionals in a header file defining functions for use in those .c
+files, providing no-op stub versions in the #else case, and then call those
+functions unconditionally from .c files. The compiler will avoid generating
+any code for the stub calls, producing identical results, but the logic will
+remain easy to follow.
+
+Prefer to compile out entire functions, rather than portions of functions or
+portions of expressions. Rather than putting an ifdef in an expression, factor
+out part or all of the expression into a separate helper function and apply the
+conditional to that function.
+
+If you have a function or variable which may potentially go unused in a
+particular configuration, and the compiler would warn about its definition
+going unused, mark the definition as __maybe_unused rather than wrapping it in
+a preprocessor conditional. (However, if a function or variable *always* goes
+unused, delete it.)
+
+Within code, where possible, use the IS_ENABLED macro to convert a Kconfig
+symbol into a C boolean expression, and use it in a normal C conditional:
+
+.. code-block:: c
+
+ if (IS_ENABLED(CONFIG_SOMETHING)) {
+ ...
+ }
+
+The compiler will constant-fold the conditional away, and include or exclude
+the block of code just as with an #ifdef, so this will not add any runtime
+overhead. However, this approach still allows the C compiler to see the code
+inside the block, and check it for correctness (syntax, types, symbol
+references, etc). Thus, you still have to use an #ifdef if the code inside the
+block references symbols that will not exist if the condition is not met.
+
+At the end of any non-trivial #if or #ifdef block (more than a few lines),
+place a comment after the #endif on the same line, noting the conditional
+expression used. For instance:
+
+.. code-block:: c
+
+ #ifdef CONFIG_SOMETHING
+ ...
+ #endif /* CONFIG_SOMETHING */
+
+
+Appendix I) References
+----------------------
+
+The C Programming Language, Second Edition
+by Brian W. Kernighan and Dennis M. Ritchie.
+Prentice Hall, Inc., 1988.
+ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).
+
+The Practice of Programming
+by Brian W. Kernighan and Rob Pike.
+Addison-Wesley, Inc., 1999.
+ISBN 0-201-61586-X.
+
+GNU manuals - where in compliance with K&R and this text - for cpp, gcc,
+gcc internals and indent, all available from http://www.gnu.org/manual/
+
+WG14 is the international standardization working group for the programming
+language C, URL: http://www.open-std.org/JTC1/SC22/WG14/
+
+Kernel process/coding-style.rst, by greg@kroah.com at OLS 2002:
+http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
diff --git a/Documentation/development-process/conf.py b/Documentation/process/conf.py
index 4b4a12d..1b01a80 100644
--- a/Documentation/development-process/conf.py
+++ b/Documentation/process/conf.py
@@ -5,6 +5,6 @@ project = 'Linux Kernel Development Documentation'
tags.add("subproject")
latex_documents = [
- ('index', 'development-process.tex', 'Linux Kernel Development Documentation',
+ ('index', 'process.tex', 'Linux Kernel Development Documentation',
'The kernel development community', 'manual'),
]
diff --git a/Documentation/development-process/development-process.rst b/Documentation/process/development-process.rst
index bd1399f..61c627e 100644
--- a/Documentation/development-process/development-process.rst
+++ b/Documentation/process/development-process.rst
@@ -26,4 +26,3 @@ development (or, indeed, free software development in general). While
there is some technical material here, this is very much a process-oriented
discussion which does not require a deep knowledge of kernel programming to
understand.
-
diff --git a/Documentation/email-clients.txt b/Documentation/process/email-clients.rst
index ac892b3..ac892b3 100644
--- a/Documentation/email-clients.txt
+++ b/Documentation/process/email-clients.rst
diff --git a/Documentation/HOWTO b/Documentation/process/howto.rst
index 5f04234..449ca1f 100644
--- a/Documentation/HOWTO
+++ b/Documentation/process/howto.rst
@@ -90,19 +90,19 @@ required reading:
what is necessary to do to configure and build the kernel. People
who are new to the kernel should start here.
- :ref:`Documentation/Changes <changes>`
+ :ref:`Documentation/process/changes.rst <changes>`
This file gives a list of the minimum levels of various software
packages that are necessary to build and run the kernel
successfully.
- :ref:`Documentation/CodingStyle <codingstyle>`
+ :ref:`Documentation/process/coding-style.rst <codingstyle>`
This describes the Linux kernel coding style, and some of the
rationale behind it. All new code is expected to follow the
guidelines in this document. Most maintainers will only accept
patches if these rules are followed, and many people will only
review code if it is in the proper style.
- :ref:`Documentation/SubmittingPatches <submittingpatches>` and :ref:`Documentation/SubmittingDrivers <submittingdrivers>`
+ :ref:`Documentation/process/submitting-patches.rst <submittingpatches>` and :ref:`Documentation/process/submitting-drivers.rst <submittingdrivers>`
These files describe in explicit detail how to successfully create
and send a patch, including (but not limited to):
@@ -122,7 +122,7 @@ required reading:
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
- :ref:`Documentation/stable_api_nonsense.txt <stable_api_nonsense>`
+ :ref:`Documentation/process/stable-api-nonsense.rst <stable_api_nonsense>`
This file describes the rationale behind the conscious decision to
not have a stable API within the kernel, including things like:
@@ -135,29 +135,29 @@ required reading:
philosophy and is very important for people moving to Linux from
development on other Operating Systems.
- :ref:`Documentation/SecurityBugs <securitybugs>`
+ :ref:`Documentation/admin-guide/security-bugs.rst <securitybugs>`
If you feel you have found a security problem in the Linux kernel,
please follow the steps in this document to help notify the kernel
developers, and help solve the issue.
- :ref:`Documentation/ManagementStyle <managementstyle>`
+ :ref:`Documentation/process/management-style.rst <managementstyle>`
This document describes how Linux kernel maintainers operate and the
shared ethos behind their methodologies. This is important reading
for anyone new to kernel development (or anyone simply curious about
it), as it resolves a lot of common misconceptions and confusion
about the unique behavior of kernel maintainers.
- :ref:`Documentation/stable_kernel_rules.txt <stable_kernel_rules>`
+ :ref:`Documentation/process/stable-kernel-rules.rst <stable_kernel_rules>`
This file describes the rules on how the stable kernel releases
happen, and what to do if you want to get a change into one of these
releases.
- :ref:`Documentation/kernel-docs.txt <kernel_docs>`
+ :ref:`Documentation/process/kernel-docs.rst <kernel_docs>`
A list of external documentation that pertains to kernel
development. Please consult this list if you do not find what you
are looking for within the in-kernel documentation.
- :ref:`Documentation/applying-patches.txt <applying_patches>`
+ :ref:`Documentation/process/applying-patches.rst <applying_patches>`
A good introduction describing exactly what a patch is and how to
apply it to the different development branches of the kernel.
@@ -254,7 +254,8 @@ branches. These different branches are:
- the 4.x -next kernel tree for integration tests
4.x kernel tree
------------------
+~~~~~~~~~~~~~~~
+
4.x kernels are maintained by Linus Torvalds, and can be found on
https://kernel.org in the pub/linux/kernel/v4.x/ directory. Its development
process is as follows:
@@ -289,7 +290,8 @@ mailing list about kernel releases:
preconceived timeline."*
4.x.y -stable kernel tree
--------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
Kernels with 3-part versions are -stable kernels. They contain
relatively small and critical fixes for security problems or significant
regressions discovered in a given 4.x kernel.
@@ -307,12 +309,13 @@ two weeks, but it can be longer if there are no pressing problems. A
security-related problem, instead, can cause a release to happen almost
instantly.
-The file Documentation/stable_kernel_rules.txt in the kernel tree
+The file Documentation/process/stable-kernel-rules.rst in the kernel tree
documents what kinds of changes are acceptable for the -stable tree, and
how the release process works.
4.x -git patches
-----------------
+~~~~~~~~~~~~~~~~
+
These are daily snapshots of Linus' kernel tree which are managed in a
git repository (hence the name.) These patches are usually released
daily and represent the current state of Linus' tree. They are more
@@ -320,7 +323,8 @@ experimental than -rc kernels since they are generated automatically
without even a cursory glance to see if they are sane.
Subsystem Specific kernel trees and patches
--------------------------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
The maintainers of the various kernel subsystems --- and also many
kernel subsystem developers --- expose their current state of
development in source repositories. That way, others can see what is
@@ -344,7 +348,8 @@ accepted, or rejected. Most of these patchwork sites are listed at
https://patchwork.kernel.org/.
4.x -next kernel tree for integration tests
--------------------------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
Before updates from subsystem trees are merged into the mainline 4.x
tree, they need to be integration-tested. For this purpose, a special
testing repository exists into which virtually all subsystem trees are
@@ -366,7 +371,7 @@ tool. For details on how to use the kernel bugzilla, please see:
https://bugzilla.kernel.org/page.cgi?id=faq.html
-The file REPORTING-BUGS in the main kernel source directory has a good
+The file admin-guide/reporting-bugs.rst in the main kernel source directory has a good
template for how to report a possible kernel bug, and details what kind
of information is needed by the kernel developers to help track down the
problem.
@@ -440,7 +445,7 @@ add your statements between the individual quoted sections instead of
writing at the top of the mail.
If you add patches to your mail, make sure they are plain readable text
-as stated in Documentation/SubmittingPatches.
+as stated in Documentation/process/submitting-patches.rst.
Kernel developers don't want to deal with
attachments or compressed patches; they may want to comment on
individual lines of your patch, which works only that way. Make sure you
diff --git a/Documentation/process/index.rst b/Documentation/process/index.rst
new file mode 100644
index 0000000..10aa692
--- /dev/null
+++ b/Documentation/process/index.rst
@@ -0,0 +1,57 @@
+.. raw:: latex
+
+ \renewcommand\thesection*
+ \renewcommand\thesubsection*
+
+
+Working with the kernel development community
+=============================================
+
+So you want to be a Linux kernel developer? Welcome! While there is a lot
+to be learned about the kernel in a technical sense, it is also important
+to learn about how our community works. Reading these documents will make
+it much easier for you to get your changes merged with a minimum of
+trouble.
+
+Below are the essential guides that every developer should read.
+
+.. toctree::
+ :maxdepth: 1
+
+ howto
+ code-of-conflict
+ development-process
+ submitting-patches
+ coding-style
+ email-clients
+
+Other guides to the community that are of interest to most developers are:
+
+.. toctree::
+ :maxdepth: 1
+
+ changes
+ submitting-drivers
+ stable-api-nonsense
+ management-style
+ stable-kernel-rules
+ submit-checklist
+ kernel-docs
+
+These are some overall technical guides that have been put here for now for
+lack of a better place.
+
+.. toctree::
+ :maxdepth: 1
+
+ applying-patches
+ adding-syscalls
+ magic-number
+ volatile-considered-harmful
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/kernel-docs.txt b/Documentation/process/kernel-docs.rst
index 05a7857..05a7857 100644
--- a/Documentation/kernel-docs.txt
+++ b/Documentation/process/kernel-docs.rst
diff --git a/Documentation/process/magic-number.rst b/Documentation/process/magic-number.rst
new file mode 100644
index 0000000..c74199f
--- /dev/null
+++ b/Documentation/process/magic-number.rst
@@ -0,0 +1,164 @@
+Linux magic numbers
+===================
+
+This file is a registry of magic numbers which are in use. When you
+add a magic number to a structure, you should also add it to this
+file, since it is best if the magic numbers used by various structures
+are unique.
+
+It is a **very** good idea to protect kernel data structures with magic
+numbers. This allows you to check at run time whether (a) a structure
+has been clobbered, or (b) you've passed the wrong structure to a
+routine. This last is especially useful --- particularly when you are
+passing pointers to structures via a void * pointer. The tty code,
+for example, does this frequently to pass driver-specific and line
+discipline-specific structures back and forth.
+
+The way to use magic numbers is to declare then at the beginning of
+the structure, like so::
+
+ struct tty_ldisc {
+ int magic;
+ ...
+ };
+
+Please follow this discipline when you are adding future enhancements
+to the kernel! It has saved me countless hours of debugging,
+especially in the screwy cases where an array has been overrun and
+structures following the array have been overwritten. Using this
+discipline, these cases get detected quickly and safely.
+
+Changelog::
+
+ Theodore Ts'o
+ 31 Mar 94
+
+ The magic table is current to Linux 2.1.55.
+
+ Michael Chastain
+ <mailto:mec@shout.net>
+ 22 Sep 1997
+
+ Now it should be up to date with Linux 2.1.112. Because
+ we are in feature freeze time it is very unlikely that
+ something will change before 2.2.x. The entries are
+ sorted by number field.
+
+ Krzysztof G. Baranowski
+ <mailto: kgb@knm.org.pl>
+ 29 Jul 1998
+
+ Updated the magic table to Linux 2.5.45. Right over the feature freeze,
+ but it is possible that some new magic numbers will sneak into the
+ kernel before 2.6.x yet.
+
+ Petr Baudis
+ <pasky@ucw.cz>
+ 03 Nov 2002
+
+ Updated the magic table to Linux 2.5.74.
+
+ Fabian Frederick
+ <ffrederick@users.sourceforge.net>
+ 09 Jul 2003
+
+
+===================== ================ ======================== ==========================================
+Magic Name Number Structure File
+===================== ================ ======================== ==========================================
+PG_MAGIC 'P' pg_{read,write}_hdr ``include/linux/pg.h``
+CMAGIC 0x0111 user ``include/linux/a.out.h``
+MKISS_DRIVER_MAGIC 0x04bf mkiss_channel ``drivers/net/mkiss.h``
+HDLC_MAGIC 0x239e n_hdlc ``drivers/char/n_hdlc.c``
+APM_BIOS_MAGIC 0x4101 apm_user ``arch/x86/kernel/apm_32.c``
+CYCLADES_MAGIC 0x4359 cyclades_port ``include/linux/cyclades.h``
+DB_MAGIC 0x4442 fc_info ``drivers/net/iph5526_novram.c``
+DL_MAGIC 0x444d fc_info ``drivers/net/iph5526_novram.c``
+FASYNC_MAGIC 0x4601 fasync_struct ``include/linux/fs.h``
+FF_MAGIC 0x4646 fc_info ``drivers/net/iph5526_novram.c``
+ISICOM_MAGIC 0x4d54 isi_port ``include/linux/isicom.h``
+PTY_MAGIC 0x5001 ``drivers/char/pty.c``
+PPP_MAGIC 0x5002 ppp ``include/linux/if_pppvar.h``
+SERIAL_MAGIC 0x5301 async_struct ``include/linux/serial.h``
+SSTATE_MAGIC 0x5302 serial_state ``include/linux/serial.h``
+SLIP_MAGIC 0x5302 slip ``drivers/net/slip.h``
+STRIP_MAGIC 0x5303 strip ``drivers/net/strip.c``
+X25_ASY_MAGIC 0x5303 x25_asy ``drivers/net/x25_asy.h``
+SIXPACK_MAGIC 0x5304 sixpack ``drivers/net/hamradio/6pack.h``
+AX25_MAGIC 0x5316 ax_disp ``drivers/net/mkiss.h``
+TTY_MAGIC 0x5401 tty_struct ``include/linux/tty.h``
+MGSL_MAGIC 0x5401 mgsl_info ``drivers/char/synclink.c``
+TTY_DRIVER_MAGIC 0x5402 tty_driver ``include/linux/tty_driver.h``
+MGSLPC_MAGIC 0x5402 mgslpc_info ``drivers/char/pcmcia/synclink_cs.c``
+TTY_LDISC_MAGIC 0x5403 tty_ldisc ``include/linux/tty_ldisc.h``
+USB_SERIAL_MAGIC 0x6702 usb_serial ``drivers/usb/serial/usb-serial.h``
+FULL_DUPLEX_MAGIC 0x6969 ``drivers/net/ethernet/dec/tulip/de2104x.c``
+USB_BLUETOOTH_MAGIC 0x6d02 usb_bluetooth ``drivers/usb/class/bluetty.c``
+RFCOMM_TTY_MAGIC 0x6d02 ``net/bluetooth/rfcomm/tty.c``
+USB_SERIAL_PORT_MAGIC 0x7301 usb_serial_port ``drivers/usb/serial/usb-serial.h``
+CG_MAGIC 0x00090255 ufs_cylinder_group ``include/linux/ufs_fs.h``
+RPORT_MAGIC 0x00525001 r_port ``drivers/char/rocket_int.h``
+LSEMAGIC 0x05091998 lse ``drivers/fc4/fc.c``
+GDTIOCTL_MAGIC 0x06030f07 gdth_iowr_str ``drivers/scsi/gdth_ioctl.h``
+RIEBL_MAGIC 0x09051990 ``drivers/net/atarilance.c``
+NBD_REQUEST_MAGIC 0x12560953 nbd_request ``include/linux/nbd.h``
+RED_MAGIC2 0x170fc2a5 (any) ``mm/slab.c``
+BAYCOM_MAGIC 0x19730510 baycom_state ``drivers/net/baycom_epp.c``
+ISDN_X25IFACE_MAGIC 0x1e75a2b9 isdn_x25iface_proto_data ``drivers/isdn/isdn_x25iface.h``
+ECP_MAGIC 0x21504345 cdkecpsig ``include/linux/cdk.h``
+LSOMAGIC 0x27091997 lso ``drivers/fc4/fc.c``
+LSMAGIC 0x2a3b4d2a ls ``drivers/fc4/fc.c``
+WANPIPE_MAGIC 0x414C4453 sdla_{dump,exec} ``include/linux/wanpipe.h``
+CS_CARD_MAGIC 0x43525553 cs_card ``sound/oss/cs46xx.c``
+LABELCL_MAGIC 0x4857434c labelcl_info_s ``include/asm/ia64/sn/labelcl.h``
+ISDN_ASYNC_MAGIC 0x49344C01 modem_info ``include/linux/isdn.h``
+CTC_ASYNC_MAGIC 0x49344C01 ctc_tty_info ``drivers/s390/net/ctctty.c``
+ISDN_NET_MAGIC 0x49344C02 isdn_net_local_s ``drivers/isdn/i4l/isdn_net_lib.h``
+SAVEKMSG_MAGIC2 0x4B4D5347 savekmsg ``arch/*/amiga/config.c``
+CS_STATE_MAGIC 0x4c4f4749 cs_state ``sound/oss/cs46xx.c``
+SLAB_C_MAGIC 0x4f17a36d kmem_cache ``mm/slab.c``
+COW_MAGIC 0x4f4f4f4d cow_header_v1 ``arch/um/drivers/ubd_user.c``
+I810_CARD_MAGIC 0x5072696E i810_card ``sound/oss/i810_audio.c``
+TRIDENT_CARD_MAGIC 0x5072696E trident_card ``sound/oss/trident.c``
+ROUTER_MAGIC 0x524d4157 wan_device [in ``wanrouter.h`` pre 3.9]
+SAVEKMSG_MAGIC1 0x53415645 savekmsg ``arch/*/amiga/config.c``
+GDA_MAGIC 0x58464552 gda ``arch/mips/include/asm/sn/gda.h``
+RED_MAGIC1 0x5a2cf071 (any) ``mm/slab.c``
+EEPROM_MAGIC_VALUE 0x5ab478d2 lanai_dev ``drivers/atm/lanai.c``
+HDLCDRV_MAGIC 0x5ac6e778 hdlcdrv_state ``include/linux/hdlcdrv.h``
+PCXX_MAGIC 0x5c6df104 channel ``drivers/char/pcxx.h``
+KV_MAGIC 0x5f4b565f kernel_vars_s ``arch/mips/include/asm/sn/klkernvars.h``
+I810_STATE_MAGIC 0x63657373 i810_state ``sound/oss/i810_audio.c``
+TRIDENT_STATE_MAGIC 0x63657373 trient_state ``sound/oss/trident.c``
+M3_CARD_MAGIC 0x646e6f50 m3_card ``sound/oss/maestro3.c``
+FW_HEADER_MAGIC 0x65726F66 fw_header ``drivers/atm/fore200e.h``
+SLOT_MAGIC 0x67267321 slot ``drivers/hotplug/cpqphp.h``
+SLOT_MAGIC 0x67267322 slot ``drivers/hotplug/acpiphp.h``
+LO_MAGIC 0x68797548 nbd_device ``include/linux/nbd.h``
+OPROFILE_MAGIC 0x6f70726f super_block ``drivers/oprofile/oprofilefs.h``
+M3_STATE_MAGIC 0x734d724d m3_state ``sound/oss/maestro3.c``
+VMALLOC_MAGIC 0x87654320 snd_alloc_track ``sound/core/memory.c``
+KMALLOC_MAGIC 0x87654321 snd_alloc_track ``sound/core/memory.c``
+PWC_MAGIC 0x89DC10AB pwc_device ``drivers/usb/media/pwc.h``
+NBD_REPLY_MAGIC 0x96744668 nbd_reply ``include/linux/nbd.h``
+ENI155_MAGIC 0xa54b872d midway_eprom ``drivers/atm/eni.h``
+CODA_MAGIC 0xC0DAC0DA coda_file_info ``fs/coda/coda_fs_i.h``
+DPMEM_MAGIC 0xc0ffee11 gdt_pci_sram ``drivers/scsi/gdth.h``
+YAM_MAGIC 0xF10A7654 yam_port ``drivers/net/hamradio/yam.c``
+CCB_MAGIC 0xf2691ad2 ccb ``drivers/scsi/ncr53c8xx.c``
+QUEUE_MAGIC_FREE 0xf7e1c9a3 queue_entry ``drivers/scsi/arm/queue.c``
+QUEUE_MAGIC_USED 0xf7e1cc33 queue_entry ``drivers/scsi/arm/queue.c``
+HTB_CMAGIC 0xFEFAFEF1 htb_class ``net/sched/sch_htb.c``
+NMI_MAGIC 0x48414d4d455201 nmi_s ``arch/mips/include/asm/sn/nmi.h``
+===================== ================ ======================== ==========================================
+
+Note that there are also defined special per-driver magic numbers in sound
+memory management. See ``include/sound/sndmagic.h`` for complete list of them. Many
+OSS sound drivers have their magic numbers constructed from the soundcard PCI
+ID - these are not listed here as well.
+
+IrDA subsystem also uses large number of own magic numbers, see
+``include/net/irda/irda.h`` for a complete list of them.
+
+HFS is another larger user of magic numbers - you can find them in
+``fs/hfs/hfs.h``.
diff --git a/Documentation/ManagementStyle b/Documentation/process/management-style.rst
index dea2e66c..45595fd 100644
--- a/Documentation/ManagementStyle
+++ b/Documentation/process/management-style.rst
@@ -5,7 +5,7 @@ Linux kernel management style
This is a short document describing the preferred (or made up, depending
on who you ask) management style for the linux kernel. It's meant to
-mirror the CodingStyle document to some degree, and mainly written to
+mirror the process/coding-style.rst document to some degree, and mainly written to
avoid answering [#f1]_ the same (or similar) questions over and over again.
Management style is very personal and much harder to quantify than
diff --git a/Documentation/stable_api_nonsense.txt b/Documentation/process/stable-api-nonsense.rst
index 24f5aee..24f5aee 100644
--- a/Documentation/stable_api_nonsense.txt
+++ b/Documentation/process/stable-api-nonsense.rst
diff --git a/Documentation/stable_kernel_rules.txt b/Documentation/process/stable-kernel-rules.rst
index 4d82e31..11ec2d9 100644
--- a/Documentation/stable_kernel_rules.txt
+++ b/Documentation/process/stable-kernel-rules.rst
@@ -27,7 +27,7 @@ Rules on what kind of patches are accepted, and which ones are not, into the
- It cannot contain any "trivial" fixes in it (spelling changes,
whitespace cleanups, etc).
- It must follow the
- :ref:`Documentation/SubmittingPatches <submittingpatches>`
+ :ref:`Documentation/process/submitting-patches.rst <submittingpatches>`
rules.
- It or an equivalent fix must already exist in Linus' tree (upstream).
@@ -40,7 +40,7 @@ Procedure for submitting patches to the -stable tree
Documentation/networking/netdev-FAQ.txt
- Security patches should not be handled (solely) by the -stable review
process but should follow the procedures in
- :ref:`Documentation/SecurityBugs <securitybugs>`.
+ :ref:`Documentation/admin-guide/security-bugs.rst <securitybugs>`.
For all other submissions, choose one of the following procedures
-----------------------------------------------------------------
diff --git a/Documentation/SubmitChecklist b/Documentation/process/submit-checklist.rst
index 894289b..a0d9d34 100644
--- a/Documentation/SubmitChecklist
+++ b/Documentation/process/submit-checklist.rst
@@ -7,7 +7,7 @@ Here are some basic things that developers should do if they want to see their
kernel patch submissions accepted more quickly.
These are all above and beyond the documentation that is provided in
-:ref:`Documentation/SubmittingPatches <submittingpatches>`
+:ref:`Documentation/process/submitting-patches.rst <submittingpatches>`
and elsewhere regarding submitting Linux kernel patches.
@@ -31,7 +31,7 @@ and elsewhere regarding submitting Linux kernel patches.
tends to use ``unsigned long`` for 64-bit quantities.
5) Check your patch for general style as detailed in
- :ref:`Documentation/CodingStyle <codingstyle>`.
+ :ref:`Documentation/process/coding-style.rst <codingstyle>`.
Check for trivial violations with the patch style checker prior to
submission (``scripts/checkpatch.pl``).
You should be able to justify all violations that remain in
@@ -78,7 +78,7 @@ and elsewhere regarding submitting Linux kernel patches.
16) All new ``/proc`` entries are documented under ``Documentation/``
17) All new kernel boot parameters are documented in
- ``Documentation/kernel-parameters.txt``.
+ ``Documentation/admin-guide/kernel-parameters.rst``.
18) All new module parameters are documented with ``MODULE_PARM_DESC()``
diff --git a/Documentation/SubmittingDrivers b/Documentation/process/submitting-drivers.rst
index 252b77a..afb82ee 100644
--- a/Documentation/SubmittingDrivers
+++ b/Documentation/process/submitting-drivers.rst
@@ -8,7 +8,15 @@ various kernel trees. Note that if you are interested in video card drivers
you should probably talk to XFree86 (http://www.xfree86.org/) and/or X.Org
(http://x.org/) instead.
-Also read the Documentation/SubmittingPatches document.
+.. note::
+
+ This document is old and has seen little maintenance in recent years; it
+ should probably be updated or, perhaps better, just deleted. Most of
+ what is here can be found in the other development documents anyway.
+
+ Oh, and we don't really recommend submitting changes to XFree86 :)
+
+Also read the Documentation/process/submitting-patches.rst document.
Allocating Device Numbers
@@ -19,7 +27,7 @@ by the Linux assigned name and number authority (currently this is
Torben Mathiasen). The site is http://www.lanana.org/. This
also deals with allocating numbers for devices that are not going to
be submitted to the mainstream kernel.
-See Documentation/devices.txt for more information on this.
+See Documentation/admin-guide/devices.rst for more information on this.
If you don't use assigned numbers then when your device is submitted it will
be given an assigned number even if that is different from values you may
@@ -73,7 +81,7 @@ Interfaces:
Code:
Please use the Linux style of code formatting as documented
- in :ref:`Documentation/CodingStyle <codingStyle>`.
+ in :ref:`Documentation/process/coding-style.rst <codingStyle>`.
If you have sections of code
that need to be in other formats, for example because they
are shared with a windows driver kit and you want to
@@ -109,7 +117,7 @@ PM support:
anything. For the driver testing instructions see
Documentation/power/drivers-testing.txt and for a relatively
complete overview of the power management issues related to
- drivers see Documentation/power/devices.txt .
+ drivers see Documentation/power/admin-guide/devices.rst .
Control:
In general if there is active maintenance of a driver by
diff --git a/Documentation/process/submitting-patches.rst b/Documentation/process/submitting-patches.rst
new file mode 100644
index 0000000..3e10719
--- /dev/null
+++ b/Documentation/process/submitting-patches.rst
@@ -0,0 +1,836 @@
+.. _submittingpatches:
+
+Submitting patches: the essential guide to getting your code into the kernel
+============================================================================
+
+For a person or company who wishes to submit a change to the Linux
+kernel, the process can sometimes be daunting if you're not familiar
+with "the system." This text is a collection of suggestions which
+can greatly increase the chances of your change being accepted.
+
+This document contains a large number of suggestions in a relatively terse
+format. For detailed information on how the kernel development process
+works, see :ref:`Documentation/process <development_process_main>`.
+Also, read :ref:`Documentation/process/submit-checklist.rst <submitchecklist>`
+for a list of items to check before
+submitting code. If you are submitting a driver, also read
+:ref:`Documentation/process/submitting-drivers.rst <submittingdrivers>`;
+for device tree binding patches, read
+Documentation/devicetree/bindings/submitting-patches.txt.
+
+Many of these steps describe the default behavior of the ``git`` version
+control system; if you use ``git`` to prepare your patches, you'll find much
+of the mechanical work done for you, though you'll still need to prepare
+and document a sensible set of patches. In general, use of ``git`` will make
+your life as a kernel developer easier.
+
+0) Obtain a current source tree
+-------------------------------
+
+If you do not have a repository with the current kernel source handy, use
+``git`` to obtain one. You'll want to start with the mainline repository,
+which can be grabbed with::
+
+ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
+
+Note, however, that you may not want to develop against the mainline tree
+directly. Most subsystem maintainers run their own trees and want to see
+patches prepared against those trees. See the **T:** entry for the subsystem
+in the MAINTAINERS file to find that tree, or simply ask the maintainer if
+the tree is not listed there.
+
+It is still possible to download kernel releases via tarballs (as described
+in the next section), but that is the hard way to do kernel development.
+
+1) ``diff -up``
+---------------
+
+If you must generate your patches by hand, use ``diff -up`` or ``diff -uprN``
+to create patches. Git generates patches in this form by default; if
+you're using ``git``, you can skip this section entirely.
+
+All changes to the Linux kernel occur in the form of patches, as
+generated by :manpage:`diff(1)`. When creating your patch, make sure to
+create it in "unified diff" format, as supplied by the ``-u`` argument
+to :manpage:`diff(1)`.
+Also, please use the ``-p`` argument which shows which C function each
+change is in - that makes the resultant ``diff`` a lot easier to read.
+Patches should be based in the root kernel source directory,
+not in any lower subdirectory.
+
+To create a patch for a single file, it is often sufficient to do::
+
+ SRCTREE= linux
+ MYFILE= drivers/net/mydriver.c
+
+ cd $SRCTREE
+ cp $MYFILE $MYFILE.orig
+ vi $MYFILE # make your change
+ cd ..
+ diff -up $SRCTREE/$MYFILE{.orig,} > /tmp/patch
+
+To create a patch for multiple files, you should unpack a "vanilla",
+or unmodified kernel source tree, and generate a ``diff`` against your
+own source tree. For example::
+
+ MYSRC= /devel/linux
+
+ tar xvfz linux-3.19.tar.gz
+ mv linux-3.19 linux-3.19-vanilla
+ diff -uprN -X linux-3.19-vanilla/Documentation/dontdiff \
+ linux-3.19-vanilla $MYSRC > /tmp/patch
+
+``dontdiff`` is a list of files which are generated by the kernel during
+the build process, and should be ignored in any :manpage:`diff(1)`-generated
+patch.
