summaryrefslogtreecommitdiffstats
path: root/mm/slab.c
diff options
context:
space:
mode:
authorMel Gorman <mgorman@suse.de>2012-07-31 16:43:58 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-07-31 18:42:45 -0700
commit072bb0aa5e062902968c5c1007bba332c7820cf4 (patch)
tree1b4a602c16b07a41484c0664d1936848387f0916 /mm/slab.c
parent702d1a6e0766d45642c934444fd41f658d251305 (diff)
downloadop-kernel-dev-072bb0aa5e062902968c5c1007bba332c7820cf4.zip
op-kernel-dev-072bb0aa5e062902968c5c1007bba332c7820cf4.tar.gz
mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. Swap over the network is considered as an option in diskless systems. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap according to the manual at https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download There is also documentation and tutorials on how to setup swap over NBD at places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The nbd-client also documents the use of NBD as swap. Despite this, the fact is that a machine using NBD for swap can deadlock within minutes if swap is used intensively. This patch series addresses the problem. The core issue is that network block devices do not use mempools like normal block devices do. As the host cannot control where they receive packets from, they cannot reliably work out in advance how much memory they might need. Some years ago, Peter Zijlstra developed a series of patches that supported swap over an NFS that at least one distribution is carrying within their kernels. This patch series borrows very heavily from Peter's work to support swapping over NBD as a pre-requisite to supporting swap-over-NFS. The bulk of the complexity is concerned with preserving memory that is allocated from the PFMEMALLOC reserves for use by the network layer which is needed for both NBD and NFS. Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to preserve access to pages allocated under low memory situations to callers that are freeing memory. Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC reserves without setting PFMEMALLOC. Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves for later use by network packet processing. Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set. Patches 7-12 allows network processing to use PFMEMALLOC reserves when the socket has been marked as being used by the VM to clean pages. If packets are received and stored in pages that were allocated under low-memory situations and are unrelated to the VM, the packets are dropped. Patch 11 reintroduces __skb_alloc_page which the networking folk may object to but is needed in some cases to propogate pfmemalloc from a newly allocated page to an skb. If there is a strong objection, this patch can be dropped with the impact being that swap-over-network will be slower in some cases but it should not fail. Patch 13 is a micro-optimisation to avoid a function call in the common case. Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use PFMEMALLOC if necessary. Patch 15 notes that it is still possible for the PFMEMALLOC reserve to be depleted. To prevent this, direct reclaimers get throttled on a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is expected that kswapd and the direct reclaimers already running will clean enough pages for the low watermark to be reached and the throttled processes are woken up. Patch 16 adds a statistic to track how often processes get throttled Some basic performance testing was run using kernel builds, netperf on loopback for UDP and TCP, hackbench (pipes and sockets), iozone and sysbench. Each of them were expected to use the sl*b allocators reasonably heavily but there did not appear to be significant performance variances. For testing swap-over-NBD, a machine was booted with 2G of RAM with a swapfile backed by NBD. 8*NUM_CPU processes were started that create anonymous memory mappings and read them linearly in a loop. The total size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under memory pressure. Without the patches and using SLUB, the machine locks up within minutes and runs to completion with them applied. With SLAB, the story is different as an unpatched kernel run to completion. However, the patched kernel completed the test 45% faster. MICRO 3.5.0-rc2 3.5.0-rc2 vanilla swapnbd Unrecognised test vmscan-anon-mmap-write MMTests Statistics: duration Sys Time Running Test (seconds) 197.80 173.07 User+Sys Time Running Test (seconds) 206.96 182.03 Total Elapsed Time (seconds) 3240.70 1762.09 This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages Allocations of pages below the min watermark run a risk of the machine hanging due to a lack of memory. To prevent this, only callers who have PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to a slab though, nothing prevents other callers consuming free objects within those slabs. This patch limits access to slab pages that were alloced from the PFMEMALLOC reserves. When this patch is applied, pages allocated from below the low watermark are returned with page->pfmemalloc set and it is up to the caller to determine how the page should be protected. SLAB restricts access to any page with page->pfmemalloc set to callers which are known to able to access the PFMEMALLOC reserve. If one is not available, an attempt is made to allocate a new page rather than use a reserve. SLUB is a bit more relaxed in that it only records if the current per-CPU page was allocated from PFMEMALLOC reserve and uses another partial slab if the caller does not have the necessary GFP or process flags. This was found to be sufficient in tests to avoid hangs due to SLUB generally maintaining smaller lists than SLAB. In low-memory conditions it does mean that !PFMEMALLOC allocators can fail a slab allocation even though free objects are available because they are being preserved for callers that are freeing pages. [a.p.zijlstra@chello.nl: Original implementation] [sebastian@breakpoint.cc: Correct order of page flag clearing] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/slab.c')
-rw-r--r--mm/slab.c192
1 files changed, 174 insertions, 18 deletions
diff --git a/mm/slab.c b/mm/slab.c
index 1fcf3ac..55d84a2 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -124,6 +124,8 @@
#include <trace/events/kmem.h>
+#include "internal.h"
+
/*
* DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
* 0 for faster, smaller code (especially in the critical paths).
