diff options
author | Ingo Molnar <mingo@elte.hu> | 2010-03-09 17:11:53 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2010-03-09 17:11:53 +0100 |
commit | 548b84166917d6f5e2296123b85ad24aecd3801d (patch) | |
tree | 0ab0300e23a02df0fe3c0579627e4998bb122c00 /kernel | |
parent | cfb581bcd4f8c158c6f2b48bf5e232bb9e6855c0 (diff) | |
parent | 57d54889cd00db2752994b389ba714138652e60c (diff) | |
download | op-kernel-dev-548b84166917d6f5e2296123b85ad24aecd3801d.zip op-kernel-dev-548b84166917d6f5e2296123b85ad24aecd3801d.tar.gz |
Merge commit 'v2.6.34-rc1' into perf/urgent
Conflicts:
tools/perf/util/probe-event.c
Merge reason: Pick up -rc1 and resolve the conflict as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel')
79 files changed, 5379 insertions, 3457 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 864ff75..a987aa1 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -10,7 +10,8 @@ obj-y = sched.o fork.o exec_domain.o panic.o printk.o \ kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \ hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \ notifier.o ksysfs.o pm_qos_params.o sched_clock.o cred.o \ - async.o + async.o range.o +obj-$(CONFIG_HAVE_EARLY_RES) += early_res.o obj-y += groups.o ifdef CONFIG_FUNCTION_TRACER @@ -90,6 +91,9 @@ obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o obj-$(CONFIG_TRACEPOINTS) += tracepoint.o obj-$(CONFIG_LATENCYTOP) += latencytop.o +obj-$(CONFIG_BINFMT_ELF) += elfcore.o +obj-$(CONFIG_COMPAT_BINFMT_ELF) += elfcore.o +obj-$(CONFIG_BINFMT_ELF_FDPIC) += elfcore.o obj-$(CONFIG_FUNCTION_TRACER) += trace/ obj-$(CONFIG_TRACING) += trace/ obj-$(CONFIG_X86_DS) += trace/ @@ -100,6 +104,7 @@ obj-$(CONFIG_SLOW_WORK_DEBUG) += slow-work-debugfs.o obj-$(CONFIG_PERF_EVENTS) += perf_event.o obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o obj-$(CONFIG_USER_RETURN_NOTIFIER) += user-return-notifier.o +obj-$(CONFIG_PADATA) += padata.o ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is diff --git a/kernel/audit_tree.c b/kernel/audit_tree.c index 4b05bd9..028e856 100644 --- a/kernel/audit_tree.c +++ b/kernel/audit_tree.c @@ -548,6 +548,11 @@ int audit_remove_tree_rule(struct audit_krule *rule) return 0; } +static int compare_root(struct vfsmount *mnt, void *arg) +{ + return mnt->mnt_root->d_inode == arg; +} + void audit_trim_trees(void) { struct list_head cursor; @@ -559,7 +564,6 @@ void audit_trim_trees(void) struct path path; struct vfsmount *root_mnt; struct node *node; - struct list_head list; int err; tree = container_of(cursor.next, struct audit_tree, list); @@ -577,24 +581,16 @@ void audit_trim_trees(void) if (!root_mnt) goto skip_it; - list_add_tail(&list, &root_mnt->mnt_list); spin_lock(&hash_lock); list_for_each_entry(node, &tree->chunks, list) { - struct audit_chunk *chunk = find_chunk(node); - struct inode *inode = chunk->watch.inode; - struct vfsmount *mnt; + struct inode *inode = find_chunk(node)->watch.inode; node->index |= 1U<<31; - list_for_each_entry(mnt, &list, mnt_list) { - if (mnt->mnt_root->d_inode == inode) { - node->index &= ~(1U<<31); - break; - } - } + if (iterate_mounts(compare_root, inode, root_mnt)) + node->index &= ~(1U<<31); } spin_unlock(&hash_lock); trim_marked(tree); put_tree(tree); - list_del_init(&list); drop_collected_mounts(root_mnt); skip_it: mutex_lock(&audit_filter_mutex); @@ -603,22 +599,6 @@ skip_it: mutex_unlock(&audit_filter_mutex); } -static int is_under(struct vfsmount *mnt, struct dentry *dentry, - struct path *path) -{ - if (mnt != path->mnt) { - for (;;) { - if (mnt->mnt_parent == mnt) - return 0; - if (mnt->mnt_parent == path->mnt) - break; - mnt = mnt->mnt_parent; - } - dentry = mnt->mnt_mountpoint; - } - return is_subdir(dentry, path->dentry); -} - int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) { @@ -638,13 +618,17 @@ void audit_put_tree(struct audit_tree *tree) put_tree(tree); } +static int tag_mount(struct vfsmount *mnt, void *arg) +{ + return tag_chunk(mnt->mnt_root->d_inode, arg); +} + /* called with audit_filter_mutex */ int audit_add_tree_rule(struct audit_krule *rule) { struct audit_tree *seed = rule->tree, *tree; struct path path; - struct vfsmount *mnt, *p; - struct list_head list; + struct vfsmount *mnt; int err; list_for_each_entry(tree, &tree_list, list) { @@ -670,16 +654,9 @@ int audit_add_tree_rule(struct audit_krule *rule) err = -ENOMEM; goto Err; } - list_add_tail(&list, &mnt->mnt_list); get_tree(tree); - list_for_each_entry(p, &list, mnt_list) { - err = tag_chunk(p->mnt_root->d_inode, tree); - if (err) - break; - } - - list_del(&list); + err = iterate_mounts(tag_mount, tree, mnt); drop_collected_mounts(mnt); if (!err) { @@ -714,31 +691,23 @@ int audit_tag_tree(char *old, char *new) { struct list_head cursor, barrier; int failed = 0; - struct path path; + struct path path1, path2; struct vfsmount *tagged; - struct list_head list; - struct vfsmount *mnt; - struct dentry *dentry; int err; - err = kern_path(new, 0, &path); + err = kern_path(new, 0, &path2); if (err) return err; - tagged = collect_mounts(&path); - path_put(&path); + tagged = collect_mounts(&path2); + path_put(&path2); if (!tagged) return -ENOMEM; - err = kern_path(old, 0, &path); + err = kern_path(old, 0, &path1); if (err) { drop_collected_mounts(tagged); return err; } - mnt = mntget(path.mnt); - dentry = dget(path.dentry); - path_put(&path); - - list_add_tail(&list, &tagged->mnt_list); mutex_lock(&audit_filter_mutex); list_add(&barrier, &tree_list); @@ -746,7 +715,7 @@ int audit_tag_tree(char *old, char *new) while (cursor.next != &tree_list) { struct audit_tree *tree; - struct vfsmount *p; + int good_one = 0; tree = container_of(cursor.next, struct audit_tree, list); get_tree(tree); @@ -754,30 +723,19 @@ int audit_tag_tree(char *old, char *new) list_add(&cursor, &tree->list); mutex_unlock(&audit_filter_mutex); - err = kern_path(tree->pathname, 0, &path); - if (err) { - put_tree(tree); - mutex_lock(&audit_filter_mutex); - continue; + err = kern_path(tree->pathname, 0, &path2); + if (!err) { + good_one = path_is_under(&path1, &path2); + path_put(&path2); } - spin_lock(&vfsmount_lock); - if (!is_under(mnt, dentry, &path)) { - spin_unlock(&vfsmount_lock); - path_put(&path); + if (!good_one) { put_tree(tree); mutex_lock(&audit_filter_mutex); continue; } - spin_unlock(&vfsmount_lock); - path_put(&path); - - list_for_each_entry(p, &list, mnt_list) { - failed = tag_chunk(p->mnt_root->d_inode, tree); - if (failed) - break; - } + failed = iterate_mounts(tag_mount, tree, tagged); if (failed) { put_tree(tree); mutex_lock(&audit_filter_mutex); @@ -818,10 +776,8 @@ int audit_tag_tree(char *old, char *new) } list_del(&barrier); list_del(&cursor); - list_del(&list); mutex_unlock(&audit_filter_mutex); - dput(dentry); - mntput(mnt); + path_put(&path1); drop_collected_mounts(tagged); return failed; } diff --git a/kernel/auditsc.c b/kernel/auditsc.c index fc0f928..f3a461c 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c @@ -1988,7 +1988,6 @@ void __audit_inode(const char *name, const struct dentry *dentry) /** * audit_inode_child - collect inode info for created/removed objects - * @dname: inode's dentry name * @dentry: dentry being audited * @parent: inode of dentry parent * @@ -2000,13 +1999,14 @@ void __audit_inode(const char *name, const struct dentry *dentry) * must be hooked prior, in order to capture the target inode during * unsuccessful attempts. */ -void __audit_inode_child(const char *dname, const struct dentry *dentry, +void __audit_inode_child(const struct dentry *dentry, const