+
+Make sure your patch does not include any extra files which do not
+belong in a patch submission. Make sure to review your patch -after-
+generating it with :manpage:`diff(1)`, to ensure accuracy.
+
+If your changes produce a lot of deltas, you need to split them into
+individual patches which modify things in logical stages; see
+:ref:`split_changes`. This will facilitate review by other kernel developers,
+very important if you want your patch accepted.
+
+If you're using ``git``, ``git rebase -i`` can help you with this process. If
+you're not using ``git``, ``quilt`` <http://savannah.nongnu.org/projects/quilt>
+is another popular alternative.
+
+.. _describe_changes:
+
+2) Describe your changes
+------------------------
+
+Describe your problem. Whether your patch is a one-line bug fix or
+5000 lines of a new feature, there must be an underlying problem that
+motivated you to do this work. Convince the reviewer that there is a
+problem worth fixing and that it makes sense for them to read past the
+first paragraph.
+
+Describe user-visible impact. Straight up crashes and lockups are
+pretty convincing, but not all bugs are that blatant. Even if the
+problem was spotted during code review, describe the impact you think
+it can have on users. Keep in mind that the majority of Linux
+installations run kernels from secondary stable trees or
+vendor/product-specific trees that cherry-pick only specific patches
+from upstream, so include anything that could help route your change
+downstream: provoking circumstances, excerpts from dmesg, crash
+descriptions, performance regressions, latency spikes, lockups, etc.
+
+Quantify optimizations and trade-offs. If you claim improvements in
+performance, memory consumption, stack footprint, or binary size,
+include numbers that back them up. But also describe non-obvious
+costs. Optimizations usually aren't free but trade-offs between CPU,
+memory, and readability; or, when it comes to heuristics, between
+different workloads. Describe the expected downsides of your
+optimization so that the reviewer can weigh costs against benefits.
+
+Once the problem is established, describe what you are actually doing
+about it in technical detail. It's important to describe the change
+in plain English for the reviewer to verify that the code is behaving
+as you intend it to.
+
+The maintainer will thank you if you write your patch description in a
+form which can be easily pulled into Linux's source code management
+system, ``git``, as a "commit log". See :ref:`explicit_in_reply_to`.
+
+Solve only one problem per patch. If your description starts to get
+long, that's a sign that you probably need to split up your patch.
+See :ref:`split_changes`.
+
+When you submit or resubmit a patch or patch series, include the
+complete patch description and justification for it. Don't just
+say that this is version N of the patch (series). Don't expect the
+subsystem maintainer to refer back to earlier patch versions or referenced
+URLs to find the patch description and put that into the patch.
+I.e., the patch (series) and its description should be self-contained.
+This benefits both the maintainers and reviewers. Some reviewers
+probably didn't even receive earlier versions of the patch.
+
+Describe your changes in imperative mood, e.g. "make xyzzy do frotz"
+instead of "[This patch] makes xyzzy do frotz" or "[I] changed xyzzy
+to do frotz", as if you are giving orders to the codebase to change
+its behaviour.
+
+If the patch fixes a logged bug entry, refer to that bug entry by
+number and URL. If the patch follows from a mailing list discussion,
+give a URL to the mailing list archive; use the https://lkml.kernel.org/
+redirector with a ``Message-Id``, to ensure that the links cannot become
+stale.
+
+However, try to make your explanation understandable without external
+resources. In addition to giving a URL to a mailing list archive or
+bug, summarize the relevant points of the discussion that led to the
+patch as submitted.
+
+If you want to refer to a specific commit, don't just refer to the
+SHA-1 ID of the commit. Please also include the oneline summary of
+the commit, to make it easier for reviewers to know what it is about.
+Example::
+
+ Commit e21d2170f36602ae2708 ("video: remove unnecessary
+ platform_set_drvdata()") removed the unnecessary
+ platform_set_drvdata(), but left the variable "dev" unused,
+ delete it.
+
+You should also be sure to use at least the first twelve characters of the
+SHA-1 ID. The kernel repository holds a *lot* of objects, making
+collisions with shorter IDs a real possibility. Bear in mind that, even if
+there is no collision with your six-character ID now, that condition may
+change five years from now.
+
+If your patch fixes a bug in a specific commit, e.g. you found an issue using
+``git bisect``, please use the 'Fixes:' tag with the first 12 characters of
+the SHA-1 ID, and the one line summary. For example::
+
+ Fixes: e21d2170f366 ("video: remove unnecessary platform_set_drvdata()")
+
+The following ``git config`` settings can be used to add a pretty format for
+outputting the above style in the ``git log`` or ``git show`` commands::
+
+ [core]
+ abbrev = 12
+ [pretty]
+ fixes = Fixes: %h (\"%s\")
+
+.. _split_changes:
+
+3) Separate your changes
+------------------------
+
+Separate each **logical change** into a separate patch.
+
+For example, if your changes include both bug fixes and performance
+enhancements for a single driver, separate those changes into two
+or more patches. If your changes include an API update, and a new
+driver which uses that new API, separate those into two patches.
+
+On the other hand, if you make a single change to numerous files,
+group those changes into a single patch. Thus a single logical change
+is contained within a single patch.
+
+The point to remember is that each patch should make an easily understood
+change that can be verified by reviewers. Each patch should be justifiable
+on its own merits.
+
+If one patch depends on another patch in order for a change to be
+complete, that is OK. Simply note **"this patch depends on patch X"**
+in your patch description.
+
+When dividing your change into a series of patches, take special care to
+ensure that the kernel builds and runs properly after each patch in the
+series. Developers using ``git bisect`` to track down a problem can end up
+splitting your patch series at any point; they will not thank you if you
+introduce bugs in the middle.
+
+If you cannot condense your patch set into a smaller set of patches,
+then only post say 15 or so at a time and wait for review and integration.
+
+
+
+4) Style-check your changes
+---------------------------
+
+Check your patch for basic style violations, details of which can be
+found in
+:ref:`Documentation/process/coding-style.rst <codingstyle>`.
+Failure to do so simply wastes
+the reviewers time and will get your patch rejected, probably
+without even being read.
+
+One significant exception is when moving code from one file to
+another -- in this case you should not modify the moved code at all in
+the same patch which moves it. This clearly delineates the act of
+moving the code and your changes. This greatly aids review of the
+actual differences and allows tools to better track the history of
+the code itself.
+
+Check your patches with the patch style checker prior to submission
+(scripts/checkpatch.pl). Note, though, that the style checker should be
+viewed as a guide, not as a replacement for human judgment. If your code
+looks better with a violation then its probably best left alone.
+
+The checker reports at three levels:
+ - ERROR: things that are very likely to be wrong
+ - WARNING: things requiring careful review
+ - CHECK: things requiring thought
+
+You should be able to justify all violations that remain in your
+patch.
+
+
+5) Select the recipients for your patch
+---------------------------------------
+
+You should always copy the appropriate subsystem maintainer(s) on any patch
+to code that they maintain; look through the MAINTAINERS file and the
+source code revision history to see who those maintainers are. The
+script scripts/get_maintainer.pl can be very useful at this step. If you
+cannot find a maintainer for the subsystem you are working on, Andrew
+Morton (akpm@linux-foundation.org) serves as a maintainer of last resort.
+
+You should also normally choose at least one mailing list to receive a copy
+of your patch set. linux-kernel@vger.kernel.org functions as a list of
+last resort, but the volume on that list has caused a number of developers
+to tune it out. Look in the MAINTAINERS file for a subsystem-specific
+list; your patch will probably get more attention there. Please do not
+spam unrelated lists, though.
+
+Many kernel-related lists are hosted on vger.kernel.org; you can find a
+list of them at http://vger.kernel.org/vger-lists.html. There are
+kernel-related lists hosted elsewhere as well, though.
+
+Do not send more than 15 patches at once to the vger mailing lists!!!
+
+Linus Torvalds is the final arbiter of all changes accepted into the
+Linux kernel. His e-mail address is <torvalds@linux-foundation.org>.
+He gets a lot of e-mail, and, at this point, very few patches go through
+Linus directly, so typically you should do your best to -avoid-
+sending him e-mail.
+
+If you have a patch that fixes an exploitable security bug, send that patch
+to security@kernel.org. For severe bugs, a short embargo may be considered
+to allow distributors to get the patch out to users; in such cases,
+obviously, the patch should not be sent to any public lists.
+
+Patches that fix a severe bug in a released kernel should be directed
+toward the stable maintainers by putting a line like this::
+
+ Cc: stable@vger.kernel.org
+
+into the sign-off area of your patch (note, NOT an email recipient). You
+should also read
+:ref:`Documentation/process/stable-kernel-rules.rst <stable_kernel_rules>`
+in addition to this file.
+
+Note, however, that some subsystem maintainers want to come to their own
+conclusions on which patches should go to the stable trees. The networking
+maintainer, in particular, would rather not see individual developers
+adding lines like the above to their patches.
+
+If changes affect userland-kernel interfaces, please send the MAN-PAGES
+maintainer (as listed in the MAINTAINERS file) a man-pages patch, or at
+least a notification of the change, so that some information makes its way
+into the manual pages. User-space API changes should also be copied to
+linux-api@vger.kernel.org.
+
+For small patches you may want to CC the Trivial Patch Monkey
+trivial@kernel.org which collects "trivial" patches. Have a look
+into the MAINTAINERS file for its current manager.
+
+Trivial patches must qualify for one of the following rules:
+
+- Spelling fixes in documentation
+- Spelling fixes for errors which could break :manpage:`grep(1)`
+- Warning fixes (cluttering with useless warnings is bad)
+- Compilation fixes (only if they are actually correct)
+- Runtime fixes (only if they actually fix things)
+- Removing use of deprecated functions/macros
+- Contact detail and documentation fixes
+- Non-portable code replaced by portable code (even in arch-specific,
+ since people copy, as long as it's trivial)
+- Any fix by the author/maintainer of the file (ie. patch monkey
+ in re-transmission mode)
+
+
+
+6) No MIME, no links, no compression, no attachments. Just plain text
+----------------------------------------------------------------------
+
+Linus and other kernel developers need to be able to read and comment
+on the changes you are submitting. It is important for a kernel
+developer to be able to "quote" your changes, using standard e-mail
+tools, so that they may comment on specific portions of your code.
+
+For this reason, all patches should be submitted by e-mail "inline".
+
+.. warning::
+
+ Be wary of your editor's word-wrap corrupting your patch,
+ if you choose to cut-n-paste your patch.
+
+Do not attach the patch as a MIME attachment, compressed or not.
+Many popular e-mail applications will not always transmit a MIME
+attachment as plain text, making it impossible to comment on your
+code. A MIME attachment also takes Linus a bit more time to process,
+decreasing the likelihood of your MIME-attached change being accepted.
+
+Exception: If your mailer is mangling patches then someone may ask
+you to re-send them using MIME.
+
+See :ref:`Documentation/process/email-clients.rst <email_clients>`
+for hints about configuring your e-mail client so that it sends your patches
+untouched.
+
+7) E-mail size
+--------------
+
+Large changes are not appropriate for mailing lists, and some
+maintainers. If your patch, uncompressed, exceeds 300 kB in size,
+it is preferred that you store your patch on an Internet-accessible
+server, and provide instead a URL (link) pointing to your patch. But note
+that if your patch exceeds 300 kB, it almost certainly needs to be broken up
+anyway.
+
+8) Respond to review comments
+-----------------------------
+
+Your patch will almost certainly get comments from reviewers on ways in
+which the patch can be improved. You must respond to those comments;
+ignoring reviewers is a good way to get ignored in return. Review comments
+or questions that do not lead to a code change should almost certainly
+bring about a comment or changelog entry so that the next reviewer better
+understands what is going on.
+
+Be sure to tell the reviewers what changes you are making and to thank them
+for their time. Code review is a tiring and time-consuming process, and
+reviewers sometimes get grumpy. Even in that case, though, respond
+politely and address the problems they have pointed out.
+
+
+9) Don't get discouraged - or impatient
+---------------------------------------
+
+After you have submitted your change, be patient and wait. Reviewers are
+busy people and may not get to your patch right away.
+
+Once upon a time, patches used to disappear into the void without comment,
+but the development process works more smoothly than that now. You should
+receive comments within a week or so; if that does not happen, make sure
+that you have sent your patches to the right place. Wait for a minimum of
+one week before resubmitting or pinging reviewers - possibly longer during
+busy times like merge windows.
+
+
+10) Include PATCH in the subject
+--------------------------------
+
+Due to high e-mail traffic to Linus, and to linux-kernel, it is common
+convention to prefix your subject line with [PATCH]. This lets Linus
+and other kernel developers more easily distinguish patches from other
+e-mail discussions.
+
+
+
+11) Sign your work — the Developer's Certificate of Origin
+----------------------------------------------------------
+
+To improve tracking of who did what, especially with patches that can
+percolate to their final resting place in the kernel through several
+layers of maintainers, we've introduced a "sign-off" procedure on
+patches that are being emailed around.
+
+The sign-off is a simple line at the end of the explanation for the
+patch, which certifies that you wrote it or otherwise have the right to
+pass it on as an open-source patch. The rules are pretty simple: if you
+can certify the below:
+
+Developer's Certificate of Origin 1.1
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+By making a contribution to this project, I certify that:
+
+ (a) The contribution was created in whole or in part by me and I
+ have the right to submit it under the open source license
+ indicated in the file; or
+
+ (b) The contribution is based upon previous work that, to the best
+ of my knowledge, is covered under an appropriate open source
+ license and I have the right under that license to submit that
+ work with modifications, whether created in whole or in part
+ by me, under the same open source license (unless I am
+ permitted to submit under a different license), as indicated
+ in the file; or
+
+ (c) The contribution was provided directly to me by some other
+ person who certified (a), (b) or (c) and I have not modified
+ it.
+
+ (d) I understand and agree that this project and the contribution
+ are public and that a record of the contribution (including all
+ personal information I submit with it, including my sign-off) is
+ maintained indefinitely and may be redistributed consistent with
+ this project or the open source license(s) involved.
+
+then you just add a line saying::
+
+ Signed-off-by: Random J Developer <random@developer.example.org>
+
+using your real name (sorry, no pseudonyms or anonymous contributions.)
+
+Some people also put extra tags at the end. They'll just be ignored for
+now, but you can do this to mark internal company procedures or just
+point out some special detail about the sign-off.
+
+If you are a subsystem or branch maintainer, sometimes you need to slightly
+modify patches you receive in order to merge them, because the code is not
+exactly the same in your tree and the submitters'. If you stick strictly to
+rule (c), you should ask the submitter to rediff, but this is a totally
+counter-productive waste of time and energy. Rule (b) allows you to adjust
+the code, but then it is very impolite to change one submitter's code and
+make him endorse your bugs. To solve this problem, it is recommended that
+you add a line between the last Signed-off-by header and yours, indicating
+the nature of your changes. While there is nothing mandatory about this, it
+seems like prepending the description with your mail and/or name, all
+enclosed in square brackets, is noticeable enough to make it obvious that
+you are responsible for last-minute changes. Example::
+
+ Signed-off-by: Random J Developer <random@developer.example.org>
+ [lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]
+ Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>
+
+This practice is particularly helpful if you maintain a stable branch and
+want at the same time to credit the author, track changes, merge the fix,
+and protect the submitter from complaints. Note that under no circumstances
+can you change the author's identity (the From header), as it is the one
+which appears in the changelog.
+
+Special note to back-porters: It seems to be a common and useful practice
+to insert an indication of the origin of a patch at the top of the commit
+message (just after the subject line) to facilitate tracking. For instance,
+here's what we see in a 3.x-stable release::
+
+ Date: Tue Oct 7 07:26:38 2014 -0400
+
+ libata: Un-break ATA blacklist
+
+ commit 1c40279960bcd7d52dbdf1d466b20d24b99176c8 upstream.
+
+And here's what might appear in an older kernel once a patch is backported::
+
+ Date: Tue May 13 22:12:27 2008 +0200
+
+ wireless, airo: waitbusy() won't delay
+
+ [backport of 2.6 commit b7acbdfbd1f277c1eb23f344f899cfa4cd0bf36a]
+
+Whatever the format, this information provides a valuable help to people
+tracking your trees, and to people trying to troubleshoot bugs in your
+tree.
+
+
+12) When to use Acked-by: and Cc:
+---------------------------------
+
+The Signed-off-by: tag indicates that the signer was involved in the
+development of the patch, or that he/she was in the patch's delivery path.
+
+If a person was not directly involved in the preparation or handling of a
+patch but wishes to signify and record their approval of it then they can
+ask to have an Acked-by: line added to the patch's changelog.
+
+Acked-by: is often used by the maintainer of the affected code when that
+maintainer neither contributed to nor forwarded the patch.
+
+Acked-by: is not as formal as Signed-off-by:. It is a record that the acker
+has at least reviewed the patch and has indicated acceptance. Hence patch
+mergers will sometimes manually convert an acker's "yep, looks good to me"
+into an Acked-by: (but note that it is usually better to ask for an
+explicit ack).
+
+Acked-by: does not necessarily indicate acknowledgement of the entire patch.
+For example, if a patch affects multiple subsystems and has an Acked-by: from
+one subsystem maintainer then this usually indicates acknowledgement of just
+the part which affects that maintainer's code. Judgement should be used here.
+When in doubt people should refer to the original discussion in the mailing
+list archives.
+
+If a person has had the opportunity to comment on a patch, but has not
+provided such comments, you may optionally add a ``Cc:`` tag to the patch.
+This is the only tag which might be added without an explicit action by the
+person it names - but it should indicate that this person was copied on the
+patch. This tag documents that potentially interested parties
+have been included in the discussion.
+
+
+13) Using Reported-by:, Tested-by:, Reviewed-by:, Suggested-by: and Fixes:
+--------------------------------------------------------------------------
+
+The Reported-by tag gives credit to people who find bugs and report them and it
+hopefully inspires them to help us again in the future. Please note that if
+the bug was reported in private, then ask for permission first before using the
+Reported-by tag.
+
+A Tested-by: tag indicates that the patch has been successfully tested (in
+some environment) by the person named. This tag informs maintainers that
+some testing has been performed, provides a means to locate testers for
+future patches, and ensures credit for the testers.
+
+Reviewed-by:, instead, indicates that the patch has been reviewed and found
+acceptable according to the Reviewer's Statement:
+
+Reviewer's statement of oversight
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+By offering my Reviewed-by: tag, I state that:
+
+ (a) I have carried out a technical review of this patch to
+ evaluate its appropriateness and readiness for inclusion into
+ the mainline kernel.
+
+ (b) Any problems, concerns, or questions relating to the patch
+ have been communicated back to the submitter. I am satisfied
+ with the submitter's response to my comments.
+
+ (c) While there may be things that could be improved with this
+ submission, I believe that it is, at this time, (1) a
+ worthwhile modification to the kernel, and (2) free of known
+ issues which would argue against its inclusion.
+
+ (d) While I have reviewed the patch and believe it to be sound, I
+ do not (unless explicitly stated elsewhere) make any
+ warranties or guarantees that it will achieve its stated
+ purpose or function properly in any given situation.
+
+A Reviewed-by tag is a statement of opinion that the patch is an
+appropriate modification of the kernel without any remaining serious
+technical issues. Any interested reviewer (who has done the work) can
+offer a Reviewed-by tag for a patch. This tag serves to give credit to
+reviewers and to inform maintainers of the degree of review which has been
+done on the patch. Reviewed-by: tags, when supplied by reviewers known to
+understand the subject area and to perform thorough reviews, will normally
+increase the likelihood of your patch getting into the kernel.
+
+A Suggested-by: tag indicates that the patch idea is suggested by the person
+named and ensures credit to the person for the idea. Please note that this
+tag should not be added without the reporter's permission, especially if the
+idea was not posted in a public forum. That said, if we diligently credit our
+idea reporters, they will, hopefully, be inspired to help us again in the
+future.
+
+A Fixes: tag indicates that the patch fixes an issue in a previous commit. It
+is used to make it easy to determine where a bug originated, which can help
+review a bug fix. This tag also assists the stable kernel team in determining
+which stable kernel versions should receive your fix. This is the preferred
+method for indicating a bug fixed by the patch. See :ref:`describe_changes`
+for more details.
+
+
+14) The canonical patch format
+------------------------------
+
+This section describes how the patch itself should be formatted. Note
+that, if you have your patches stored in a ``git`` repository, proper patch
+formatting can be had with ``git format-patch``. The tools cannot create
+the necessary text, though, so read the instructions below anyway.
+
+The canonical patch subject line is::
+
+ Subject: [PATCH 001/123] subsystem: summary phrase
+
+The canonical patch message body contains the following:
+
+ - A ``from`` line specifying the patch author (only needed if the person
+ sending the patch is not the author).
+
+ - An empty line.
+
+ - The body of the explanation, line wrapped at 75 columns, which will
+ be copied to the permanent changelog to describe this patch.
+
+ - The ``Signed-off-by:`` lines, described above, which will
+ also go in the changelog.
+
+ - A marker line containing simply ``---``.
+
+ - Any additional comments not suitable for the changelog.
+
+ - The actual patch (``diff`` output).
+
+The Subject line format makes it very easy to sort the emails
+alphabetically by subject line - pretty much any email reader will
+support that - since because the sequence number is zero-padded,
+the numerical and alphabetic sort is the same.
+
+The ``subsystem`` in the email's Subject should identify which
+area or subsystem of the kernel is being patched.
+
+The ``summary phrase`` in the email's Subject should concisely
+describe the patch which that email contains. The ``summary
+phrase`` should not be a filename. Do not use the same ``summary
+phrase`` for every patch in a whole patch series (where a ``patch
+series`` is an ordered sequence of multiple, related patches).
+
+Bear in mind that the ``summary phrase`` of your email becomes a
+globally-unique identifier for that patch. It propagates all the way
+into the ``git`` changelog. The ``summary phrase`` may later be used in
+developer discussions which refer to the patch. People will want to
+google for the ``summary phrase`` to read discussion regarding that
+patch. It will also be the only thing that people may quickly see
+when, two or three months later, they are going through perhaps
+thousands of patches using tools such as ``gitk`` or ``git log
+--oneline``.
+
+For these reasons, the ``summary`` must be no more than 70-75
+characters, and it must describe both what the patch changes, as well
+as why the patch might be necessary. It is challenging to be both
+succinct and descriptive, but that is what a well-written summary
+should do.
+
+The ``summary phrase`` may be prefixed by tags enclosed in square
+brackets: "Subject: [PATCH <tag>...] <summary phrase>". The tags are
+not considered part of the summary phrase, but describe how the patch
+should be treated. Common tags might include a version descriptor if
+the multiple versions of the patch have been sent out in response to
+comments (i.e., "v1, v2, v3"), or "RFC" to indicate a request for
+comments. If there are four patches in a patch series the individual
+patches may be numbered like this: 1/4, 2/4, 3/4, 4/4. This assures
+that developers understand the order in which the patches should be
+applied and that they have reviewed or applied all of the patches in
+the patch series.
+
+A couple of example Subjects::
+
+ Subject: [PATCH 2/5] ext2: improve scalability of bitmap searching
+ Subject: [PATCH v2 01/27] x86: fix eflags tracking
+
+The ``from`` line must be the very first line in the message body,
+and has the form:
+
+ From: Original Author <author@example.com>
+
+The ``from`` line specifies who will be credited as the author of the
+patch in the permanent changelog. If the ``from`` line is missing,
+then the ``From:`` line from the email header will be used to determine
+the patch author in the changelog.
+
+The explanation body will be committed to the permanent source
+changelog, so should make sense to a competent reader who has long
+since forgotten the immediate details of the discussion that might
+have led to this patch. Including symptoms of the failure which the
+patch addresses (kernel log messages, oops messages, etc.) is
+especially useful for people who might be searching the commit logs
+looking for the applicable patch. If a patch fixes a compile failure,
+it may not be necessary to include _all_ of the compile failures; just
+enough that it is likely that someone searching for the patch can find
+it. As in the ``summary phrase``, it is important to be both succinct as
+well as descriptive.
+
+The ``---`` marker line serves the essential purpose of marking for patch
+handling tools where the changelog message ends.
+
+One good use for the additional comments after the ``---`` marker is for
+a ``diffstat``, to show what files have changed, and the number of
+inserted and deleted lines per file. A ``diffstat`` is especially useful
+on bigger patches. Other comments relevant only to the moment or the
+maintainer, not suitable for the permanent changelog, should also go
+here. A good example of such comments might be ``patch changelogs``
+which describe what has changed between the v1 and v2 version of the
+patch.
+
+If you are going to include a ``diffstat`` after the ``---`` marker, please
+use ``diffstat`` options ``-p 1 -w 70`` so that filenames are listed from
+the top of the kernel source tree and don't use too much horizontal
+space (easily fit in 80 columns, maybe with some indentation). (``git``
+generates appropriate diffstats by default.)
+
+See more details on the proper patch format in the following
+references.
+
+.. _explicit_in_reply_to:
+
+15) Explicit In-Reply-To headers
+--------------------------------
+
+It can be helpful to manually add In-Reply-To: headers to a patch
+(e.g., when using ``git send-email``) to associate the patch with
+previous relevant discussion, e.g. to link a bug fix to the email with
+the bug report. However, for a multi-patch series, it is generally
+best to avoid using In-Reply-To: to link to older versions of the
+series. This way multiple versions of the patch don't become an
+unmanageable forest of references in email clients. If a link is
+helpful, you can use the https://lkml.kernel.org/ redirector (e.g., in
+the cover email text) to link to an earlier version of the patch series.
+
+
+16) Sending ``git pull`` requests
+---------------------------------
+
+If you have a series of patches, it may be most convenient to have the
+maintainer pull them directly into the subsystem repository with a
+``git pull`` operation. Note, however, that pulling patches from a developer
+requires a higher degree of trust than taking patches from a mailing list.
+As a result, many subsystem maintainers are reluctant to take pull
+requests, especially from new, unknown developers. If in doubt you can use
+the pull request as the cover letter for a normal posting of the patch
+series, giving the maintainer the option of using either.
+
+A pull request should have [GIT] or [PULL] in the subject line. The
+request itself should include the repository name and the branch of
+interest on a single line; it should look something like::
+
+ Please pull from
+
+ git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
+
+ to get these changes:
+
+A pull request should also include an overall message saying what will be
+included in the request, a ``git shortlog`` listing of the patches
+themselves, and a ``diffstat`` showing the overall effect of the patch series.
+The easiest way to get all this information together is, of course, to let
+``git`` do it for you with the ``git request-pull`` command.
+
+Some maintainers (including Linus) want to see pull requests from signed
+commits; that increases their confidence that the request actually came
+from you. Linus, in particular, will not pull from public hosting sites
+like GitHub in the absence of a signed tag.
+
+The first step toward creating such tags is to make a GNUPG key and get it
+signed by one or more core kernel developers. This step can be hard for
+new developers, but there is no way around it. Attending conferences can
+be a good way to find developers who can sign your key.
+
+Once you have prepared a patch series in ``git`` that you wish to have somebody
+pull, create a signed tag with ``git tag -s``. This will create a new tag
+identifying the last commit in the series and containing a signature
+created with your private key. You will also have the opportunity to add a
+changelog-style message to the tag; this is an ideal place to describe the
+effects of the pull request as a whole.
+
+If the tree the maintainer will be pulling from is not the repository you
+are working from, don't forget to push the signed tag explicitly to the
+public tree.
+
+When generating your pull request, use the signed tag as the target. A
+command like this will do the trick::
+
+ git request-pull master git://my.public.tree/linux.git my-signed-tag
+
+
+References
+----------
+
+Andrew Morton, "The perfect patch" (tpp).
+ <http://www.ozlabs.org/~akpm/stuff/tpp.txt>
+
+Jeff Garzik, "Linux kernel patch submission format".
+ <http://linux.yyz.us/patch-format.html>
+
+Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
+ <http://www.kroah.com/log/linux/maintainer.html>
+
+ <http://www.kroah.com/log/linux/maintainer-02.html>
+
+ <http://www.kroah.com/log/linux/maintainer-03.html>
+
+ <http://www.kroah.com/log/linux/maintainer-04.html>
+
+ <http://www.kroah.com/log/linux/maintainer-05.html>
+
+ <http://www.kroah.com/log/linux/maintainer-06.html>
+
+NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
+ <https://lkml.org/lkml/2005/7/11/336>
+
+Kernel Documentation/process/coding-style.rst:
+ :ref:`Documentation/process/coding-style.rst <codingstyle>`
+
+Linus Torvalds's mail on the canonical patch format:
+ <http://lkml.org/lkml/2005/4/7/183>
+
+Andi Kleen, "On submitting kernel patches"
+ Some strategies to get difficult or controversial changes in.
+
+ http://halobates.de/on-submitting-patches.pdf
diff --git a/Documentation/volatile-considered-harmful.txt b/Documentation/process/volatile-considered-harmful.rst
index db0cb22..e0d042a 100644
--- a/Documentation/volatile-considered-harmful.txt
+++ b/Documentation/process/volatile-considered-harmful.rst
@@ -22,7 +22,7 @@ need to use volatile as well. If volatile is still necessary, there is
almost certainly a bug in the code somewhere. In properly-written kernel
code, volatile can only serve to slow things down.
-Consider a typical block of kernel code:
+Consider a typical block of kernel code::
spin_lock(&the_lock);
do_something_on(&shared_data);
@@ -57,7 +57,7 @@ optimization, so, once again, volatile is unnecessary.
Another situation where one might be tempted to use volatile is
when the processor is busy-waiting on the value of a variable. The right
-way to perform a busy wait is:
+way to perform a busy wait is::
while (my_variable != what_i_want)
cpu_relax();
@@ -103,17 +103,20 @@ they come with a justification which shows that the concurrency issues have
been properly thought through.
-NOTES
------
+References
+==========
[1] http://lwn.net/Articles/233481/
+
[2] http://lwn.net/Articles/233482/
-CREDITS
--------
+Credits
+=======
Original impetus and research by Randy Dunlap
+
Written by Jonathan Corbet
+
Improvements via comments from Satyam Sharma, Johannes Stezenbach, Jesper
- Juhl, Heikki Orsila, H. Peter Anvin, Philipp Hahn, and Stefan
- Richter.
+Juhl, Heikki Orsila, H. Peter Anvin, Philipp Hahn, and Stefan
+Richter.
diff --git a/Documentation/rfkill.txt b/Documentation/rfkill.txt
index 1f0c270..8c17406 100644
--- a/Documentation/rfkill.txt
+++ b/Documentation/rfkill.txt
@@ -26,7 +26,7 @@ whether they can be changed or not:
the system software.
The rfkill subsystem has two parameters, rfkill.default_state and
-rfkill.master_switch_mode, which are documented in kernel-parameters.txt.
