diff options
author | Timur Tabi <timur@freescale.com> | 2008-01-11 18:15:26 +0100 |
---|---|---|
committer | Jaroslav Kysela <perex@perex.cz> | 2008-01-31 17:29:55 +0100 |
commit | 17467f23395f05ba7b361f7b504fe0f1095d5bb7 (patch) | |
tree | 8afcd6fa89cfd6e152635719fd935f5cb3cb2532 /sound/soc | |
parent | ce22e03e62fd37fb2612abb7af1c66cc17038606 (diff) | |
download | op-kernel-dev-17467f23395f05ba7b361f7b504fe0f1095d5bb7.zip op-kernel-dev-17467f23395f05ba7b361f7b504fe0f1095d5bb7.tar.gz |
[ALSA] Add ASoC drivers for the Freescale MPC8610 SoC
Add the ASoC drivers for the Freescale MPC8610 SoC and the MPC8610 HPCD
reference board.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
Diffstat (limited to 'sound/soc')
-rw-r--r-- | sound/soc/Kconfig | 1 | ||||
-rw-r--r-- | sound/soc/Makefile | 2 | ||||
-rw-r--r-- | sound/soc/fsl/Kconfig | 20 | ||||
-rw-r--r-- | sound/soc/fsl/Makefile | 6 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_dma.c | 839 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_dma.h | 149 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_ssi.c | 644 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_ssi.h | 224 | ||||
-rw-r--r-- | sound/soc/fsl/mpc8610_hpcd.c | 631 |
9 files changed, 2515 insertions, 1 deletions
diff --git a/sound/soc/Kconfig b/sound/soc/Kconfig index 97b2552..2765852 100644 --- a/sound/soc/Kconfig +++ b/sound/soc/Kconfig @@ -28,6 +28,7 @@ source "sound/soc/at91/Kconfig" source "sound/soc/pxa/Kconfig" source "sound/soc/s3c24xx/Kconfig" source "sound/soc/sh/Kconfig" +source "sound/soc/fsl/Kconfig" # Supported codecs source "sound/soc/codecs/Kconfig" diff --git a/sound/soc/Makefile b/sound/soc/Makefile index 3041403..4869c9a 100644 --- a/sound/soc/Makefile +++ b/sound/soc/Makefile @@ -1,4 +1,4 @@ snd-soc-core-objs := soc-core.o soc-dapm.o obj-$(CONFIG_SND_SOC) += snd-soc-core.o -obj-$(CONFIG_SND_SOC) += codecs/ at91/ pxa/ s3c24xx/ sh/ +obj-$(CONFIG_SND_SOC) += codecs/ at91/ pxa/ s3c24xx/ sh/ fsl/ diff --git a/sound/soc/fsl/Kconfig b/sound/soc/fsl/Kconfig new file mode 100644 index 0000000..257101f --- /dev/null +++ b/sound/soc/fsl/Kconfig @@ -0,0 +1,20 @@ +menu "ALSA SoC audio for Freescale SOCs" + +config SND_SOC_MPC8610 + bool "ALSA SoC support for the MPC8610 SOC" + depends on SND_SOC && MPC8610_HPCD + default y if MPC8610 + help + Say Y if you want to add support for codecs attached to the SSI + device on an MPC8610. + +config SND_SOC_MPC8610_HPCD + bool "ALSA SoC support for the Freescale MPC8610 HPCD board" + depends on SND_SOC_MPC8610 + select SND_SOC_CS4270 + select SND_SOC_CS4270_VD33_ERRATA + default y if MPC8610_HPCD + help + Say Y if you want to enable audio on the Freescale MPC8610 HPCD. + +endmenu diff --git a/sound/soc/fsl/Makefile b/sound/soc/fsl/Makefile new file mode 100644 index 0000000..62f680a --- /dev/null +++ b/sound/soc/fsl/Makefile @@ -0,0 +1,6 @@ +# MPC8610 HPCD Machine Support +obj-$(CONFIG_SND_SOC_MPC8610_HPCD) += mpc8610_hpcd.o + +# MPC8610 Platform Support +obj-$(CONFIG_SND_SOC_MPC8610) += fsl_ssi.o fsl_dma.o + diff --git a/sound/soc/fsl/fsl_dma.c b/sound/soc/fsl/fsl_dma.c new file mode 100644 index 0000000..2173203 --- /dev/null +++ b/sound/soc/fsl/fsl_dma.c @@ -0,0 +1,839 @@ +/* + * Freescale DMA ALSA SoC PCM driver + * + * Author: Timur Tabi <timur@freescale.com> + * + * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed + * under the terms of the GNU General Public License version 2. This + * program is licensed "as is" without any warranty of any kind, whether + * express or implied. + * + * This driver implements ASoC support for the Elo DMA controller, which is + * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, + * the PCM driver is what handles the DMA buffer. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/delay.h> + +#include <sound/driver.h> +#include <sound/core.h> +#include <sound/pcm.h> +#include <sound/pcm_params.h> +#include <sound/soc.h> + +#include <asm/io.h> + +#include "fsl_dma.h" + +/* + * The formats that the DMA controller supports, which is anything + * that is 8, 16, or 32 bits. + */ +#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ + SNDRV_PCM_FMTBIT_U8 | \ + SNDRV_PCM_FMTBIT_S16_LE | \ + SNDRV_PCM_FMTBIT_S16_BE | \ + SNDRV_PCM_FMTBIT_U16_LE | \ + SNDRV_PCM_FMTBIT_U16_BE | \ + SNDRV_PCM_FMTBIT_S24_LE | \ + SNDRV_PCM_FMTBIT_S24_BE | \ + SNDRV_PCM_FMTBIT_U24_LE | \ + SNDRV_PCM_FMTBIT_U24_BE | \ + SNDRV_PCM_FMTBIT_S32_LE | \ + SNDRV_PCM_FMTBIT_S32_BE | \ + SNDRV_PCM_FMTBIT_U32_LE | \ + SNDRV_PCM_FMTBIT_U32_BE) + +#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ + SNDRV_PCM_RATE_CONTINUOUS) + +/* DMA global data. This structure is used by fsl_dma_open() to determine + * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does + * not allow the machine driver to provide this information to the PCM + * driver in advance, and there's no way to differentiate between the two + * DMA controllers. So for now, this driver only supports one SSI device + * using two DMA channels. We cannot support multiple DMA devices. + * + * ssi_stx_phys: bus address of SSI STX register + * ssi_srx_phys: bus address of SSI SRX register + * dma_channel: pointer to the DMA channel's registers + * irq: IRQ for this DMA channel + * assigned: set to 1 if that DMA channel is assigned to a substream + */ +static struct { + dma_addr_t ssi_stx_phys; + dma_addr_t ssi_srx_phys; + struct ccsr_dma_channel __iomem *dma_channel[2]; + unsigned int irq[2]; + unsigned int assigned[2]; +} dma_global_data; + +/* + * The number of DMA links to use. Two is the bare minimum, but if you + * have really small links you might need more. + */ +#define NUM_DMA_LINKS 2 + +/** fsl_dma_private: p-substream DMA data + * + * Each substream has a 1-to-1 association with a DMA channel. + * + * The link[] array is first because it needs to be aligned on a 32-byte + * boundary, so putting it first will ensure alignment without padding the + * structure. + * + * @link[]: array of link descriptors + * @controller_id: which DMA controller (0, 1, ...) + * @channel_id: which DMA channel on the controller (0, 1, 2, ...) + * @dma_channel: pointer to the DMA channel's registers + * @irq: IRQ for this DMA channel + * @substream: pointer to the substream object, needed by the ISR + * @ssi_sxx_phys: bus address of the STX or SRX register to use + * @ld_buf_phys: physical address of the LD buffer + * @current_link: index into link[] of the link currently being processed + * @dma_buf_phys: physical address of the DMA buffer + * @dma_buf_next: physical address of the next period to process + * @dma_buf_end: physical address of the byte after the end of the DMA + * @buffer period_size: the size of a single period + * @num_periods: the number of periods in the DMA buffer + */ +struct fsl_dma_private { + struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; + unsigned int controller_id; + unsigned int channel_id; + struct ccsr_dma_channel __iomem *dma_channel; + unsigned int irq; + struct snd_pcm_substream *substream; + dma_addr_t ssi_sxx_phys; + dma_addr_t ld_buf_phys; + unsigned int current_link; + dma_addr_t dma_buf_phys; + dma_addr_t dma_buf_next; + dma_addr_t dma_buf_end; + size_t period_size; + unsigned int num_periods; +}; + +/** + * fsl_dma_hardare: define characteristics of the PCM hardware. + * + * The PCM hardware is the Freescale DMA controller. This structure defines + * the capabilities of that hardware. + * + * Since the sampling rate and data format are not controlled by the DMA + * controller, we specify no limits for those values. The only exception is + * period_bytes_min, which is set to a reasonably low value to prevent the + * DMA controller from generating too many interrupts per second. + * + * Since each link descriptor has a 32-bit byte count field, we set + * period_bytes_max to the largest 32-bit number. We also have no maximum + * number of periods. + */ +static const struct snd_pcm_hardware fsl_dma_hardware = { + + .info = SNDRV_PCM_INFO_INTERLEAVED, + .formats = FSLDMA_PCM_FORMATS, + .rates = FSLDMA_PCM_RATES, + .rate_min = 5512, + .rate_max = 192000, + .period_bytes_min = 512, /* A reasonable limit */ + .period_bytes_max = (u32) -1, + .periods_min = NUM_DMA_LINKS, + .periods_max = (unsigned int) -1, + .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ +}; + +/** + * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted + * + * This function should be called by the ISR whenever the DMA controller + * halts data transfer. + */ +static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) +{ + unsigned long flags; + + snd_pcm_stream_lock_irqsave(substream, flags); + + if (snd_pcm_running(substream)) + snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); + + snd_pcm_stream_unlock_irqrestore(substream, flags); +} + +/** + * fsl_dma_update_pointers - update LD pointers to point to the next period + * + * As each period is completed, this function changes the the link + * descriptor pointers for that period to point to the next period. + */ +static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) +{ + struct fsl_dma_link_descriptor *link = + &dma_private->link[dma_private->current_link]; + + /* Update our link descriptors to point to the next period */ + if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + link->source_addr = + cpu_to_be32(dma_private->dma_buf_next); + else + link->dest_addr = + cpu_to_be32(dma_private->dma_buf_next); + + /* Update our variables for next time */ + dma_private->dma_buf_next += dma_private->period_size; + + if (dma_private->dma_buf_next >= dma_private->dma_buf_end) + dma_private->dma_buf_next = dma_private->dma_buf_phys; + + if (++dma_private->current_link >= NUM_DMA_LINKS) + dma_private->current_link = 0; +} + +/** + * fsl_dma_isr: interrupt handler for the DMA controller + * + * @irq: IRQ of the DMA channel + * @dev_id: pointer to the dma_private structure for this DMA channel + */ +static irqreturn_t fsl_dma_isr(int irq, void *dev_id) +{ + struct fsl_dma_private *dma_private = dev_id; + struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; + irqreturn_t ret = IRQ_NONE; + u32 sr, sr2 = 0; + + /* We got an interrupt, so