struct inode *parent) { int idx; struct audit_context *context = current->audit_context; const char *found_parent = NULL, *found_child = NULL; const struct inode *inode = dentry->d_inode; + const char *dname = dentry->d_name.name; int dirlen = 0; if (!context->in_syscall) @@ -2014,9 +2014,6 @@ void __audit_inode_child(const char *dname, const struct dentry *dentry, if (inode) handle_one(inode); - /* determine matching parent */ - if (!dname) - goto add_names; /* parent is more likely, look for it first */ for (idx = 0; idx < context->name_count; idx++) { diff --git a/kernel/capability.c b/kernel/capability.c index 7f876e6..9e4697e 100644 --- a/kernel/capability.c +++ b/kernel/capability.c @@ -135,7 +135,7 @@ static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, if (pid && (pid != task_pid_vnr(current))) { struct task_struct *target; - read_lock(&tasklist_lock); + rcu_read_lock(); target = find_task_by_vpid(pid); if (!target) @@ -143,7 +143,7 @@ static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, else ret = security_capget(target, pEp, pIp, pPp); - read_unlock(&tasklist_lock); + rcu_read_unlock(); } else ret = security_capget(current, pEp, pIp, pPp); diff --git a/kernel/cgroup.c b/kernel/cgroup.c index aa3bee5..4fd90e1 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c @@ -23,6 +23,7 @@ */ #include <linux/cgroup.h> +#include <linux/module.h> #include <linux/ctype.h> #include <linux/errno.h> #include <linux/fs.h> @@ -166,6 +167,20 @@ static DEFINE_SPINLOCK(hierarchy_id_lock); */ static int need_forkexit_callback __read_mostly; +#ifdef CONFIG_PROVE_LOCKING +int cgroup_lock_is_held(void) +{ + return lockdep_is_held(&cgroup_mutex); +} +#else /* #ifdef CONFIG_PROVE_LOCKING */ +int cgroup_lock_is_held(void) +{ + return mutex_is_locked(&cgroup_mutex); +} +#endif /* #else #ifdef CONFIG_PROVE_LOCKING */ + +EXPORT_SYMBOL_GPL(cgroup_lock_is_held); + /* convenient tests for these bits */ inline int cgroup_is_removed(const struct cgroup *cgrp) { diff --git a/kernel/cpu.c b/kernel/cpu.c index 677f253..f8cced2 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c @@ -338,7 +338,7 @@ int __cpuinit cpu_up(unsigned int cpu) if (!cpu_possible(cpu)) { printk(KERN_ERR "can't online cpu %d because it is not " "configured as may-hotadd at boot time\n", cpu); -#if defined(CONFIG_IA64) || defined(CONFIG_X86_64) +#if defined(CONFIG_IA64) printk(KERN_ERR "please check additional_cpus= boot " "parameter\n"); #endif diff --git a/kernel/early_res.c b/kernel/early_res.c new file mode 100644 index 0000000..3cb2c66 --- /dev/null +++ b/kernel/early_res.c @@ -0,0 +1,578 @@ +/* + * early_res, could be used to replace bootmem + */ +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/init.h> +#include <linux/bootmem.h> +#include <linux/mm.h> +#include <linux/early_res.h> + +/* + * Early reserved memory areas. + */ +/* + * need to make sure this one is bigger enough before + * find_fw_memmap_area could be used + */ +#define MAX_EARLY_RES_X 32 + +struct early_res { + u64 start, end; + char name[15]; + char overlap_ok; +}; +static struct early_res early_res_x[MAX_EARLY_RES_X] __initdata; + +static int max_early_res __initdata = MAX_EARLY_RES_X; +static struct early_res *early_res __initdata = &early_res_x[0]; +static int early_res_count __initdata; + +static int __init find_overlapped_early(u64 start, u64 end) +{ + int i; + struct early_res *r; + + for (i = 0; i < max_early_res && early_res[i].end; i++) { + r = &early_res[i]; + if (end > r->start && start < r->end) + break; + } + + return i; +} + +/* + * Drop the i-th range from the early reservation map, + * by copying any higher ranges down one over it, and + * clearing what had been the last slot. + */ +static void __init drop_range(int i) +{ + int