+rfkill.master_switch_mode, which are documented in admin-guide/kernel-parameters.rst.
2. Implementation details
diff --git a/Documentation/scheduler/completion.txt b/Documentation/scheduler/completion.txt
index 2622bc7..656cf80 100644
--- a/Documentation/scheduler/completion.txt
+++ b/Documentation/scheduler/completion.txt
@@ -25,8 +25,7 @@ struct completion that tells the waiting threads of execution if they
can continue safely.
As completions are scheduling related, the code is found in
-kernel/sched/completion.c - for details on completion design and
-implementation see completions-design.txt
+kernel/sched/completion.c.
Usage:
diff --git a/Documentation/scsi/scsi-parameters.txt b/Documentation/scsi/scsi-parameters.txt
index 8e66daf..8477655 100644
--- a/Documentation/scsi/scsi-parameters.txt
+++ b/Documentation/scsi/scsi-parameters.txt
@@ -1,7 +1,7 @@
SCSI Kernel Parameters
~~~~~~~~~~~~~~~~~~~~~~
-See Documentation/kernel-parameters.txt for general information on
+See Documentation/admin-guide/kernel-parameters.rst for general information on
specifying module parameters.
This document may not be entirely up to date and comprehensive. The command
diff --git a/Documentation/scsi/scsi_mid_low_api.txt b/Documentation/scsi/scsi_mid_low_api.txt
index 2550751..6338400 100644
--- a/Documentation/scsi/scsi_mid_low_api.txt
+++ b/Documentation/scsi/scsi_mid_low_api.txt
@@ -336,7 +336,7 @@ in parallel by these functions.
Conventions
===========
First, Linus Torvalds's thoughts on C coding style can be found in the
-Documentation/CodingStyle file.
+Documentation/process/coding-style.rst file.
Next, there is a movement to "outlaw" typedefs introducing synonyms for
struct tags. Both can be still found in the SCSI subsystem, but
diff --git a/Documentation/scsi/sym53c8xx_2.txt b/Documentation/scsi/sym53c8xx_2.txt
index 6af8f7a..d281865 100644
--- a/Documentation/scsi/sym53c8xx_2.txt
+++ b/Documentation/scsi/sym53c8xx_2.txt
@@ -427,7 +427,7 @@ Synchronous transfers frequency (default answer: 80)
10.1 Syntax
Setup commands can be passed to the driver either at boot time or as
-parameters to modprobe, as described in Documentation/kernel-parameters.txt
+parameters to modprobe, as described in Documentation/admin-guide/kernel-parameters.rst
Example of boot setup command under lilo prompt:
diff --git a/Documentation/security/conf.py b/Documentation/security/conf.py
new file mode 100644
index 0000000..472fc9a
--- /dev/null
+++ b/Documentation/security/conf.py
@@ -0,0 +1,8 @@
+project = "The kernel security subsystem manual"
+
+tags.add("subproject")
+
+latex_documents = [
+ ('index', 'security.tex', project,
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/security/index.rst b/Documentation/security/index.rst
new file mode 100644
index 0000000..9bae6bb
--- /dev/null
+++ b/Documentation/security/index.rst
@@ -0,0 +1,7 @@
+======================
+Security documentation
+======================
+
+.. toctree::
+
+ tpm/index
diff --git a/Documentation/security/tpm/index.rst b/Documentation/security/tpm/index.rst
new file mode 100644
index 0000000..af77a7b
--- /dev/null
+++ b/Documentation/security/tpm/index.rst
@@ -0,0 +1,7 @@
+=====================================
+Trusted Platform Module documentation
+=====================================
+
+.. toctree::
+
+ tpm_vtpm_proxy
diff --git a/Documentation/tpm/tpm_vtpm_proxy.txt b/Documentation/security/tpm/tpm_vtpm_proxy.rst
index 30d1902..ea08e76 100644
--- a/Documentation/tpm/tpm_vtpm_proxy.txt
+++ b/Documentation/security/tpm/tpm_vtpm_proxy.rst
@@ -1,71 +1,50 @@
+=============================================
Virtual TPM Proxy Driver for Linux Containers
+=============================================
-Authors: Stefan Berger (IBM)
+| Authors:
+| Stefan Berger <stefanb@linux.vnet.ibm.com>
This document describes the virtual Trusted Platform Module (vTPM)
proxy device driver for Linux containers.
-INTRODUCTION
-------------
+Introduction
+============
The goal of this work is to provide TPM functionality to each Linux
container. This allows programs to interact with a TPM in a container
the same way they interact with a TPM on the physical system. Each
container gets its own unique, emulated, software TPM.
-
-DESIGN
-------
+Design
+======
To make an emulated software TPM available to each container, the container
management stack needs to create a device pair consisting of a client TPM
-character device /dev/tpmX (with X=0,1,2...) and a 'server side' file
+character device ``/dev/tpmX`` (with X=0,1,2...) and a 'server side' file
descriptor. The former is moved into the container by creating a character
device with the appropriate major and minor numbers while the file descriptor
is passed to the TPM emulator. Software inside the container can then send
TPM commands using the character device and the emulator will receive the
commands via the file descriptor and use it for sending back responses.
-To support this, the virtual TPM proxy driver provides a device /dev/vtpmx
+To support this, the virtual TPM proxy driver provides a device ``/dev/vtpmx``
that is used to create device pairs using an ioctl. The ioctl takes as
an input flags for configuring the device. The flags for example indicate
whether TPM 1.2 or TPM 2 functionality is supported by the TPM emulator.
The result of the ioctl are the file descriptor for the 'server side'
as well as the major and minor numbers of the character device that was created.
-Besides that the number of the TPM character device is return. If for
-example /dev/tpm10 was created, the number (dev_num) 10 is returned.
-
-The following is the data structure of the TPM_PROXY_IOC_NEW_DEV ioctl:
-
-struct vtpm_proxy_new_dev {
- __u32 flags; /* input */
- __u32 tpm_num; /* output */
- __u32 fd; /* output */
- __u32 major; /* output */
- __u32 minor; /* output */
-};
-
-Note that if unsupported flags are passed to the device driver, the ioctl will
-fail and errno will be set to EOPNOTSUPP. Similarly, if an unsupported ioctl is
-called on the device driver, the ioctl will fail and errno will be set to
-ENOTTY.
-
-See /usr/include/linux/vtpm_proxy.h for definitions related to the public interface
-of this vTPM device driver.
+Besides that the number of the TPM character device is returned. If for
+example ``/dev/tpm10`` was created, the number (``dev_num``) 10 is returned.
Once the device has been created, the driver will immediately try to talk
to the TPM. All commands from the driver can be read from the file descriptor
returned by the ioctl. The commands should be responded to immediately.
-Depending on the version of TPM the following commands will be sent by the
-driver:
+UAPI
+====
-- TPM 1.2:
- - the driver will send a TPM_Startup command to the TPM emulator
- - the driver will send commands to read the command durations and
- interface timeouts from the TPM emulator
-- TPM 2:
- - the driver will send a TPM2_Startup command to the TPM emulator
+.. kernel-doc:: include/uapi/linux/vtpm_proxy.h
-The TPM device /dev/tpmX will only appear if all of the relevant commands
-were responded to properly.
+.. kernel-doc:: drivers/char/tpm/tpm_vtpm_proxy.c
+ :functions: vtpmx_ioc_new_dev
diff --git a/Documentation/tpm/xen-tpmfront.txt b/Documentation/security/tpm/xen-tpmfront.txt
index 69346de..69346de 100644
--- a/Documentation/tpm/xen-tpmfront.txt
+++ b/Documentation/security/tpm/xen-tpmfront.txt
diff --git a/Documentation/sound/oss/oss-parameters.txt b/Documentation/sound/oss/oss-parameters.txt
index 3ab391e..cc675f2 100644
--- a/Documentation/sound/oss/oss-parameters.txt
+++ b/Documentation/sound/oss/oss-parameters.txt
@@ -1,7 +1,7 @@
OSS Kernel Parameters
~~~~~~~~~~~~~~~~~~~~~
-See Documentation/kernel-parameters.txt for general information on
+See Documentation/admin-guide/kernel-parameters.rst for general information on
specifying module parameters.
This document may not be entirely up to date and comprehensive. The command
diff --git a/Documentation/sphinx/kernel-doc.py b/Documentation/sphinx/kerneldoc.py
index d15e07f..d15e07f 100644
--- a/Documentation/sphinx/kernel-doc.py
+++ b/Documentation/sphinx/kerneldoc.py
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index ffab8b5..6bb78f8 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -71,7 +71,7 @@ show up in /proc/sys/kernel:
- printk_ratelimit_burst
- pty ==> Documentation/filesystems/devpts.txt
- randomize_va_space
-- real-root-dev ==> Documentation/initrd.txt
+- real-root-dev ==> Documentation/admin-guide/initrd.rst
- reboot-cmd [ SPARC only ]
- rtsig-max
- rtsig-nr
@@ -453,7 +453,7 @@ in a KVM virtual machine. This default can be overridden by adding
nmi_watchdog=1
-to the guest kernel command line (see Documentation/kernel-parameters.txt).
+to the guest kernel command line (see Documentation/admin-guide/kernel-parameters.rst).
==============================================================
diff --git a/Documentation/sysfs-rules.txt b/Documentation/sysfs-rules.txt
deleted file mode 100644
index ce60ffa..0000000
--- a/Documentation/sysfs-rules.txt
+++ /dev/null
@@ -1,184 +0,0 @@
-Rules on how to access information in the Linux kernel sysfs
-
-The kernel-exported sysfs exports internal kernel implementation details
-and depends on internal kernel structures and layout. It is agreed upon
-by the kernel developers that the Linux kernel does not provide a stable
-internal API. Therefore, there are aspects of the sysfs interface that
-may not be stable across kernel releases.
-
-To minimize the risk of breaking users of sysfs, which are in most cases
-low-level userspace applications, with a new kernel release, the users
-of sysfs must follow some rules to use an as-abstract-as-possible way to
-access this filesystem. The current udev and HAL programs already
-implement this and users are encouraged to plug, if possible, into the
-abstractions these programs provide instead of accessing sysfs directly.
-
-But if you really do want or need to access sysfs directly, please follow
-the following rules and then your programs should work with future
-versions of the sysfs interface.
-
-- Do not use libsysfs
- It makes assumptions about sysfs which are not true. Its API does not
- offer any abstraction, it exposes all the kernel driver-core
- implementation details in its own API. Therefore it is not better than
- reading directories and opening the files yourself.
- Also, it is not actively maintained, in the sense of reflecting the
- current kernel development. The goal of providing a stable interface
- to sysfs has failed; it causes more problems than it solves. It
- violates many of the rules in this document.
-
-- sysfs is always at /sys
- Parsing /proc/mounts is a waste of time. Other mount points are a
- system configuration bug you should not try to solve. For test cases,
- possibly support a SYSFS_PATH environment variable to overwrite the
- application's behavior, but never try to search for sysfs. Never try
- to mount it, if you are not an early boot script.
-
-- devices are only "devices"
- There is no such thing like class-, bus-, physical devices,
- interfaces, and such that you can rely on in userspace. Everything is
- just simply a "device". Class-, bus-, physical, ... types are just
- kernel implementation details which should not be expected by
- applications that look for devices in sysfs.
-
- The properties of a device are:
- o devpath (/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0)
- - identical to the DEVPATH value in the event sent from the kernel
- at device creation and removal
- - the unique key to the device at that point in time
- - the kernel's path to the device directory without the leading
- /sys, and always starting with a slash
- - all elements of a devpath must be real directories. Symlinks
- pointing to /sys/devices must always be resolved to their real
- target and the target path must be used to access the device.
- That way the devpath to the device matches the devpath of the
- kernel used at event time.
- - using or exposing symlink values as elements in a devpath string
- is a bug in the application
-
- o kernel name (sda, tty, 0000:00:1f.2, ...)
- - a directory name, identical to the last element of the devpath
- - applications need to handle spaces and characters like '!' in
- the name
-
- o subsystem (block, tty, pci, ...)
- - simple string, never a path or a link
- - retrieved by reading the "subsystem"-link and using only the
- last element of the target path
-
- o driver (tg3, ata_piix, uhci_hcd)
- - a simple string, which may contain spaces, never a path or a
- link
- - it is retrieved by reading the "driver"-link and using only the
- last element of the target path
- - devices which do not have "driver"-link just do not have a
- driver; copying the driver value in a child device context is a
- bug in the application
-
- o attributes
- - the files in the device directory or files below subdirectories
- of the same device directory
- - accessing attributes reached by a symlink pointing to another device,
- like the "device"-link, is a bug in the application
-
- Everything else is just a kernel driver-core implementation detail
- that should not be assumed to be stable across kernel releases.
-
-- Properties of parent devices never belong into a child device.
- Always look at the parent devices themselves for determining device
- context properties. If the device 'eth0' or 'sda' does not have a
- "driver"-link, then this device does not have a driver. Its value is empty.
- Never copy any property of the parent-device into a child-device. Parent
- device properties may change dynamically without any notice to the
- child device.
-
-- Hierarchy in a single device tree
- There is only one valid place in sysfs where hierarchy can be examined
- and this is below: /sys/devices.
- It is planned that all device directories will end up in the tree
- below this directory.
-
-- Classification by subsystem
- There are currently three places for classification of devices:
- /sys/block, /sys/class and /sys/bus. It is planned that these will
- not contain any device directories themselves, but only flat lists of
- symlinks pointing to the unified /sys/devices tree.
- All three places have completely different rules on how to access
- device information. It is planned to merge all three
- classification directories into one place at /sys/subsystem,
- following the layout of the bus directories. All buses and
- classes, including the converted block subsystem, will show up
- there.
- The devices belonging to a subsystem will create a symlink in the
- "devices" directory at /sys/subsystem/<name>/devices.
-
- If /sys/subsystem exists, /sys/bus, /sys/class and /sys/block can be
- ignored. If it does not exist, you always have to scan all three
- places, as the kernel is free to move a subsystem from one place to
- the other, as long as the devices are still reachable by the same
- subsystem name.
-
- Assuming /sys/class/<subsystem> and /sys/bus/<subsystem>, or
- /sys/block and /sys/class/block are not interchangeable is a bug in
- the application.
-
-- Block
- The converted block subsystem at /sys/class/block or
- /sys/subsystem/block will contain the links for disks and partitions
- at the same level, never in a hierarchy. Assuming the block subsystem to
- contain only disks and not partition devices in the same flat list is
- a bug in the application.
-
-- "device"-link and <subsystem>:<kernel name>-links
- Never depend on the "device"-link. The "device"-link is a workaround
- for the old layout, where class devices are not created in
- /sys/devices/ like the bus devices. If the link-resolving of a
- device directory does not end in /sys/devices/, you can use the
- "device"-link to find the parent devices in /sys/devices/. That is the
- single valid use of the "device"-link; it must never appear in any
- path as an element. Assuming the existence of the "device"-link for
- a device in /sys/devices/ is a bug in the application.
- Accessing /sys/class/net/eth0/device is a bug in the application.
-
- Never depend on the class-specific links back to the /sys/class
- directory. These links are also a workaround for the design mistake
- that class devices are not created in /sys/devices. If a device
- directory does not contain directories for child devices, these links
- may be used to find the child devices in /sys/class. That is the single
- valid use of these links; they must never appear in any path as an
- element. Assuming the existence of these links for devices which are
- real child device directories in the /sys/devices tree is a bug in
- the application.
-
- It is planned to remove all these links when all class device
- directories live in /sys/devices.
-
-- Position of devices along device chain can change.
- Never depend on a specific parent device position in the devpath,
- or the chain of parent devices. The kernel is free to insert devices into
- the chain. You must always request the parent device you are looking for
- by its subsystem value. You need to walk up the chain until you find
- the device that matches the expected subsystem. Depending on a specific
- position of a parent device or exposing relative paths using "../" to
- access the chain of parents is a bug in the application.
-
-- When reading and writing sysfs device attribute files, avoid dependency
- on specific error codes wherever possible. This minimizes coupling to
- the error handling implementation within the kernel.
-
- In general, failures to read or write sysfs device attributes shall
- propagate errors wherever possible. Common errors include, but are not
- limited to:
-
- -EIO: The read or store operation is not supported, typically returned by
- the sysfs system itself if the read or store pointer is NULL.
-
- -ENXIO: The read or store operation failed
-
- Error codes will not be changed without good reason, and should a change
- to error codes result in user-space breakage, it will be fixed, or the
- the offending change will be reverted.
-
- Userspace applications can, however, expect the format and contents of
- the attribute files to remain consistent in the absence of a version
- attribute change in the context of a given attribute.
diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt
deleted file mode 100644
index 3a3b30a..0000000
--- a/Documentation/sysrq.txt
+++ /dev/null
@@ -1,257 +0,0 @@
-Linux Magic System Request Key Hacks
-Documentation for sysrq.c
-
-* What is the magic SysRq key?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-It is a 'magical' key combo you can hit which the kernel will respond to
-regardless of whatever else it is doing, unless it is completely locked up.
-
-* How do I enable the magic SysRq key?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-You need to say "yes" to 'Magic SysRq key (CONFIG_MAGIC_SYSRQ)' when
-configuring the kernel. When running a kernel with SysRq compiled in,
-/proc/sys/kernel/sysrq controls the functions allowed to be invoked via
-the SysRq key. The default value in this file is set by the
-CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE config symbol, which itself defaults
-to 1. Here is the list of possible values in /proc/sys/kernel/sysrq:
- 0 - disable sysrq completely
- 1 - enable all functions of sysrq
- >1 - bitmask of allowed sysrq functions (see below for detailed function
- description):
- 2 = 0x2 - enable control of console logging level
- 4 = 0x4 - enable control of keyboard (SAK, unraw)
- 8 = 0x8 - enable debugging dumps of processes etc.
- 16 = 0x10 - enable sync command
- 32 = 0x20 - enable remount read-only
- 64 = 0x40 - enable signalling of processes (term, kill, oom-kill)
- 128 = 0x80 - allow reboot/poweroff
- 256 = 0x100 - allow nicing of all RT tasks
-
-You can set the value in the file by the following command:
- echo "number" >/proc/sys/kernel/sysrq
-
-The number may be written here either as decimal or as hexadecimal
-with the 0x prefix. CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE must always be
-written in hexadecimal.
-
-Note that the value of /proc/sys/kernel/sysrq influences only the invocation
-via a keyboard. Invocation of any operation via /proc/sysrq-trigger is always
-allowed (by a user with admin privileges).
-
-* How do I use the magic SysRq key?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-On x86 - You press the key combo 'ALT-SysRq-<command key>'. Note - Some
- keyboards may not have a key labeled 'SysRq'. The 'SysRq' key is
- also known as the 'Print Screen' key. Also some keyboards cannot
- handle so many keys being pressed at the same time, so you might
- have better luck with "press Alt", "press SysRq", "release SysRq",
- "press <command key>", release everything.
-
-On SPARC - You press 'ALT-STOP-<command key>', I believe.
-
-On the serial console (PC style standard serial ports only) -
- You send a BREAK, then within 5 seconds a command key. Sending
- BREAK twice is interpreted as a normal BREAK.
-
-On PowerPC - Press 'ALT - Print Screen (or F13) - <command key>,
- Print Screen (or F13) - <command key> may suffice.
-
-On other - If you know of the key combos for other architectures, please
- let me know so I can add them to this section.
-
-On all - write a character to /proc/sysrq-trigger. e.g.:
-
- echo t > /proc/sysrq-trigger
-
-* What are the 'command' keys?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-'b' - Will immediately reboot the system without syncing or unmounting
- your disks.
-
-'c' - Will perform a system crash by a NULL pointer dereference.
- A crashdump will be taken if configured.
-
-'d' - Shows all locks that are held.
-
-'e' - Send a SIGTERM to all processes, except for init.
-
-'f' - Will call the oom killer to kill a memory hog process, but do not
- panic if nothing can be killed.
-
-'g' - Used by kgdb (kernel debugger)
-
-'h' - Will display help (actually any other key than those listed
- here will display help. but 'h' is easy to remember :-)
-
-'i' - Send a SIGKILL to all processes, except for init.
-
-'j' - Forcibly "Just thaw it" - filesystems frozen by the FIFREEZE ioctl.
-
-'k' - Secure Access Key (SAK) Kills all programs on the current virtual
- console. NOTE: See important comments below in SAK section.
-
-'l' - Shows a stack backtrace for all active CPUs.
-
-'m' - Will dump current memory info to your console.
-
-'n' - Used to make RT tasks nice-able
-
-'o' - Will shut your system off (if configured and supported).
-
-'p' - Will dump the current registers and flags to your console.
-
-'q' - Will dump per CPU lists of all armed hrtimers (but NOT regular
- timer_list timers) and detailed information about all
- clockevent devices.
-
-'r' - Turns off keyboard raw mode and sets it to XLATE.
-
-'s' - Will attempt to sync all mounted filesystems.
-
-'t' - Will dump a list of current tasks and their information to your
- console.
-
-'u' - Will attempt to remount all mounted filesystems read-only.
-
-'v' - Forcefully restores framebuffer console
-'v' - Causes ETM buffer dump [ARM-specific]
-
-'w' - Dumps tasks that are in uninterruptable (blocked) state.
-
-'x' - Used by xmon interface on ppc/powerpc platforms.
- Show global PMU Registers on sparc64.
- Dump all TLB entries on MIPS.
-
-'y' - Show global CPU Registers [SPARC-64 specific]
-
-'z' - Dump the ftrace buffer
-
-'0'-'9' - Sets the console log level, controlling which kernel messages
- will be printed to your console. ('0', for example would make
- it so that only emergency messages like PANICs or OOPSes would
- make it to your console.)
-
-* Okay, so what can I use them for?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Well, unraw(r) is very handy when your X server or a svgalib program crashes.
-
-sak(k) (Secure Access Key) is useful when you want to be sure there is no
-trojan program running at console which could grab your password
-when you would try to login. It will kill all programs on given console,
-thus letting you make sure that the login prompt you see is actually
-the one from init, not some trojan program.
-IMPORTANT: In its true form it is not a true SAK like the one in a :IMPORTANT
-IMPORTANT: c2 compliant system, and it should not be mistaken as :IMPORTANT
-IMPORTANT: such. :IMPORTANT
- It seems others find it useful as (System Attention Key) which is
-useful when you want to exit a program that will not let you switch consoles.
-(For example, X or a svgalib program.)
-
-reboot(b) is good when you're unable to shut down. But you should also
-sync(s) and umount(u) first.
-
-crash(c) can be used to manually trigger a crashdump when the system is hung.
-Note that this just triggers a crash if there is no dump mechanism available.
-
-sync(s) is great when your system is locked up, it allows you to sync your
-disks and will certainly lessen the chance of data loss and fscking. Note
-that the sync hasn't taken place until you see the "OK" and "Done" appear
-on the screen. (If the kernel is really in strife, you may not ever get the
-OK or Done message...)
-
-umount(u) is basically useful in the same ways as sync(s). I generally sync(s),
-umount(u), then reboot(b) when my system locks. It's saved me many a fsck.
-Again, the unmount (remount read-only) hasn't taken place until you see the
-"OK" and "Done" message appear on the screen.
-
-The loglevels '0'-'9' are useful when your console is being flooded with
-kernel messages you do not want to see. Selecting '0' will prevent all but
-the most urgent kernel messages from reaching your console. (They will
-still be logged if syslogd/klogd are alive, though.)
-
-term(e) and kill(i) are useful if you have some sort of runaway process you
-are unable to kill any other way, especially if it's spawning other
-processes.
-
-"just thaw it(j)" is useful if your system becomes unresponsive due to a frozen
-(probably root) filesystem via the FIFREEZE ioctl.
-
-* Sometimes SysRq seems to get 'stuck' after using it, what can I do?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-That happens to me, also. I've found that tapping shift, alt, and control
-on both sides of the keyboard, and hitting an invalid sysrq sequence again
-will fix the problem. (i.e., something like alt-sysrq-z). Switching to another
-virtual console (ALT+Fn) and then back again should also help.
-
-* I hit SysRq, but nothing seems to happen, what's wrong?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-There are some keyboards that produce a different keycode for SysRq than the
-pre-defined value of 99 (see KEY_SYSRQ in include/linux/input.h), or which
-don't have a SysRq key at all. In these cases, run 'showkey -s' to find an
-appropriate scancode sequence, and use 'setkeycodes <sequence> 99' to map
-this sequence to the usual SysRq code (e.g., 'setkeycodes e05b 99'). It's
-probably best to put this command in a boot script. Oh, and by the way, you
-exit 'showkey' by not typing anything for ten seconds.
-
-* I want to add SysRQ key events to a module, how does it work?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-In order to register a basic function with the table, you must first include
-the header 'include/linux/sysrq.h', this will define everything else you need.
-Next, you must create a sysrq_key_op struct, and populate it with A) the key
-handler function you will use, B) a help_msg string, that will print when SysRQ
-prints help, and C) an action_msg string, that will print right before your
-handler is called. Your handler must conform to the prototype in 'sysrq.h'.
-
-After the sysrq_key_op is created, you can call the kernel function
-register_sysrq_key(int key, struct sysrq_key_op *op_p); this will
-register the operation pointed to by 'op_p' at table key 'key',
-if that slot in the table is blank. At module unload time, you must call
-the function unregister_sysrq_key(int key, struct sysrq_key_op *op_p), which
-will remove the key op pointed to by 'op_p' from the key 'key', if and only if
-it is currently registered in that slot. This is in case the slot has been
-overwritten since you registered it.
-
-The Magic SysRQ system works by registering key operations against a key op
-lookup table, which is defined in 'drivers/tty/sysrq.c'. This key table has
-a number of operations registered into it at compile time, but is mutable,
-and 2 functions are exported for interface to it:
- register_sysrq_key and unregister_sysrq_key.
-Of course, never ever leave an invalid pointer in the table. I.e., when
-your module that called register_sysrq_key() exits, it must call
-unregister_sysrq_key() to clean up the sysrq key table entry that it used.
-Null pointers in the table are always safe. :)
-
-If for some reason you feel the need to call the handle_sysrq function from
-within a function called by handle_sysrq, you must be aware that you are in
-a lock (you are also in an interrupt handler, which means don't sleep!), so
-you must call __handle_sysrq_nolock instead.
-
-* When I hit a SysRq key combination only the header appears on the console?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Sysrq output is subject to the same console loglevel control as all
-other console output. This means that if the kernel was booted 'quiet'
-as is common on distro kernels the output may not appear on the actual
-console, even though it will appear in the dmesg buffer, and be accessible
-via the dmesg command and to the consumers of /proc/kmsg. As a specific
-exception the header line from the sysrq command is passed to all console
-consumers as if the current loglevel was maximum. If only the header
-is emitted it is almost certain that the kernel loglevel is too low.
-Should you require the output on the console channel then you will need
-to temporarily up the console loglevel using alt-sysrq-8 or:
-
- echo 8 > /proc/sysrq-trigger
-
-Remember to return the loglevel to normal after triggering the sysrq
-command you are interested in.