read the status register to see what we + were interrupted for. + */ + sr = in_be32(&dma_channel->sr); + + if (sr & CCSR_DMA_SR_TE) { + dev_err(dma_private->substream->pcm->card->dev, + "DMA transmit error (controller=%u channel=%u irq=%u\n", + dma_private->controller_id, + dma_private->channel_id, irq); + fsl_dma_abort_stream(dma_private->substream); + sr2 |= CCSR_DMA_SR_TE; + ret = IRQ_HANDLED; + } + + if (sr & CCSR_DMA_SR_CH) + ret = IRQ_HANDLED; + + if (sr & CCSR_DMA_SR_PE) { + dev_err(dma_private->substream->pcm->card->dev, + "DMA%u programming error (channel=%u irq=%u)\n", + dma_private->controller_id, + dma_private->channel_id, irq); + fsl_dma_abort_stream(dma_private->substream); + sr2 |= CCSR_DMA_SR_PE; + ret = IRQ_HANDLED; + } + + if (sr & CCSR_DMA_SR_EOLNI) { + sr2 |= CCSR_DMA_SR_EOLNI; + ret = IRQ_HANDLED; + } + + if (sr & CCSR_DMA_SR_CB) + ret = IRQ_HANDLED; + + if (sr & CCSR_DMA_SR_EOSI) { + struct snd_pcm_substream *substream = dma_private->substream; + + /* Tell ALSA we completed a period. */ + snd_pcm_period_elapsed(substream); + + /* + * Update our link descriptors to point to the next period. We + * only need to do this if the number of periods is not equal to + * the number of links. + */ + if (dma_private->num_periods != NUM_DMA_LINKS) + fsl_dma_update_pointers(dma_private); + + sr2 |= CCSR_DMA_SR_EOSI; + ret = IRQ_HANDLED; + } + + if (sr & CCSR_DMA_SR_EOLSI) { + sr2 |= CCSR_DMA_SR_EOLSI; + ret = IRQ_HANDLED; + } + + /* Clear the bits that we set */ + if (sr2) + out_be32(&dma_channel->sr, sr2); + + return ret; +} + +/** + * fsl_dma_new: initialize this PCM driver. + * + * This function is called when the codec driver calls snd_soc_new_pcms(), + * once for each .dai_link in the machine driver's snd_soc_machine + * structure. + */ +static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai, + struct snd_pcm *pcm) +{ + static u64 fsl_dma_dmamask = DMA_BIT_MASK(32); + int ret; + + if (!card->dev->dma_mask) + card->dev->dma_mask = &fsl_dma_dmamask; + + if (!card->dev->coherent_dma_mask) + card->dev->coherent_dma_mask = fsl_dma_dmamask; + + ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev, + fsl_dma_hardware.buffer_bytes_max, + &pcm->streams[0].substream->dma_buffer); + if (ret) { + dev_err(card->dev, + "Can't allocate playback DMA buffer (size=%u)\n", + fsl_dma_hardware.buffer_bytes_max); + return -ENOMEM; + } + + ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev, + fsl_dma_hardware.buffer_bytes_max, + &pcm->streams[1].substream->dma_buffer); + if (ret) { + snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer); + dev_err(card->dev, + "Can't allocate capture DMA buffer (size=%u)\n", + fsl_dma_hardware.buffer_bytes_max); + return -ENOMEM; + } + + return 0; +} + +/** + * fsl_dma_open: open a new substream. + * + * Each substream has its own DMA buffer. + */ +static int fsl_dma_open(struct snd_pcm_substream *substream) +{ + struct snd_pcm_runtime *runtime = substream->runtime; + struct fsl_dma_private *dma_private; + dma_addr_t ld_buf_phys; + unsigned int channel; + int ret = 0; + + /* + * Reject any DMA buffer whose size is not a multiple of the period + * size. We need to make sure that the DMA buffer can be evenly divided + * into periods. + */ + ret = snd_pcm_hw_constraint_integer(runtime, + SNDRV_PCM_HW_PARAM_PERIODS); + if (ret < 0) { + dev_err(substream->pcm->card->dev, "invalid buffer size\n"); + return ret; + } + + channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; + + if (dma_global_data.assigned[channel]) { + dev_err(substream->pcm->card->dev, + "DMA channel already assigned\n"); + return -EBUSY; + } + + dma_private = dma_alloc_coherent(substream->pcm->dev, + sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL); + if (!dma_private) { + dev_err(substream->pcm->card->dev, + "can't allocate DMA private data\n"); + return -ENOMEM; + } + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys; + else + dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys; + + dma_private->dma_channel = dma_global_data.dma_channel[channel]; + dma_private->irq = dma_global_data.irq[channel]; + dma_private->substream = substream; + dma_private->ld_buf_phys = ld_buf_phys; + dma_private->dma_buf_phys = substream->dma_buffer.addr; + + /* We only support one DMA controller for now */ + dma_private->controller_id = 0; + dma_private->channel_id = channel; + + ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private); + if (ret) { + dev_err(substream->pcm->card->dev, + "can't register ISR for IRQ %u (ret=%i)\n", + dma_private->irq, ret); + dma_free_coherent(substream->pcm->dev, + sizeof(struct fsl_dma_private), + dma_private, dma_private->ld_buf_phys); + return ret; + } + + dma_global_data.assigned[channel] = 1; + + snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); + snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); + runtime->private_data = dma_private; + + return 0; +} + +/** + * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors. + * + * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link + * descriptors that ping-pong from one period to the next. For example, if + * there are six periods and two link descriptors, this is how they look + * before playback starts: + * + * The last link descriptor + * ____________ points back to the first + * | | + * V | + * ___ ___ | + * | |->| |->| + * |___| |___| + * | | + * | | + * V V + * _________________________________________ + * | | | | | | | The DMA buffer is + * | | | | | | | divided into 6 parts + * |______|______|______|______|______|______| + * + * and here's how they look after the first period is finished playing: + * + * ____________ + * | | + * V | + * ___ ___ | + * | |->| |->| + * |___| |___| + * | | + * |______________ + * | | + * V V + * _________________________________________ + * | | | | | | | + * | | | | | | | + * |______|______|______|______|______|______| + * + * The first link descriptor now points to the third period. The DMA + * controller is currently playing the second period. When it finishes, it + * will jump back to the first descriptor and play the third period. + * + * There are four reasons we do this: + * + * 1. The only way to get the DMA controller to automatically restart the + * transfer when it gets to the end of the buffer is to use chaining + * mode. Basic direct mode doesn't offer that feature. + * 2. We need to receive an interrupt at the end of every period. The DMA + * controller can generate an interrupt at the end of every link transfer + * (aka segment). Making each period into a DMA segment will give us the + * interrupts we need. + * 3. By creating only two link descriptors, regardless of the number of + * periods, we do not need to reallocate the link descriptors if the + * number of periods changes. + * 4. All of the audio data is still stored in a single, contiguous DMA + * buffer, which is what ALSA expects. We're just dividing it into + * contiguous parts, and creating a link descriptor for each one. + * + * Note that due to a quirk of the SSI's STX register, the target address + * for the DMA operations depends on the sample size. So we don't program + * the dest_addr (for playback -- source_addr for capture) fields in the + * link descriptors here. We do that in fsl_dma_prepare() + */ +static int fsl_dma_hw_params(struct snd_pcm_substream *substream, + struct snd_pcm_hw_params *hw_params) +{ + struct snd_pcm_runtime *runtime = substream->runtime; + struct fsl_dma_private *dma_private = runtime->private_data; + struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; + + dma_addr_t temp_addr; /* Pointer to next period */ + u64 temp_link; /* Pointer to next link descriptor */ + u32 mr; /* Temporary variable for MR register */ + + unsigned int i; + + /* Get all the parameters we need */ + size_t buffer_size = params_buffer_bytes(hw_params); + size_t period_size = params_period_bytes(hw_params); + + /* Initialize our DMA tracking variables */ + dma_private->period_size = period_size; + dma_private->num_periods = params_periods(hw_params); + dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; + dma_private->dma_buf_next = dma_private->dma_buf_phys + + (NUM_DMA_LINKS * period_size); + if (dma_private->dma_buf_next >= dma_private->dma_buf_end) + dma_private->dma_buf_next = dma_private->dma_buf_phys; + + /* + * Initialize each link descriptor. + * + * The actual address in STX0 (destination for playback, source for + * capture) is based on the sample size, but we don't know the sample + * size in this function, so we'll have to adjust that later. See + * comments in fsl_dma_prepare(). + * + * The DMA controller does not have a cache, so the CPU does not + * need to tell it to flush its cache. However, the DMA + * controller does need to tell the CPU to flush its cache. + * That's what the SNOOP bit does. + * + * Also, even though the DMA controller supports 36-bit addressing, for + * simplicity we currently support only 32-bit addresses for the audio + * buffer itself. + */ + temp_addr = substream->dma_buffer.addr; + temp_link = dma_private->ld_buf_phys + + sizeof(struct fsl_dma_link_descriptor); + + for (i = 0; i < NUM_DMA_LINKS; i++) { + struct fsl_dma_link_descriptor *link = &dma_private->link[i]; + + link->count = cpu_to_be32(period_size); + link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP); + link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP); + link->next = cpu_to_be64(temp_link); + + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + link->source_addr = cpu_to_be32(temp_addr); + else + link->dest_addr = cpu_to_be32(temp_addr); + + temp_addr += period_size; + temp_link += sizeof(struct fsl_dma_link_descriptor); + } + /* The last link descriptor points to the first */ + dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); + + /* Tell the DMA controller where the first link descriptor is */ + out_be32(&dma_channel->clndar, + CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); + out_be32(&dma_channel->eclndar, + CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); + + /* The manual says the BCR must be clear before enabling EMP */ + out_be32(&dma_channel->bcr, 