@@ -152,6 +154,12 @@
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif
+/*
+ * true if a page was allocated from pfmemalloc reserves for network-based
+ * swap
+ */
+static bool pfmemalloc_active __read_mostly;
+
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK (SLAB_RED_ZONE | \
@@ -257,9 +265,30 @@ struct array_cache {
* Must have this definition in here for the proper
* alignment of array_cache. Also simplifies accessing
* the entries.
+ *
+ * Entries should not be directly dereferenced as
+ * entries belonging to slabs marked pfmemalloc will
+ * have the lower bits set SLAB_OBJ_PFMEMALLOC
*/
};
+#define SLAB_OBJ_PFMEMALLOC 1
+static inline bool is_obj_pfmemalloc(void *objp)
+{
+ return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
+}
+
+static inline void set_obj_pfmemalloc(void **objp)
+{
+ *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
+ return;
+}
+
+static inline void clear_obj_pfmemalloc(void **objp)
+{
+ *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
+}
+
/*
* bootstrap: The caches do not work without cpuarrays anymore, but the
* cpuarrays are allocated from the generic caches...
@@ -900,6 +929,102 @@ static struct array_cache *alloc_arraycache(int node, int entries,
return nc;
}
+static inline bool is_slab_pfmemalloc(struct slab *slabp)
+{
+ struct page *page = virt_to_page(slabp->s_mem);
+
+ return PageSlabPfmemalloc(page);
+}
+
+/* Clears pfmemalloc_active if no slabs have pfmalloc set */
+static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
+ struct array_cache *ac)
+{
+ struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
+ struct slab *slabp;
+ unsigned long flags;
+
+ if (!pfmemalloc_active)
+ return;
+
+ spin_lock_irqsave(&l3->list_lock, flags);
+ list_for_each_entry(slabp, &l3->slabs_full, list)
+ if (is_slab_pfmemalloc(slabp))
+ goto out;
+
+ list_for_each_entry(slabp, &l3->slabs_partial, list)
+ if (is_slab_pfmemalloc(slabp))
+ goto out;
+
+ list_for_each_entry(slabp, &l3->slabs_free, list)
+ if (is_slab_pfmemalloc(slabp))
+ goto out;
+
+ pfmemalloc_active = false;
+out:
+ spin_unlock_irqrestore(&l3->list_lock, flags);
+}
+
+static void *ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
+ gfp_t flags, bool force_refill)
+{
+ int i;
+ void *objp = ac->entry[--ac->avail];
+
+ /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
+ if (unlikely(is_obj_pfmemalloc(objp))) {
+ struct kmem_list3 *l3;
+
+ if (gfp_pfmemalloc_allowed(flags)) {
+ clear_obj_pfmemalloc(&objp);
+ return objp;
+ }
+
+ /* The caller cannot use PFMEMALLOC objects, find another one */
+ for (i = 1; i < ac->avail; i++) {
+ /* If a !PFMEMALLOC object is found, swap them */
+ if (!is_obj_pfmemalloc(ac->entry[i])) {
+ objp = ac->entry[i];
+ ac->entry[i] = ac->entry[ac->avail];
+ ac->entry[ac->avail] = objp;
+ return objp;
+ }
+ }
+
+ /*
+ * If there are empty slabs on the slabs_free list and we are
+ * being forced to refill the cache, mark this one !pfmemalloc.
+ */
+ l3 = cachep->nodelists[numa_mem_id()];
+ if (!list_empty(&l3->slabs_free) && force_refill) {
+ struct slab *slabp = virt_to_slab(objp);
+ ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
+ clear_obj_pfmemalloc(&objp);
+ recheck_pfmemalloc_active(cachep, ac);
+ return objp;
+ }
+
+ /* No !PFMEMALLOC objects available */
+ ac->avail++;
+ objp = NULL;
+ }
+
+ return objp;
+}
+
+static void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
+ void *objp)
+{
+ if (unlikely(pfmemalloc_active)) {
+ /* Some pfmemalloc slabs exist, check if this is one */
+ struct page *page = virt_to_page(objp);
+ if (PageSlabPfmemalloc(page))
+ set_obj_pfmemalloc(&objp);
+ }
+
+ ac->entry[ac->avail++] = objp;
+}
+
/*
* Transfer objects in one arraycache to another.