-
-* I have more questions, who can I ask?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Just ask them on the linux-kernel mailing list:
- linux-kernel@vger.kernel.org
-
-* Credits
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Written by Mydraal <vulpyne@vulpyne.net>
-Updated by Adam Sulmicki <adam@cfar.umd.edu>
-Updated by Jeremy M. Dolan <jmd@turbogeek.org> 2001/01/28 10:15:59
-Added to by Crutcher Dunnavant <crutcher+kernel@datastacks.com>
diff --git a/Documentation/trace/uprobetracer.txt b/Documentation/trace/uprobetracer.txt
index 94b6b45..fa7b680 100644
--- a/Documentation/trace/uprobetracer.txt
+++ b/Documentation/trace/uprobetracer.txt
@@ -76,15 +76,15 @@ Usage examples
* Add a probe as a new uprobe event, write a new definition to uprobe_events
as below: (sets a uprobe at an offset of 0x4245c0 in the executable /bin/bash)
- echo 'p: /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events
+ echo 'p /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events
* Add a probe as a new uretprobe event:
- echo 'r: /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events
+ echo 'r /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events
* Unset registered event:
- echo '-:bash_0x4245c0' >> /sys/kernel/debug/tracing/uprobe_events
+ echo '-:p_bash_0x4245c0' >> /sys/kernel/debug/tracing/uprobe_events
* Print out the events that are registered:
diff --git a/Documentation/ja_JP/HOWTO b/Documentation/translations/ja_JP/HOWTO
index 581c14b..b03fc80 100644
--- a/Documentation/ja_JP/HOWTO
+++ b/Documentation/translations/ja_JP/HOWTO
@@ -127,15 +127,15 @@ linux-api@ver.kernel.org ã«é€ã‚‹ã“ã¨ã‚’勧ã‚ã¾ã™ã€‚
å°é™ã®ãƒ¬ãƒ™ãƒ«ã§å¿…è¦ãªæ•°ã€…ã®ã‚½ãƒ•ãƒˆã‚¦ã‚§ã‚¢ãƒ‘ッケージã®ä¸€è¦§ã‚’示ã—ã¦ã„
ã¾ã™ã€‚
- Documentation/CodingStyle
+ Documentation/process/coding-style.rst
ã“れ㯠Linux カーãƒãƒ«ã®ã‚³ãƒ¼ãƒ‡ã‚£ãƒ³ã‚°ã‚¹ã‚¿ã‚¤ãƒ«ã¨èƒŒæ™¯ã«ã‚ã‚‹ç†ç”±ã‚’記述
ã—ã¦ã„ã¾ã™ã€‚å…¨ã¦ã®æ–°ã—ã„コードã¯ã“ã®ãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã«ã‚るガイドライン
ã«å¾“ã£ã¦ã„ã‚‹ã“ã¨ã‚’期待ã•ã‚Œã¦ã„ã¾ã™ã€‚大部分ã®ãƒ¡ãƒ³ãƒ†ãƒŠã¯ã“れらã®ãƒ«ãƒ¼
ルã«å¾“ã£ã¦ã„ã‚‹ã‚‚ã®ã ã‘ã‚’å—ã‘付ã‘ã€å¤šãã®äººã¯æ­£ã—ã„スタイルã®ã‚³ãƒ¼ãƒ‰
ã ã‘をレビューã—ã¾ã™ã€‚
- Documentation/SubmittingPatches
- Documentation/SubmittingDrivers
+ Documentation/process/submitting-patches.rst
+ Documentation/process/submitting-drivers.rst
ã“れらã®ãƒ•ã‚¡ã‚¤ãƒ«ã«ã¯ã€ã©ã†ã‚„ã£ã¦ã†ã¾ãパッãƒã‚’作ã£ã¦æŠ•ç¨¿ã™ã‚‹ã‹ã«
ã¤ã„ã¦éžå¸¸ã«è©³ã—ã書ã‹ã‚Œã¦ãŠã‚Šã€ä»¥ä¸‹ã‚’å«ã¿ã¾ã™(ã“ã‚Œã ã‘ã«é™ã‚‰ãªã„
ã‘ã‚Œã©ã‚‚)
@@ -153,7 +153,7 @@ linux-api@ver.kernel.org ã«é€ã‚‹ã“ã¨ã‚’勧ã‚ã¾ã™ã€‚
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
- Documentation/stable_api_nonsense.txt
+ Documentation/process/stable-api-nonsense.rst
ã“ã®ãƒ•ã‚¡ã‚¤ãƒ«ã¯ã‚«ãƒ¼ãƒãƒ«ã®ä¸­ã«ä¸å¤‰ã®APIã‚’æŒãŸãªã„ã“ã¨ã«ã—ãŸæ„識的ãª
決断ã®èƒŒæ™¯ã«ã‚ã‚‹ç†ç”±ã«ã¤ã„ã¦æ›¸ã‹ã‚Œã¦ã„ã¾ã™ã€‚以下ã®ã‚ˆã†ãªã“ã¨ã‚’å«
ã‚“ã§ã„ã¾ã™-
@@ -164,29 +164,29 @@ linux-api@ver.kernel.org ã«é€ã‚‹ã“ã¨ã‚’勧ã‚ã¾ã™ã€‚
ã“ã®ãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã¯ Linux 開発ã®æ€æƒ³ã‚’ç†è§£ã™ã‚‹ã®ã«éžå¸¸ã«é‡è¦ã§ã™ã€‚
ãã—ã¦ã€ä»–ã®OSã§ã®é–‹ç™ºè€…㌠Linux ã«ç§»ã‚‹æ™‚ã«ã¨ã¦ã‚‚é‡è¦ã§ã™ã€‚
- Documentation/SecurityBugs
+ Documentation/admin-guide/security-bugs.rst
ã‚‚ã— Linux カーãƒãƒ«ã§ã‚»ã‚­ãƒ¥ãƒªãƒ†ã‚£å•é¡Œã‚’発見ã—ãŸã‚ˆã†ã«æ€ã£ãŸã‚‰ã€ã“
ã®ãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã®ã‚¹ãƒ†ãƒƒãƒ—ã«å¾“ã£ã¦ã‚«ãƒ¼ãƒãƒ«é–‹ç™ºè€…ã«é€£çµ¡ã—ã€å•é¡Œè§£æ±ºã‚’
支æ´ã—ã¦ãã ã•ã„。
- Documentation/ManagementStyle
+ Documentation/process/management-style.rst
ã“ã®ãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã¯ Linux カーãƒãƒ«ã®ãƒ¡ãƒ³ãƒ†ãƒŠé”ãŒã©ã†è¡Œå‹•ã™ã‚‹ã‹ã€
彼らã®æ‰‹æ³•ã®èƒŒæ™¯ã«ã‚る共有ã•ã‚Œã¦ã„る精神ã«ã¤ã„ã¦è¨˜è¿°ã—ã¦ã„ã¾ã™ã€‚ã“
ã‚Œã¯ã‚«ãƒ¼ãƒãƒ«é–‹ç™ºã®åˆå¿ƒè€…ãªã‚‰ï¼ˆã‚‚ã—ãã¯ã€å˜ã«èˆˆå‘³ãŒã‚ã‚‹ã ã‘ã®äººã§ã‚‚)
é‡è¦ã§ã™ã€‚ãªãœãªã‚‰ã“ã®ãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã¯ã€ã‚«ãƒ¼ãƒãƒ«ãƒ¡ãƒ³ãƒ†ãƒŠé”ã®ç‹¬ç‰¹ãª
行動ã«ã¤ã„ã¦ã®å¤šãã®èª¤è§£ã‚„混乱を解消ã™ã‚‹ã‹ã‚‰ã§ã™ã€‚
- Documentation/stable_kernel_rules.txt
+ Documentation/process/stable-kernel-rules.rst
ã“ã®ãƒ•ã‚¡ã‚¤ãƒ«ã¯ã©ã®ã‚ˆã†ã« stable カーãƒãƒ«ã®ãƒªãƒªãƒ¼ã‚¹ãŒè¡Œã‚れるã‹ã®ãƒ«ãƒ¼
ルãŒè¨˜è¿°ã•ã‚Œã¦ã„ã¾ã™ã€‚ãã—ã¦ã“れらã®ãƒªãƒªãƒ¼ã‚¹ã®ä¸­ã®ã©ã“ã‹ã§å¤‰æ›´ã‚’å–
り入れã¦ã‚‚らã„ãŸã„å ´åˆã«ä½•ã‚’ã™ã‚Œã°è‰¯ã„ã‹ãŒç¤ºã•ã‚Œã¦ã„ã¾ã™ã€‚
- Documentation/kernel-docs.txt
+ Documentation/process/kernel-docs.rst
  カーãƒãƒ«é–‹ç™ºã«ä»˜éšã™ã‚‹å¤–部ドキュメントã®ãƒªã‚¹ãƒˆã§ã™ã€‚ã‚‚ã—ã‚ãªãŸãŒ
探ã—ã¦ã„ã‚‹ã‚‚ã®ãŒã‚«ãƒ¼ãƒãƒ«å†…ã®ãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã§ã¿ã¤ã‹ã‚‰ãªã‹ã£ãŸå ´åˆã€
ã“ã®ãƒªã‚¹ãƒˆã‚’ã‚ãŸã£ã¦ã¿ã¦ãã ã•ã„。
- Documentation/applying-patches.txt
+ Documentation/process/applying-patches.rst
パッãƒã¨ã¯ãªã«ã‹ã€ãƒ‘ッãƒã‚’ã©ã†ã‚„ã£ã¦æ§˜ã€…ãªã‚«ãƒ¼ãƒãƒ«ã®é–‹ç™ºãƒ–ランãƒã«
é©ç”¨ã™ã‚‹ã®ã‹ã«ã¤ã„ã¦æ­£ç¢ºã«è¨˜è¿°ã—ãŸè‰¯ã„入門書ã§ã™ã€‚
@@ -314,7 +314,7 @@ Andrew Morton ㌠Linux-kernel メーリングリストã«ã‚«ãƒ¼ãƒãƒ«ãƒªãƒªãƒ¼ã
ãŸå•é¡ŒãŒãªã‘ã‚Œã°ã‚‚ã†å°‘ã—é•·ããªã‚‹ã“ã¨ã‚‚ã‚ã‚Šã¾ã™ã€‚セキュリティ関連ã®å•é¡Œ
ã®å ´åˆã¯ã“ã‚Œã«å¯¾ã—ã¦ã ã„ãŸã„ã®å ´åˆã€ã™ãã«ãƒªãƒªãƒ¼ã‚¹ãŒã•ã‚Œã¾ã™ã€‚
-カーãƒãƒ«ãƒ„リーã«å…¥ã£ã¦ã„ã‚‹ã€Documentation/stable_kernel_rules.txt ファ
+カーãƒãƒ«ãƒ„リーã«å…¥ã£ã¦ã„ã‚‹ã€Documentation/process/stable-kernel-rules.rst ファ
イルã«ã¯ã©ã®ã‚ˆã†ãªç¨®é¡žã®å¤‰æ›´ãŒ -stable ツリーã«å—ã‘入れå¯èƒ½ã‹ã€ã¾ãŸãƒª
リースプロセスãŒã©ã†å‹•ãã‹ãŒè¨˜è¿°ã•ã‚Œã¦ã„ã¾ã™ã€‚
@@ -372,7 +372,7 @@ bugzilla.kernel.org 㯠Linux カーãƒãƒ«é–‹ç™ºè€…ãŒã‚«ãƒ¼ãƒãƒ«ã®ãƒã‚°ã‚’è¿
場所ã§ã™ã€‚ユーザã¯è¦‹ã¤ã‘ãŸãƒã‚°ã®å…¨ã¦ã‚’ã“ã®ãƒ„ールã§å ±å‘Šã™ã¹ãã§ã™ã€‚
ã©ã† kernel bugzilla を使ã†ã‹ã®è©³ç´°ã¯ã€ä»¥ä¸‹ã‚’å‚ç…§ã—ã¦ãã ã•ã„-
http://bugzilla.kernel.org/page.cgi?id=faq.html
-メインカーãƒãƒ«ã‚½ãƒ¼ã‚¹ãƒ‡ã‚£ãƒ¬ã‚¯ãƒˆãƒªã«ã‚るファイル REPORTING-BUGS ã¯ã‚«ãƒ¼ãƒ
+メインカーãƒãƒ«ã‚½ãƒ¼ã‚¹ãƒ‡ã‚£ãƒ¬ã‚¯ãƒˆãƒªã«ã‚るファイル admin-guide/reporting-bugs.rst ã¯ã‚«ãƒ¼ãƒ
ルãƒã‚°ã‚‰ã—ã„ã‚‚ã®ã«ã¤ã„ã¦ã©ã†ãƒ¬ãƒãƒ¼ãƒˆã™ã‚‹ã‹ã®è‰¯ã„テンプレートã§ã‚ã‚Šã€å•
é¡Œã®è¿½è·¡ã‚’助ã‘ã‚‹ãŸã‚ã«ã‚«ãƒ¼ãƒãƒ«é–‹ç™ºè€…ã«ã¨ã£ã¦ã©ã‚“ãªæƒ…å ±ãŒå¿…è¦ãªã®ã‹ã®è©³
ç´°ãŒæ›¸ã‹ã‚Œã¦ã„ã¾ã™ã€‚
@@ -438,7 +438,7 @@ MAINTAINERS ファイルã«ãƒªã‚¹ãƒˆãŒã‚ã‚Šã¾ã™ã®ã§å‚ç…§ã—ã¦ãã ã•ã
メールã®å…ˆé ­ã§ãªãã€å„引用行ã®é–“ã«ã‚ãªãŸã®è¨€ã„ãŸã„ã“ã¨ã‚’追加ã™ã‚‹ã¹ãã§
ã™ã€‚
-ã‚‚ã—パッãƒã‚’メールã«ä»˜ã‘ã‚‹å ´åˆã¯ã€Documentation/SubmittingPatches ã«æ
+ã‚‚ã—パッãƒã‚’メールã«ä»˜ã‘ã‚‹å ´åˆã¯ã€Documentation/process/submitting-patches.rst ã«æ
示ã•ã‚Œã¦ã„るよã†ã«ã€ãれ㯠プレーンãªå¯èª­ãƒ†ã‚­ã‚¹ãƒˆã«ã™ã‚‹ã“ã¨ã‚’忘れãªã„
よã†ã«ã—ã¾ã—ょã†ã€‚カーãƒãƒ«é–‹ç™ºè€…㯠添付や圧縮ã—ãŸãƒ‘ッãƒã‚’扱ã„ãŸãŒã‚Šã¾
ã›ã‚“-
diff --git a/Documentation/ja_JP/SubmitChecklist b/Documentation/translations/ja_JP/SubmitChecklist
index cb5507b..60c7c35 100644
--- a/Documentation/ja_JP/SubmitChecklist
+++ b/Documentation/translations/ja_JP/SubmitChecklist
@@ -1,5 +1,5 @@
NOTE:
-This is a version of Documentation/SubmitChecklist into Japanese.
+This is a version of Documentation/process/submit-checklist.rst into Japanese.
This document is maintained by Takenori Nagano <t-nagano@ah.jp.nec.com>
and the JF Project team <http://www.linux.or.jp/JF/>.
If you find any difference between this document and the original file
@@ -14,7 +14,7 @@ to update the original English file first.
Last Updated: 2008/07/14
==================================
ã“ã‚Œã¯ã€
-linux-2.6.26/Documentation/SubmitChecklist ã®å’Œè¨³ã§ã™ã€‚
+linux-2.6.26/Documentation/process/submit-checklist.rst ã®å’Œè¨³ã§ã™ã€‚
翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
翻訳日: 2008/07/14
@@ -27,7 +27,7 @@ Linux カーãƒãƒ«ãƒ‘ッãƒæŠ•ç¨¿è€…å‘ã‘ãƒã‚§ãƒƒã‚¯ãƒªã‚¹ãƒˆ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
本書ã§ã¯ã€ãƒ‘ッãƒã‚’より素早ãå–り込んã§ã‚‚らã„ãŸã„開発者ãŒå®Ÿè·µã™ã¹ã基本的ãªäº‹æŸ„
-ã‚’ã„ãã¤ã‹ç´¹ä»‹ã—ã¾ã™ã€‚ã“ã“ã«ã‚ã‚‹å…¨ã¦ã®äº‹æŸ„ã¯ã€Documentation/SubmittingPatches
+ã‚’ã„ãã¤ã‹ç´¹ä»‹ã—ã¾ã™ã€‚ã“ã“ã«ã‚ã‚‹å…¨ã¦ã®äº‹æŸ„ã¯ã€Documentation/process/submitting-patches.rst
ãªã©ã®Linuxカーãƒãƒ«ãƒ‘ッãƒæŠ•ç¨¿ã«éš›ã—ã¦ã®å¿ƒå¾—を補足ã™ã‚‹ã‚‚ã®ã§ã™ã€‚
1: 妥当ãªCONFIGオプションや変更ã•ã‚ŒãŸCONFIGオプションã€ã¤ã¾ã‚Š =y, =m, =n
@@ -84,7 +84,7 @@ Linux カーãƒãƒ«ãƒ‘ッãƒæŠ•ç¨¿è€…å‘ã‘ãƒã‚§ãƒƒã‚¯ãƒªã‚¹ãƒˆ
å¿…ãšãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã‚’追加ã—ã¦ãã ã•ã„。
17: æ–°ã—ã„ブートパラメータを追加ã—ãŸå ´åˆã«ã¯ã€
- å¿…ãšDocumentation/kernel-parameters.txt ã«èª¬æ˜Žã‚’追加ã—ã¦ãã ã•ã„。
+ å¿…ãšDocumentation/admin-guide/kernel-parameters.rst ã«èª¬æ˜Žã‚’追加ã—ã¦ãã ã•ã„。
18: æ–°ã—ãmoduleã«ãƒ‘ラメータを追加ã—ãŸå ´åˆã«ã¯ã€MODULE_PARM_DESC()ã‚’
利用ã—ã¦å¿…ãšãã®èª¬æ˜Žã‚’記述ã—ã¦ãã ã•ã„。
diff --git a/Documentation/ja_JP/SubmittingPatches b/Documentation/translations/ja_JP/SubmittingPatches
index 5d6ae63..0213965 100644
--- a/Documentation/ja_JP/SubmittingPatches
+++ b/Documentation/translations/ja_JP/SubmittingPatches
@@ -1,5 +1,5 @@
NOTE:
-This is a version of Documentation/SubmittingPatches into Japanese.
+This is a version of Documentation/process/submitting-patches.rst into Japanese.
This document is maintained by Keiichi KII <k-keiichi@bx.jp.nec.com>
and the JF Project team <http://www.linux.or.jp/JF/>.
If you find any difference between this document and the original file
@@ -15,7 +15,7 @@ Last Updated: 2011/06/09
==================================
ã“ã‚Œã¯ã€
-linux-2.6.39/Documentation/SubmittingPatches ã®å’Œè¨³
+linux-2.6.39/Documentation/process/submitting-patches.rst ã®å’Œè¨³
ã§ã™ã€‚
翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
翻訳日: 2011/06/09
@@ -34,9 +34,9 @@ Linux カーãƒãƒ«ã«å¤‰æ›´ã‚’加ãˆãŸã„ã¨æ€ã£ã¦ã„る個人åˆã¯ä¼šç¤¾ã
ãŠã˜ã‘ã¥ã‹ã›ã‚‹ã“ã¨ã‚‚ã‚ã‚Šã¾ã™ã€‚ã“ã®æ–‡ç« ã¯ã‚ãªãŸã®å¤‰æ›´ã‚’大ã„ã«å—ã‘入れ
ã¦ã‚‚らãˆã‚„ã™ãã™ã‚‹æ案を集ã‚ãŸã‚‚ã®ã§ã™ã€‚
-コードを投稿ã™ã‚‹å‰ã«ã€Documentation/SubmitChecklist ã®é …目リストã«ç›®
+コードを投稿ã™ã‚‹å‰ã«ã€Documentation/process/submit-checklist.rst ã®é …目リストã«ç›®
を通ã—ã¦ãƒã‚§ãƒƒã‚¯ã—ã¦ãã ã•ã„。もã—ã‚ãªãŸãŒãƒ‰ãƒ©ã‚¤ãƒãƒ¼ã‚’投稿ã—よã†ã¨ã—
-ã¦ã„ã‚‹ãªã‚‰ã€Documentation/SubmittingDrivers ã«ã‚‚目を通ã—ã¦ãã ã•ã„。
+ã¦ã„ã‚‹ãªã‚‰ã€Documentation/process/submitting-drivers.rst ã«ã‚‚目を通ã—ã¦ãã ã•ã„。
--------------------------------------------
セクション1 パッãƒã®ä½œã‚Šæ–¹ã¨é€ã‚Šæ–¹
@@ -148,7 +148,7 @@ http://savannah.nongnu.org/projects/quilt
4) パッãƒã®ã‚¹ã‚¿ã‚¤ãƒ«ãƒã‚§ãƒƒã‚¯
ã‚ãªãŸã®ãƒ‘ッãƒãŒåŸºæœ¬çš„ãª( Linux カーãƒãƒ«ã®)コーディングスタイルã«é•åã—
-ã¦ã„ãªã„ã‹ã‚’ãƒã‚§ãƒƒã‚¯ã—ã¦ä¸‹ã•ã„。ãã®è©³ç´°ã‚’ Documentation/CodingStyle ã§
+ã¦ã„ãªã„ã‹ã‚’ãƒã‚§ãƒƒã‚¯ã—ã¦ä¸‹ã•ã„。ãã®è©³ç´°ã‚’ Documentation/process/coding-style.rst ã§
見ã¤ã‘ã‚‹ã“ã¨ãŒã§ãã¾ã™ã€‚コーディングスタイルã®é•åã¯ãƒ¬ãƒ“ューã™ã‚‹äººã®
時間を無駄ã«ã™ã‚‹ã ã‘ãªã®ã§ã€æらãã‚ãªãŸã®ãƒ‘ッãƒã¯èª­ã¾ã‚Œã‚‹ã“ã¨ã™ã‚‰ãªã
æ‹’å¦ã•ã‚Œã‚‹ã§ã—ょã†ã€‚
@@ -246,7 +246,7 @@ MIME å½¢å¼ã®æ·»ä»˜ãƒ•ã‚¡ã‚¤ãƒ«ã¯ Linus ã«æ‰‹é–“ã‚’å–らã›ã‚‹ã“ã¨ã«ãªã‚
ã‚ã‚Œã°ã€èª°ã‹ãŒ MIME å½¢å¼ã®ãƒ‘ッãƒã‚’å†é€ã™ã‚‹ã‚ˆã†æ±‚ã‚ã‚‹ã‹ã‚‚ã—ã‚Œã¾ã›ã‚“。
余計ãªå¤‰æ›´ã‚’加ãˆãšã«ã‚ãªãŸã®ãƒ‘ッãƒã‚’é€ä¿¡ã™ã‚‹ãŸã‚ã®é›»å­ãƒ¡ãƒ¼ãƒ«ã‚¯ãƒ©ã‚¤ã‚¢ãƒ³ãƒˆã®è¨­å®š
-ã®ãƒ’ントã«ã¤ã„ã¦ã¯ Documentation/email-clients.txt ã‚’å‚ç…§ã—ã¦ãã ã•ã„。
+ã®ãƒ’ントã«ã¤ã„ã¦ã¯ Documentation/process/email-clients.rst ã‚’å‚ç…§ã—ã¦ãã ã•ã„。
8) é›»å­ãƒ¡ãƒ¼ãƒ«ã®ã‚µã‚¤ã‚º
@@ -609,7 +609,7 @@ diffstat ã®çµæžœã‚’生æˆã™ã‚‹ãŸã‚ã«ã€Œ git diff -M --stat --summary ã€ã‚
ã—例外をé©ç”¨ã™ã‚‹ã«ã¯ã€æœ¬å½“ã«å¦¥å½“ãªç†ç”±ãŒä¸å¯æ¬ ã§ã™ã€‚ã‚ãªãŸã¯æらãã“ã®
セクションを Linus ã®ã‚³ãƒ³ãƒ”ュータ・サイエンス101ã¨å‘¼ã¶ã§ã—ょã†ã€‚
-1) Documentation/CodingStyleã‚’å‚ç…§
+1) Documentation/process/coding-style.rstã‚’å‚ç…§
言ã†ã¾ã§ã‚‚ãªãã€ã‚ãªãŸã®ã‚³ãƒ¼ãƒ‰ãŒã“ã®ã‚³ãƒ¼ãƒ‡ã‚£ãƒ³ã‚°ã‚¹ã‚¿ã‚¤ãƒ«ã‹ã‚‰ã‚ã¾ã‚Šã«
も逸脱ã—ã¦ã„ã‚‹ã¨ã€ãƒ¬ãƒ“ューやコメントãªã—ã«å—ã‘å–ã£ã¦ã‚‚らãˆãªã„ã‹ã‚‚ã—
@@ -704,8 +704,8 @@ Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
<https://lkml.org/lkml/2005/7/11/336>
-Kernel Documentation/CodingStyle:
- <http://users.sosdg.org/~qiyong/lxr/source/Documentation/CodingStyle>
+Kernel Documentation/process/coding-style.rst:
+ <http://users.sosdg.org/~qiyong/lxr/source/Documentation/process/coding-style.rst>
Linus Torvalds's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>
diff --git a/Documentation/ja_JP/stable_api_nonsense.txt b/Documentation/translations/ja_JP/stable_api_nonsense.txt
index 7653b5c..a3b40a4 100644
--- a/Documentation/ja_JP/stable_api_nonsense.txt
+++ b/Documentation/translations/ja_JP/stable_api_nonsense.txt
@@ -1,5 +1,5 @@
NOTE:
-This is a version of Documentation/stable_api_nonsense.txt into Japanese.
+This is a version of Documentation/process/stable-api-nonsense.rst into Japanese.
This document is maintained by IKEDA, Munehiro <m-ikeda@ds.jp.nec.com>
and the JF Project team <http://www.linux.or.jp/JF/>.
If you find any difference between this document and the original file
@@ -14,7 +14,7 @@ to update the original English file first.
Last Updated: 2007/07/18
==================================
ã“ã‚Œã¯ã€
-linux-2.6.22-rc4/Documentation/stable_api_nonsense.txt ã®å’Œè¨³
+linux-2.6.22-rc4/Documentation/process/stable-api-nonsense.rst ã®å’Œè¨³
ã§ã™ã€‚
翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
翻訳日 : 2007/06/11
diff --git a/Documentation/ja_JP/stable_kernel_rules.txt b/Documentation/translations/ja_JP/stable_kernel_rules.txt
index 9dbda9b..f9249ae 100644
--- a/Documentation/ja_JP/stable_kernel_rules.txt
+++ b/Documentation/translations/ja_JP/stable_kernel_rules.txt
@@ -1,5 +1,5 @@
NOTE:
-This is Japanese translated version of "Documentation/stable_kernel_rules.txt".
+This is Japanese translated version of "Documentation/process/stable-kernel-rules.rst".
This one is maintained by Tsugikazu Shibata <tshibata@ab.jp.nec.com>
and JF Project team <www.linux.or.jp/JF>.
If you find difference with original file or problem in translation,
@@ -12,7 +12,7 @@ file at first.
==================================
ã“ã‚Œã¯ã€
-linux-2.6.29/Documentation/stable_kernel_rules.txt
+linux-2.6.29/Documentation/process/stable-kernel-rules.rst
ã®å’Œè¨³ã§ã™ã€‚
翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
@@ -43,7 +43,7 @@ linux-2.6.29/Documentation/stable_kernel_rules.txt
"ç†è«–çš„ã«ã¯ç«¶åˆçŠ¶æ…‹ã«ãªã‚‹"よã†ãªã‚‚ã®ã¯ä¸å¯ã€‚
- ã„ã‹ãªã‚‹äº›ç´°ãªä¿®æ­£ã‚‚å«ã‚ã‚‹ã“ã¨ã¯ã§ããªã„。(スペルã®ä¿®æ­£ã€ç©ºç™½ã®ã‚¯ãƒªãƒ¼
ンアップãªã©)
- - Documentation/SubmittingPatches ã®è¦å‰‡ã«å¾“ã£ãŸã‚‚ã®ã§ãªã‘ã‚Œã°ãªã‚‰ãªã„。
+ - Documentation/process/submitting-patches.rst ã®è¦å‰‡ã«å¾“ã£ãŸã‚‚ã®ã§ãªã‘ã‚Œã°ãªã‚‰ãªã„。
- パッãƒè‡ªä½“ã‹åŒç­‰ã®ä¿®æ­£ãŒ Linus ã®ãƒ„リーã«æ—¢ã«å­˜åœ¨ã—ãªã‘ã‚Œã°ãªã‚‰ãªã„。
  Linus ã®ãƒ„リーã§ã®ã‚³ãƒŸãƒƒãƒˆID ã‚’ -stable ã¸ã®ãƒ‘ッãƒæŠ•ç¨¿ã®éš›ã«å¼•ç”¨ã™
ã‚‹ã“ã¨ã€‚
diff --git a/Documentation/ko_KR/HOWTO b/Documentation/translations/ko_KR/howto.rst
index 9a3e659..3b0c15b 100644
--- a/Documentation/ko_KR/HOWTO
+++ b/Documentation/translations/ko_KR/howto.rst
@@ -1,5 +1,5 @@
NOTE:
-This is a version of Documentation/HOWTO translated into korean
+This is a version of Documentation/process/howto.rst translated into korean
This document is maintained by Minchan Kim <minchan@kernel.org>
If you find any difference between this document and the original file or
a problem with the translation, please contact the maintainer of this file.
@@ -9,17 +9,20 @@ read for non English (read: korean) speakers and is not intended as
a fork. So if you have any comments or updates for this file please
try to update the original English file first.
-==================================
+----------------------------------
+
ì´ ë¬¸ì„œëŠ”
-Documentation/HOWTO
+Documentation/process/howto.rst
ì˜ í•œê¸€ 번역입니다.
ì—­ìžï¼š 김민찬 <minchan@kernel.org>
ê°ìˆ˜ï¼š ì´ì œì´ë¯¸ <jamee.lee@samsung.com>
-==================================
+
+----------------------------------
+
어떻게 리눅스 ì»¤ë„ ê°œë°œì„ í•˜ëŠ”ê°€
----------------------------------
+================================
ì´ ë¬¸ì„œëŠ” ì»¤ë„ ê°œë°œì— ìžˆì–´ 가장 중요한 문서ì´ë‹¤. ì´ ë¬¸ì„œëŠ”
리눅스 ì»¤ë„ ê°œë°œìžê°€ ë˜ëŠ” 법과 리눅스 ì»¤ë„ ê°œë°œ 커뮤니티와 ì¼í•˜ëŠ”
@@ -46,6 +49,7 @@ Documentation/HOWTO
어셈블리(특정 아키í…ì³)는 잘 알아야 í•  필요는 없다.
다ìŒì˜ 참고서ì ë“¤ì€ ê¸°ë³¸ì— ì¶©ì‹¤í•œ C êµìœ¡ì´ë‚˜ ìˆ˜ë…„ê°„ì˜ ê²½í—˜ì— ê²¬ì£¼ì§€ëŠ”
못하지만 ì ì–´ë„ 참고 ìš©ë„로는 ì¢‹ì„ ê²ƒì´ë‹¤
+
- "The C Programming Language" by Kernighan and Ritchie [Prentice Hall]
- "Practical C Programming" by Steve Oualline [O'Reilly]
- "C: A Reference Manual" by Harbison and Steele [Prentice Hall]
@@ -79,7 +83,8 @@ Documentation/HOWTO
ê·¸ë“¤ì˜ ë§ì— ì˜ì§€í•´ì„œëŠ” 안ëœë‹¤.
GPLì— ê´€í•œ ìž¦ì€ ì§ˆë¬¸ë“¤ê³¼ ë‹µë³€ë“¤ì€ ë‹¤ìŒì„ 참조하ë¼.
- http://www.gnu.org/licenses/gpl-faq.html
+
+ https://www.gnu.org/licenses/gpl-faq.html
문서
@@ -93,55 +98,61 @@ GPLì— ê´€í•œ ìž¦ì€ ì§ˆë¬¸ë“¤ê³¼ ë‹µë³€ë“¤ì€ ë‹¤ìŒì„ 참조하ë¼.
mtk.manpages@gmail.comì˜ ë©”ì¸í…Œì´ë„ˆì—게 보낼 ê²ƒì„ ê¶Œìž¥í•œë‹¤.
다ìŒì€ ì»¤ë„ ì†ŒìŠ¤ íŠ¸ë¦¬ì— ìžˆëŠ” ì½ì–´ì•¼ í•  파ì¼ë“¤ì˜ 리스트ì´ë‹¤.
+
README
ì´ íŒŒì¼ì€ 리눅스 커ë„ì— ê´€í•˜ì—¬ 간단한 ë°°ê²½ 설명과 커ë„ì„ ì„¤ì •í•˜ê³ 
빌드하기 위해 필요한 ê²ƒì„ ì„¤ëª…í•œë‹¤. 커ë„ì— ìž…ë¬¸í•˜ëŠ” ì‚¬ëžŒë“¤ì€ ì—¬ê¸°ì„œ
시작해야 한다.
- Documentation/Changes
+ :ref:`Documentation/process/changes.rst <changes>`
ì´ íŒŒì¼ì€ 커ë„ì„ ì„±ê³µì ìœ¼ë¡œ 빌드하고 실행시키기 위해 필요한 다양한
소프트웨어 íŒ¨í‚¤ì§€ë“¤ì˜ ìµœì†Œ ë²„ì ¼ì„ ë‚˜ì—´í•œë‹¤.
- Documentation/CodingStyle
+ :ref:`Documentation/process/coding-style.rst <codingstyle>`
ì´ ë¬¸ì„œëŠ” 리눅스 ì»¤ë„ ì½”ë”© 스타ì¼ê³¼ 그렇게 í•œ 몇몇 ì´ìœ ë¥¼ 설명한다.
모든 새로운 코드는 ì´ ë¬¸ì„œì— ê°€ì´ë“œë¼ì¸ë“¤ì„ ë”°ë¼ì•¼ 한다. 대부분ì˜
ë©”ì¸í…Œì´ë„ˆë“¤ì€ ì´ ê·œì¹™ì„ ë”°ë¥´ëŠ” íŒ¨ì¹˜ë“¤ë§Œì„ ë°›ì•„ë“¤ì¼ ê²ƒì´ê³  ë§Žì€ ì‚¬ëžŒë“¤ì´
ê·¸ 패치가 올바른 스타ì¼ì¼ 경우만 코드를 검토할 것ì´ë‹¤.