0); + + /* + * Program the mode register for interrupts, external master control, + * and source/destination hold. Also clear the Channel Abort bit. + */ + mr = in_be32(&dma_channel->mr) & + ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); + + /* + * We want External Master Start and External Master Pause enabled, + * because the SSI is controlling the DMA controller. We want the DMA + * controller to be set up in advance, and then we signal only the SSI + * to start transfering. + * + * We want End-Of-Segment Interrupts enabled, because this will generate + * an interrupt at the end of each segment (each link descriptor + * represents one segment). Each DMA segment is the same thing as an + * ALSA period, so this is how we get an interrupt at the end of every + * period. + * + * We want Error Interrupt enabled, so that we can get an error if + * the DMA controller is mis-programmed somehow. + */ + mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | + CCSR_DMA_MR_EMS_EN; + + /* For playback, we want the destination address to be held. For + capture, set the source address to be held. */ + mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? + CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; + + out_be32(&dma_channel->mr, mr); + + return 0; +} + +/** + * fsl_dma_prepare - prepare the DMA registers for playback. + * + * This function is called after the specifics of the audio data are known, + * i.e. snd_pcm_runtime is initialized. + * + * In this function, we finish programming the registers of the DMA + * controller that are dependent on the sample size. + * + * One of the drawbacks with big-endian is that when copying integers of + * different sizes to a fixed-sized register, the address to which the + * integer must be copied is dependent on the size of the integer. + * + * For example, if P is the address of a 32-bit register, and X is a 32-bit + * integer, then X should be copied to address P. However, if X is a 16-bit + * integer, then it should be copied to P+2. If X is an 8-bit register, + * then it should be copied to P+3. + * + * So for playback of 8-bit samples, the DMA controller must transfer single + * bytes from the DMA buffer to the last byte of the STX0 register, i.e. + * offset by 3 bytes. For 16-bit samples, the offset is two bytes. + * + * For 24-bit samples, the offset is 1 byte. However, the DMA controller + * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, + * and 8 bytes at a time). So we do not support packed 24-bit samples. + * 24-bit data must be padded to 32 bits. + */ +static int fsl_dma_prepare(struct snd_pcm_substream *substream) +{ + struct snd_pcm_runtime *runtime = substream->runtime; + struct fsl_dma_private *dma_private = runtime->private_data; + struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; + u32 mr; + unsigned int i; + dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */ + unsigned int frame_size; /* Number of bytes per frame */ + + ssi_sxx_phys = dma_private->ssi_sxx_phys; + + mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | + CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); + + switch (runtime->sample_bits) { + case 8: + mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; + ssi_sxx_phys += 3; + break; + case 16: + mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; + ssi_sxx_phys += 2; + break; + case 32: + mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; + break; + default: + dev_err(substream->pcm->card->dev, + "unsupported sample size %u\n", runtime->sample_bits); + return -EINVAL; + } + + frame_size = runtime->frame_bits / 8; + /* + * BWC should always be a multiple of the frame size. BWC determines + * how many bytes are sent/received before the DMA controller checks the + * SSI to see if it needs to stop. For playback, the transmit FIFO can + * hold three frames, so we want to send two frames at a time. For + * capture, the receive FIFO is triggered when it contains one frame, so + * we want to receive one frame at a time. + */ + + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + mr |= CCSR_DMA_MR_BWC(2 * frame_size); + else + mr |= CCSR_DMA_MR_BWC(frame_size); + + out_be32(&dma_channel->mr, mr); + + /* + * Program the address of the DMA transfer to/from the SSI. + */ + for (i = 0; i < NUM_DMA_LINKS; i++) { + struct fsl_dma_link_descriptor *link = &dma_private->link[i]; + + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + link->dest_addr = cpu_to_be32(ssi_sxx_phys); + else + link->source_addr = cpu_to_be32(ssi_sxx_phys); + } + + return 0; +} + +/** + * fsl_dma_pointer: determine the current position of the DMA transfer + * + * This function is called by ALSA when ALSA wants to know where in the + * stream buffer the hardware currently is. + * + * For playback, the SAR register contains the physical address of the most + * recent DMA transfer. For capture, the value is in the DAR register. + * + * The base address of the buffer is stored in the source_addr field of the + * first link descriptor. + */ +static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) +{ + struct snd_pcm_runtime *runtime = substream->runtime; + struct fsl_dma_private *dma_private = runtime->private_data; + struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; + dma_addr_t position; + snd_pcm_uframes_t frames; + + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + position = in_be32(&dma_channel->sar); + else + position = in_be32(&dma_channel->dar); + + frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); + + /* + * If the current address is just past the end of the buffer, wrap it + * around. + */ + if (frames == runtime->buffer_size) + frames = 0; + + return frames; +} + +/** + * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() + * + * Release the resources allocated in fsl_dma_hw_params() and de-program the + * registers. + * + * This function can be called multiple times. + */ +static int fsl_dma_hw_free(struct snd_pcm_substream *substream) +{ + struct snd_pcm_runtime *runtime = substream->runtime; + struct fsl_dma_private *dma_private = runtime->private_data; + + if (dma_private) { + struct ccsr_dma_channel __iomem *dma_channel; + + dma_channel = dma_private->dma_channel; + + /* Stop the DMA */ + out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); + out_be32(&dma_channel->mr, 0); + + /* Reset all the other registers */ + out_be32(&dma_channel->sr, -1); + out_be32(&dma_channel->clndar, 0); + out_be32(&dma_channel->eclndar, 0); + out_be32(&dma_channel->satr, 0); + out_be32(&dma_channel->sar, 0); + out_be32(&dma_channel->datr, 0); + out_be32(&dma_channel->dar, 0); + out_be32(&dma_channel->bcr, 0); + out_be32(&dma_channel->nlndar, 0); + out_be32(&dma_channel->enlndar, 0); + } + + return 0; +} + +/** + * fsl_dma_close: close the stream. + */ +static int fsl_dma_close(struct snd_pcm_substream *substream) +{ + struct snd_pcm_runtime *runtime = substream->runtime; + struct fsl_dma_private *dma_private = runtime->private_data; + int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; + + if (dma_private) { + if (dma_private->irq) + free_irq(dma_private->irq, dma_private); + + if (dma_private->ld_buf_phys) { + dma_unmap_single(substream->pcm->dev, + dma_private->ld_buf_phys, + sizeof(dma_private->link), DMA_TO_DEVICE); + } + + /* Deallocate the fsl_dma_private structure */ + dma_free_coherent(substream->pcm->dev, + sizeof(struct fsl_dma_private), + dma_private, dma_private->ld_buf_phys); + substream->runtime->private_data = NULL; + } + + dma_global_data.assigned[dir] = 0; + + return 0; +} + +/* + * Remove this PCM driver. + */ +static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) +{ + struct snd_pcm_substream *substream; + unsigned int i; + + for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { + substream = pcm->streams[i].substream; + if (substream) { + snd_dma_free_pages(&substream->dma_buffer); + substream->dma_buffer.area = NULL; + substream->dma_buffer.addr = 0; + } + } +} + +static struct snd_pcm_ops fsl_dma_ops = { + .open = fsl_dma_open, + .close = fsl_dma_close, + .ioctl = snd_pcm_lib_ioctl, + .hw_params = fsl_dma_hw_params, + .hw_free = fsl_dma_hw_free, + .prepare = fsl_dma_prepare, + .pointer = fsl_dma_pointer, +}; + +struct snd_soc_platform fsl_soc_platform = { + .name = "fsl-dma", + .pcm_ops = &fsl_dma_ops, + .pcm_new = fsl_dma_new, + .pcm_free = fsl_dma_free_dma_buffers, +}; +EXPORT_SYMBOL_GPL(fsl_soc_platform); + +/** + * fsl_dma_configure: store the DMA parameters from the fabric driver. + * + * This function is called by the ASoC fabric driver to give us the DMA and + * SSI channel information. + * + * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI + * data when a substream is created, so for now we need to store this data + * into a global variable. This means that we can only support one DMA + * controller, and hence only one SSI. + */ +int fsl_dma_configure(struct fsl_dma_info *dma_info) +{ + static int initialized; + + /* We only support one DMA controller for now */ + if (initialized) + return 0; + + dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys; + dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys; + dma_global_data.dma_channel[0] = dma_info->dma_channel[0]; + dma_global_data.dma_channel[1] = dma_info->dma_channel[1]; + dma_global_data.irq[0] = dma_info->dma_irq[0]; + dma_global_data.irq[1] = dma_info->dma_irq[1]; + dma_global_data.assigned[0] = 0; + dma_global_data.assigned[1] = 0; + + initialized = 1; + return 1; +} +EXPORT_SYMBOL_GPL(fsl_dma_configure); + +MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); +MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module"); +MODULE_LICENSE("GPL"); diff --git a/sound/soc/fsl/fsl_dma.h b/sound/soc/fsl/fsl_dma.h new file mode 100644 index 0000000..430a6ce --- /dev/null +++ b/sound/soc/fsl/fsl_dma.h @@ -0,0 +1,149 @@ +/* + * mpc8610-pcm.h - ALSA PCM interface for the Freescale MPC8610 SoC + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#ifndef _MPC8610_PCM_H +#define _MPC8610_PCM_H + +struct ccsr_dma { + u8 res0[0x100]; + struct ccsr_dma_channel { + __be32 mr; /* Mode register */ + __be32 