j; + + for (j = i + 1; j < max_early_res && early_res[j].end; j++) + ; + + memmove(&early_res[i], &early_res[i + 1], + (j - 1 - i) * sizeof(struct early_res)); + + early_res[j - 1].end = 0; + early_res_count--; +} + +static void __init drop_range_partial(int i, u64 start, u64 end) +{ + u64 common_start, common_end; + u64 old_start, old_end; + + old_start = early_res[i].start; + old_end = early_res[i].end; + common_start = max(old_start, start); + common_end = min(old_end, end); + + /* no overlap ? */ + if (common_start >= common_end) + return; + + if (old_start < common_start) { + /* make head segment */ + early_res[i].end = common_start; + if (old_end > common_end) { + char name[15]; + + /* + * Save a local copy of the name, since the + * early_res array could get resized inside + * reserve_early_without_check() -> + * __check_and_double_early_res(), which would + * make the current name pointer invalid. + */ + strncpy(name, early_res[i].name, + sizeof(early_res[i].name) - 1); + /* add another for left over on tail */ + reserve_early_without_check(common_end, old_end, name); + } + return; + } else { + if (old_end > common_end) { + /* reuse the entry for tail left */ + early_res[i].start = common_end; + return; + } + /* all covered */ + drop_range(i); + } +} + +/* + * Split any existing ranges that: + * 1) are marked 'overlap_ok', and + * 2) overlap with the stated range [start, end) + * into whatever portion (if any) of the existing range is entirely + * below or entirely above the stated range. Drop the portion + * of the existing range that overlaps with the stated range, + * which will allow the caller of this routine to then add that + * stated range without conflicting with any existing range. + */ +static void __init drop_overlaps_that_are_ok(u64 start, u64 end) +{ + int i; + struct early_res *r; + u64 lower_start, lower_end; + u64 upper_start, upper_end; + char name[15]; + + for (i = 0; i < max_early_res && early_res[i].end; i++) { + r = &early_res[i]; + + /* Continue past non-overlapping ranges */ + if (end <= r->start || start >= r->end) + continue; + + /* + * Leave non-ok overlaps as is; let caller + * panic "Overlapping early reservations" + * when it hits this overlap. + */ + if (!r->overlap_ok) + return; + + /* + * We have an ok overlap. We will drop it from the early + * reservation map, and add back in any non-overlapping + * portions (lower or upper) as separate, overlap_ok, + * non-overlapping ranges. + */ + + /* 1. Note any non-overlapping (lower or upper) ranges. */ + strncpy(name, r->name, sizeof(name) - 1); + + lower_start = lower_end = 0; + upper_start = upper_end = 0; + if (r->start < start) { + lower_start = r->start; + lower_end = start; + } + if (r->end > end) { + upper_start = end; + upper_end = r->end; + } + + /* 2. Drop the original ok overlapping range */ + drop_range(i); + + i--; /* resume for-loop on copied down entry */ + + /* 3. Add back in any non-overlapping ranges. */ + if (lower_end) + reserve_early_overlap_ok(lower_start, lower_end, name); + if (upper_end) + reserve_early_overlap_ok(upper_start, upper_end, name); + } +} + +static void __init __reserve_early(u64 start, u64 end, char *name, + int overlap_ok) +{ + int i; + struct early_res *r; + + i = find_overlapped_early(start, end); + if (i >= max_early_res) + panic("Too many early reservations"); + r = &early_res[i]; + if (r->end) + panic("Overlapping early reservations " + "%llx-%llx %s to %llx-%llx %s\n", + start, end - 1, name ? name : "", r->start, + r->end - 1, r->name); + r->start = start; + r->end = end; + r->overlap_ok = overlap_ok; + if (name) + strncpy(r->name, name, sizeof(r->name) - 1); + early_res_count++; +} + +/* + * A few early reservtations come here. + * + * The 'overlap_ok' in the