- Documentation/SubmittingPatches
- Documentation/SubmittingDrivers
+ :ref:`Documentation/process/submitting-patches.rst <submittingpatches>` 와 :ref:`Documentation/process/submitting-drivers.rst <submittingdrivers>`
ì´ íŒŒì¼ë“¤ì€ 성공ì ìœ¼ë¡œ 패치를 만들고 보내는 ë²•ì„ ë‹¤ìŒì˜ 내용들로
굉장히 ìƒì„¸ížˆ 설명하고 있다(그러나 다ìŒìœ¼ë¡œ 한정ë˜ì§„ 않는다).
+
- Email 내용들
- Email ì–‘ì‹
- ê·¸ê²ƒì„ ëˆ„êµ¬ì—게 보낼지
+
ì´ëŸ¬í•œ ê·œì¹™ë“¤ì„ ë”°ë¥´ëŠ” ê²ƒì´ ì„±ê³µ(ì—­ìžì£¼: 패치가 받아들여 지는 것)ì„
보장하진 않는다(왜ëƒí•˜ë©´ 모든 íŒ¨ì¹˜ë“¤ì€ ë‚´ìš©ê³¼ 스타ì¼ì— 관하여
면밀히 검토ë˜ê¸° 때문ì´ë‹¤). 그러나 ê·œì¹™ì„ ë”°ë¥´ì§€ 않는다면 ê±°ì˜
ì„±ê³µí•˜ì§€ë„ ëª»í•  것ì´ë‹¤.
올바른 íŒ¨ì¹˜ë“¤ì„ ë§Œë“œëŠ” ë²•ì— ê´€í•œ 훌륭한 다른 ë¬¸ì„œë“¤ì´ ìžˆë‹¤.
+
"The Perfect Patch"
- http://www.ozlabs.org/~akpm/stuff/tpp.txt
+ https://www.ozlabs.org/~akpm/stuff/tpp.txt
+
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
- Documentation/stable_api_nonsense.txt
+ :ref:`Documentation/process/stable-api-nonsense.rst <stable_api_nonsense>`
ì´ ë¬¸ì„œëŠ” ì˜ë„ì ìœ¼ë¡œ 커ë„ì´ ë¶ˆë³€í•˜ëŠ” API를 갖지 ì•Šë„ë¡ ê²°ì •í•œ
ì´ìœ ë¥¼ 설명하며 다ìŒê³¼ ê°™ì€ ê²ƒë“¤ì„ í¬í•¨í•œë‹¤.
+
- 서브시스템 shim-layer(í˜¸í™˜ì„±ì„ ìœ„í•´?)
- ìš´ì˜ì²´ì œë“¤ê°„ì˜ ë“œë¼ì´ë²„ ì´ì‹ì„±
- ì»¤ë„ ì†ŒìŠ¤ íŠ¸ë¦¬ë‚´ì— ë¹ ë¥¸ 변화를 늦추는 것(ë˜ëŠ” 빠른 변화를 막는 것)
+
ì´ ë¬¸ì„œëŠ” 리눅스 개발 ì² í•™ì„ ì´í•´í•˜ëŠ”ë° í•„ìˆ˜ì ì´ë©° 다른 ìš´ì˜ì²´ì œì—ì„œ
리눅스로 전향하는 사람들ì—게는 매우 중요하다.
- Documentation/SecurityBugs
+ :ref:`Documentation/admin-guide/security-bugs.rst <securitybugs>`
ì—¬ëŸ¬ë¶„ë“¤ì´ ë¦¬ëˆ…ìŠ¤ 커ë„ì˜ ë³´ì•ˆ 문제를 발견했다고 ìƒê°í•œë‹¤ë©´ ì´ ë¬¸ì„œì—
나온 ë‹¨ê³„ì— ë”°ë¼ì„œ ì»¤ë„ ê°œë°œìžë“¤ì—게 알리고 ê·¸ 문제를 í•´ê²°í•  수 있ë„ë¡
ë„와 달ë¼.
- Documentation/ManagementStyle
+ :ref:`Documentation/process/management-style.rst <managementstyle>`
ì´ ë¬¸ì„œëŠ” 리눅스 ì»¤ë„ ë©”ì¸í…Œì´ë„ˆë“¤ì´ ê·¸ë“¤ì˜ ë°©ë²•ë¡ ì— ë…¹ì•„ 있는
ì •ì‹ ì„ ì–´ë–»ê²Œ 공유하고 ìš´ì˜í•˜ëŠ”지를 설명한다. ì´ê²ƒì€ ì»¤ë„ ê°œë°œì— ìž…ë¬¸í•˜ëŠ”
모든 사람들(ë˜ëŠ” ì»¤ë„ ê°œë°œì— ìž‘ì€ í˜¸ê¸°ì‹¬ì´ë¼ë„ 있는 사람들)ì´
@@ -149,38 +160,52 @@ mtk.manpages@gmail.comì˜ ë©”ì¸í…Œì´ë„ˆì—게 보낼 ê²ƒì„ ê¶Œìž¥í•œë‹¤.
ë…특한 í–‰ë™ì— 관하여 í”히 있는 오해들과 í˜¼ëž€ë“¤ì„ í•´ì†Œí•˜ê³  있기
때문ì´ë‹¤.
- Documentation/stable_kernel_rules.txt
+ :ref:`Documentation/process/stable_kernel_rules.rst <stable_kernel_rules>`
ì´ ë¬¸ì„œëŠ” 안정ì ì¸ ì»¤ë„ ë°°í¬ê°€ ì´ë£¨ì–´ì§€ëŠ” ê·œì¹™ì„ ì„¤ëª…í•˜ê³  있으며
ì—¬ëŸ¬ë¶„ë“¤ì´ ì´ëŸ¬í•œ ë°°í¬ë“¤ 중 í•˜ë‚˜ì— ë³€ê²½ì„ í•˜ê¸¸ ì›í•œë‹¤ë©´
ë¬´ì—‡ì„ í•´ì•¼ 하는지를 설명한다.
- Documentation/kernel-docs.txt
+ :ref:`Documentation/process/kernel-docs.rst <kernel_docs>`
ì»¤ë„ ê°œë°œì— ê´€ê³„ëœ ì™¸ë¶€ ë¬¸ì„œì˜ ë¦¬ìŠ¤íŠ¸ì´ë‹¤. ì»¤ë„ ë‚´ì˜ í¬í•¨ëœ 문서들
ì¤‘ì— ì—¬ëŸ¬ë¶„ì´ ì°¾ê³  ì‹¶ì€ ë¬¸ì„œë¥¼ 발견하지 못할 경우 ì´ ë¦¬ìŠ¤íŠ¸ë¥¼
살펴보ë¼.
- Documentation/applying-patches.txt
+ :ref:`Documentation/process/applying-patches.rst <applying_patches>`
패치가 무엇ì´ë©° ê·¸ê²ƒì„ ì»¤ë„ì˜ ë‹¤ë¥¸ 개발 ë¸Œëžœì¹˜ë“¤ì— ì–´ë–»ê²Œ
ì ìš©í•˜ëŠ”ì§€ì— ê´€í•˜ì—¬ ìžì„¸ížˆ 설명하고 있는 ì¢‹ì€ ìž…ë¬¸ì„œì´ë‹¤.
-커ë„ì€ ì†ŒìŠ¤ 코드 ê·¸ ìžì²´ì—ì„œ ìžë™ì ìœ¼ë¡œ 만들어질 수 있는 ë§Žì€ ë¬¸ì„œë“¤ì„
-가지고 있다. ì´ê²ƒì€ ì»¤ë„ ë‚´ì˜ APIì— ëŒ€í•œ 모든 설명, 그리고 ë½í‚¹ì„
-올바르게 처리하는 ë²•ì— ê´€í•œ ê·œì¹™ì„ í¬í•¨í•˜ê³  있다. ì´ ë¬¸ì„œëŠ”
-Documentation/DocBook/ 디렉토리 ë‚´ì—ì„œ 만들어지며 PDF, Postscript, HTML,
-그리고 man 페ì´ì§€ë“¤ë¡œ 다ìŒê³¼ ê°™ì´ ì‹¤í–‰í•˜ì—¬ 만들어 진다.
+커ë„ì€ ì†ŒìŠ¤ 코드 ê·¸ ìžì²´ì—ì„œ ë˜ëŠ” ì´ê²ƒê³¼ ê°™ì€ ReStructuredText 마í¬ì—… (ReST) ì„
+통해 ìžë™ì ìœ¼ë¡œ 만들어질 수 있는 ë§Žì€ ë¬¸ì„œë“¤ì„ ê°€ì§€ê³  있다. ì´ê²ƒì€ ì»¤ë„ ë‚´ì˜
+APIì— ëŒ€í•œ 모든 설명, 그리고 ë½í‚¹ì„ 올바르게 처리하는 ë²•ì— ê´€í•œ ê·œì¹™ì„ í¬í•¨í•˜ê³ 
+있다.
+
+모든 그런 ë¬¸ì„œë“¤ì€ ì»¤ë„ ì†ŒìŠ¤ 디렉토리ì—ì„œ ë‹¤ìŒ ì»¤ë§¨ë“œë¥¼ 실행하는 ê²ƒì„ í†µí•´ PDF
+나 HTML ì˜ í˜•íƒœë¡œ 만들어질 수 있다::
+
make pdfdocs
- make psdocs
make htmldocs
- make mandocs
-ê°ê°ì˜ ëª…ë ¹ì„ ë©”ì¸ ì»¤ë„ ì†ŒìŠ¤ 디렉토리로부터 실행한다.
+ReST 마í¬ì—…ì„ ì‚¬ìš©í•˜ëŠ” ë¬¸ì„œë“¤ì€ Documentation/output ì— ìƒì„±ëœë‹¤. 해당
+ë¬¸ì„œë“¤ì€ ë‹¤ìŒì˜ 커맨드를 사용하면 LaTeX ì´ë‚˜ ePub ë¡œë„ ë§Œë“¤ì–´ì§ˆ 수 있다::
+
+ make latexdocs
+ make epubdocs
+
+현재, ReST ë¡œì˜ ë³€í™˜ì´ ì§„í–‰ì¤‘ì¸, DocBook 으로 ì“°ì¸ ë¬¸ì„œë“¤ì´ ì¡´ìž¬í•œë‹¤. 그런
+ë¬¸ì„œë“¤ì€ Documentation/DocBook/ 디렉토리 ì•ˆì— ìƒì„±ë  것ì´ê³  ë‹¤ìŒ ì»¤ë§¨ë“œë¥¼ 통해
+Postscript 나 man page ë¡œë„ ë§Œë“¤ì–´ì§ˆ 수 있다::
+
+ make psdocs
+ make mandocs
ì»¤ë„ ê°œë°œìžê°€ ë˜ëŠ” 것
---------------------
ì—¬ëŸ¬ë¶„ì´ ë¦¬ëˆ…ìŠ¤ ì»¤ë„ ê°œë°œì— ê´€í•˜ì—¬ ì•„ë¬´ê²ƒë„ ëª¨ë¥¸ë‹¤ë©´ Linux KernelNewbies
프로ì íŠ¸ë¥¼ ë´ì•¼ 한다.
- http://kernelnewbies.org
+
+ https://kernelnewbies.org
+
ê·¸ê³³ì€ ê±°ì˜ ëª¨ë“  ì¢…ë¥˜ì˜ ê¸°ë³¸ì ì¸ ì»¤ë„ ê°œë°œ 질문들(질문하기 ì „ì— ë¨¼ì €
ì•„ì¹´ì´ë¸Œë¥¼ 찾아ë´ë¼. ê³¼ê±°ì— ì´ë¯¸ 답변ë˜ì—ˆì„ ìˆ˜ë„ ìžˆë‹¤)ì„ í•  수 있는 ë„움ì´
ë ë§Œí•œ ë©”ì¼ë§ 리스트가 있다. ë˜í•œ 실시간으로 질문 í•  수 있는 IRC 채ë„ë„
@@ -192,7 +217,9 @@ Documentation/DocBook/ 디렉토리 ë‚´ì—ì„œ 만들어지며 PDF, Postscript, H
ì—¬ëŸ¬ë¶„ì´ ì–´ë””ì„œ 시작해야 할진 모르지만 ì»¤ë„ ê°œë°œ ì»¤ë®¤ë‹ˆí‹°ì— ì°¸ì—¬í•  수
있는 ì¼ë“¤ì„ 찾길 ì›í•œë‹¤ë©´ 리눅스 ì»¤ë„ Janitor 프로ì íŠ¸ë¥¼ 살펴ë´ë¼.
- http://kernelnewbies.org/KernelJanitors
+
+ https://kernelnewbies.org/KernelJanitors
+
ê·¸ê³³ì€ ì‹œìž‘í•˜ê¸°ì— í›Œë¥­í•œ 장소ì´ë‹¤. ê·¸ê³³ì€ ë¦¬ëˆ…ìŠ¤ ì»¤ë„ ì†ŒìŠ¤ 트리내ì—
간단히 정리ë˜ê³  ìˆ˜ì •ë  ìˆ˜ 있는 ë¬¸ì œë“¤ì— ê´€í•˜ì—¬ 설명한다. ì—¬ëŸ¬ë¶„ì€ ì´
프로ì íŠ¸ë¥¼ 대표하는 개발ìžë“¤ê³¼ ì¼í•˜ë©´ì„œ ìžì‹ ì˜ 패치를 리눅스 ì»¤ë„ íŠ¸ë¦¬ì—
@@ -204,7 +231,8 @@ Documentation/DocBook/ 디렉토리 ë‚´ì—ì„œ 만들어지며 PDF, Postscript, H
올바른 í¬ë§·ìœ¼ë¡œ í¬ìž¥í•˜ëŠ”ë° ë„ì›€ì´ í•„ìš”í•˜ë‹¤ë©´ 그러한 문제를 ë•ê¸° 위해
만들어진 kernel-mentors 프로ì íŠ¸ê°€ 있다. ê·¸ê³³ì€ ë©”ì¼ë§ 리스트ì´ë©°
다ìŒì—ì„œ 참조할 수 있다.
- http://selenic.com/mailman/listinfo/kernel-mentors
+
+ https://selenic.com/mailman/listinfo/kernel-mentors
리눅스 ì»¤ë„ ì½”ë“œì— ì‹¤ì œ ë³€ê²½ì„ í•˜ê¸° ì „ì— ë°˜ë“œì‹œ ê·¸ 코드가 어떻게
ë™ìž‘하는지 ì´í•´í•˜ê³  있어야 한다. 코드를 분ì„하기 위하여 특정한 툴ì˜
@@ -213,6 +241,7 @@ Documentation/DocBook/ 디렉토리 ë‚´ì—ì„œ 만들어지며 PDF, Postscript, H
ê²ƒì€ Linux Cross-Reference projectì´ë©° ê·¸ê²ƒì€ ìžê¸° 참조 ë°©ì‹ì´ë©°
소스코드를 ì¸ë±ìŠ¤ëœ 웹 페ì´ì§€ë“¤ì˜ 형태로 보여준다. ìµœì‹ ì˜ ë©‹ì§„ 커ë„
코드 저장소는 다ìŒì„ 통하여 참조할 수 있다.
+
http://lxr.free-electrons.com/
@@ -222,6 +251,7 @@ Documentation/DocBook/ 디렉토리 ë‚´ì—ì„œ 만들어지며 PDF, Postscript, H
리눅스 ì»¤ë„ ê°œë°œ 프로세스는 현재 몇몇 다른 ë©”ì¸ ì»¤ë„ "브랜치들"ê³¼
ì„œë¸Œì‹œìŠ¤í…œì— íŠ¹í™”ëœ ì»¤ë„ ë¸Œëžœì¹˜ë“¤ë¡œ 구성ëœë‹¤. 몇몇 다른 ë©”ì¸
ë¸Œëžœì¹˜ë“¤ì€ ë‹¤ìŒê³¼ 같다.
+
- main 4.x ì»¤ë„ íŠ¸ë¦¬
- 4.x.y - ì•ˆì •ëœ ì»¤ë„ íŠ¸ë¦¬
- 4.x -git ì»¤ë„ íŒ¨ì¹˜ë“¤
@@ -229,15 +259,16 @@ Documentation/DocBook/ 디렉토리 ë‚´ì—ì„œ 만들어지며 PDF, Postscript, H
- 4.x - 통합 테스트를 위한 next ì»¤ë„ íŠ¸ë¦¬
4.x ì»¤ë„ íŠ¸ë¦¬
----------------
+~~~~~~~~~~~~~
+
+4.x 커ë„ë“¤ì€ Linus Torvaldsê°€ 관리하며 https://kernel.org ì˜
+pub/linux/kernel/v4.x/ 디렉토리ì—ì„œ ì°¸ì¡°ë  ìˆ˜ 있다.개발 프로세스는 다ìŒê³¼ 같다.
-4.x 커ë„ë“¤ì€ Linux Torvaldsê°€ 관리하며 kernel.orgì˜ pub/linux/kernel/v4.x/
-디렉토리ì—ì„œ ì°¸ì¡°ë  ìˆ˜ 있다.개발 프로세스는 다ìŒê³¼ 같다.
- 새로운 커ë„ì´ ë°°í¬ë˜ìžë§ˆìž 2ì£¼ì˜ ì‹œê°„ì´ ì£¼ì–´ì§„ë‹¤. ì´ ê¸°ê°„ë™ì€
ë©”ì¸í…Œì´ë„ˆë“¤ì€ í° diffë“¤ì„ Linusì—게 제출할 수 있다. 대개 ì´ íŒ¨ì¹˜ë“¤ì€
몇 주 ë™ì•ˆ -next 커ë„ë‚´ì— ì´ë¯¸ ìžˆì—ˆë˜ ê²ƒë“¤ì´ë‹¤. í° ë³€ê²½ë“¤ì„ ì œì¶œí•˜ëŠ” ë°
선호ë˜ëŠ” ë°©ë²•ì€ git(커ë„ì˜ ì†ŒìŠ¤ 관리 툴, ë” ë§Žì€ ì •ë³´ë“¤ì€
- http://git-scm.com/ ì—ì„œ 참조할 수 있다)를 사용하는 것ì´ì§€ë§Œ 순수한
+ https://git-scm.com/ ì—ì„œ 참조할 수 있다)를 사용하는 것ì´ì§€ë§Œ 순수한
패치파ì¼ì˜ 형ì‹ìœ¼ë¡œ 보내는 ê²ƒë„ ë¬´ê´€í•˜ë‹¤.
- 2주 í›„ì— -rc1 커ë„ì´ ë°°í¬ë˜ë©° 지금부터는 ì „ì²´ 커ë„ì˜ ì•ˆì •ì„±ì— ì˜í–¥ì„
미칠수 있는 새로운 ê¸°ëŠ¥ë“¤ì„ í¬í•¨í•˜ì§€ 않는 íŒ¨ì¹˜ë“¤ë§Œì´ ì¶”ê°€ë  ìˆ˜ 있다.
@@ -256,12 +287,13 @@ Documentation/DocBook/ 디렉토리 ë‚´ì—ì„œ 만들어지며 PDF, Postscript, H
ì»¤ë„ ë°°í¬ì— 있어서 언급할만한 가치가 있는 리눅스 ì»¤ë„ ë©”ì¼ë§ 리스트ì˜
Andrew Mortonì˜ ê¸€ì´ ìžˆë‹¤.
- "커ë„ì´ ì–¸ì œ ë°°í¬ë ì§€ëŠ” ì•„ë¬´ë„ ëª¨ë¥¸ë‹¤. 왜ëƒí•˜ë©´ ë°°í¬ëŠ” 알려진
+
+ *"커ë„ì´ ì–¸ì œ ë°°í¬ë ì§€ëŠ” ì•„ë¬´ë„ ëª¨ë¥¸ë‹¤. 왜ëƒí•˜ë©´ ë°°í¬ëŠ” 알려진
ë²„ê·¸ì˜ ìƒí™©ì— ë”°ë¼ ë°°í¬ë˜ëŠ” 것ì´ì§€ 미리정해 ë†“ì€ ì‹œê°„ì— ë”°ë¼
- ë°°í¬ë˜ëŠ” ê²ƒì€ ì•„ë‹ˆê¸° 때문ì´ë‹¤."
+ ë°°í¬ë˜ëŠ” ê²ƒì€ ì•„ë‹ˆê¸° 때문ì´ë‹¤."*
4.x.y - 안정 ì»¤ë„ íŠ¸ë¦¬
-------------------------
+~~~~~~~~~~~~~~~~~~~~~~
3 ìžë¦¬ 숫ìžë¡œ ì´ë£¨ì–´ì§„ ë²„ì ¼ì˜ ì»¤ë„ë“¤ì€ -stable 커ë„들ì´ë‹¤. ê·¸ê²ƒë“¤ì€ 4.x
커ë„ì—ì„œ ë°œê²¬ëœ í° íšŒê·€ë“¤ì´ë‚˜ 보안 문제들 중 비êµì  ìž‘ê³  중요한 수정들ì„
@@ -276,20 +308,21 @@ Andrew Mortonì˜ ê¸€ì´ ìžˆë‹¤.
4.x.y는 "stable" 팀<stable@vger.kernel.org>ì— ì˜í•´ 관리ë˜ë©° ê±°ì˜ ë§¤ë²ˆ 격주로
ë°°í¬ëœë‹¤.
-ì»¤ë„ íŠ¸ë¦¬ 문서들 ë‚´ì— Documentation/stable_kernel_rules.txt 파ì¼ì€ ì–´ë–¤
+ì»¤ë„ íŠ¸ë¦¬ 문서들 ë‚´ì— Documentation/process/stable-kernel-rules.rst 파ì¼ì€ ì–´ë–¤
ì¢…ë¥˜ì˜ ë³€ê²½ë“¤ì´ -stable 트리로 들어왔는지와 ë°°í¬ í”„ë¡œì„¸ìŠ¤ê°€ 어떻게
진행ë˜ëŠ”지를 설명한다.
-
4.x -git 패치들
-------------------
+~~~~~~~~~~~~~~~
+
git 저장소(그러므로 -gitì´ë¼ëŠ” ì´ë¦„ì´ ë¶™ìŒ)ì—는 날마다 관리ë˜ëŠ” Linusì˜
ì»¤ë„ íŠ¸ë¦¬ì˜ snapshot ë“¤ì´ ìžˆë‹¤. ì´ íŒ¨ì¹˜ë“¤ì€ ì¼ë°˜ì ìœ¼ë¡œ 날마다 ë°°í¬ë˜ë©°
Linusì˜ íŠ¸ë¦¬ì˜ í˜„ìž¬ ìƒíƒœë¥¼ 나타낸다. ì´ íŒ¨ì¹˜ë“¤ì€ ì •ìƒì ì¸ì§€ 조금ë„
살펴보지 ì•Šê³  ìžë™ì ìœ¼ë¡œ ìƒì„±ëœ 것ì´ë¯€ë¡œ -rc 커ë„들 ë³´ë‹¤ë„ ë” ì‹¤í—˜ì ì´ë‹¤.
서브시스템 ì»¤ë„ íŠ¸ë¦¬ë“¤ê³¼ 패치들
--------------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
다양한 ì»¤ë„ ì„œë¸Œì‹œìŠ¤í…œì˜ ë©”ì¸í…Œì´ë„ˆë“¤ --- 그리고 ë§Žì€ ì»¤ë„ ì„œë¸Œì‹œìŠ¤í…œ 개발ìžë“¤
--- ì€ ê·¸ë“¤ì˜ í˜„ìž¬ 개발 ìƒíƒœë¥¼ 소스 저장소로 노출한다. ì´ë¥¼ 통해 다른 사람들ë„
커ë„ì˜ ë‹¤ë¥¸ ì˜ì—­ì— ì–´ë–¤ 변화가 ì´ë£¨ì–´ì§€ê³  있는지 ì•Œ 수 있다. 급ì†ížˆ 개발ì´
@@ -300,35 +333,39 @@ Linusì˜ íŠ¸ë¦¬ì˜ í˜„ìž¬ ìƒíƒœë¥¼ 나타낸다. ì´ íŒ¨ì¹˜ë“¤ì€ ì •ìƒì ì¸ì
ëŒ€ë¶€ë¶„ì˜ ì´ëŸ¬í•œ 저장소는 git 트리지만, gitì´ ì•„ë‹Œ SCM으로 관리ë˜ê±°ë‚˜, quilt
시리즈로 제공ë˜ëŠ” íŒ¨ì¹˜ë“¤ë„ ì¡´ìž¬í•œë‹¤. ì´ëŸ¬í•œ 서브시스템 ì €ìž¥ì†Œë“¤ì€ MAINTAINERS
-파ì¼ì— 나열ë˜ì–´ 있다. ëŒ€ë¶€ë¶„ì€ http://git.kernel.org ì—ì„œ ë³¼ 수 있다.
+파ì¼ì— 나열ë˜ì–´ 있다. ëŒ€ë¶€ë¶„ì€ https://git.kernel.org ì—ì„œ ë³¼ 수 있다.
ì œì•ˆëœ íŒ¨ì¹˜ëŠ” 서브시스템 íŠ¸ë¦¬ì— ì»¤ë°‹ë˜ê¸° ì „ì— ë©”ì¼ë§ 리스트를 통해
리뷰ëœë‹¤(ì•„ëž˜ì˜ ê´€ë ¨ ì„¹ì…˜ì„ ì°¸ê³ í•˜ê¸° 바란다). ì¼ë¶€ ì»¤ë„ ì„œë¸Œì‹œìŠ¤í…œì˜ ê²½ìš°, ì´
리뷰 프로세스는 patchworkë¼ëŠ” ë„구를 통해 추ì ëœë‹¤. patchworkì€ ë“±ë¡ëœ 패치와
íŒ¨ì¹˜ì— ëŒ€í•œ 코멘트, íŒ¨ì¹˜ì˜ ë²„ì „ì„ ë³¼ 수 있는 웹 ì¸í„°íŽ˜ì´ìŠ¤ë¥¼ 제공하고,
ë©”ì¸í…Œì´ë„ˆëŠ” 패치를 리뷰 중, 리뷰 통과, ë˜ëŠ” 반려ë¨ìœ¼ë¡œ 표시할 수 있다.
-ëŒ€ë¶€ë¶„ì˜ ì´ëŸ¬í•œ patchwork 사ì´íŠ¸ëŠ” http://patchwork.kernel.org/ ë˜ëŠ”
+ëŒ€ë¶€ë¶„ì˜ ì´ëŸ¬í•œ patchwork 사ì´íŠ¸ëŠ” https://patchwork.kernel.org/ ë˜ëŠ”
http://patchwork.ozlabs.org/ ì— ë‚˜ì—´ë˜ì–´ 있다.
4.x - 통합 테스트를 위한 next ì»¤ë„ íŠ¸ë¦¬
------------------------------------------
+---------------------------------------
서브시스템 íŠ¸ë¦¬ë“¤ì˜ ë³€ê²½ì‚¬í•­ë“¤ì€ mainline 4.x 트리로 들어오기 ì „ì— í†µí•©
테스트를 ê±°ì³ì•¼ 한다. ì´ëŸ° 목ì ìœ¼ë¡œ, 모든 서브시스템 íŠ¸ë¦¬ì˜ ë³€ê²½ì‚¬í•­ì„ ê±°ì˜
ë§¤ì¼ ë°›ì•„ê°€ëŠ” 특수한 테스트 저장소가 존재한다:
- http://git.kernel.org/?p=linux/kernel/git/sfr/linux-next.git
+
+ https://git.kernel.org/?p=linux/kernel/git/sfr/linux-next.git
ì´ëŸ° ì‹ìœ¼ë¡œ, -next 커ë„ì„ í†µí•´ ë‹¤ìŒ ë¨¸ì§€ ê¸°ê°„ì— ë©”ì¸ë¼ì¸ 커ë„ì— ì–´ë–¤ 변경ì´
가해질 것ì¸ì§€ 간략히 ì•Œ 수 있다. 모험심 ê°•í•œ 테스터ë¼ë©´ -next 커ë„ì—ì„œ 테스트를
수행하는 ê²ƒë„ ì¢‹ì„ ê²ƒì´ë‹¤.
+
버그 보고
---------
-bugzilla.kernel.org는 리눅스 ì»¤ë„ ê°œë°œìžë“¤ì´ 커ë„ì˜ ë²„ê·¸ë¥¼ 추ì í•˜ëŠ” ê³³ì´ë‹¤.
-사용ìžë“¤ì€ 발견한 모든 ë²„ê·¸ë“¤ì„ ë³´ê³ í•˜ê¸° 위하여 ì´ íˆ´ì„ ì‚¬ìš©í•  ê²ƒì„ ê¶Œìž¥í•œë‹¤.
-kernel bugzilla를 사용하는 ìžì„¸í•œ ë°©ë²•ì€ ë‹¤ìŒì„ 참조하ë¼.
- http://test.kernel.org/bugzilla/faq.html
-ë©”ì¸ ì»¤ë„ ì†ŒìŠ¤ ë””ë ‰í† ë¦¬ì— ìžˆëŠ” REPORTING-BUGS 파ì¼ì€ ì»¤ë„ ë²„ê·¸ë¼ê³  ìƒê°ë˜ëŠ”
+https://bugzilla.kernel.org는 리눅스 ì»¤ë„ ê°œë°œìžë“¤ì´ 커ë„ì˜ ë²„ê·¸ë¥¼ 추ì í•˜ëŠ”
+ê³³ì´ë‹¤. 사용ìžë“¤ì€ 발견한 모든 ë²„ê·¸ë“¤ì„ ë³´ê³ í•˜ê¸° 위하여 ì´ íˆ´ì„ ì‚¬ìš©í•  것ì„
+권장한다. kernel bugzilla를 사용하는 ìžì„¸í•œ ë°©ë²•ì€ ë‹¤ìŒì„ 참조하ë¼.
+
+ https://bugzilla.kernel.org/page.cgi?id=faq.html
+
+ë©”ì¸ ì»¤ë„ ì†ŒìŠ¤ ë””ë ‰í† ë¦¬ì— ìžˆëŠ” admin-guide/reporting-bugs.rst 파ì¼ì€ ì»¤ë„ ë²„ê·¸ë¼ê³  ìƒê°ë˜ëŠ”
ê²ƒì„ ë³´ê³ í•˜ëŠ” ë°©ë²•ì— ê´€í•œ ì¢‹ì€ í…œí”Œë¦¿ì´ë©° 문제를 추ì í•˜ê¸° 위해서 커ë„
개발ìžë“¤ì´ 필요로 하는 ì •ë³´ê°€ 무엇들ì¸ì§€ë¥¼ ìƒì„¸ížˆ 설명하고 있다.
@@ -344,13 +381,14 @@ kernel bugzilla를 사용하는 ìžì„¸í•œ ë°©ë²•ì€ ë‹¤ìŒì„ 참조하ë¼.
ì ìˆ˜ë¥¼ ì–»ì„ ìˆ˜ 있는 가장 ì¢‹ì€ ë°©ë²•ì¤‘ì˜ í•˜ë‚˜ì´ë‹¤. 왜ëƒí•˜ë©´ ë§Žì€ ì‚¬ëžŒë“¤ì€
다른 ì‚¬ëžŒë“¤ì˜ ë²„ê·¸ë“¤ì„ ìˆ˜ì •í•˜ê¸° 위하여 ì‹œê°„ì„ ë‚­ë¹„í•˜ì§€ 않기 때문ì´ë‹¤.