sr; /* Status register */ + __be32 eclndar; /* Current link descriptor extended addr reg */ + __be32 clndar; /* Current link descriptor address register */ + __be32 satr; /* Source attributes register */ + __be32 sar; /* Source address register */ + __be32 datr; /* Destination attributes register */ + __be32 dar; /* Destination address register */ + __be32 bcr; /* Byte count register */ + __be32 enlndar; /* Next link descriptor extended address reg */ + __be32 nlndar; /* Next link descriptor address register */ + u8 res1[4]; + __be32 eclsdar; /* Current list descriptor extended addr reg */ + __be32 clsdar; /* Current list descriptor address register */ + __be32 enlsdar; /* Next list descriptor extended address reg */ + __be32 nlsdar; /* Next list descriptor address register */ + __be32 ssr; /* Source stride register */ + __be32 dsr; /* Destination stride register */ + u8 res2[0x38]; + } channel[4]; + __be32 dgsr; +}; + +#define CCSR_DMA_MR_BWC_DISABLED 0x0F000000 +#define CCSR_DMA_MR_BWC_SHIFT 24 +#define CCSR_DMA_MR_BWC_MASK 0x0F000000 +#define CCSR_DMA_MR_BWC(x) \ + ((ilog2(x) << CCSR_DMA_MR_BWC_SHIFT) & CCSR_DMA_MR_BWC_MASK) +#define CCSR_DMA_MR_EMP_EN 0x00200000 +#define CCSR_DMA_MR_EMS_EN 0x00040000 +#define CCSR_DMA_MR_DAHTS_MASK 0x00030000 +#define CCSR_DMA_MR_DAHTS_1 0x00000000 +#define CCSR_DMA_MR_DAHTS_2 0x00010000 +#define CCSR_DMA_MR_DAHTS_4 0x00020000 +#define CCSR_DMA_MR_DAHTS_8 0x00030000 +#define CCSR_DMA_MR_SAHTS_MASK 0x0000C000 +#define CCSR_DMA_MR_SAHTS_1 0x00000000 +#define CCSR_DMA_MR_SAHTS_2 0x00004000 +#define CCSR_DMA_MR_SAHTS_4 0x00008000 +#define CCSR_DMA_MR_SAHTS_8 0x0000C000 +#define CCSR_DMA_MR_DAHE 0x00002000 +#define CCSR_DMA_MR_SAHE 0x00001000 +#define CCSR_DMA_MR_SRW 0x00000400 +#define CCSR_DMA_MR_EOSIE 0x00000200 +#define CCSR_DMA_MR_EOLNIE 0x00000100 +#define CCSR_DMA_MR_EOLSIE 0x00000080 +#define CCSR_DMA_MR_EIE 0x00000040 +#define CCSR_DMA_MR_XFE 0x00000020 +#define CCSR_DMA_MR_CDSM_SWSM 0x00000010 +#define CCSR_DMA_MR_CA 0x00000008 +#define CCSR_DMA_MR_CTM 0x00000004 +#define CCSR_DMA_MR_CC 0x00000002 +#define CCSR_DMA_MR_CS 0x00000001 + +#define CCSR_DMA_SR_TE 0x00000080 +#define CCSR_DMA_SR_CH 0x00000020 +#define CCSR_DMA_SR_PE 0x00000010 +#define CCSR_DMA_SR_EOLNI 0x00000008 +#define CCSR_DMA_SR_CB 0x00000004 +#define CCSR_DMA_SR_EOSI 0x00000002 +#define CCSR_DMA_SR_EOLSI 0x00000001 + +/* ECLNDAR takes bits 32-36 of the CLNDAR register */ +static inline u32 CCSR_DMA_ECLNDAR_ADDR(u64 x) +{ + return (x >> 32) & 0xf; +} + +#define CCSR_DMA_CLNDAR_ADDR(x) ((x) & 0xFFFFFFFE) +#define CCSR_DMA_CLNDAR_EOSIE 0x00000008 + +/* SATR and DATR, combined */ +#define CCSR_DMA_ATR_PBATMU 0x20000000 +#define CCSR_DMA_ATR_TFLOWLVL_0 0x00000000 +#define CCSR_DMA_ATR_TFLOWLVL_1 0x06000000 +#define CCSR_DMA_ATR_TFLOWLVL_2 0x08000000 +#define CCSR_DMA_ATR_TFLOWLVL_3 0x0C000000 +#define CCSR_DMA_ATR_PCIORDER 0x02000000 +#define CCSR_DMA_ATR_SME 0x01000000 +#define CCSR_DMA_ATR_NOSNOOP 0x00040000 +#define CCSR_DMA_ATR_SNOOP 0x00050000 +#define CCSR_DMA_ATR_ESAD_MASK 0x0000000F + +/** + * List Descriptor for extended chaining mode DMA operations. + * + * The CLSDAR register points to the first (in a linked-list) List + * Descriptor. Each object must be aligned on a 32-byte boundary. Each + * list descriptor points to a linked-list of link Descriptors. + */ +struct fsl_dma_list_descriptor { + __be64 next; /* Address of next list descriptor */ + __be64 first_link; /* Address of first link descriptor */ + __be32 source; /* Source stride */ + __be32 dest; /* Destination stride */ + u8 res[8]; /* Reserved */ +} __attribute__ ((aligned(32), packed)); + +/** + * Link Descriptor for basic and extended chaining mode DMA operations. + * + * A Link Descriptor points to a single DMA buffer. Each link descriptor + * must be aligned on a 32-byte boundary. + */ +struct fsl_dma_link_descriptor { + __be32 source_attr; /* Programmed into SATR register */ + __be32 source_addr; /* Programmed into SAR register */ + __be32 dest_attr; /* Programmed into DATR register */ + __be32 dest_addr; /* Programmed into DAR register */ + __be64 next; /* Address of next link descriptor */ + __be32 count; /* Byte count */ + u8 res[4]; /* Reserved */ +} __attribute__ ((aligned(32), packed)); + +/* DMA information needed to create a snd_soc_cpu_dai object + * + * ssi_stx_phys: bus address of SSI STX register to use + * ssi_srx_phys: bus address of SSI SRX register to use + * dma[0]: points to the DMA channel to use for playback + * dma[1]: points to the DMA channel to use for capture + * dma_irq[0]: IRQ of the DMA channel to use for playback + * dma_irq[1]: IRQ of the DMA channel to use for capture + */ +struct fsl_dma_info { + dma_addr_t ssi_stx_phys; + dma_addr_t ssi_srx_phys; + struct ccsr_dma_channel __iomem *dma_channel[2]; + unsigned int dma_irq[2]; +}; + +extern struct snd_soc_platform fsl_soc_platform; + +int fsl_dma_configure(struct fsl_dma_info *dma_info); + +#endif diff --git a/sound/soc/fsl/fsl_ssi.c b/sound/soc/fsl/fsl_ssi.c new file mode 100644 index 0000000..145ad13 --- /dev/null +++ b/sound/soc/fsl/fsl_ssi.c @@ -0,0 +1,644 @@ +/* + * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver + * + * Author: Timur Tabi <timur@freescale.com> + * + * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed + * under the terms of the GNU General Public License version 2. This + * program is licensed "as is" without any warranty of any kind, whether + * express or implied. + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/device.h> +#include <linux/delay.h> + +#include <sound/driver.h> +#include <sound/core.h> +#include <sound/pcm.h> +#include <sound/pcm_params.h> +#include <sound/initval.h> +#include <sound/soc.h> + +#include <asm/immap_86xx.h> + +#include "fsl_ssi.h" + +/** + * FSLSSI_I2S_RATES: sample rates supported by the I2S + * + * This driver currently only supports the SSI running in I2S slave mode, + * which means the codec determines the sample rate. Therefore, we tell + * ALSA that we support all rates and let the codec driver decide what rates + * are really supported. + */ +#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ + SNDRV_PCM_RATE_CONTINUOUS) + +/** + * FSLSSI_I2S_FORMATS: audio formats supported by the SSI + * + * This driver currently only supports the SSI running in I2S slave mode. + * + * The SSI has a limitation in that the samples must be in the same byte + * order as the host CPU. This is because when multiple bytes are written + * to the STX register, the bytes and bits must be written in the same + * order. The STX is a shift register, so all the bits need to be aligned + * (bit-endianness must match byte-endianness). Processors typically write + * the bits within a byte in the same order that the bytes of a word are + * written in. So if the host CPU is big-endian, then only big-endian + * samples will be written to STX properly. + */ +#ifdef __BIG_ENDIAN +#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ + SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ + SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) +#else +#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ + SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ + SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) +#endif + +/** + * fsl_ssi_private: per-SSI private data + * + * @name: short name for this device ("SSI0", "SSI1", etc) + * @ssi: pointer to the SSI's registers + * @ssi_phys: physical address of the SSI registers + * @irq: IRQ of this SSI + * @dev: struct device pointer + * @playback: the number of playback streams opened + * @capture: the number of capture streams opened + * @cpu_dai: the CPU DAI for this device + * @dev_attr: the sysfs device attribute structure + * @stats: SSI statistics + */ +struct fsl_ssi_private { + char name[8]; + struct ccsr_ssi __iomem *ssi; + dma_addr_t ssi_phys; + unsigned int irq; + struct device *dev; + unsigned int playback; + unsigned int capture; + struct snd_soc_cpu_dai cpu_dai; + struct device_attribute dev_attr; + + struct { + unsigned int rfrc; + unsigned int tfrc; + unsigned int cmdau; + unsigned int cmddu; + unsigned int rxt; + unsigned int rdr1; + unsigned int rdr0; + unsigned int tde1; + unsigned int tde0; + unsigned int roe1; + unsigned int roe0; + unsigned int tue1; + unsigned int tue0; + unsigned int tfs; + unsigned int rfs; + unsigned int tls; + unsigned int rls; + unsigned int rff1; + unsigned int rff0; + unsigned int tfe1; + unsigned int tfe0; + } stats; +}; + +/** + * fsl_ssi_isr: SSI interrupt handler + * + * Although it's possible to use the interrupt handler to send and receive + * data to/from the SSI, we use the DMA instead. Programming is more + * complicated, but the performance is much better. + * + * This interrupt handler is used only to gather statistics. + * + * @irq: IRQ of the SSI device + * @dev_id: pointer to the ssi_private structure for this SSI device + */ +static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) +{ + struct fsl_ssi_private *ssi_private = dev_id; + struct ccsr_ssi __iomem *ssi = ssi_private->ssi; + irqreturn_t ret = IRQ_NONE; + __be32 sisr; + __be32 sisr2 = 0; + + /* We got an interrupt, so read the status register to see what we + were interrupted for. We mask it with the Interrupt Enable register + so that we only check for events that we're interested in. + */ + sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier); + + if (sisr & CCSR_SSI_SISR_RFRC) { + ssi_private->stats.rfrc++; + sisr2 |= CCSR_SSI_SISR_RFRC; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TFRC) { + ssi_private->stats.tfrc++; + sisr2 |= CCSR_SSI_SISR_TFRC; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_CMDAU) { + ssi_private->stats.cmdau++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_CMDDU) { + ssi_private->stats.cmddu++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_RXT) { + ssi_private->stats.rxt++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_RDR1) { + ssi_private->stats.rdr1++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_RDR0) { + ssi_private->stats.rdr0++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TDE1) { + ssi_private->stats.tde1++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TDE0) { + ssi_private->stats.tde0++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_ROE1) { + ssi_private->stats.roe1++; + sisr2 |= CCSR_SSI_SISR_ROE1; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_ROE0) { + ssi_private->stats.roe0++; + sisr2 |= CCSR_SSI_SISR_ROE0; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TUE1) { + ssi_private->stats.tue1++; + sisr2 |= CCSR_SSI_SISR_TUE1; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TUE0) { + ssi_private->stats.tue0++; + sisr2 |= CCSR_SSI_SISR_TUE0; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TFS) { + ssi_private->stats.tfs++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_RFS) { + ssi_private->stats.rfs++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TLS) { + ssi_private->stats.tls++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_RLS) { + ssi_private->stats.rls++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_RFF1) { + ssi_private->stats.rff1++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_RFF0) { + ssi_private->stats.rff0++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TFE1) { + ssi_private->stats.tfe1++; + ret = IRQ_HANDLED; + } + + if (sisr & CCSR_SSI_SISR_TFE0) { + ssi_private->stats.tfe0++; + ret = IRQ_HANDLED; + } + + /* Clear the bits that we set */ + if (sisr2) + out_be32(&ssi->sisr, sisr2); + + return ret; +} + +/** + * fsl_ssi_startup: create a new substream + * + * This is the first function called when a stream is opened. + * + * If this is the first stream open, then grab the IRQ and program most of + * the SSI registers. + */ +static int fsl_ssi_startup(struct snd_pcm_substream *substream) +{ + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; + + /* + * If this is the first stream opened, then request the IRQ + * and initialize the SSI registers. + */ + if (!ssi_private->playback && !ssi_private->capture) { + struct ccsr_ssi __iomem *ssi = ssi_private->ssi; + int ret; + + ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, + ssi_private->name, ssi_private); + if (ret < 0) { + dev_err(substream->pcm->card->dev, + "could not claim irq %u\n", ssi_private->irq); + return ret; + } + + /* + * Section 16.5 of the MPC8610 reference manual says that the + * SSI needs to be disabled before updating the registers we set + * here. + */ + clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); + + /* + * Program the SSI into I2S Slave Non-Network Synchronous mode. + * Also enable the transmit and receive FIFO. + * + * FIXME: Little-endian samples require a different shift dir + */ + clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK, + CCSR_SSI_SCR_TFR_CLK_DIS | + CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN); + + out_be32(&ssi->stcr, + CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | + CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS | + CCSR_SSI_STCR_TSCKP); + + out_be32(&ssi->srcr, + CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 | + CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS | + CCSR_SSI_SRCR_RSCKP); + + /* + * The DC and PM bits are only used if the SSI is the clock + * master. + */ + + /* 4. Enable the interrupts and DMA requests */ + out_be32(&ssi->sier, + CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | + CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | + CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | + CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | + CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN); + + /* + * Set the watermark for transmit FIFI 0 and receive FIFO 0. We + * don't use FIFO 1. Since the SSI only supports stereo, the + * watermark should never be an odd number. + */ + out_be32(&ssi->sfcsr, + CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2)); + + /* + * We keep the SSI disabled because if we enable it, then the + * DMA controller will start. It's not supposed to start until + * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The + * DMA controller will transfer one "BWC" of data (i.e. the + * amount of data that the MR.BWC bits are set to). The reason + * this is bad is because at this point, the PCM driver has not + * finished initializing the DMA controller. + */ + } + + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + ssi_private->playback++; + + if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) + ssi_private->capture++; + + return 0; +} + +/** + * fsl_ssi_prepare: prepare the SSI. + * + * Most of the SSI registers have been programmed in the startup function, + * but the word length must be programmed here. Unfortunately, programming + * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can + * cause a problem with supporting simultaneous playback and capture. If + * the SSI is already playing a stream, then that stream may be temporarily + * stopped when you start capture. + * + * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the + * clock master. + */ +static int fsl_ssi_prepare(struct snd_pcm_substream *substream) +{ + struct snd_pcm_runtime *runtime = substream->runtime; + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; + + struct ccsr_ssi __iomem *ssi = ssi_private->ssi; + u32 wl; + + wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format)); + + clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); + + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl); + else + clrsetbits_be32(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl); + + setbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); + + return 0; +} + +/** + * fsl_ssi_trigger: start and stop the DMA transfer. + * + * This function is called by ALSA to start, stop, pause, and resume the DMA + * transfer of data. + * + * The DMA channel is in external master start and pause mode, which + * means the SSI completely controls the flow of data. + */ +static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd) +{ + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; + struct ccsr_ssi __iomem *ssi = ssi_private->ssi; + + switch (cmd) { + case SNDRV_PCM_TRIGGER_START: + case SNDRV_PCM_TRIGGER_RESUME: + case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { + setbits32(&ssi->scr, CCSR_SSI_SCR_TE); + } else { + setbits32(&ssi->scr, CCSR_SSI_SCR_RE); + + /* + * I think we need this delay to allow time for the SSI + * to put data into its FIFO. Without it, ALSA starts + * to complain about overruns. + */ + msleep(1); + } + break; + + case SNDRV_PCM_TRIGGER_STOP: + case SNDRV_PCM_TRIGGER_SUSPEND: + case SNDRV_PCM_TRIGGER_PAUSE_PUSH: + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); + else + clrbits32(&ssi->scr, CCSR_SSI_SCR_RE); + break; + + default: + return -EINVAL; + } + + return 0; +} + +/** + * fsl_ssi_shutdown: shutdown the SSI + * + * Shutdown the SSI if there are no other substreams open. + */ +static void fsl_ssi_shutdown(struct snd_pcm_substream *substream) +{ + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; + + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + ssi_private->playback--; + + if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) + ssi_private->capture--; + + /* + * If this is the last active substream, disable the SSI and release + * the IRQ. + */ + if (!ssi_private->playback && !ssi_private->capture) { + struct ccsr_ssi __iomem *ssi = ssi_private->ssi; + + clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); + + free_irq(ssi_private->irq, ssi_private); + } +} + +/** + * fsl_ssi_set_sysclk: set the clock frequency and direction + * + * This function is called by the machine driver to tell us what the clock + * frequency and direction are. + * + * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN), + * and we don't care about the frequency. Return an error if the direction + * is not SND_SOC_CLOCK_IN. + * + * @clk_id: reserved, should be zero + * @freq: the frequency of the given clock ID, currently ignored + * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master) + */ +static int fsl_ssi_set_sysclk(struct snd_soc_cpu_dai *cpu_dai, + int clk_id, unsigned int freq, int dir) +{ + + return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL; +} + +/** + * fsl_ssi_set_fmt: set the serial format. + * + * This function is called by the machine driver to tell us what serial + * format to use. + * + * Currently, we only support I2S mode. Return an error if the format is + * not SND_SOC_DAIFMT_I2S. + * + * @format: one of SND_SOC_DAIFMT_xxx + */ +static int fsl_ssi_set_fmt(struct snd_soc_cpu_dai *cpu_dai, unsigned int format) +{ + return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL; +} + +/** + * fsl_ssi_dai_template: template CPU DAI for the SSI + */ +static struct snd_soc_cpu_dai fsl_ssi_dai_template = { + .playback = { + /* The SSI does not support monaural audio. */ + .channels_min = 2, + .channels_max = 2, + .rates = FSLSSI_I2S_RATES, + .formats = FSLSSI_I2S_FORMATS, + }, + .capture = { + .channels_min = 2, + .channels_max = 2, + .rates = FSLSSI_I2S_RATES, + .formats = FSLSSI_I2S_FORMATS, + }, + .ops = { + .startup = fsl_ssi_startup, + .prepare = fsl_ssi_prepare, + .shutdown = fsl_ssi_shutdown, + .trigger = fsl_ssi_trigger, + }, + .dai_ops = { + .set_sysclk = fsl_ssi_set_sysclk, + .set_fmt = fsl_ssi_set_fmt, + }, +}; + +/** + * fsl_sysfs_ssi_show: display SSI statistics + * + * Display the statistics for the current SSI device. + */ +static ssize_t fsl_sysfs_ssi_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct fsl_ssi_private *ssi_private = + container_of(attr, struct fsl_ssi_private, dev_attr); + ssize_t