* Locking must be handled by the caller.
@@ -1076,7 +1201,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
STATS_INC_ACOVERFLOW(cachep);
__drain_alien_cache(cachep, alien, nodeid);
}
- alien->entry[alien->avail++] = objp;
+ ac_put_obj(cachep, alien, objp);
spin_unlock(&alien->lock);
} else {
spin_lock(&(cachep->nodelists[nodeid])->list_lock);
@@ -1759,6 +1884,10 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
return NULL;
}
+ /* Record if ALLOC_PFMEMALLOC was set when allocating the slab */
+ if (unlikely(page->pfmemalloc))
+ pfmemalloc_active = true;
+
nr_pages = (1 << cachep->gfporder);
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
add_zone_page_state(page_zone(page),
@@ -1766,9 +1895,13 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
else
add_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_pages);
- for (i = 0; i < nr_pages; i++)
+ for (i = 0; i < nr_pages; i++) {
__SetPageSlab(page + i);
+ if (page->pfmemalloc)
+ SetPageSlabPfmemalloc(page + i);
+ }
+
if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
@@ -1800,6 +1933,7 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
NR_SLAB_UNRECLAIMABLE, nr_freed);
while (i--) {
BUG_ON(!PageSlab(page));
+ __ClearPageSlabPfmemalloc(page);
__ClearPageSlab(page);
page++;
}
@@ -3015,16 +3149,19 @@ bad:
#define check_slabp(x,y) do { } while(0)
#endif
-static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
+static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
+ bool force_refill)
{
int batchcount;
struct kmem_list3 *l3;
struct array_cache *ac;
int node;
-retry:
check_irq_off();
node = numa_mem_id();
+ if (unlikely(force_refill))
+ goto force_grow;
+retry:
ac = cpu_cache_get(cachep);
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
@@ -3074,8 +3211,8 @@ retry:
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
- node);
+ ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
+ node));
}
check_slabp(cachep, slabp);
@@ -3094,18 +3231,22 @@ alloc_done:
if (unlikely(!ac->avail)) {
int x;
+force_grow:
x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
/* cache_grow can reenable interrupts, then ac could change. */
ac = cpu_cache_get(cachep);
- if (!x && ac->avail == 0) /* no objects in sight? abort */
+
+ /* no objects in sight? abort */
+ if (!x && (ac->avail == 0 || force_refill))
return NULL;
if (!ac->avail) /* objects refilled by interrupt? */
goto retry;
}
ac->touched = 1;
- return ac->entry[--ac->avail];
+
+ return ac_get_obj(cachep, ac, flags, force_refill);
}
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
@@ -3187,23 +3328,35 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
void *objp;
struct array_cache *ac;
+ bool force_refill = false;
check_irq_off();
ac = cpu_cache_get(cachep);
if (likely(ac->avail)) {
- STATS_INC_ALLOCHIT(cachep);
ac->touched = 1;
- objp = ac->entry[--ac->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_refill(cachep, flags);
+ objp = ac_get_obj(cachep, ac, flags, false);
+
/*
- * the 'ac' may be updated by cache_alloc_refill(),
- * and kmemleak_erase() requires its correct value.
+ * Allow for the possibility all avail objects are not allowed
+ * by the current flags
*/
- ac = cpu_cache_get(cachep);
+ if (objp) {
+ STATS_INC_ALLOCHIT(cachep);
+ goto out;
+ }
+ force_refill = true;
}
+
+ STATS_INC_ALLOCMISS(cachep);
+ objp = cache_alloc_refill(cachep, flags, force_refill);
+ /*
+ * the 'ac' may be updated by cache_alloc_refill(),
+ * and kmemleak_erase() requires its correct value.
+ */
+ ac = cpu_cache_get(cachep);
+
+out:
/*
* To avoid a false negative, if an object that is in one of the
* per-CPU caches is leaked, we need to make sure kmemleak doesn't
@@ -3525,9 +3678,12 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
struct kmem_list3 *l3;
for (i = 0; i < nr_objects; i++) {
- void *objp = objpp[i];
+ void *objp;
struct slab *slabp;
+ clear_obj_pfmemalloc(&objpp[i]);
+ objp = objpp[i];
+
slabp = virt_to_slab(objp);
l3 = cachep->nodelists[node];
list_del(&slabp->list);
@@ -3645,7 +3801,7 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp,
cache_flusharray(cachep, ac);
}
- ac->entry[ac->avail++] = objp;
+ ac_put_obj(cachep, ac, objp);
}
/**
OpenPOWER on IntegriCloud