-ì´ë¯¸ ë³´ê³ ëœ ë²„ê·¸ 리í¬íŠ¸ë“¤ì„ 가지고 작업하기 위해서 http://bugzilla.kernel.org를
-참조하ë¼. ì—¬ëŸ¬ë¶„ì´ ì•žìœ¼ë¡œ ìƒê²¨ë‚  버그 리í¬íŠ¸ë“¤ì˜ ì¡°ì–¸ìžê°€ ë˜ê¸¸ ì›í•œë‹¤ë©´
+ì´ë¯¸ ë³´ê³ ëœ ë²„ê·¸ 리í¬íŠ¸ë“¤ì„ 가지고 작업하기 위해서 https://bugzilla.kernel.org
+를 참조하ë¼. ì—¬ëŸ¬ë¶„ì´ ì•žìœ¼ë¡œ ìƒê²¨ë‚  버그 리í¬íŠ¸ë“¤ì˜ ì¡°ì–¸ìžê°€ ë˜ê¸¸ ì›í•œë‹¤ë©´
bugme-new ë©”ì¼ë§ 리스트나(새로운 버그 리í¬íŠ¸ë“¤ë§Œì´ ì´ê³³ì—ì„œ ë©”ì¼ë¡œ 전해진다)
bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì¼ë¡œ 전해진다)
ì— ë“±ë¡í•˜ë©´ ëœë‹¤.
https://lists.linux-foundation.org/mailman/listinfo/bugme-new
+
https://lists.linux-foundation.org/mailman/listinfo/bugme-janitors
@@ -361,10 +399,14 @@ bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì
ìœ„ì˜ ëª‡ëª‡ ë¬¸ì„œë“¤ì´ ì„¤ëª…í•˜ì˜€ì§€ë§Œ 핵심 ì»¤ë„ ê°œë°œìžë“¤ì˜ 대다수는
리눅스 ì»¤ë„ ë©”ì¼ë§ ë¦¬ìŠ¤íŠ¸ì— ì°¸ì—¬í•˜ê³  있다. ë¦¬ìŠ¤íŠ¸ì— ë“±ë¡í•˜ê³  해지하는
ë°©ë²•ì— ê´€í•œ ìžì„¸í•œ ì‚¬í•­ì€ ë‹¤ìŒì—ì„œ 참조할 수 있다.
+
http://vger.kernel.org/vger-lists.html#linux-kernel
+
웹ìƒì˜ ë§Žì€ ë‹¤ë¥¸ ê³³ì—ë„ ë©”ì¼ë§ ë¦¬ìŠ¤íŠ¸ì˜ ì•„ì¹´ì´ë¸Œë“¤ì´ 있다.
ì´ëŸ¬í•œ ì•„ì¹´ì´ë¸Œë“¤ì„ 찾으려면 검색 ì—”ì§„ì„ ì‚¬ìš©í•˜ë¼. 예를 들어:
+
http://dir.gmane.org/gmane.linux.kernel
+
ì—¬ëŸ¬ë¶„ì´ ìƒˆë¡œìš´ ë¬¸ì œì— ê´€í•´ ë¦¬ìŠ¤íŠ¸ì— ì˜¬ë¦¬ê¸° ì „ì— ë§í•˜ê³  ì‹¶ì€ ì£¼ì œì— ê´€í•œ
ê²ƒì„ ì•„ì¹´ì´ë¸Œì—ì„œ 먼저 찾아보기를 강력히 권장한다. ì´ë¯¸ ìƒì„¸í•˜ê²Œ í† ë¡ ëœ ë§Žì€
ê²ƒë“¤ì´ ë©”ì¼ë§ ë¦¬ìŠ¤íŠ¸ì˜ ì•„ì¹´ì´ë¸Œì— 기ë¡ë˜ì–´ 있다.
@@ -374,11 +416,13 @@ bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì
있는지는 MAINTAINERS 파ì¼ì„ 참조하ë¼.
ë§Žì€ ë¦¬ìŠ¤íŠ¸ë“¤ì€ kernel.orgì—ì„œ 호스트ë˜ê³  있다. ê·¸ ì •ë³´ë“¤ì€ ë‹¤ìŒì—ì„œ ì°¸ì¡°ë  ìˆ˜ 있다.
+
http://vger.kernel.org/vger-lists.html
ë¦¬ìŠ¤íŠ¸ë“¤ì„ ì‚¬ìš©í•  때는 올바른 ì˜ˆì ˆì„ ë”°ë¥¼ ê²ƒì„ ìœ ë…í•´ë¼.
대단하진 않지만 ë‹¤ìŒ URLì€ ë¦¬ìŠ¤íŠ¸(í˜¹ì€ ëª¨ë“  리스트)와 대화하는 몇몇 간단한
ê°€ì´ë“œë¼ì¸ì„ 가지고 있다.
+
http://www.albion.com/netiquette/
여러 ì‚¬ëžŒë“¤ì´ ì—¬ëŸ¬ë¶„ì˜ ë©”ì¼ì— ì‘답한다면 CC: 즉 수신 리스트는 꽤 커지게
@@ -391,7 +435,7 @@ bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì
"John 커ë„해커는 작성했다...."를 유지하며 ì—¬ëŸ¬ë¶„ë“¤ì˜ ì˜ê²¬ì„ ê·¸ ë©”ì¼ì˜ 윗부분ì—
작성하지 ë§ê³  ê° ì¸ìš©í•œ 단ë½ë“¤ 사ì´ì— 넣어ë¼.
-ì—¬ëŸ¬ë¶„ë“¤ì´ íŒ¨ì¹˜ë“¤ì„ ë©”ì¼ì— 넣는다면 ê·¸ê²ƒë“¤ì€ Documentation/SubmittingPatchesì—
+ì—¬ëŸ¬ë¶„ë“¤ì´ íŒ¨ì¹˜ë“¤ì„ ë©”ì¼ì— 넣는다면 ê·¸ê²ƒë“¤ì€ Documentation/process/submitting-patches.rstì—
나와있는ë°ë¡œ 명백히(plain) ì½ì„ 수 있는 í…스트여야 한다. ì»¤ë„ ê°œë°œìžë“¤ì€
첨부파ì¼ì´ë‚˜ ì••ì¶•ëœ íŒ¨ì¹˜ë“¤ì„ ì›í•˜ì§€ 않는다. ê·¸ë“¤ì€ ì—¬ëŸ¬ë¶„ë“¤ì˜ íŒ¨ì¹˜ì˜
ê° ë¼ì¸ 단위로 코멘트를 하길 ì›í•˜ë©° 압축하거나 첨부하지 ì•Šê³  보내는 것ì´
@@ -405,11 +449,12 @@ bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì
커뮤니티와 협력하는 법
---------------------
+----------------------
ì»¤ë„ ì»¤ë®¤ë‹ˆí‹°ì˜ ëª©ì ì€ 가능한한 가장 ì¢‹ì€ ì»¤ë„ì„ ì œê³µí•˜ëŠ” 것ì´ë‹¤. 여러분ì´
받아들여질 패치를 제출하게 ë˜ë©´ ê·¸ íŒ¨ì¹˜ì˜ ê¸°ìˆ ì ì¸ ì´ì ìœ¼ë¡œ ê²€í† ë  ê²ƒì´ë‹¤.
그럼 ì—¬ëŸ¬ë¶„ë“¤ì€ ë¬´ì—‡ì„ ê¸°ëŒ€í•˜ê³  있어야 하는가?
+
- 비íŒ
- ì˜ê²¬
- ë³€ê²½ì„ ìœ„í•œ 요구
@@ -423,6 +468,7 @@ bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì
기다려보고 다시 ì‹œë„í•´ë¼. 때론 너무 ë§Žì€ ë©”ì¼ë“¤ ì†ì— ë¬»í˜€ë²„ë¦¬ê¸°ë„ í•œë‹¤.
ì—¬ëŸ¬ë¶„ì€ ë¬´ì—‡ì„ í•´ì„œëŠ” 안ë˜ëŠ”ê°€?
+
- ì—¬ëŸ¬ë¶„ì˜ íŒ¨ì¹˜ê°€ 아무 질문 ì—†ì´ ë°›ì•„ë“¤ì—¬ì§€ê¸°ë¥¼ 기대하는 것
- ë°©ì–´ì ì´ ë˜ëŠ” 것
- ì˜ê²¬ì„ 무시하는 것
@@ -443,10 +489,12 @@ bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì
ì»¤ë„ ì»¤ë®¤ë‹ˆí‹°ì™€ 기업 ì¡°ì§ê°„ì˜ ì°¨ì´ì 
------------------------------------------------------------------
+------------------------------------
ì»¤ë„ ì»¤ë®¤ë‹ˆí‹°ëŠ” 가장 전통ì ì¸ íšŒì‚¬ì˜ ê°œë°œ 환경과는 다르다. ì—¬ê¸°ì— ì—¬ëŸ¬ë¶„ë“¤ì˜
문제를 피하기 위한 목ë¡ì´ 있다.
+
ì—¬ëŸ¬ë¶„ë“¤ì´ ì œì•ˆí•œ ë³€ê²½ë“¤ì— ê´€í•˜ì—¬ ë§í•  ë•Œ ì¢‹ì€ ê²ƒë“¤ :
+
- "ì´ê²ƒì€ 여러 ë¬¸ì œë“¤ì„ í•´ê²°í•©ë‹ˆë‹¤."
- "ì´ê²ƒì€ 2000 ë¼ì¸ì˜ 코드를 줄입니다."
- "ì´ê²ƒì€ ë‚´ê°€ ë§í•˜ë ¤ëŠ” ê²ƒì— ê´€í•´ 설명하는 패치입니다."
@@ -455,6 +503,7 @@ bugme-janitor ë©”ì¼ë§ 리스트(bugzillaì— ëª¨ë“  ë³€í™”ë“¤ì´ ì—¬ê¸°ì„œ ë©”ì
- "ì´ê²ƒì€ ì¼ë°˜ì ì¸ 머신ì—ì„œ ì„±ëŠ¥ì„ í–¥ìƒí•¨ìœ¼ë¡œ..."
ì—¬ëŸ¬ë¶„ë“¤ì´ ë§í•  ë•Œ 피해야 í•  좋지 ì•Šì€ ê²ƒë“¤ :
+
- "우리는 ê·¸ê²ƒì„ AIX/ptx/Solarisì—ì„œ ì´ëŸ¬í•œ 방법으로 했다. 그러므로 ê·¸ê²ƒì€ ì¢‹ì€ ê²ƒìž„ì— í‹€ë¦¼ì—†ë‹¤..."
- "나는 20ë…„ë™ì•ˆ ì´ê²ƒì„ 해왔다. 그러므로..."
- "ì´ê²ƒì€ ëˆì„ 벌기위해 ë‚˜ì˜ íšŒì‚¬ê°€ 필요로 하는 것ì´ë‹¤."
@@ -514,14 +563,15 @@ Patì´ë¼ëŠ” ì´ë¦„ì„ ê°€ì§„ ì—¬ìžê°€ ìžˆì„ ìˆ˜ë„ ìžˆëŠ” 것ì´ë‹¤. 리눅ìŠ
간단하게(í˜¹ì€ ê°„ë‹¨í•œê²Œ 재배치하여) 하는 ê²ƒë„ ì¤‘ìš”í•˜ë‹¤.
ì—¬ê¸°ì— ì»¤ë„ ê°œë°œìž Al Viroì˜ ì´ì•¼ê¸°ê°€ 있다.
- "í•™ìƒì˜ 수학 숙제를 채ì í•˜ëŠ” ì„ ìƒë‹˜ì„ ìƒê°í•´ë³´ë¼. ì„ ìƒë‹˜ì€ í•™ìƒë“¤ì´
+
+ *"í•™ìƒì˜ 수학 숙제를 채ì í•˜ëŠ” ì„ ìƒë‹˜ì„ ìƒê°í•´ë³´ë¼. ì„ ìƒë‹˜ì€ í•™ìƒë“¤ì´
ë‹µì„ ì–»ì„때까지 ê²ªì€ ì‹œí–‰ì°©ì˜¤ë¥¼ 보길 ì›í•˜ì§€ 않는다. ì„ ìƒë‹˜ë“¤ì€
간결하고 가장 ë›°ì–´ë‚œ ë‹µì„ ë³´ê¸¸ ì›í•œë‹¤. 훌륭한 í•™ìƒì€ ì´ê²ƒì„ 알고
- 마지막으로 ë‹µì„ ì–»ê¸° ì „ 중간 ê³¼ì •ë“¤ì„ ì œì¶œí•˜ì§„ 않는다.
+ 마지막으로 ë‹µì„ ì–»ê¸° ì „ 중간 ê³¼ì •ë“¤ì„ ì œì¶œí•˜ì§„ 않는다.*
- ì»¤ë„ ê°œë°œë„ ë§ˆì°¬ê°€ì§€ì´ë‹¤. ë©”ì¸í…Œì´ë„ˆë“¤ê³¼ 검토하는 ì‚¬ëžŒë“¤ì€ ë¬¸ì œë¥¼
+ *ì»¤ë„ ê°œë°œë„ ë§ˆì°¬ê°€ì§€ì´ë‹¤. ë©”ì¸í…Œì´ë„ˆë“¤ê³¼ 검토하는 ì‚¬ëžŒë“¤ì€ ë¬¸ì œë¥¼
풀어나가는 과정ì†ì— 숨겨진 ê³¼ì •ì„ ë³´ê¸¸ ì›í•˜ì§„ 않는다. 그들ì€
- 간결하고 멋진 ë‹µì„ ë³´ê¸¸ ì›í•œë‹¤."
+ 간결하고 멋진 ë‹µì„ ë³´ê¸¸ ì›í•œë‹¤."*
커뮤니티와 협력하며 ë›°ì–´ë‚œ ë‹µì„ ì°¾ëŠ” 것과 ì—¬ëŸ¬ë¶„ë“¤ì˜ ë마치지 못한 작업들
사ì´ì— ê· í˜•ì„ ìœ ì§€í•´ì•¼ 하는 ê²ƒì€ ì–´ë ¤ìš¸ì§€ë„ ëª¨ë¥¸ë‹¤. 그러므로 프로세스ì˜
@@ -549,16 +599,17 @@ Patì´ë¼ëŠ” ì´ë¦„ì„ ê°€ì§„ ì—¬ìžê°€ ìžˆì„ ìˆ˜ë„ ìžˆëŠ” 것ì´ë‹¤. 리눅ìŠ
ìƒê°í•˜ì—¬ ì´ë©”ì¼ì„ 작성해야 한다. ì´ ì •ë³´ëŠ” 패치를 위한 ChangeLogê°€ ë 
것ì´ë‹¤. 그리고 í•­ìƒ ê·¸ ë‚´ìš©ì„ ë³´ê¸¸ ì›í•˜ëŠ” 모든 ì‚¬ëžŒë“¤ì„ ìœ„í•´ ë³´ì¡´ë 
것ì´ë‹¤. 패치는 완벽하게 다ìŒê³¼ ê°™ì€ ë‚´ìš©ë“¤ì„ í¬í•¨í•˜ì—¬ 설명해야 한다.
+
- ë³€ê²½ì´ ì™œ 필요한지
- íŒ¨ì¹˜ì— ê´€í•œ ì „ì²´ 설계 ì ‘ê·¼(approach)
- 구현 ìƒì„¸ë“¤
- 테스트 결과들
ì´ê²ƒì´ 무엇ì¸ì§€ ë” ìžì„¸í•œ ê²ƒì„ ì•Œê³  싶다면 ë‹¤ìŒ ë¬¸ì„œì˜ ChageLog í•­ì„ ë´ë¼.
- "The Perfect Patch"
- http://www.ozlabs.org/~akpm/stuff/tpp.txt
+ "The Perfect Patch"
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
ì´ ëª¨ë“  ê²ƒì„ í•˜ëŠ” ê²ƒì€ ë§¤ìš° 어려운 ì¼ì´ë‹¤. 완벽히 소화하는 ë°ëŠ” ì ì–´ë„ 몇년ì´
@@ -570,7 +621,8 @@ Patì´ë¼ëŠ” ì´ë¦„ì„ ê°€ì§„ ì—¬ìžê°€ ìžˆì„ ìˆ˜ë„ ìžˆëŠ” 것ì´ë‹¤. 리눅ìŠ
----------
-"개발 프로세스"(http://lwn.net/Articles/94386/) 섹션ì„
+
+"개발 프로세스"(https://lwn.net/Articles/94386/) 섹션ì„
ìž‘ì„±í•˜ëŠ”ë° ìžˆì–´ 참고할 문서를 사용하ë„ë¡ í—ˆë½í•´ì¤€ Paolo Ciarrocchiì—게
ê°ì‚¬í•œë‹¤. ì—¬ëŸ¬ë¶„ë“¤ì´ ë§í•´ì•¼ í•  것과 ë§í•´ì„œëŠ” 안ë˜ëŠ” ê²ƒì˜ ëª©ë¡ ì¤‘ ì¼ë¶€ë¥¼ 제공해준
Randy Dunlapê³¼ Gerrit Huizengaì—게 ê°ì‚¬í•œë‹¤. ë˜í•œ 검토와 ì˜ê²¬ 그리고
diff --git a/Documentation/translations/ko_KR/index.rst b/Documentation/translations/ko_KR/index.rst
new file mode 100644
index 0000000..0b69534
--- /dev/null
+++ b/Documentation/translations/ko_KR/index.rst
@@ -0,0 +1,12 @@
+.. raw:: latex
+
+ \renewcommand\thesection*
+ \renewcommand\thesubsection*
+
+Korean translations
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ howto
diff --git a/Documentation/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt
index 34d3d38..a3228a6 100644
--- a/Documentation/ko_KR/memory-barriers.txt
+++ b/Documentation/translations/ko_KR/memory-barriers.txt
@@ -823,6 +823,38 @@ CPU 는 b ë¡œë¶€í„°ì˜ ë¡œë“œ 오í¼ë ˆì´ì…˜ì´ a ë¡œë¶€í„°ì˜ ë¡œë“œ 오í¼ë ˆ
오í¼ë ˆì´ì…˜ì„ 위한 코드를 ì •ë§ë¡œ 만들ë„ë¡ í•˜ì§€ë§Œ, 컴파ì¼ëŸ¬ê°€ 그렇게 만들어진
ì½”ë“œì˜ ìˆ˜í–‰ 결과를 사용하ë„ë¡ ê°•ì œí•˜ì§€ëŠ” 않습니다.
+ë˜í•œ, 컨트롤 ì˜ì¡´ì„±ì€ if ë¬¸ì˜ then 절과 else ì ˆì— ëŒ€í•´ì„œë§Œ ì ìš©ë©ë‹ˆë‹¤. ìƒì„¸ížˆ
+ë§í•´ì„œ, 컨트롤 ì˜ì¡´ì„±ì€ if ë¬¸ì„ ë’¤ë”°ë¥´ëŠ” 코드ì—는 ì ìš©ë˜ì§€ 않습니다:
+
+ q = READ_ONCE(a);
+ if (q) {
+ WRITE_ONCE(b, p);
+ } else {
+ WRITE_ONCE(b, r);
+ }
+ WRITE_ONCE(c, 1); /* BUG: No ordering against the read from "a". */
+
+컴파ì¼ëŸ¬ëŠ” volatile íƒ€ìž…ì— ëŒ€í•œ 액세스를 재배치 í•  수 없고 ì´ ì¡°ê±´ í•˜ì˜ "b"
+ë¡œì˜ ì“°ê¸°ë¥¼ 재배치 í•  수 없기 ë•Œë¬¸ì— ì—¬ê¸°ì— ìˆœì„œ ê·œì¹™ì´ ì¡´ìž¬í•œë‹¤ê³  주장하고
+ì‹¶ì„ ê²ë‹ˆë‹¤. ë¶ˆí–‰ížˆë„ ì´ ê²½ìš°ì—, 컴파ì¼ëŸ¬ëŠ” 다ìŒì˜ ê°€ìƒì˜ pseudo-assembly 언어
+코드처럼 "b" ë¡œì˜ ë‘ê°œì˜ ì“°ê¸° 오í¼ë ˆì´ì…˜ì„ conditional-move ì¸ìŠ¤íŠ¸ëŸ­ì…˜ìœ¼ë¡œ
+번역할 수 있습니다:
+
+ ld r1,a
+ ld r2,p
+ ld r3,r
+ cmp r1,$0
+ cmov,ne r4,r2
+ cmov,eq r4,r3
+ st r4,b
+ st $1,c
+
+ì™„í™”ëœ ìˆœì„œ ê·œì¹™ì˜ CPU 는 "a" ë¡œë¶€í„°ì˜ ë¡œë“œì™€ "c" ë¡œì˜ ìŠ¤í† ì–´ 사ì´ì— ì–´ë–¤
+ì¢…ë¥˜ì˜ ì˜ì¡´ì„±ë„ 갖지 ì•Šì„ ê²ë‹ˆë‹¤. ì´ ì»¨íŠ¸ë¡¤ ì˜ì¡´ì„±ì€ ë‘ê°œì˜ cmov ì¸ìŠ¤íŠ¸ëŸ­ì…˜ê³¼
+ê±°ê¸°ì— ì˜ì¡´í•˜ëŠ” 스토어 ì—게만 ì ìš©ë  ê²ë‹ˆë‹¤. 짧게 ë§í•˜ìžë©´, 컨트롤 ì˜ì¡´ì„±ì€
+주어진 if ë¬¸ì˜ then 절과 else ì ˆì—게만 (그리고 ì´ ë‘ ì ˆ ë‚´ì—ì„œ 호출ë˜ëŠ”
+함수들ì—게까지) ì ìš©ë˜ì§€, ì´ if ë¬¸ì„ ë’¤ë”°ë¥´ëŠ” 코드ì—는 ì ìš©ë˜ì§€ 않습니다.
+
마지막으로, 컨트롤 ì˜ì¡´ì„±ì€ ì´í–‰ì„± (transitivity) ì„ ì œê³µí•˜ì§€ -않습니다-. ì´ê±´
x 와 y ê°€ 둘 다 0 ì´ë¼ëŠ” ì´ˆê¸°ê°’ì„ ê°€ì¡Œë‹¤ëŠ” 가정 í•˜ì˜ ë‘ê°œì˜ ì˜ˆì œë¡œ
ë³´ì´ê² ìŠµë‹ˆë‹¤:
@@ -883,6 +915,10 @@ http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf 와
ì˜ì¡´ì„±ì´ 사ë¼ì§€ì§€ 않게 í•˜ëŠ”ë° ë„ì›€ì„ ì¤„ 수 있습니다. ë” ë§Žì€ ì •ë³´ë¥¼
위해선 "컴파ì¼ëŸ¬ 배리어" ì„¹ì…˜ì„ ì°¸ê³ í•˜ì‹œê¸° ë°”ëžë‹ˆë‹¤.
+ (*) 컨트롤 ì˜ì¡´ì„±ì€ 컨트롤 ì˜ì¡´ì„±ì„ 갖는 if ë¬¸ì˜ then 절과 else 절과 ì´ ë‘ ì ˆ
+ ë‚´ì—ì„œ 호출ë˜ëŠ” 함수들ì—만 ì ìš©ë©ë‹ˆë‹¤. 컨트롤 ì˜ì¡´ì„±ì€ 컨트롤 ì˜ì¡´ì„±ì„
+ 갖는 if ë¬¸ì„ ë’¤ë”°ë¥´ëŠ” 코드ì—는 ì ìš©ë˜ì§€ -않습니다-.
+
(*) 컨트롤 ì˜ì¡´ì„±ì€ 보통 다른 íƒ€ìž…ì˜ ë°°ë¦¬ì–´ë“¤ê³¼ ì§ì„ 맞춰 사용ë©ë‹ˆë‹¤.
(*) 컨트롤 ì˜ì¡´ì„±ì€ ì´í–‰ì„±ì„ 제공하지 -않습니다-. ì´í–‰ì„±ì´ 필요하다면,
diff --git a/Documentation/ko_KR/stable_api_nonsense.txt b/Documentation/translations/ko_KR/stable_api_nonsense.txt
index 3ba10b1..4d93af1 100644
--- a/Documentation/ko_KR/stable_api_nonsense.txt
+++ b/Documentation/translations/ko_KR/stable_api_nonsense.txt
@@ -1,5 +1,5 @@
NOTE:
-This is a version of Documentation/stable_api_nonsense.txt translated
+This is a version of Documentation/process/stable-api-nonsense.rst translated
into korean
This document is maintained by Minchan Kim <minchan@kernel.org>
If you find any difference between this document and the original file or
@@ -12,7 +12,7 @@ try to update the original English file first.
==================================
ì´ ë¬¸ì„œëŠ”
-Documentation/stable_api_nonsense.txt
+Documentation/process/stable-api-nonsense.rst
ì˜ í•œê¸€ 번역입니다.
ì—­ìžï¼š 김민찬 <minchan@kernel.org>
diff --git a/Documentation/zh_CN/CodingStyle b/Documentation/translations/zh_CN/CodingStyle
index 1271779..b027380 100644
--- a/Documentation/zh_CN/CodingStyle
+++ b/Documentation/translations/zh_CN/CodingStyle
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/CodingStyle
+Chinese translated version of Documentation/process/coding-style.rst
If you have any comment or update to the content, please post to LKML directly.
However, if you have problem communicating in English you can also ask the
@@ -7,7 +7,7 @@ translation is outdated or there is problem with translation.
Chinese maintainer: Zhang Le <r0bertz@gentoo.org>
---------------------------------------------------------------------
-Documentation/CodingStyle的中文翻译
+Documentation/process/coding-style.rst的中文翻译
如果想评论或更新本文的内容,请直接å‘信到LKML。如果你使用英文交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯
以å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻译存在问题,请è”系中文版维护者。
@@ -809,5 +809,5 @@ GNU 手册 - éµå¾ª K&R 标准和此文本 - cpp, gcc, gcc internals and indent,
WG14是C语言的国际标准化工作组,URL: http://www.open-std.org/JTC1/SC22/WG14/
-Kernel CodingStyle,作者 greg@kroah.com å‘表于OLS 2002:
+Kernel process/coding-style.rst,作者 greg@kroah.com å‘表于OLS 2002:
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
diff --git a/Documentation/zh_CN/HOWTO b/Documentation/translations/zh_CN/HOWTO
index f0613b9..11be075 100644
--- a/Documentation/zh_CN/HOWTO
+++ b/Documentation/translations/zh_CN/HOWTO
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/HOWTO
+Chinese translated version of Documentation/process/howto.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Greg Kroah-Hartman <greg@kroah.com>
Chinese maintainer: Li Yang <leoli@freescale.com>
---------------------------------------------------------------------
-Documentation/HOWTO 的中文翻译
+Documentation/process/howto.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
@@ -93,16 +93,16 @@ Linux内核代ç ä¸­åŒ…å«æœ‰å¤§é‡çš„文档。这些文档对于学习如何与
文件简è¦ä»‹ç»äº†Linux内核的背景,并且æ述了如何é…置和编译内核。内核的
新用户应该从这里开始。
- Documentation/Changes
+ Documentation/process/changes.rst
文件给出了用æ¥ç¼–译和使用内核所需è¦çš„最å°è½¯ä»¶åŒ…列表。
- Documentation/CodingStyle
+ Documentation/process/coding-style.rst
æè¿°Linux内核的代ç é£Žæ ¼å’Œç†ç”±ã€‚所有新代ç éœ€è¦éµå®ˆè¿™ç¯‡æ–‡æ¡£ä¸­å®šä¹‰çš„规
范。大多数维护者åªä¼šæŽ¥æ”¶ç¬¦åˆè§„定的补ä¸ï¼Œå¾ˆå¤šäººä¹Ÿåªä¼šå¸®å¿™æ£€æŸ¥ç¬¦åˆé£Žæ ¼
的代ç ã€‚
- Documentation/SubmittingPatches
- Documentation/SubmittingDrivers
+ Documentation/process/submitting-patches.rst
+ Documentation/process/submitting-drivers.rst
这两份文档明确æ述如何创建和å‘é€è¡¥ä¸ï¼Œå…¶ä¸­åŒ…括(但ä¸ä»…é™äºŽ):
- 邮件内容
- 邮件格å¼
@@ -116,7 +116,7 @@ Linux内核代ç ä¸­åŒ…å«æœ‰å¤§é‡çš„文档。这些文档对于学习如何与
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
- Documentation/stable_api_nonsense.txt
+ Documentation/process/stable-api-nonsense.rst
论è¯å†…核为什么特æ„ä¸åŒ…括稳定的内核内部API,也就是说ä¸åŒ…括åƒè¿™æ ·çš„特
性:
- å­ç³»ç»Ÿä¸­é—´å±‚(为了兼容性?)