length; + + length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc); + length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc); + length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau); + length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu); + length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt); + length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1); + length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0); + length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1); + length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0); + length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1); + length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0); + length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1); + length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0); + length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs); + length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs); + length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls); + length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls); + length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1); + length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0); + length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1); + length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0); + + return length; +} + +/** + * fsl_ssi_create_dai: create a snd_soc_cpu_dai structure + * + * This function is called by the machine driver to create a snd_soc_cpu_dai + * structure. The function creates an ssi_private object, which contains + * the snd_soc_cpu_dai. It also creates the sysfs statistics device. + */ +struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info) +{ + struct snd_soc_cpu_dai *fsl_ssi_dai; + struct fsl_ssi_private *ssi_private; + int ret = 0; + struct device_attribute *dev_attr; + + ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL); + if (!ssi_private) { + dev_err(ssi_info->dev, "could not allocate DAI object\n"); + return NULL; + } + memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template, + sizeof(struct snd_soc_cpu_dai)); + + fsl_ssi_dai = &ssi_private->cpu_dai; + dev_attr = &ssi_private->dev_attr; + + sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id); + ssi_private->ssi = ssi_info->ssi; + ssi_private->ssi_phys = ssi_info->ssi_phys; + ssi_private->irq = ssi_info->irq; + ssi_private->dev = ssi_info->dev; + + ssi_private->dev->driver_data = fsl_ssi_dai; + + /* Initialize the the device_attribute structure */ + dev_attr->attr.name = "ssi-stats"; + dev_attr->attr.mode = S_IRUGO; + dev_attr->show = fsl_sysfs_ssi_show; + + ret = device_create_file(ssi_private->dev, dev_attr); + if (ret) { + dev_err(ssi_info->dev, "could not create sysfs %s file\n", + ssi_private->dev_attr.attr.name); + kfree(fsl_ssi_dai); + return NULL; + } + + fsl_ssi_dai->private_data = ssi_private; + fsl_ssi_dai->name = ssi_private->name; + fsl_ssi_dai->id = ssi_info->id; + + return fsl_ssi_dai; +} +EXPORT_SYMBOL_GPL(fsl_ssi_create_dai); + +/** + * fsl_ssi_destroy_dai: destroy the snd_soc_cpu_dai object + * + * This function undoes the operations of fsl_ssi_create_dai() + */ +void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai) +{ + struct fsl_ssi_private *ssi_private = + container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai); + + device_remove_file(ssi_private->dev, &ssi_private->dev_attr); + + kfree(ssi_private); +} +EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai); + +MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); +MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); +MODULE_LICENSE("GPL"); diff --git a/sound/soc/fsl/fsl_ssi.h b/sound/soc/fsl/fsl_ssi.h new file mode 100644 index 0000000..c5ce88e --- /dev/null +++ b/sound/soc/fsl/fsl_ssi.h @@ -0,0 +1,224 @@ +/* + * fsl_ssi.h - ALSA SSI interface for the Freescale MPC8610 SoC + * + * Author: Timur Tabi <timur@freescale.com> + * + * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed + * under the terms of the GNU General Public License version 2. This + * program is licensed "as is" without any warranty of any kind, whether + * express or implied. + */ + +#ifndef _MPC8610_I2S_H +#define _MPC8610_I2S_H + +/* SSI Register Map */ +struct ccsr_ssi { + __be32 stx0; /* 0x.0000 - SSI Transmit Data Register 0 */ + __be32 stx1; /* 0x.0004 - SSI Transmit Data Register 1 */ + __be32 srx0; /* 0x.0008 - SSI Receive Data Register 0 */ + __be32 srx1; /* 0x.000C - SSI Receive Data Register 1 */ + __be32 scr; /* 0x.0010 - SSI Control Register */ + __be32 sisr; /* 0x.0014 - SSI Interrupt Status Register Mixed */ + __be32 sier; /* 0x.0018 - SSI Interrupt Enable Register */ + __be32 stcr; /* 0x.001C - SSI Transmit Configuration Register */ + __be32 srcr; /* 0x.0020 - SSI Receive Configuration Register */ + __be32 stccr; /* 0x.0024 - SSI Transmit Clock Control Register */ + __be32 srccr; /* 0x.0028 - SSI Receive Clock Control Register */ + __be32 sfcsr; /* 0x.002C - SSI FIFO Control/Status Register */ + __be32 str; /* 0x.0030 - SSI Test Register */ + __be32 sor; /* 0x.0034 - SSI Option Register */ + __be32 sacnt; /* 0x.0038 - SSI AC97 Control Register */ + __be32 sacadd; /* 0x.003C - SSI AC97 Command Address Register */ + __be32 sacdat; /* 0x.0040 - SSI AC97 Command Data Register */ + __be32 satag; /* 0x.0044 - SSI AC97 Tag Register */ + __be32 stmsk; /* 0x.0048 - SSI Transmit Time Slot Mask Register */ + __be32 srmsk; /* 0x.004C - SSI Receive Time Slot Mask Register */ + __be32 saccst; /* 0x.0050 - SSI AC97 Channel Status Register */ + __be32 saccen; /* 0x.0054 - SSI AC97 Channel Enable Register */ + __be32 saccdis; /* 0x.0058 - SSI AC97 Channel Disable Register */ +}; + +#define CCSR_SSI_SCR_RFR_CLK_DIS 0x00000800 +#define CCSR_SSI_SCR_TFR_CLK_DIS 0x00000400 +#define CCSR_SSI_SCR_TCH_EN 0x00000100 +#define CCSR_SSI_SCR_SYS_CLK_EN 0x00000080 +#define CCSR_SSI_SCR_I2S_MODE_MASK 0x00000060 +#define CCSR_SSI_SCR_I2S_MODE_NORMAL 0x00000000 +#define CCSR_SSI_SCR_I2S_MODE_MASTER 0x00000020 +#define CCSR_SSI_SCR_I2S_MODE_SLAVE 0x00000040 +#define CCSR_SSI_SCR_SYN 0x00000010 +#define CCSR_SSI_SCR_NET 0x00000008 +#define CCSR_SSI_SCR_RE 0x00000004 +#define CCSR_SSI_SCR_TE 0x00000002 +#define CCSR_SSI_SCR_SSIEN 0x00000001 + +#define CCSR_SSI_SISR_RFRC 0x01000000 +#define CCSR_SSI_SISR_TFRC 0x00800000 +#define CCSR_SSI_SISR_CMDAU 0x00040000 +#define CCSR_SSI_SISR_CMDDU 0x00020000 +#define CCSR_SSI_SISR_RXT 0x00010000 +#define CCSR_SSI_SISR_RDR1 0x00008000 +#define CCSR_SSI_SISR_RDR0 0x00004000 +#define CCSR_SSI_SISR_TDE1 0x00002000 +#define CCSR_SSI_SISR_TDE0 0x00001000 +#define CCSR_SSI_SISR_ROE1 0x00000800 +#define CCSR_SSI_SISR_ROE0 0x00000400 +#define CCSR_SSI_SISR_TUE1 0x00000200 +#define CCSR_SSI_SISR_TUE0 0x00000100 +#define CCSR_SSI_SISR_TFS 0x00000080 +#define CCSR_SSI_SISR_RFS 0x00000040 +#define CCSR_SSI_SISR_TLS 0x00000020 +#define CCSR_SSI_SISR_RLS 0x00000010 +#define CCSR_SSI_SISR_RFF1 0x00000008 +#define CCSR_SSI_SISR_RFF0 0x00000004 +#define CCSR_SSI_SISR_TFE1 0x00000002 +#define CCSR_SSI_SISR_TFE0 0x00000001 + +#define CCSR_SSI_SIER_RFRC_EN 0x01000000 +#define CCSR_SSI_SIER_TFRC_EN 0x00800000 +#define CCSR_SSI_SIER_RDMAE 0x00400000 +#define CCSR_SSI_SIER_RIE 0x00200000 +#define CCSR_SSI_SIER_TDMAE 0x00100000 +#define CCSR_SSI_SIER_TIE 0x00080000 +#define CCSR_SSI_SIER_CMDAU_EN 0x00040000 +#define CCSR_SSI_SIER_CMDDU_EN 0x00020000 +#define CCSR_SSI_SIER_RXT_EN 0x00010000 +#define CCSR_SSI_SIER_RDR1_EN 0x00008000 +#define CCSR_SSI_SIER_RDR0_EN 0x00004000 +#define CCSR_SSI_SIER_TDE1_EN 0x00002000 +#define CCSR_SSI_SIER_TDE0_EN 0x00001000 +#define CCSR_SSI_SIER_ROE1_EN 0x00000800 +#define CCSR_SSI_SIER_ROE0_EN 0x00000400 +#define CCSR_SSI_SIER_TUE1_EN 0x00000200 +#define CCSR_SSI_SIER_TUE0_EN 0x00000100 +#define CCSR_SSI_SIER_TFS_EN 0x00000080 +#define CCSR_SSI_SIER_RFS_EN 0x00000040 +#define CCSR_SSI_SIER_TLS_EN 0x00000020 +#define CCSR_SSI_SIER_RLS_EN 0x00000010 +#define CCSR_SSI_SIER_RFF1_EN 0x00000008 +#define CCSR_SSI_SIER_RFF0_EN 0x00000004 +#define CCSR_SSI_SIER_TFE1_EN 0x00000002 +#define CCSR_SSI_SIER_TFE0_EN 0x00000001 + +#define CCSR_SSI_STCR_TXBIT0 0x00000200 +#define CCSR_SSI_STCR_TFEN1 0x00000100 +#define CCSR_SSI_STCR_TFEN0 0x00000080 +#define CCSR_SSI_STCR_TFDIR 0x00000040 +#define CCSR_SSI_STCR_TXDIR 0x00000020 +#define CCSR_SSI_STCR_TSHFD 0x00000010 +#define CCSR_SSI_STCR_TSCKP 0x00000008 +#define CCSR_SSI_STCR_TFSI 0x00000004 +#define CCSR_SSI_STCR_TFSL 0x00000002 +#define CCSR_SSI_STCR_TEFS 0x00000001 + +#define CCSR_SSI_SRCR_RXEXT 0x00000400 +#define CCSR_SSI_SRCR_RXBIT0 0x00000200 +#define CCSR_SSI_SRCR_RFEN1 0x00000100 +#define CCSR_SSI_SRCR_RFEN0 0x00000080 +#define CCSR_SSI_SRCR_RFDIR 0x00000040 +#define CCSR_SSI_SRCR_RXDIR 0x00000020 +#define CCSR_SSI_SRCR_RSHFD 0x00000010 +#define CCSR_SSI_SRCR_RSCKP 0x00000008 +#define CCSR_SSI_SRCR_RFSI 0x00000004 +#define CCSR_SSI_SRCR_RFSL 0x00000002 +#define CCSR_SSI_SRCR_REFS 0x00000001 + +/* STCCR and SRCCR */ +#define CCSR_SSI_SxCCR_DIV2 0x00040000 +#define CCSR_SSI_SxCCR_PSR 0x00020000 +#define CCSR_SSI_SxCCR_WL_SHIFT 13 +#define CCSR_SSI_SxCCR_WL_MASK 0x0001E000 +#define CCSR_SSI_SxCCR_WL(x) \ + (((((x) / 2) - 1) << CCSR_SSI_SxCCR_WL_SHIFT) & CCSR_SSI_SxCCR_WL_MASK) +#define CCSR_SSI_SxCCR_DC_SHIFT 8 +#define CCSR_SSI_SxCCR_DC_MASK 0x00001F00 +#define CCSR_SSI_SxCCR_DC(x) \ + ((((x) - 1) << CCSR_SSI_SxCCR_DC_SHIFT) & CCSR_SSI_SxCCR_DC_MASK) +#define CCSR_SSI_SxCCR_PM_SHIFT 0 +#define CCSR_SSI_SxCCR_PM_MASK 0x000000FF +#define CCSR_SSI_SxCCR_PM(x) \ + ((((x) - 1) << CCSR_SSI_SxCCR_PM_SHIFT) & CCSR_SSI_SxCCR_PM_MASK) + +/* + * The xFCNT bits are read-only, and the xFWM bits are read/write. Use the + * CCSR_SSI_SFCSR_xFCNTy() macros to read the FIFO counters, and use the + * CCSR_SSI_SFCSR_xFWMy() macros to set the watermarks. + */ +#define CCSR_SSI_SFCSR_RFCNT1_SHIFT 28 +#define CCSR_SSI_SFCSR_RFCNT1_MASK 0xF0000000 +#define CCSR_SSI_SFCSR_RFCNT1(x) \ + (((x) & CCSR_SSI_SFCSR_RFCNT1_MASK) >> CCSR_SSI_SFCSR_RFCNT1_SHIFT) +#define CCSR_SSI_SFCSR_TFCNT1_SHIFT 24 +#define CCSR_SSI_SFCSR_TFCNT1_MASK 0x0F000000 +#define CCSR_SSI_SFCSR_TFCNT1(x) \ + (((x) & CCSR_SSI_SFCSR_TFCNT1_MASK) >> CCSR_SSI_SFCSR_TFCNT1_SHIFT) +#define CCSR_SSI_SFCSR_RFWM1_SHIFT 20 +#define CCSR_SSI_SFCSR_RFWM1_MASK 0x00F00000 +#define CCSR_SSI_SFCSR_RFWM1(x) \ + (((x) << CCSR_SSI_SFCSR_RFWM1_SHIFT) & CCSR_SSI_SFCSR_RFWM1_MASK) +#define CCSR_SSI_SFCSR_TFWM1_SHIFT 16 +#define CCSR_SSI_SFCSR_TFWM1_MASK 0x000F0000 +#define CCSR_SSI_SFCSR_TFWM1(x) \ + (((x) << CCSR_SSI_SFCSR_TFWM1_SHIFT) & CCSR_SSI_SFCSR_TFWM1_MASK) +#define CCSR_SSI_SFCSR_RFCNT0_SHIFT 12 +#define CCSR_SSI_SFCSR_RFCNT0_MASK 0x0000F000 +#define