@@ -125,23 +125,23 @@ Linux内核代ç ä¸­åŒ…å«æœ‰å¤§é‡çš„文档。这些文档对于学习如何与
这篇文档对于ç†è§£Linuxçš„å¼€å‘哲学至关é‡è¦ã€‚对于将开å‘å¹³å°ä»Žå…¶ä»–æ“作系
统转移到Linux的人æ¥è¯´ä¹Ÿå¾ˆé‡è¦ã€‚
- Documentation/SecurityBugs
+ Documentation/admin-guide/security-bugs.rst
如果你认为自己å‘现了Linux内核的安全性问题,请根æ®è¿™ç¯‡æ–‡æ¡£ä¸­çš„步骤æ¥
æ醒其他内核开å‘者并帮助解决这个问题。
- Documentation/ManagementStyle
+ Documentation/process/management-style.rst
æ述内核维护者的工作方法åŠå…¶å…±æœ‰ç‰¹ç‚¹ã€‚这对于刚刚接触内核开å‘(或者对
它感到好奇)的人æ¥è¯´å¾ˆé‡è¦ï¼Œå› ä¸ºå®ƒè§£é‡Šäº†å¾ˆå¤šå¯¹äºŽå†…核维护者独特行为的
æ™®é误解与迷惑。
- Documentation/stable_kernel_rules.txt
+ Documentation/process/stable-kernel-rules.rst
解释了稳定版内核å‘布的规则,以åŠå¦‚何将改动放入这些版本的步骤。
- Documentation/kernel-docs.txt
+ Documentation/process/kernel-docs.rst
有助于内核开å‘的外部文档列表。如果你在内核自带的文档中没有找到你想找
的内容,å¯ä»¥æŸ¥çœ‹è¿™äº›æ–‡æ¡£ã€‚
- Documentation/applying-patches.txt
+ Documentation/process/applying-patches.rst
关于补ä¸æ˜¯ä»€ä¹ˆä»¥åŠå¦‚何将它打在ä¸åŒå†…核开å‘分支上的好介ç»
内核还拥有大é‡ä»Žä»£ç è‡ªåŠ¨ç”Ÿæˆçš„文档。它包å«å†…核内部APIçš„å…¨é¢ä»‹ç»ä»¥åŠå¦‚何
@@ -238,7 +238,7 @@ kernel.org网站的pub/linux/kernel/v2.6/目录下找到它。它的开å‘éµå¾ª
2.6.x.y版本由“稳定版â€å°ç»„(邮件地å€<stable@vger.kernel.org>)维护,一般隔周å‘
布新版本。
-内核æºç ä¸­çš„Documentation/stable_kernel_rules.txt文件具体æ述了å¯è¢«ç¨³å®š
+内核æºç ä¸­çš„Documentation/process/stable-kernel-rules.rst文件具体æ述了å¯è¢«ç¨³å®š
版内核接å—的修改类型以åŠå‘布的æµç¨‹ã€‚
@@ -329,7 +329,7 @@ bugzilla.kernel.org是Linux内核开å‘者们用æ¥è·Ÿè¸ªå†…æ ¸Bug的网站。æˆ
户在这个工具中报告找到的所有bug。如何使用内核bugzilla的细节请访问:
http://test.kernel.org/bugzilla/faq.html
-内核æºç ä¸»ç›®å½•ä¸­çš„REPORTING-BUGS文件里有一个很好的模æ¿ã€‚它指导用户如何报
+内核æºç ä¸»ç›®å½•ä¸­çš„admin-guide/reporting-bugs.rst文件里有一个很好的模æ¿ã€‚它指导用户如何报
å‘Šå¯èƒ½çš„内核bug以åŠéœ€è¦æ供哪些信æ¯æ¥å¸®åŠ©å†…核开å‘者们找到问题的根æºã€‚
@@ -380,7 +380,7 @@ MAINTAINERS文件中å¯ä»¥æ‰¾åˆ°ä¸åŒè¯é¢˜å¯¹åº”的邮件列表。
这几行。将你的评论加在被引用的段è½ä¹‹é—´è€Œä¸è¦æ”¾åœ¨é‚®ä»¶çš„顶部。
如果你在邮件中附带补ä¸ï¼Œè¯·ç¡®è®¤å®ƒä»¬æ˜¯å¯ä»¥ç›´æŽ¥é˜…读的纯文本(如
-Documentation/SubmittingPatches文档中所述)。内核开å‘者们ä¸å¸Œæœ›é‡åˆ°é™„件
+Documentation/process/submitting-patches.rst文档中所述)。内核开å‘者们ä¸å¸Œæœ›é‡åˆ°é™„件
或者被压缩了的补ä¸ã€‚åªæœ‰è¿™æ ·æ‰èƒ½ä¿è¯ä»–们å¯ä»¥ç›´æŽ¥è¯„论你的æ¯è¡Œä»£ç ã€‚请确ä¿
你使用的邮件å‘é€ç¨‹åºä¸ä¼šä¿®æ”¹ç©ºæ ¼å’Œåˆ¶è¡¨ç¬¦ã€‚一个防范性的测试方法是先将邮件
å‘é€ç»™è‡ªå·±ï¼Œç„¶åŽè‡ªå·±å°è¯•æ˜¯å¦å¯ä»¥é¡ºåˆ©åœ°æ‰“上收到的补ä¸ã€‚如果测试ä¸æˆåŠŸï¼Œè¯·
diff --git a/Documentation/zh_CN/IRQ.txt b/Documentation/translations/zh_CN/IRQ.txt
index 956026d..956026d 100644
--- a/Documentation/zh_CN/IRQ.txt
+++ b/Documentation/translations/zh_CN/IRQ.txt
diff --git a/Documentation/zh_CN/SecurityBugs b/Documentation/translations/zh_CN/SecurityBugs
index d21eb07..2d0fffd 100644
--- a/Documentation/zh_CN/SecurityBugs
+++ b/Documentation/translations/zh_CN/SecurityBugs
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/SecurityBugs
+Chinese translated version of Documentation/admin-guide/security-bugs.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,7 +8,7 @@ or if there is a problem with the translation.
Chinese maintainer: Harry Wei <harryxiyou@gmail.com>
---------------------------------------------------------------------
-Documentation/SecurityBugs 的中文翻译
+Documentation/admin-guide/security-bugs.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
@@ -31,7 +31,7 @@ linux内核安全团队å¯ä»¥é€šè¿‡email<security@kernel.org>æ¥è”系。这是
一组独立的安全工作人员,å¯ä»¥å¸®åŠ©æ”¹å–„æ¼æ´žæŠ¥å‘Šå¹¶ä¸”公布和å–消一个修å¤ã€‚安
全团队有å¯èƒ½ä¼šä»Žéƒ¨åˆ†çš„维护者那里引进é¢å¤–的帮助æ¥äº†è§£å¹¶ä¸”ä¿®å¤å®‰å…¨æ¼æ´žã€‚
当é‡åˆ°ä»»ä½•æ¼æ´žï¼Œæ‰€èƒ½æ供的信æ¯è¶Šå¤šå°±è¶Šèƒ½è¯Šæ–­å’Œä¿®å¤ã€‚如果你ä¸æ¸…楚什么
-是有帮助的信æ¯ï¼Œé‚£å°±è¯·é‡æ¸©ä¸€ä¸‹REPORTING-BUGS文件中的概述过程。任
+是有帮助的信æ¯ï¼Œé‚£å°±è¯·é‡æ¸©ä¸€ä¸‹admin-guide/reporting-bugs.rst文件中的概述过程。任
何攻击性的代ç éƒ½æ˜¯éžå¸¸æœ‰ç”¨çš„,未ç»æŠ¥å‘Šè€…çš„åŒæ„ä¸ä¼šè¢«å–消,除éžå®ƒå·²ç»
被公布于众。
diff --git a/Documentation/zh_CN/SubmittingDrivers b/Documentation/translations/zh_CN/SubmittingDrivers
index d313f5d..929385e 100644
--- a/Documentation/zh_CN/SubmittingDrivers
+++ b/Documentation/translations/zh_CN/SubmittingDrivers
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/SubmittingDrivers
+Chinese translated version of Documentation/process/submitting-drivers.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,7 +8,7 @@ or if there is a problem with the translation.
Chinese maintainer: Li Yang <leo@zh-kernel.org>
---------------------------------------------------------------------
-Documentation/SubmittingDrivers 的中文翻译
+Documentation/process/submitting-drivers.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
@@ -30,7 +30,7 @@ Documentation/SubmittingDrivers 的中文翻译
兴趣的是显å¡é©±åŠ¨ç¨‹åºï¼Œä½ ä¹Ÿè®¸åº”该访问 XFree86 项目(http://www.xfree86.org/)
å’Œï¼æˆ– X.org 项目 (http://x.org)。
-å¦è¯·å‚阅 Documentation/SubmittingPatches 文档。
+å¦è¯·å‚阅 Documentation/process/submitting-patches.rst 文档。
分é…设备å·
@@ -39,7 +39,7 @@ Documentation/SubmittingDrivers 的中文翻译
å—设备和字符设备的主设备å·ä¸Žä»Žè®¾å¤‡å·æ˜¯ç”± Linux 命åç¼–å·åˆ†é…æƒå¨ LANANA(
现在是 Torben Mathiasen)负责分é…。申请的网å€æ˜¯ http://www.lanana.org/。
å³ä½¿ä¸å‡†å¤‡æ交到主æµå†…核的设备驱动也需è¦åœ¨è¿™é‡Œåˆ†é…设备å·ã€‚有关详细信æ¯ï¼Œ
-请å‚阅 Documentation/devices.txt。
+请å‚阅 Documentation/admin-guide/devices.rst。
如果你使用的ä¸æ˜¯å·²ç»åˆ†é…的设备å·ï¼Œé‚£ä¹ˆå½“ä½ æ交设备驱动的时候,它将会被强
制分é…一个新的设备å·ï¼Œå³ä¾¿è¿™ä¸ªè®¾å¤‡å·å’Œä½ ä¹‹å‰å‘给客户的截然ä¸åŒã€‚
@@ -81,7 +81,7 @@ Linux 2.6:
如果你需è¦ä¸€ä¸ª Linux å’Œ NT 的通用驱动接å£ï¼Œé‚£ä¹ˆè¯·åœ¨ç”¨
户空间实现它。
-代ç ï¼š 请使用 Documentation/CodingStyle 中所æè¿°çš„ Linux 代ç é£Ž
+代ç ï¼š 请使用 Documentation/process/coding-style.rst 中所æè¿°çš„ Linux 代ç é£Ž
格。如果你的æŸäº›ä»£ç æ®µï¼ˆä¾‹å¦‚那些与 Windows 驱动程åºåŒ…å…±
享的代ç æ®µï¼‰éœ€è¦ä½¿ç”¨å…¶ä»–æ ¼å¼ï¼Œè€Œä½ å´åªå¸Œæœ›ç»´æŠ¤ä¸€ä»½ä»£ç ï¼Œ
那么请将它们很好地区分出æ¥ï¼Œå¹¶ä¸”注明原因。
@@ -107,7 +107,7 @@ Linux 2.6:
程åºæµ‹è¯•çš„指导,请å‚阅
Documentation/power/drivers-testing.txt。有关驱动程åºç”µ
æºç®¡ç†é—®é¢˜ç›¸å¯¹å…¨é¢çš„概述,请å‚阅
- Documentation/power/devices.txt。
+ Documentation/power/admin-guide/devices.rst。
管ç†ï¼š 如果一个驱动程åºçš„作者还在进行有效的维护,那么通常除了那
些明显正确且ä¸éœ€è¦ä»»ä½•æ£€æŸ¥çš„è¡¥ä¸ä»¥å¤–,其他所有的补ä¸éƒ½ä¼š
diff --git a/Documentation/zh_CN/SubmittingPatches b/Documentation/translations/zh_CN/SubmittingPatches
index 1d3a10f..e9098da 100644
--- a/Documentation/zh_CN/SubmittingPatches
+++ b/Documentation/translations/zh_CN/SubmittingPatches
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/SubmittingPatches
+Chinese translated version of Documentation/process/submitting-patches.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,7 +8,7 @@ or if there is a problem with the translation.
Chinese maintainer: TripleX Chung <triplex@zh-kernel.org>
---------------------------------------------------------------------
-Documentation/SubmittingPatches 的中文翻译
+Documentation/process/submitting-patches.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
@@ -30,9 +30,9 @@ Documentation/SubmittingPatches 的中文翻译
对于想è¦å°†æ”¹åŠ¨æ交到 Linux 内核的个人或者公å¸æ¥è¯´ï¼Œå¦‚æžœä¸ç†Ÿæ‚‰â€œè§„矩â€ï¼Œ
æ交的æµç¨‹ä¼šè®©äººç•æƒ§ã€‚本文档收集了一系列建议,这些建议å¯ä»¥å¤§å¤§çš„æ高你
的改动被接å—的机会。
-阅读 Documentation/SubmitChecklist æ¥èŽ·å¾—在æ交代ç å‰éœ€è¦æ£€æŸ¥çš„项目的列
+阅读 Documentation/process/submit-checklist.rst æ¥èŽ·å¾—在æ交代ç å‰éœ€è¦æ£€æŸ¥çš„项目的列
表。如果你在æ交一个驱动程åºï¼Œé‚£ä¹ˆåŒæ—¶é˜…读一下
-Documentation/SubmittingDrivers 。
+Documentation/process/submitting-drivers.rst 。
--------------------------
@@ -338,7 +338,7 @@ e-mail 标题中的“一å¥è¯æ¦‚è¿°â€æ‰¼è¦çš„æè¿° e-mail 中的补ä¸ã€‚â€
本节包å«å¾ˆå¤šå’Œæ交到内核的代ç æœ‰å…³çš„通常的"规则"。事情永远有例外...但是
你必须真的有好的ç†ç”±è¿™æ ·åšã€‚ä½ å¯ä»¥æŠŠæœ¬èŠ‚å«åšLinus的计算机科学入门课。
-1) 读 Document/CodingStyle
+1) 读 Document/process/coding-style.rst
Nuff 说过,如果你的代ç å’Œè¿™ä¸ªå离太多,那么它有å¯èƒ½ä¼šè¢«æ‹’ç»ï¼Œæ²¡æœ‰æ›´å¤šçš„
审查,没有更多的评价。
@@ -404,8 +404,8 @@ Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
<https://lkml.org/lkml/2005/7/11/336>
-Kernel Documentation/CodingStyle:
- <http://sosdg.org/~coywolf/lxr/source/Documentation/CodingStyle>
+Kernel Documentation/process/coding-style.rst:
+ <http://sosdg.org/~coywolf/lxr/source/Documentation/process/coding-style.rst>
Linus Torvalds's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>
diff --git a/Documentation/zh_CN/arm/Booting b/Documentation/translations/zh_CN/arm/Booting
index 6158a64..1fe866f 100644
--- a/Documentation/zh_CN/arm/Booting
+++ b/Documentation/translations/zh_CN/arm/Booting
@@ -68,7 +68,7 @@ RAM,或å¯èƒ½ä½¿ç”¨å¯¹è¿™ä¸ªè®¾å¤‡å·²çŸ¥çš„ RAM ä¿¡æ¯ï¼Œè¿˜å¯èƒ½ä½¿ç”¨ä»»ä½•
作为替代方案,引导加载程åºä¹Ÿå¯ä»¥é€šè¿‡æ ‡ç­¾åˆ—表传递相关的'console='
选项给内核以指定æŸä¸ªä¸²å£ï¼Œè€Œä¸²å£æ•°æ®æ ¼å¼çš„选项在以下文档中æ述:
- Documentation/kernel-parameters.txt。
+ Documentation/admin-guide/kernel-parameters.rst。
3ã€æ£€æµ‹æœºå™¨ç±»åž‹
diff --git a/Documentation/zh_CN/arm/kernel_user_helpers.txt b/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt
index cd7fc8f..cd7fc8f 100644
--- a/Documentation/zh_CN/arm/kernel_user_helpers.txt
+++ b/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt
diff --git a/Documentation/zh_CN/arm64/booting.txt b/Documentation/translations/zh_CN/arm64/booting.txt
index c1dd968..c1dd968 100644
--- a/Documentation/zh_CN/arm64/booting.txt
+++ b/Documentation/translations/zh_CN/arm64/booting.txt
diff --git a/Documentation/zh_CN/arm64/legacy_instructions.txt b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
index 68362a1..68362a1 100644
--- a/Documentation/zh_CN/arm64/legacy_instructions.txt
+++ b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
diff --git a/Documentation/zh_CN/arm64/memory.txt b/Documentation/translations/zh_CN/arm64/memory.txt
index 19b3a52..19b3a52 100644
--- a/Documentation/zh_CN/arm64/memory.txt
+++ b/Documentation/translations/zh_CN/arm64/memory.txt
diff --git a/Documentation/zh_CN/arm64/silicon-errata.txt b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
index 39477c7..39477c7 100644
--- a/Documentation/zh_CN/arm64/silicon-errata.txt
+++ b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
diff --git a/Documentation/zh_CN/arm64/tagged-pointers.txt b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
index 2664d1b..2664d1b 100644
--- a/Documentation/zh_CN/arm64/tagged-pointers.txt
+++ b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
diff --git a/Documentation/zh_CN/basic_profiling.txt b/Documentation/translations/zh_CN/basic_profiling.txt
index 1e6bf0b..1e6bf0b 100644
--- a/Documentation/zh_CN/basic_profiling.txt
+++ b/Documentation/translations/zh_CN/basic_profiling.txt
diff --git a/Documentation/zh_CN/email-clients.txt b/Documentation/translations/zh_CN/email-clients.txt
index b9a1a3e..ec31d97 100644
--- a/Documentation/zh_CN/email-clients.txt
+++ b/Documentation/translations/zh_CN/email-clients.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/email-clients.txt
+Chinese translated version of Documentation/process/email-clients.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,7 +8,7 @@ or if there is a problem with the translation.
Chinese maintainer: Harry Wei <harryxiyou@gmail.com>
---------------------------------------------------------------------
-Documentation/email-clients.txt 的中文翻译
+Documentation/process/email-clients.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
diff --git a/Documentation/zh_CN/filesystems/sysfs.txt b/Documentation/translations/zh_CN/filesystems/sysfs.txt
index 7d3b05e..7d3b05e 100644
--- a/Documentation/zh_CN/filesystems/sysfs.txt
+++ b/Documentation/translations/zh_CN/filesystems/sysfs.txt
diff --git a/Documentation/zh_CN/gpio.txt b/Documentation/translations/zh_CN/gpio.txt
index bce9725..bce9725 100644
--- a/Documentation/zh_CN/gpio.txt
+++ b/Documentation/translations/zh_CN/gpio.txt
diff --git a/Documentation/zh_CN/io_ordering.txt b/Documentation/translations/zh_CN/io_ordering.txt
index e592daf..e592daf 100644
--- a/Documentation/zh_CN/io_ordering.txt
+++ b/Documentation/translations/zh_CN/io_ordering.txt
diff --git a/Documentation/zh_CN/magic-number.txt b/Documentation/translations/zh_CN/magic-number.txt
index e9db693..e9db693 100644
--- a/Documentation/zh_CN/magic-number.txt
+++ b/Documentation/translations/zh_CN/magic-number.txt
diff --git a/Documentation/zh_CN/oops-tracing.txt b/Documentation/translations/zh_CN/oops-tracing.txt
index 9312608..41ab53c 100644
--- a/Documentation/zh_CN/oops-tracing.txt
+++ b/Documentation/translations/zh_CN/oops-tracing.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/oops-tracing.txt
+Chinese translated version of Documentation/admin-guide/oops-tracing.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,7 +8,7 @@ or if there is a problem with the translation.
Chinese maintainer: Dave Young <hidave.darkstar@gmail.com>
---------------------------------------------------------------------
-Documentation/oops-tracing.txt 的中文翻译
+Documentation/admin-guide/oops-tracing.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
@@ -50,7 +50,7 @@ cat /proc/kmsg > file, 然而你必须介入中止传输, kmsg是一个“æ°
æ¯æ»šåŠ¨åˆ°äº†ç»ˆç«¯çš„上é¢ï¼Œä½ ä¼šå‘现以高分辩率å¯åŠ¨ï¼ˆæ¯”如,vga=791)会让你读到更多的文
本。(注æ„:这需è¦vesafb,所以对‘早期’的oops没有帮助)
-(2)用串å£ç»ˆç«¯å¯åŠ¨ï¼ˆè¯·å‚看Documentation/serial-console.txt),è¿è¡Œä¸€ä¸ªnull
+(2)用串å£ç»ˆç«¯å¯åŠ¨ï¼ˆè¯·å‚看Documentation/admin-guide/serial-console.rst),è¿è¡Œä¸€ä¸ªnull
modem到å¦ä¸€å°æœºå™¨å¹¶ç”¨ä½ å–œæ¬¢çš„通讯工具获å–输出。Minicom工作地很好。
(3)使用Kdump(请å‚看Documentation/kdump/kdump.txt),
diff --git a/Documentation/zh_CN/sparse.txt b/Documentation/translations/zh_CN/sparse.txt
index cc144e5..cc144e5 100644
--- a/Documentation/zh_CN/sparse.txt
+++ b/Documentation/translations/zh_CN/sparse.txt
diff --git a/Documentation/zh_CN/stable_api_nonsense.txt b/Documentation/translations/zh_CN/stable_api_nonsense.txt
index c26a27d..a2b27fa 100644
--- a/Documentation/zh_CN/stable_api_nonsense.txt
+++ b/Documentation/translations/zh_CN/stable_api_nonsense.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/stable_api_nonsense.txt
+Chinese translated version of Documentation/process/stable-api-nonsense.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have problem
@@ -9,7 +9,7 @@ is problem with translation.
Maintainer: Greg Kroah-Hartman <greg@kroah.com>
Chinese maintainer: TripleX Chung <zhongyu@18mail.cn>
---------------------------------------------------------------------
-Documentation/stable_api_nonsense.txt 的中文翻译
+Documentation/process/stable-api-nonsense.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
diff --git a/Documentation/zh_CN/stable_kernel_rules.txt b/Documentation/translations/zh_CN/stable_kernel_rules.txt
index 26ea5ed..db4ba5a 100644
--- a/Documentation/zh_CN/stable_kernel_rules.txt
+++ b/Documentation/translations/zh_CN/stable_kernel_rules.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/stable_kernel_rules.txt
+Chinese translated version of Documentation/process/stable-kernel-rules.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,7 +8,7 @@ or if there is a problem with the translation.
Chinese maintainer: TripleX Chung <triplex@zh-kernel.org>
---------------------------------------------------------------------
-Documentation/stable_kernel_rules.txt 的中文翻译
+Documentation/process/stable-kernel-rules.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
@@ -38,7 +38,7 @@ Documentation/stable_kernel_rules.txt 的中文翻译
- 没有“ç†è®ºä¸Šçš„竞争æ¡ä»¶â€ï¼Œé™¤éžèƒ½ç»™å‡ºç«žäº‰æ¡ä»¶å¦‚何被利用的解释。
- ä¸èƒ½å­˜åœ¨ä»»ä½•çš„“ç碎的â€ä¿®æ­£ï¼ˆæ‹¼å†™ä¿®æ­£ï¼ŒåŽ»æŽ‰å¤šä½™ç©ºæ ¼ä¹‹ç±»çš„)。
- 必须被相关å­ç³»ç»Ÿçš„维护者接å—。
- - å¿…é¡»éµå¾ªDocumentation/SubmittingPatches里的规则。
+ - å¿…é¡»éµå¾ªDocumentation/process/submitting-patches.rst里的规则。
å‘稳定版代ç æ ‘æ交补ä¸çš„过程:
diff --git a/Documentation/zh_CN/video4linux/omap3isp.txt b/Documentation/translations/zh_CN/video4linux/omap3isp.txt
index 67ffbf3..67ffbf3 100644
--- a/Documentation/zh_CN/video4linux/omap3isp.txt
+++ b/Documentation/translations/zh_CN/video4linux/omap3isp.txt
diff --git a/Documentation/zh_CN/video4linux/v4l2-framework.txt b/Documentation/translations/zh_CN/video4linux/v4l2-framework.txt
index 698660b..698660b 100644
--- a/Documentation/zh_CN/video4linux/v4l2-framework.txt
+++ b/Documentation/translations/zh_CN/video4linux/v4l2-framework.txt
diff --git a/Documentation/zh_CN/volatile-considered-harmful.txt b/Documentation/translations/zh_CN/volatile-considered-harmful.txt
index ba8149d..4751259 100644
--- a/Documentation/zh_CN/volatile-considered-harmful.txt
+++ b/Documentation/translations/zh_CN/volatile-considered-harmful.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/volatile-considered-harmful.txt
+Chinese translated version of Documentation/process/volatile-considered-harmful.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Jonathan Corbet <corbet@lwn.net>
Chinese maintainer: Bryan Wu <bryan.wu@analog.com>
---------------------------------------------------------------------
-Documentation/volatile-considered-harmful.txt 的中文翻译
+Documentation/process/volatile-considered-harmful.rst 的中文翻译
如果想评论或更新本文的内容,请直接è”系原文档的维护者。如果你使用英文
交æµæœ‰å›°éš¾çš„è¯ï¼Œä¹Ÿå¯ä»¥å‘中文版维护者求助。如果本翻译更新ä¸åŠæ—¶æˆ–者翻
diff --git a/Documentation/virtual/kvm/review-checklist.txt b/Documentation/virtual/kvm/review-checklist.txt
index a850986..a83b276 100644
--- a/Documentation/virtual/kvm/review-checklist.txt
+++ b/Documentation/virtual/kvm/review-checklist.txt
@@ -1,8 +1,8 @@
Review checklist for kvm patches
================================
-1. The patch must follow Documentation/CodingStyle and
- Documentation/SubmittingPatches.
+1. The patch must follow Documentation/process/coding-style.rst and
+ Documentation/process/submitting-patches.rst.
2. Patches should be against kvm.git master branch.
diff --git a/Documentation/vm/numa b/Documentation/vm/numa
index e0b58c0..a08f716 100644
--- a/Documentation/vm/numa
+++ b/Documentation/vm/numa
@@ -82,7 +82,7 @@ such as DMA or DMA32, represent relatively scarce resources. Linux chooses
a default zonelist order based on the sizes of the various zone types relative
to the total memory of the node and the total memory of the system. The
default zonelist order may be overridden using the numa_zonelist_order kernel
-boot parameter or sysctl. [see Documentation/kernel-parameters.txt and
+boot parameter or sysctl. [see Documentation/admin-guide/kernel-parameters.rst and
Documentation/sysctl/vm.txt]
By default, Linux will attempt to satisfy memory allocation requests from the
diff --git a/Documentation/watchdog/convert_drivers_to_kernel_api.txt b/Documentation/watchdog/convert_drivers_to_kernel_api.txt
index 271b885..9fffb29 100644
--- a/Documentation/watchdog/convert_drivers_to_kernel_api.txt
+++ b/Documentation/watchdog/convert_drivers_to_kernel_api.txt
@@ -213,6 +213,6 @@ The entry for the driver now needs to select WATCHDOG_CORE:
Create a patch and send it to upstream
--------------------------------------
-Make sure you understood Documentation/SubmittingPatches and send your patch to
+Make sure you understood Documentation/process/submitting-patches.rst and send your patch to
linux-watchdog@vger.kernel.org. We are looking forward to it :)
diff --git a/Documentation/watchdog/watchdog-parameters.txt b/Documentation/watchdog/watchdog-parameters.txt
index a8d3642..e21850e 100644
--- a/Documentation/watchdog/watchdog-parameters.txt
+++ b/Documentation/watchdog/watchdog-parameters.txt
@@ -4,7 +4,7 @@ be listed here unless the driver has its own driver-specific information
file.
-See Documentation/kernel-parameters.txt for information on
+See Documentation/admin-guide/kernel-parameters.rst for information on
providing kernel parameters for builtin drivers versus loadable
modules.
diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt
index 9da6f35..5e9b826 100644
--- a/Documentation/x86/boot.txt
+++ b/Documentation/x86/boot.txt
@@ -921,7 +921,7 @@ They should normally not be deleted from the kernel command line even
though not all of them are actually meaningful to the kernel. Boot
loader authors who need additional command line options for the boot
loader itself should get them registered in
-Documentation/kernel-parameters.txt to make sure they will not
+Documentation/admin-guide/kernel-parameters.rst to make sure they will not
conflict with actual kernel options now or in the future.
vga=<mode>
diff --git a/MAINTAINERS b/MAINTAINERS
index 411e3b8..e13497c 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -35,13 +35,13 @@ trivial patch so apply some common sense.
PLEASE check your patch with the automated style checker
(scripts/checkpatch.pl) to catch trivial style violations.
- See Documentation/CodingStyle for guidance here.
+ See Documentation/process/coding-style.rst for guidance here.
PLEASE CC: the maintainers and mailing lists that are generated
by scripts/get_maintainer.pl. The results returned by the
script will be best if you have git installed and are making
your changes in a branch derived from Linus' latest git tree.
- See Documentation/SubmittingPatches for details.
+ See Documentation/process/submitting-patches.rst for details.
PLEASE try to include any credit lines you want added with the
patch. It avoids people being missed off by mistake and makes
@@ -54,7 +54,7 @@ trivial patch so apply some common sense.
of the Linux Foundation certificate of contribution and should
include a Signed-off-by: line. The current version of this
"Developer's Certificate of Origin" (DCO) is listed in the file
- Documentation/SubmittingPatches.
+ Documentation/process/submitting-patches.rst.
6. Make sure you have the right to send any changes you make. If you
do changes at work you may find your employer owns the patch
@@ -2930,7 +2930,7 @@ CAPELLA MICROSYSTEMS LIGHT SENSOR DRIVER
M: Kevin Tsai <ktsai@capellamicro.com>
S: Maintained
F: drivers/iio/light/cm*
-F: Documentation/devicetree/bindings/i2c/trivial-devices.txt
+F: Documentation/devicetree/bindings/i2c/trivial-admin-guide/devices.rst
CAVIUM I2C DRIVER
M: Jan Glauber <jglauber@cavium.com>
@@ -3078,7 +3078,7 @@ M: Harry Wei <harryxiyou@gmail.com>
L: xiyoulinuxkernelgroup@googlegroups.com (subscribers-only)
L: linux-kernel@zh-kernel.org (moderated for non-subscribers)
S: Maintained
-F: Documentation/zh_CN/
+F: Documentation/translations/zh_CN/
CHIPIDEA USB HIGH SPEED DUAL ROLE CONTROLLER
M: Peter Chen <Peter.Chen@nxp.com>
@@ -11465,7 +11465,7 @@ STABLE BRANCH
M: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
L: stable@vger.kernel.org
S: Supported
-F: Documentation/stable_kernel_rules.txt
+F: Documentation/process/stable-kernel-rules.rst
STAGING SUBSYSTEM
M: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
@@ -12906,7 +12906,7 @@ M: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
L: devel@driverdev.osuosl.org
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core.git
-F: Documentation/vme_api.txt
+F: Documentation/driver-api/vme.rst
F: drivers/staging/vme/
F: drivers/vme/
F: include/linux/vme*
@@ -13130,7 +13130,7 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq.git
S: Maintained
F: include/linux/workqueue.h
F: kernel/workqueue.c
-F: Documentation/workqueue.txt
+F: Documentation/core-api/workqueue.rst
X-POWERS MULTIFUNCTION PMIC DEVICE DRIVERS
M: Chen-Yu Tsai <wens@csie.org>
diff --git a/README b/README
index 09f34f78..b2ba4aaa 100644
--- a/README
+++ b/README
@@ -1,400 +1,18 @@
- Linux kernel release 4.x <http://kernel.org/>
+Linux kernel
+============
-These are the release notes for Linux version 4. Read them carefully,
-as they tell you what this is all about, explain how to install the
-kernel, and what to do if something goes wrong.
+This file was moved to Documentation/admin-guide/README.rst
-WHAT IS LINUX?
+Please notice that there are several guides for kernel developers and users.
+These guides can be rendered in a number of formats, like HTML and PDF.
- Linux is a clone of the operating system Unix, written from scratch by
- Linus Torvalds with assistance from a loosely-knit team of hackers across
- the Net. It aims towards POSIX and Single UNIX Specification compliance.
+In order to build the documentation, use ``make htmldocs`` or
+``make pdfdocs``.
- It has all the features you would expect in a modern fully-fledged Unix,
- including true multitasking, virtual memory, shared libraries, demand
- loading, shared copy-on-write executables, proper memory management,
- and multistack networking including IPv4 and IPv6.
-
- It is distributed under the GNU General Public License - see the
- accompanying COPYING file for more details.
-
-ON WHAT HARDWARE DOES IT RUN?
-
- Although originally developed first for 32-bit x86-based PCs (386 or higher),
- today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
- UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
- IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
- Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.
-
- Linux is easily portable to most general-purpose 32- or 64-bit architectures
- as long as they have a paged memory management unit (PMMU) and a port of the
- GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
- also been ported to a number of architectures without a PMMU, although
- functionality is then obviously somewhat limited.