CCSR_SSI_SFCSR_RFCNT0(x) \ + (((x) & CCSR_SSI_SFCSR_RFCNT0_MASK) >> CCSR_SSI_SFCSR_RFCNT0_SHIFT) +#define CCSR_SSI_SFCSR_TFCNT0_SHIFT 8 +#define CCSR_SSI_SFCSR_TFCNT0_MASK 0x00000F00 +#define CCSR_SSI_SFCSR_TFCNT0(x) \ + (((x) & CCSR_SSI_SFCSR_TFCNT0_MASK) >> CCSR_SSI_SFCSR_TFCNT0_SHIFT) +#define CCSR_SSI_SFCSR_RFWM0_SHIFT 4 +#define CCSR_SSI_SFCSR_RFWM0_MASK 0x000000F0 +#define CCSR_SSI_SFCSR_RFWM0(x) \ + (((x) << CCSR_SSI_SFCSR_RFWM0_SHIFT) & CCSR_SSI_SFCSR_RFWM0_MASK) +#define CCSR_SSI_SFCSR_TFWM0_SHIFT 0 +#define CCSR_SSI_SFCSR_TFWM0_MASK 0x0000000F +#define CCSR_SSI_SFCSR_TFWM0(x) \ + (((x) << CCSR_SSI_SFCSR_TFWM0_SHIFT) & CCSR_SSI_SFCSR_TFWM0_MASK) + +#define CCSR_SSI_STR_TEST 0x00008000 +#define CCSR_SSI_STR_RCK2TCK 0x00004000 +#define CCSR_SSI_STR_RFS2TFS 0x00002000 +#define CCSR_SSI_STR_RXSTATE(x) (((x) >> 8) & 0x1F) +#define CCSR_SSI_STR_TXD2RXD 0x00000080 +#define CCSR_SSI_STR_TCK2RCK 0x00000040 +#define CCSR_SSI_STR_TFS2RFS 0x00000020 +#define CCSR_SSI_STR_TXSTATE(x) ((x) & 0x1F) + +#define CCSR_SSI_SOR_CLKOFF 0x00000040 +#define CCSR_SSI_SOR_RX_CLR 0x00000020 +#define CCSR_SSI_SOR_TX_CLR 0x00000010 +#define CCSR_SSI_SOR_INIT 0x00000008 +#define CCSR_SSI_SOR_WAIT_SHIFT 1 +#define CCSR_SSI_SOR_WAIT_MASK 0x00000006 +#define CCSR_SSI_SOR_WAIT(x) (((x) & 3) << CCSR_SSI_SOR_WAIT_SHIFT) +#define CCSR_SSI_SOR_SYNRST 0x00000001 + +/* Instantiation data for an SSI interface + * + * This structure contains all the information that the the SSI driver needs + * to instantiate an SSI interface with ALSA. The machine driver should + * create this structure, fill it in, call fsl_ssi_create_dai(), and then + * delete the structure. + * + * id: which SSI this is (0, 1, etc. ) + * ssi: pointer to the SSI's registers + * ssi_phys: physical address of the SSI registers + * irq: IRQ of this SSI + * dev: struct device, used to create the sysfs statistics file +*/ +struct fsl_ssi_info { + unsigned int id; + struct ccsr_ssi __iomem *ssi; + dma_addr_t ssi_phys; + unsigned int irq; + struct device *dev; +}; + +struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info); +void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai); + +#endif + diff --git a/sound/soc/fsl/mpc8610_hpcd.c b/sound/soc/fsl/mpc8610_hpcd.c new file mode 100644 index 0000000..f26c4b2 --- /dev/null +++ b/sound/soc/fsl/mpc8610_hpcd.c @@ -0,0 +1,631 @@ +/** + * Freescale MPC8610HPCD ALSA SoC Fabric driver + * + * Author: Timur Tabi <timur@freescale.com> + * + * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed + * under the terms of the GNU General Public License version 2. This + * program is licensed "as is" without any warranty of any kind, whether + * express or implied. + */ + +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/of_device.h> +#include <linux/of_platform.h> +#include <sound/soc.h> +#include <asm/immap_86xx.h> + +#include "../codecs/cs4270.h" +#include "fsl_dma.h" +#include "fsl_ssi.h" + +/** + * mpc8610_hpcd_data: fabric-specific ASoC device data + * + * This structure contains data for a single sound platform device on an + * MPC8610 HPCD. Some of the data is taken from the device tree. + */ +struct mpc8610_hpcd_data { + struct snd_soc_device sound_devdata; + struct snd_soc_dai_link dai; + struct snd_soc_machine machine; + unsigned int dai_format; + unsigned int codec_clk_direction; + unsigned int cpu_clk_direction; + unsigned int clk_frequency; + struct ccsr_guts __iomem *guts; + struct ccsr_ssi __iomem *ssi; + unsigned int ssi_id; /* 0 = SSI1, 1 = SSI2, etc */ + unsigned int ssi_irq; + unsigned int dma_id; /* 0 = DMA1, 1 = DMA2, etc */ + unsigned int dma_irq[2]; + struct ccsr_dma_channel __iomem *dma[2]; + unsigned int dma_channel_id[2]; /* 0 = ch 0, 1 = ch 1, etc*/ +}; + +/** + * mpc8610_hpcd_machine_probe: initalize the board + * + * This function is called when platform_device_add() is called. It is used + * to initialize the board-specific hardware. + * + * Here we program the DMACR and PMUXCR registers. + */ +static int mpc8610_hpcd_machine_probe(struct platform_device *sound_device) +{ + struct mpc8610_hpcd_data *machine_data = + sound_device->dev.platform_data; + + /* Program the signal routing between the SSI and the DMA */ + guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, + machine_data->dma_channel_id[0], CCSR_GUTS_DMACR_DEV_SSI); + guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, + machine_data->dma_channel_id[1], CCSR_GUTS_DMACR_DEV_SSI); + + guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id, + machine_data->dma_channel_id[0], 0); + guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id, + machine_data->dma_channel_id[1], 0); + + guts_set_pmuxcr_dma(machine_data->guts, 1, 0, 0); + guts_set_pmuxcr_dma(machine_data->guts, 1, 3, 0); + guts_set_pmuxcr_dma(machine_data->guts, 0, 3, 0); + + switch (machine_data->ssi_id) { + case 0: + clrsetbits_be32(&machine_data->guts->pmuxcr, + CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_SSI); + break; + case 1: + clrsetbits_be32(&machine_data->guts->pmuxcr, + CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI2_SSI); + break; + } + + return 0; +} + +/** + * mpc8610_hpcd_startup: program the board with various hardware parameters + * + * This function takes board-specific information, like clock frequencies + * and serial data formats, and passes that information to the codec and + * transport drivers. + */ +static int mpc8610_hpcd_startup(struct snd_pcm_substream *substream) +{ + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct snd_soc_codec_dai *codec_dai = rtd->dai->codec_dai; + struct snd_soc_cpu_dai *cpu_dai = rtd->dai->cpu_dai; + struct mpc8610_hpcd_data *machine_data = + rtd->socdev->dev->platform_data; + int ret = 0; + + /* Tell the CPU driver what the serial protocol is. */ + if (cpu_dai->dai_ops.set_fmt) { + ret = cpu_dai->dai_ops.set_fmt(cpu_dai, + machine_data->dai_format); + if (ret < 0) { + dev_err(substream->pcm->card->dev, + "could not set CPU driver audio format\n"); + return ret; + } + } + + /* Tell the codec driver what the serial protocol is. */ + if (codec_dai->dai_ops.set_fmt) { + ret = codec_dai->dai_ops.set_fmt(codec_dai, + machine_data->dai_format); + if (ret < 0) { + dev_err(substream->pcm->card->dev, + "could not set codec driver audio format\n"); + return ret; + } + } + + /* + * Tell the CPU driver what the clock frequency is, and whether it's a + * slave or master. + */ + if (cpu_dai->dai_ops.set_sysclk) { + ret = cpu_dai->dai_ops.set_sysclk(cpu_dai, 0, + machine_data->clk_frequency, + machine_data->cpu_clk_direction); + if (ret < 0) { + dev_err(substream->pcm->card->dev, + "could not set CPU driver clock parameters\n"); + return ret; + } + } + + /* + * Tell the codec driver what the MCLK frequency is, and whether it's + * a slave or master. + */ + if (codec_dai->dai_ops.set_sysclk) { + ret = codec_dai->dai_ops.set_sysclk(codec_dai, 0, + machine_data->clk_frequency, + machine_data->codec_clk_direction); + if (ret < 0) { + dev_err(substream->pcm->card->dev, + "could not set codec driver clock params\n"); + return ret; + } + } + + return 0; +} + +/** + * mpc8610_hpcd_machine_remove: Remove the sound device + * + * This function is called to remove the sound device for one SSI. We + * de-program the DMACR and PMUXCR register. + */ +int mpc8610_hpcd_machine_remove(struct platform_device *sound_device) +{ + struct mpc8610_hpcd_data *machine_data = + sound_device->dev.platform_data; + + /* Restore the signal routing */ + + guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, + machine_data->dma_channel_id[0], 0); + guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, + machine_data->dma_channel_id[1], 0); + + switch (machine_data->ssi_id) { + case 0: + clrsetbits_be32(&machine_data->guts->pmuxcr, + CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_LA); + break; + case 1: + clrsetbits_be32(&machine_data->guts->pmuxcr, + CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI1_LA); + break; + } + + return 0; +} + +/** + * mpc8610_hpcd_ops: ASoC fabric driver operations + */ +static struct snd_soc_ops mpc8610_hpcd_ops = { + .startup = mpc8610_hpcd_startup, +}; + +/** + * mpc8610_hpcd_machine: ASoC machine data + */ +static struct snd_soc_machine mpc8610_hpcd_machine = { + .probe = mpc8610_hpcd_machine_probe, + .remove = mpc8610_hpcd_machine_remove, + .name = "MPC8610 HPCD", + .num_links = 1, +}; + +/** + * mpc8610_hpcd_probe: OF probe function for the fabric driver + * + * This function gets called when an SSI node is found in the device tree. + * + * Although this is a fabric driver, the SSI node is the "master" node with + * respect to audio hardware connections. Therefore, we create a new ASoC + * device for each new SSI node that has a codec attached. + * + * FIXME: Currently, we only support one DMA controller, so if there are + * multiple SSI nodes with codecs, only the first will be supported. + * + * FIXME: Even if we did support multiple DMA controllers, we have no + * mechanism for assigning DMA controllers and channels to the individual + * SSI devices. We also probably aren't compatible with the generic Elo DMA + * device driver. + */ +static int mpc8610_hpcd_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct device_node *np = ofdev->node; + struct device_node *codec_np = NULL; + struct device_node *guts_np = NULL; + struct device_node *dma_np = NULL; + struct device_node *dma_channel_np = NULL; + const phandle *codec_ph; + const char *sprop; + const u32 *iprop; + struct resource res; + struct platform_device *sound_device = NULL; + struct mpc8610_hpcd_data *machine_data; + struct fsl_ssi_info ssi_info; + struct fsl_dma_info dma_info; + int ret = -ENODEV; + + machine_data = kzalloc(sizeof(struct mpc8610_hpcd_data), GFP_KERNEL); + if (!machine_data) + return -ENOMEM; + + memset(&ssi_info, 0, sizeof(ssi_info)); + memset(&dma_info, 0, sizeof(dma_info)); + + ssi_info.dev = &ofdev->dev; + + /* + * We are only interested in SSIs with a codec phandle in them, so let's + * make sure this SSI has one. + */ + codec_ph = of_get_property(np, "codec-handle", NULL); + if (!codec_ph) + goto error; + + codec_np = of_find_node_by_phandle(*codec_ph); + if (!codec_np) + goto error; + + /* The MPC8610 HPCD only knows about the CS4270 codec, so reject + anything else. */ + if (!of_device_is_compatible(codec_np, "cirrus,cs4270")) + goto error; + + /* Get the device ID */ + iprop = of_get_property(np, "cell-index", NULL); + if (!iprop) { + dev_err(&ofdev->dev, "cell-index property not found\n"); + ret = -EINVAL; + goto error; + } + machine_data->ssi_id = *iprop; + ssi_info.id = *iprop; + + /* Get the serial format and clock direction. */ + sprop = of_get_property(np, "fsl,mode", NULL); + if (!sprop) { + dev_err(&ofdev->dev, "fsl,mode property not found\n"); + ret = -EINVAL; + goto error; + } + + if (strcasecmp(sprop, "i2s-slave") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_I2S; + machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; + + /* + * In i2s-slave mode, the codec has its own clock source, so we + * need to get the frequency from the device tree and pass it to + * the codec driver. + */ + iprop = of_get_property(codec_np, "clock-frequency", NULL); + if (!iprop || !*iprop) { + dev_err(&ofdev->dev, "codec bus-frequency property " + "is missing or invalid\n"); + ret = -EINVAL; + goto error; + } + machine_data->clk_frequency = *iprop; + } else if (strcasecmp(sprop, "i2s-master") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_I2S; + machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; + } else if (strcasecmp(sprop, "lj-slave") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J; + machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; + } else if (strcasecmp(sprop, "lj-master") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J; + machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; + } else if (strcasecmp(sprop, "rj-master") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J; + machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; + } else if (strcasecmp(sprop, "rj-master") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J; + machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; + } else if (strcasecmp(sprop, "ac97-slave") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_AC97; + machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; + } else if (strcasecmp(sprop, "ac97-master") == 0) { + machine_data->dai_format = SND_SOC_DAIFMT_AC97; + machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; + machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; + } else { + dev_err(&ofdev->dev, + "unrecognized fsl,mode property \"%s\"\n", sprop); + ret = -EINVAL; + goto error; + } + + if (!machine_data->clk_frequency) { + dev_err(&ofdev->dev, "unknown clock frequency\n"); + ret = -EINVAL; + goto error; + } + + /* Read the SSI information from the device tree */ + ret = of_address_to_resource(np, 0, &res); + if (ret) { + dev_err(&ofdev->dev, "could not obtain SSI address\n"); + goto error; + } + if (!res.start) { + dev_err(&ofdev->dev, "invalid SSI address\n"); + goto error; + } + ssi_info.ssi_phys = res.start; + + machine_data->ssi = ioremap(ssi_info.ssi_phys, sizeof(struct ccsr_ssi)); + if (!machine_data->ssi) { + dev_err(&ofdev->dev, "could not map SSI address %x\n", + ssi_info.ssi_phys); + ret = -EINVAL; + goto error; + } + ssi_info.ssi = machine_data->ssi; + + + /* Get the IRQ of the SSI */ + machine_data->ssi_irq = irq_of_parse_and_map(np, 0); + if (!machine_data->ssi_irq) { + dev_err(&ofdev->dev, "could not get SSI IRQ\n"); + ret = -EINVAL; + goto error; + } + ssi_info.irq = machine_data->ssi_irq; + + + /* Map the global utilities registers. */ + guts_np = of_find_compatible_node(NULL, NULL, "fsl,mpc8610-guts"); + if (!guts_np) { + dev_err(&ofdev->dev, "could not obtain address of GUTS\n"); + ret = -EINVAL; + goto error; + } + machine_data->guts = of_iomap(guts_np, 0); + of_node_put(guts_np); + if (!machine_data->guts) { + dev_err(&ofdev->dev, "could not map GUTS\n"); + ret = -EINVAL; + goto error; + } + + /* Find the DMA channels to use. For now, we always use the first DMA + controller. */ + for_each_compatible_node(dma_np, NULL, "fsl,mpc8610-dma") { + iprop = of_get_property(dma_np, "cell-index", NULL); + if (iprop && (*iprop == 0)) { + of_node_put(dma_np); + break; + } + } + if (!dma_np) { + dev_err(&ofdev->dev, "could not find DMA node\n"); + ret = -EINVAL; + goto error; + } + machine_data->dma_id = *iprop; + + /* + * Find the DMA channels to use. For now, we always use DMA channel 0 + * for playback, and DMA channel 1 for capture. + */ + while ((dma_channel_np = of_get_next_child(dma_np, dma_channel_np))) { + iprop = of_get_property(dma_channel_np, "cell-index", NULL); + /* Is it DMA channel 0? */ + if (iprop && (*iprop == 0)) { + /* dma_channel[0] and dma_irq[0] are for playback */ + dma_info.dma_channel[0] = of_iomap(dma_channel_np, 0); + dma_info.dma_irq[0] = + irq_of_parse_and_map(dma_channel_np, 0); + machine_data->dma_channel_id[0] = *iprop; + continue; + } + if (iprop && (*iprop == 1)) { + /* dma_channel[1] and dma_irq[1] are for capture */ + dma_info.dma_channel[1] = of_iomap(dma_channel_np, 0); + dma_info.dma_irq[1] = + irq_of_parse_and_map(dma_channel_np, 0); + machine_data->dma_channel_id[1] = *iprop; + continue; + } + } + if (!dma_info.dma_channel[0] || !dma_info.dma_channel[1] || + !dma_info.dma_irq[0] || !dma_info.dma_irq[1]) { + dev_err(&ofdev->dev, "could not find DMA channels\n"); + ret = -EINVAL; + goto error; + } + + dma_info.ssi_stx_phys = ssi_info.ssi_phys + + offsetof(struct ccsr_ssi, stx0); + dma_info.ssi_srx_phys = ssi_info.ssi_phys + + offsetof(struct ccsr_ssi, srx0); + + /* We have the DMA information, so tell the DMA driver what it is */ + if (!fsl_dma_configure(&dma_info)) { + dev_err(&ofdev->dev, "could not instantiate DMA device\n"); + ret = -EBUSY; + goto error; + } + + /* + * Initialize our DAI data structure. We should probably get this + * information from the device tree. + */ + machine_data->dai.name = "CS4270"; + machine_data->dai.stream_name = "CS4270"; + + machine_data->dai.cpu_dai = fsl_ssi_create_dai(&ssi_info); + machine_data->dai.codec_dai = &cs4270_dai; /* The codec_dai we want */ + machine_data->dai.ops = &mpc8610_hpcd_ops; + + mpc8610_hpcd_machine.dai_link = &machine_data->dai; + + /* Allocate a new audio platform device structure */ + sound_device = platform_device_alloc("soc-audio", -1); + if (!sound_device) { + dev_err(&ofdev->dev, "platform device allocation failed\n"); + ret = -ENOMEM; + goto error; + } + + machine_data->sound_devdata.machine = &mpc8610_hpcd_machine; + machine_data->sound_devdata.codec_dev = &soc_codec_device_cs4270; + machine_data->sound_devdata.platform = &fsl_soc_platform; + + sound_device->dev.platform_data = machine_data; + + + /* Set the platform device and ASoC device to point to each other */ + platform_set_drvdata(sound_device, &machine_data->sound_devdata); + + machine_data->sound_devdata.dev = &sound_device->dev; + + + /* Tell ASoC to probe us. This will call mpc8610_hpcd_machine.probe(), + if it exists. */ + ret = platform_device_add(sound_device); + + if (ret) { + dev_err(&ofdev->dev, "platform device add failed\n"); + goto error; + } + + dev_set_drvdata(&ofdev->dev, sound_device); + + return 0; + +error: + of_node_put(codec_np); + of_node_put(guts_np); + of_node_put(dma_np); + of_node_put(dma_channel_np); + + if (sound_device) + platform_device_unregister(sound_device); + + if (machine_data->dai.cpu_dai) + fsl_ssi_destroy_dai(machine_data->dai.cpu_dai); + + if (ssi_info.ssi) + iounmap(ssi_info.ssi); + + if (ssi_info.irq) + irq_dispose_mapping(ssi_info.irq); + + if (dma_info.dma_channel[0]) + iounmap(dma_info.dma_channel[0]); + + if (dma_info.dma_channel[1]) + iounmap(dma_info.dma_channel[1]); + + if (dma_info.dma_irq[0]) + irq_dispose_mapping(dma_info.dma_irq[0]); + + if (dma_info.dma_irq[1]) + irq_dispose_mapping(dma_info.dma_irq[1]); + + if (machine_data->guts) + iounmap(machine_data->guts); + + kfree(machine_data); + + return ret; +} + +/** + * mpc8610_hpcd_remove: remove the OF device + * + * This function is called when the OF device is removed. + */ +static int mpc8610_hpcd_remove(struct of_device *ofdev) +{ + struct platform_device *sound_device = dev_get_drvdata(&ofdev->dev); + struct mpc8610_hpcd_data *machine_data = + sound_device->dev.platform_data; + + platform_device_unregister(sound_device); + + if (machine_data->dai.cpu_dai) + fsl_ssi_destroy_dai(machine_data->dai.cpu_dai); + + if (machine_data->ssi) + iounmap(machine_data->ssi); + + if (machine_data->dma[0]) + iounmap(machine_data->dma[0]); + + if (machine_data->dma[1]) + iounmap(machine_data->dma[1]); + + if (machine_data->dma_irq[0]) + irq_dispose_mapping(machine_data->dma_irq[0]); + + if (machine_data->dma_irq[1]) + irq_dispose_mapping(machine_data->dma_irq[1]); + + if (machine_data->guts) + iounmap(machine_data->guts); + + kfree(machine_data); + sound_device->dev.platform_data = NULL; + + dev_set_drvdata(&ofdev->dev, NULL); + + return 0; +} + +static struct of_device_id mpc8610_hpcd_match[] = { + { + .compatible = "fsl,mpc8610-ssi", + }, + {} +}; +MODULE_DEVICE_TABLE(of, mpc8610_hpcd_match); + +static struct of_platform_driver mpc8610_hpcd_of_driver = { + .owner = THIS_MODULE, + .name = "mpc8610_hpcd", + .match_table = mpc8610_hpcd_match, + .probe = mpc8610_hpcd_probe, + .remove = mpc8610_hpcd_remove, +}; + +/** + * mpc8610_hpcd_init: fabric driver initialization. + * + * This function is called when this module is loaded. + */ +static int __init mpc8610_hpcd_init(void) +{ + int ret; + + printk(KERN_INFO "Freescale MPC8610 HPCD ALSA SoC fabric driver\n"); + + ret = of_register_platform_driver(&mpc8610_hpcd_of_driver); + + if (ret) + printk(KERN_ERR + "mpc8610-hpcd: failed to register platform driver\n"); + + return ret; +} + +/** + * mpc8610_hpcd_exit: fabric driver exit + * + * This function is called when this driver is unloaded. + */ +static void __exit mpc8610_hpcd_exit(void) +{ + of_unregister_platform_driver(&mpc8610_hpcd_of_driver); +} + +module_init(mpc8610_hpcd_init); +module_exit(mpc8610_hpcd_exit); + +MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); +MODULE_DESCRIPTION("Freescale MPC8610 HPCD ALSA SoC fabric driver"); +MODULE_LICENSE("GPL"); |