- Linux has also been ported to itself. You can now run the kernel as a
- userspace application - this is called UserMode Linux (UML).
-
-DOCUMENTATION:
-
- - There is a lot of documentation available both in electronic form on
- the Internet and in books, both Linux-specific and pertaining to
- general UNIX questions. I'd recommend looking into the documentation
- subdirectories on any Linux FTP site for the LDP (Linux Documentation
- Project) books. This README is not meant to be documentation on the
- system: there are much better sources available.
-
- - There are various README files in the Documentation/ subdirectory:
- these typically contain kernel-specific installation notes for some
- drivers for example. See Documentation/00-INDEX for a list of what
- is contained in each file. Please read the Changes file, as it
- contains information about the problems, which may result by upgrading
- your kernel.
-
- - The Documentation/DocBook/ subdirectory contains several guides for
- kernel developers and users. These guides can be rendered in a
- number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others.
- After installation, "make psdocs", "make pdfdocs", "make htmldocs",
- or "make mandocs" will render the documentation in the requested format.
-
-INSTALLING the kernel source:
-
- - If you install the full sources, put the kernel tarball in a
- directory where you have permissions (e.g. your home directory) and
- unpack it:
-
- xz -cd linux-4.X.tar.xz | tar xvf -
-
- Replace "X" with the version number of the latest kernel.
-
- Do NOT use the /usr/src/linux area! This area has a (usually
- incomplete) set of kernel headers that are used by the library header
- files. They should match the library, and not get messed up by
- whatever the kernel-du-jour happens to be.
-
- - You can also upgrade between 4.x releases by patching. Patches are
- distributed in the xz format. To install by patching, get all the
- newer patch files, enter the top level directory of the kernel source
- (linux-4.X) and execute:
-
- xz -cd ../patch-4.x.xz | patch -p1
-
- Replace "x" for all versions bigger than the version "X" of your current
- source tree, _in_order_, and you should be ok. You may want to remove
- the backup files (some-file-name~ or some-file-name.orig), and make sure
- that there are no failed patches (some-file-name# or some-file-name.rej).
- If there are, either you or I have made a mistake.
-
- Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
- (also known as the -stable kernels) are not incremental but instead apply
- directly to the base 4.x kernel. For example, if your base kernel is 4.0
- and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
- and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
- want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
- patch -R) _before_ applying the 4.0.3 patch. You can read more on this in
- Documentation/applying-patches.txt
-
- Alternatively, the script patch-kernel can be used to automate this
- process. It determines the current kernel version and applies any
- patches found.
-
- linux/scripts/patch-kernel linux
-
- The first argument in the command above is the location of the
- kernel source. Patches are applied from the current directory, but
- an alternative directory can be specified as the second argument.
-
- - Make sure you have no stale .o files and dependencies lying around:
-
- cd linux
- make mrproper
-
- You should now have the sources correctly installed.
-
-SOFTWARE REQUIREMENTS
-
- Compiling and running the 4.x kernels requires up-to-date
- versions of various software packages. Consult
- Documentation/Changes for the minimum version numbers required
- and how to get updates for these packages. Beware that using
- excessively old versions of these packages can cause indirect
- errors that are very difficult to track down, so don't assume that
- you can just update packages when obvious problems arise during
- build or operation.
-
-BUILD directory for the kernel:
-
- When compiling the kernel, all output files will per default be
- stored together with the kernel source code.
- Using the option "make O=output/dir" allows you to specify an alternate
- place for the output files (including .config).
- Example:
-
- kernel source code: /usr/src/linux-4.X
- build directory: /home/name/build/kernel
-
- To configure and build the kernel, use:
-
- cd /usr/src/linux-4.X
- make O=/home/name/build/kernel menuconfig
- make O=/home/name/build/kernel
- sudo make O=/home/name/build/kernel modules_install install
-
- Please note: If the 'O=output/dir' option is used, then it must be
- used for all invocations of make.
-
-CONFIGURING the kernel:
-
- Do not skip this step even if you are only upgrading one minor
- version. New configuration options are added in each release, and
- odd problems will turn up if the configuration files are not set up
- as expected. If you want to carry your existing configuration to a
- new version with minimal work, use "make oldconfig", which will
- only ask you for the answers to new questions.
-
- - Alternative configuration commands are:
-
- "make config" Plain text interface.
-
- "make menuconfig" Text based color menus, radiolists & dialogs.
-
- "make nconfig" Enhanced text based color menus.
-
- "make xconfig" Qt based configuration tool.
-
- "make gconfig" GTK+ based configuration tool.
-
- "make oldconfig" Default all questions based on the contents of
- your existing ./.config file and asking about
- new config symbols.
-
- "make silentoldconfig"
- Like above, but avoids cluttering the screen
- with questions already answered.
- Additionally updates the dependencies.
-
- "make olddefconfig"
- Like above, but sets new symbols to their default
- values without prompting.
-
- "make defconfig" Create a ./.config file by using the default
- symbol values from either arch/$ARCH/defconfig
- or arch/$ARCH/configs/${PLATFORM}_defconfig,
- depending on the architecture.
-
- "make ${PLATFORM}_defconfig"
- Create a ./.config file by using the default
- symbol values from
- arch/$ARCH/configs/${PLATFORM}_defconfig.
- Use "make help" to get a list of all available
- platforms of your architecture.
-
- "make allyesconfig"
- Create a ./.config file by setting symbol
- values to 'y' as much as possible.
-
- "make allmodconfig"
- Create a ./.config file by setting symbol
- values to 'm' as much as possible.
-
- "make allnoconfig" Create a ./.config file by setting symbol
- values to 'n' as much as possible.
-
- "make randconfig" Create a ./.config file by setting symbol
- values to random values.
-
- "make localmodconfig" Create a config based on current config and
- loaded modules (lsmod). Disables any module
- option that is not needed for the loaded modules.
-
- To create a localmodconfig for another machine,
- store the lsmod of that machine into a file
- and pass it in as a LSMOD parameter.
-
- target$ lsmod > /tmp/mylsmod
- target$ scp /tmp/mylsmod host:/tmp
-
- host$ make LSMOD=/tmp/mylsmod localmodconfig
-
- The above also works when cross compiling.
-
- "make localyesconfig" Similar to localmodconfig, except it will convert
- all module options to built in (=y) options.
-
- You can find more information on using the Linux kernel config tools
- in Documentation/kbuild/kconfig.txt.
-
- - NOTES on "make config":
-
- - Having unnecessary drivers will make the kernel bigger, and can
- under some circumstances lead to problems: probing for a
- nonexistent controller card may confuse your other controllers
-
- - A kernel with math-emulation compiled in will still use the
- coprocessor if one is present: the math emulation will just
- never get used in that case. The kernel will be slightly larger,
- but will work on different machines regardless of whether they
- have a math coprocessor or not.
-
- - The "kernel hacking" configuration details usually result in a
- bigger or slower kernel (or both), and can even make the kernel
- less stable by configuring some routines to actively try to
- break bad code to find kernel problems (kmalloc()). Thus you
- should probably answer 'n' to the questions for "development",
- "experimental", or "debugging" features.
-
-COMPILING the kernel:
-
- - Make sure you have at least gcc 3.2 available.
- For more information, refer to Documentation/Changes.
-
- Please note that you can still run a.out user programs with this kernel.
-
- - Do a "make" to create a compressed kernel image. It is also
- possible to do "make install" if you have lilo installed to suit the
- kernel makefiles, but you may want to check your particular lilo setup first.
-
- To do the actual install, you have to be root, but none of the normal
- build should require that. Don't take the name of root in vain.
-
- - If you configured any of the parts of the kernel as `modules', you
- will also have to do "make modules_install".
-
- - Verbose kernel compile/build output:
-
- Normally, the kernel build system runs in a fairly quiet mode (but not
- totally silent). However, sometimes you or other kernel developers need
- to see compile, link, or other commands exactly as they are executed.
- For this, use "verbose" build mode. This is done by passing
- "V=1" to the "make" command, e.g.
-
- make V=1 all
-
- To have the build system also tell the reason for the rebuild of each
- target, use "V=2". The default is "V=0".
-
- - Keep a backup kernel handy in case something goes wrong. This is
- especially true for the development releases, since each new release
- contains new code which has not been debugged. Make sure you keep a
- backup of the modules corresponding to that kernel, as well. If you
- are installing a new kernel with the same version number as your
- working kernel, make a backup of your modules directory before you
- do a "make modules_install".
-
- Alternatively, before compiling, use the kernel config option
- "LOCALVERSION" to append a unique suffix to the regular kernel version.
- LOCALVERSION can be set in the "General Setup" menu.
-
- - In order to boot your new kernel, you'll need to copy the kernel
- image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
- to the place where your regular bootable kernel is found.
-
- - Booting a kernel directly from a floppy without the assistance of a
- bootloader such as LILO, is no longer supported.
-
- If you boot Linux from the hard drive, chances are you use LILO, which
- uses the kernel image as specified in the file /etc/lilo.conf. The
- kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
- /boot/bzImage. To use the new kernel, save a copy of the old image
- and copy the new image over the old one. Then, you MUST RERUN LILO
- to update the loading map! If you don't, you won't be able to boot
- the new kernel image.
-
- Reinstalling LILO is usually a matter of running /sbin/lilo.
- You may wish to edit /etc/lilo.conf to specify an entry for your
- old kernel image (say, /vmlinux.old) in case the new one does not
- work. See the LILO docs for more information.
-
- After reinstalling LILO, you should be all set. Shutdown the system,
- reboot, and enjoy!
-
- If you ever need to change the default root device, video mode,
- ramdisk size, etc. in the kernel image, use the 'rdev' program (or
- alternatively the LILO boot options when appropriate). No need to
- recompile the kernel to change these parameters.
-
- - Reboot with the new kernel and enjoy.
-
-IF SOMETHING GOES WRONG:
-
- - If you have problems that seem to be due to kernel bugs, please check
- the file MAINTAINERS to see if there is a particular person associated
- with the part of the kernel that you are having trouble with. If there
- isn't anyone listed there, then the second best thing is to mail
- them to me (torvalds@linux-foundation.org), and possibly to any other
- relevant mailing-list or to the newsgroup.
-
- - In all bug-reports, *please* tell what kernel you are talking about,
- how to duplicate the problem, and what your setup is (use your common
- sense). If the problem is new, tell me so, and if the problem is
- old, please try to tell me when you first noticed it.
-
- - If the bug results in a message like
-
- unable to handle kernel paging request at address C0000010
- Oops: 0002
- EIP: 0010:XXXXXXXX
- eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
- esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
- ds: xxxx es: xxxx fs: xxxx gs: xxxx
- Pid: xx, process nr: xx
- xx xx xx xx xx xx xx xx xx xx
-
- or similar kernel debugging information on your screen or in your
- system log, please duplicate it *exactly*. The dump may look
- incomprehensible to you, but it does contain information that may
- help debugging the problem. The text above the dump is also
- important: it tells something about why the kernel dumped code (in
- the above example, it's due to a bad kernel pointer). More information
- on making sense of the dump is in Documentation/oops-tracing.txt
-
- - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
- as is, otherwise you will have to use the "ksymoops" program to make
- sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
- This utility can be downloaded from
- ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
- Alternatively, you can do the dump lookup by hand:
-
- - In debugging dumps like the above, it helps enormously if you can
- look up what the EIP value means. The hex value as such doesn't help
- me or anybody else very much: it will depend on your particular
- kernel setup. What you should do is take the hex value from the EIP
- line (ignore the "0010:"), and look it up in the kernel namelist to
- see which kernel function contains the offending address.
-
- To find out the kernel function name, you'll need to find the system
- binary associated with the kernel that exhibited the symptom. This is
- the file 'linux/vmlinux'. To extract the namelist and match it against
- the EIP from the kernel crash, do:
-
- nm vmlinux | sort | less
-
- This will give you a list of kernel addresses sorted in ascending
- order, from which it is simple to find the function that contains the
- offending address. Note that the address given by the kernel
- debugging messages will not necessarily match exactly with the
- function addresses (in fact, that is very unlikely), so you can't
- just 'grep' the list: the list will, however, give you the starting
- point of each kernel function, so by looking for the function that
- has a starting address lower than the one you are searching for but
- is followed by a function with a higher address you will find the one
- you want. In fact, it may be a good idea to include a bit of
- "context" in your problem report, giving a few lines around the
- interesting one.
-
- If you for some reason cannot do the above (you have a pre-compiled
- kernel image or similar), telling me as much about your setup as
- possible will help. Please read the REPORTING-BUGS document for details.
-
- - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
- cannot change values or set break points.) To do this, first compile the
- kernel with -g; edit arch/x86/Makefile appropriately, then do a "make
- clean". You'll also need to enable CONFIG_PROC_FS (via "make config").
-
- After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
- You can now use all the usual gdb commands. The command to look up the
- point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
- with the EIP value.)
-
- gdb'ing a non-running kernel currently fails because gdb (wrongly)
- disregards the starting offset for which the kernel is compiled.
+There are various text files in the Documentation/ subdirectory,
+several of them using the Restructured Text markup notation.
+See Documentation/00-INDEX for a list of what is contained in each file.
+Please read the Documentation/process/changes.rst file, as it contains the
+requirements for building and running the kernel, and information about
+the problems which may result by upgrading your kernel.
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index bada636..19d237b 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -1525,7 +1525,7 @@ config X86_CHECK_BIOS_CORRUPTION
line. By default it scans the low 64k of memory every 60
seconds; see the memory_corruption_check_size and
memory_corruption_check_period parameters in
- Documentation/kernel-parameters.txt to adjust this.
+ Documentation/admin-guide/kernel-parameters.rst to adjust this.
When enabled with the default parameters, this option has
almost no overhead, as it reserves a relatively small amount
diff --git a/drivers/acpi/Kconfig b/drivers/acpi/Kconfig
index 535e782..c5f9cbe 100644
--- a/drivers/acpi/Kconfig
+++ b/drivers/acpi/Kconfig
@@ -342,7 +342,7 @@ config ACPI_DEBUG
Use the acpi.debug_layer and acpi.debug_level kernel command-line
parameters documented in Documentation/acpi/debug.txt and
- Documentation/kernel-parameters.txt to control the type and
+ Documentation/admin-guide/kernel-parameters.rst to control the type and
amount of debug output.
config ACPI_PCI_SLOT
diff --git a/drivers/ata/libata-core.c b/drivers/ata/libata-core.c
index 223a770..59ce0dd 100644
--- a/drivers/ata/libata-core.c
+++ b/drivers/ata/libata-core.c
@@ -129,7 +129,7 @@ static int ata_force_tbl_size;
static char ata_force_param_buf[PAGE_SIZE] __initdata;
/* param_buf is thrown away after initialization, disallow read */
module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
-MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
+MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
static int atapi_enabled = 1;
module_param(atapi_enabled, int, 0444);
diff --git a/drivers/char/pcmcia/cm4000_cs.c b/drivers/char/pcmcia/cm4000_cs.c
index c115217..e051fc8 100644
--- a/drivers/char/pcmcia/cm4000_cs.c
+++ b/drivers/char/pcmcia/cm4000_cs.c
@@ -14,7 +14,7 @@
* (C) 2000,2001,2002,2003,2004 Omnikey AG
*
* (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
- * - Adhere to Kernel CodingStyle
+ * - Adhere to Kernel process/coding-style.rst
* - Port to 2.6.13 "new" style PCMCIA
* - Check for copy_{from,to}_user return values
* - Use nonseekable_open()
@@ -151,7 +151,7 @@ static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
static struct class *cmm_class;
/* This table doesn't use spaces after the comma between fields and thus
- * violates CodingStyle. However, I don't really think wrapping it around will
+ * violates process/coding-style.rst. However, I don't really think wrapping it around will
* make it any clearer to read -HW */
static unsigned char fi_di_table[10][14] = {
/*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
diff --git a/drivers/net/can/grcan.c b/drivers/net/can/grcan.c
index db9538d..a7be12d 100644
--- a/drivers/net/can/grcan.c
+++ b/drivers/net/can/grcan.c
@@ -15,7 +15,7 @@
* See "Documentation/ABI/testing/sysfs-class-net-grcan" for information on the
* sysfs interface.
*
- * See "Documentation/kernel-parameters.txt" for information on the module
+ * See "Documentation/admin-guide/kernel-parameters.rst" for information on the module
* parameters.
*
* This program is free software; you can redistribute it and/or modify it
diff --git a/drivers/nvdimm/Kconfig b/drivers/nvdimm/Kconfig
index 124c243..59e7501 100644
--- a/drivers/nvdimm/Kconfig
+++ b/drivers/nvdimm/Kconfig
@@ -28,7 +28,7 @@ config BLK_DEV_PMEM
non-standard OEM-specific E820 memory type (type-12, see
CONFIG_X86_PMEM_LEGACY), or it is manually specified by the
'memmap=nn[KMG]!ss[KMG]' kernel command line (see
- Documentation/kernel-parameters.txt). This driver converts
+ Documentation/admin-guide/kernel-parameters.rst). This driver converts
these persistent memory ranges into block devices that are
capable of DAX (direct-access) file system mappings. See
Documentation/nvdimm/nvdimm.txt for more details.
diff --git a/drivers/staging/vme/devices/vme_user.c b/drivers/staging/vme/devices/vme_user.c
index 5dd430f..d84dffb 100644
--- a/drivers/staging/vme/devices/vme_user.c
+++ b/drivers/staging/vme/devices/vme_user.c
@@ -47,7 +47,7 @@ static const char driver_name[] = "vme_user";
static int bus[VME_USER_BUS_MAX];
static unsigned int bus_num;
-/* Currently Documentation/devices.txt defines the following for VME:
+/* Currently Documentation/admin-guide/devices.rst defines the following for VME:
*
* 221 char VME bus
* 0 = /dev/bus/vme/m0 First master image
diff --git a/drivers/video/fbdev/skeletonfb.c b/drivers/video/fbdev/skeletonfb.c
index f948baa1..e219a0a2 100644
--- a/drivers/video/fbdev/skeletonfb.c
+++ b/drivers/video/fbdev/skeletonfb.c
@@ -836,7 +836,7 @@ static void xxxfb_remove(struct pci_dev *dev)
* @dev: PCI device
* @msg: the suspend event code.
*
- * See Documentation/power/devices.txt for more information
+ * See Documentation/power/admin-guide/devices.rst for more information
*/
static int xxxfb_suspend(struct pci_dev *dev, pm_message_t msg)
{
@@ -851,7 +851,7 @@ static int xxxfb_suspend(struct pci_dev *dev, pm_message_t msg)
* xxxfb_resume - Optional but recommended function. Resume the device.
* @dev: PCI device
*
- * See Documentation/power/devices.txt for more information
+ * See Documentation/power/admin-guide/devices.rst for more information
*/
static int xxxfb_resume(struct pci_dev *dev)
{
@@ -915,7 +915,7 @@ static void __exit xxxfb_exit(void)
* @dev: platform device
* @msg: the suspend event code.
*
- * See Documentation/power/devices.txt for more information
+ * See Documentation/power/admin-guide/devices.rst for more information
*/
static int xxxfb_suspend(struct platform_device *dev, pm_message_t msg)
{
@@ -930,7 +930,7 @@ static int xxxfb_suspend(struct platform_device *dev, pm_message_t msg)
* xxxfb_resume - Optional but recommended function. Resume the device.
* @dev: platform device
*
- * See Documentation/power/devices.txt for more information
+ * See Documentation/power/admin-guide/devices.rst for more information
*/
static int xxxfb_resume(struct platform_dev *dev)
{
diff --git a/drivers/virtio/Kconfig b/drivers/virtio/Kconfig
index 7759032..623f723 100644
--- a/drivers/virtio/Kconfig
+++ b/drivers/virtio/Kconfig
@@ -75,7 +75,7 @@ config VIRTIO_MMIO_CMDLINE_DEVICES
Allow virtio-mmio devices instantiation via the kernel command line
or module parameters. Be aware that using incorrect parameters (base
address in particular) can crash your system - you have been warned.
- See Documentation/kernel-parameters.txt for details.
+ See Documentation/admin-guide/kernel-parameters.rst for details.
If unsure, say 'N'.
diff --git a/fs/Kconfig.binfmt b/fs/Kconfig.binfmt
index 4c09d93..b2f82cf 100644
--- a/fs/Kconfig.binfmt
+++ b/fs/Kconfig.binfmt
@@ -170,8 +170,8 @@ config BINFMT_MISC
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
- feature, <file:Documentation/java.txt> for information about how
- to include Java support. and <file:Documentation/mono.txt> for
+ feature, <file:Documentation/admin-guide/java.rst> for information about how
+ to include Java support. and <file:Documentation/admin-guide/mono.rst> for
information about how to include Mono-based .NET support.
To use binfmt_misc, you will need to mount it:
diff --git a/fs/pstore/Kconfig b/fs/pstore/Kconfig
index be40813..b42e5bd 100644
--- a/fs/pstore/Kconfig
+++ b/fs/pstore/Kconfig
@@ -86,4 +86,4 @@ config PSTORE_RAM
Note that for historical reasons, the module will be named
"ramoops.ko".
- For more information, see Documentation/ramoops.txt.
+ For more information, see Documentation/admin-guide/ramoops.rst.
diff --git a/include/linux/device.h b/include/linux/device.h
index bc41e87..36d3a98 100644
--- a/include/linux/device.h
+++ b/include/linux/device.h
@@ -733,7 +733,7 @@ struct device_dma_parameters {
* minimizes board-specific #ifdefs in drivers.
* @driver_data: Private pointer for driver specific info.
* @power: For device power management.
- * See Documentation/power/devices.txt for details.
+ * See Documentation/power/admin-guide/devices.rst for details.
* @pm_domain: Provide callbacks that are executed during system suspend,
* hibernation, system resume and during runtime PM transitions
* along with subsystem-level and driver-level callbacks.
diff --git a/include/linux/pm.h b/include/linux/pm.h
index 06eb353..efa67b2 100644
--- a/include/linux/pm.h
+++ b/include/linux/pm.h
@@ -258,7 +258,7 @@ typedef struct pm_message {
* example, if it detects that a child was unplugged while the system was
* asleep).
*
- * Refer to Documentation/power/devices.txt for more information about the role
+ * Refer to Documentation/power/admin-guide/devices.rst for more information about the role
* of the above callbacks in the system suspend process.
*
* There also are callbacks related to runtime power management of devices.
diff --git a/include/linux/workqueue.h b/include/linux/workqueue.h
index fc6e221..d4f16cf 100644
--- a/include/linux/workqueue.h
+++ b/include/linux/workqueue.h
@@ -119,18 +119,30 @@ struct delayed_work {
int cpu;
};
-/*
- * A struct for workqueue attributes. This can be used to change
- * attributes of an unbound workqueue.
+/**
+ * struct workqueue_attrs - A struct for workqueue attributes.
*
- * Unlike other fields, ->no_numa isn't a property of a worker_pool. It
- * only modifies how apply_workqueue_attrs() select pools and thus doesn't
- * participate in pool hash calculations or equality comparisons.
+ * This can be used to change attributes of an unbound workqueue.
*/
struct workqueue_attrs {
- int nice; /* nice level */
- cpumask_var_t cpumask; /* allowed CPUs */
- bool no_numa; /* disable NUMA affinity */
+ /**
+ * @nice: nice level
+ */
+ int nice;
+
+ /**
+ * @cpumask: allowed CPUs
+ */
+ cpumask_var_t cpumask;
+
+ /**
+ * @no_numa: disable NUMA affinity
+ *
+ * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It
+ * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus
+ * doesn't participate in pool hash calculations or equality comparisons.
+ */
+ bool no_numa;
};
static inline struct delayed_work *to_delayed_work(struct work_struct *work)
@@ -272,7 +284,7 @@ static inline unsigned int work_static(struct work_struct *work) { return 0; }
/*
* Workqueue flags and constants. For details, please refer to
- * Documentation/workqueue.txt.
+ * Documentation/core-api/workqueue.rst.
*/
enum {
WQ_UNBOUND = 1 << 1, /* not bound to any cpu */
@@ -370,7 +382,8 @@ __alloc_workqueue_key(const char *fmt, unsigned int flags, int max_active,
* @args...: args for @fmt
*
* Allocate a workqueue with the specified parameters. For detailed
- * information on WQ_* flags, please refer to Documentation/workqueue.txt.
+ * information on WQ_* flags, please refer to
+ * Documentation/core-api/workqueue.rst.
*
* The __lock_name macro dance is to guarantee that single lock_class_key
* doesn't end up with different namesm, which isn't allowed by lockdep.
diff --git a/include/uapi/linux/major.h b/include/uapi/linux/major.h
index 620252e..19e195b 100644
--- a/include/uapi/linux/major.h
+++ b/include/uapi/linux/major.h
@@ -3,7 +3,7 @@
/*
* This file has definitions for major device numbers.
- * For the device number assignments, see Documentation/devices.txt.
+ * For the device number assignments, see Documentation/admin-guide/devices.rst.
*/
#define UNNAMED_MAJOR 0
diff --git a/init/Kconfig b/init/Kconfig
index 34407f1..172f80e 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -1306,7 +1306,7 @@ config BLK_DEV_INITRD
boot loader (loadlin or lilo) and that is mounted as root
before the normal boot procedure. It is typically used to
load modules needed to mount the "real" root file system,
- etc. See <file:Documentation/initrd.txt> for details.
+ etc. See <file:Documentation/admin-guide/initrd.rst> for details.
If RAM disk support (BLK_DEV_RAM) is also included, this
also enables initial RAM disk (initrd) support and adds
diff --git a/init/main.c b/init/main.c
index 2858be7..691eb93 100644
--- a/init/main.c
+++ b/init/main.c
@@ -980,7 +980,7 @@ static int __ref kernel_init(void *unused)
return 0;
panic("No working init found. Try passing init= option to kernel. "
- "See Linux Documentation/init.txt for guidance.");
+ "See Linux Documentation/admin-guide/init.rst for guidance.");
}
static noinline void __init kernel_init_freeable(void)
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index b01e547..1a9fa51 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -13,7 +13,7 @@ config PRINTK_TIME
be included, not that the timestamp is recorded.
The behavior is also controlled by the kernel command line
- parameter printk.time=1. See Documentation/kernel-parameters.txt
+ parameter printk.time=1. See Documentation/admin-guide/kernel-parameters.rst
config MESSAGE_LOGLEVEL_DEFAULT
int "Default message log level (1-7)"
diff --git a/scripts/checkpatch.pl b/scripts/checkpatch.pl
index a8368d1..d0c729c 100755
--- a/scripts/checkpatch.pl
+++ b/scripts/checkpatch.pl
@@ -2187,7 +2187,7 @@ sub process {
if ($rawline=~/^\+\+\+\s+(\S+)/) {
$setup_docs = 0;
- if ($1 =~ m@Documentation/kernel-parameters.txt$@) {
+ if ($1 =~ m@Documentation/admin-guide/kernel-parameters.rst$@) {
$setup_docs = 1;
}
#next;
@@ -5102,7 +5102,7 @@ sub process {
my $asm_volatile = qr{\b(__asm__|asm)\s+(__volatile__|volatile)\b};
if ($line =~ /\bvolatile\b/ && $line !~ /$asm_volatile/) {
WARN("VOLATILE",
- "Use of volatile is usually wrong: see Documentation/volatile-considered-harmful.txt\n" . $herecurr);
+ "Use of volatile is usually wrong: see Documentation/process/volatile-considered-harmful.rst\n" . $herecurr);
}
# Check for user-visible strings broken across lines, which breaks the ability
@@ -5817,7 +5817,7 @@ sub process {
if (!grep(/$name/, @setup_docs)) {
CHK("UNDOCUMENTED_SETUP",
- "__setup appears un-documented -- check Documentation/kernel-parameters.txt\n" . $herecurr);
+ "__setup appears un-documented -- check Documentation/admin-guide/kernel-parameters.rst\n" . $herecurr);
}
}
diff --git a/scripts/kernel-doc b/scripts/kernel-doc
index 93721f3..030fc63 100755
--- a/scripts/kernel-doc
+++ b/scripts/kernel-doc
@@ -204,6 +204,7 @@ EOF
## init lots of data
+
my $errors = 0;
my $warnings = 0;
my $anon_struct_union = 0;
@@ -211,7 +212,7 @@ my $anon_struct_union = 0;
# match expressions used to find embedded type information
my $type_constant = '\%([-_\w]+)';
my $type_func = '(\w+)\(\)';
-my $type_param = '\@(\w+)';
+my $type_param = '\@(\w+(\.\.\.)?)';
my $type_fp_param = '\@(\w+)\(\)'; # Special RST handling for func ptr params
my $type_struct = '\&((struct\s*)*[_\w]+)';
my $type_struct_xml = '\\&amp;((struct\s*)*[_\w]+)';
@@ -420,6 +421,7 @@ my $doc_block = $doc_com . 'DOC:\s*(.*)?';
my $doc_inline_start = '^\s*/\*\*\s*$';
my $doc_inline_sect = '\s*\*\s*(@[\w\s]+):(.*)';
my $doc_inline_end = '^\s*\*/\s*$';
+my $doc_inline_oneline = '^\s*/\*\*\s*(@[\w\s]+):\s*(.*)\s*\*/\s*$';
my $export_symbol = '^\s*EXPORT_SYMBOL(_GPL)?\s*\(\s*(\w+)\s*\)\s*;';
my %parameterdescs;
@@ -2353,7 +2355,10 @@ sub push_parameter($$$) {
if ($type eq "" && $param =~ /\.\.\.$/)
{
- $param = "...";
+ if (!$param =~ /\w\.\.\.$/) {
+ # handles unnamed variable parameters
+ $param = "...";
+ }
if (!defined $parameterdescs{$param} || $parameterdescs{$param} eq "") {
$parameterdescs{$param} = "variable arguments";
}
@@ -3020,7 +3025,16 @@ sub process_file($) {
}
}
} elsif ($state == STATE_PROTO) { # scanning for function '{' (end of prototype)
- if (/$doc_inline_start/) {
+ if (/$doc_inline_oneline/) {
+ $section = $1;
+ $contents = $2;
+ if ($contents ne "") {
+ $contents .= "\n";
+ dump_section($file, $section, xml_escape($contents));
+ $section = $section_default;
+ $contents = "";
+ }
+ } elsif (/$doc_inline_start/) {
$state = STATE_INLINE;
$inline_doc_state = STATE_INLINE_NAME;
} elsif ($decl_type eq 'function') {
diff --git a/tools/testing/selftests/futex/README b/tools/testing/selftests/futex/README
index 0558bb9..f3926c3 100644
--- a/tools/testing/selftests/futex/README
+++ b/tools/testing/selftests/futex/README
@@ -59,4 +59,4 @@ o FIXME: decide on a sane test naming scheme. Currently the tests are named
Coding Style
------------
o The Futex Test project adheres to the coding standards set forth by Linux
- kernel as defined in the Linux source Documentation/CodingStyle.
+ kernel as defined in the Linux source Documentation/process/coding-style.rst.
OpenPOWER on IntegriCloud