name of this routine does -not- mean it + * is ok for these reservations to overlap an earlier reservation. + * Rather it means that it is ok for subsequent reservations to + * overlap this one. + * + * Use this entry point to reserve early ranges when you are doing + * so out of "Paranoia", reserving perhaps more memory than you need, + * just in case, and don't mind a subsequent overlapping reservation + * that is known to be needed. + * + * The drop_overlaps_that_are_ok() call here isn't really needed. + * It would be needed if we had two colliding 'overlap_ok' + * reservations, so that the second such would not panic on the + * overlap with the first. We don't have any such as of this + * writing, but might as well tolerate such if it happens in + * the future. + */ +void __init reserve_early_overlap_ok(u64 start, u64 end, char *name) +{ + drop_overlaps_that_are_ok(start, end); + __reserve_early(start, end, name, 1); +} + +static void __init __check_and_double_early_res(u64 ex_start, u64 ex_end) +{ + u64 start, end, size, mem; + struct early_res *new; + + /* do we have enough slots left ? */ + if ((max_early_res - early_res_count) > max(max_early_res/8, 2)) + return; + + /* double it */ + mem = -1ULL; + size = sizeof(struct early_res) * max_early_res * 2; + if (early_res == early_res_x) + start = 0; + else + start = early_res[0].end; + end = ex_start; + if (start + size < end) + mem = find_fw_memmap_area(start, end, size, + sizeof(struct early_res)); + if (mem == -1ULL) { + start = ex_end; + end = get_max_mapped(); + if (start + size < end) + mem = find_fw_memmap_area(start, end, size, + sizeof(struct early_res)); + } + if (mem == -1ULL) + panic("can not find more space for early_res array"); + + new = __va(mem); + /* save the first one for own */ + new[0].start = mem; + new[0].end = mem + size; + new[0].overlap_ok = 0; + /* copy old to new */ + if (early_res == early_res_x) { + memcpy(&new[1], &early_res[0], + sizeof(struct early_res) * max_early_res); + memset(&new[max_early_res+1], 0, + sizeof(struct early_res) * (max_early_res - 1)); + early_res_count++; + } else { + memcpy(&new[1], &early_res[1], + sizeof(struct early_res) * (max_early_res - 1)); + memset(&new[max_early_res], 0, + sizeof(struct early_res) * max_early_res); + } + memset(&early_res[0], 0, sizeof(struct early_res) * max_early_res); + early_res = new; + max_early_res *= 2; + printk(KERN_DEBUG "early_res array is doubled to %d at [%llx - %llx]\n", + max_early_res, mem, mem + size - 1); +} + +/* + * Most early reservations come here. + * + * We first have drop_overlaps_that_are_ok() drop any pre-existing + * 'overlap_ok' ranges, so that we can then reserve this memory + * range without risk of panic'ing on an overlapping overlap_ok + * early reservation. + */ +void __init reserve_early(u64 start, u64 end, char *name) +{ + if (start >= end) + return; + + __check_and_double_early_res(start, end); + + drop_overlaps_that_are_ok(start, end); + __reserve_early(start, end, name, 0); +} + +void __init reserve_early_without_check(u64 start, u64 end, char *name) +{ + struct early_res *r; + + if (start >= end) + return; + + __check_and_double_early_res(start, end); + + r = &early_res[early_res_count]; + + r->start = start; + r->end = end; + r->overlap_ok = 0; + if (name) + strncpy(r->name, name, sizeof(r->name) - 1); + early_res_count++; +} + +void __init free_early(u64 start, u64 end) +{ + struct early_res *r; + int i; + + i = find_overlapped_early(start, end); + r = &early_res[i]; + if (i >= max_early_res || r->end != end || r->start != start) + panic("free_early on not reserved area: %llx-%llx!", + start, end - 1); + + drop_range(i); +} + +void __init free_early_partial(u64 start, u64 end) +{ + struct early_res *r; + int i; + +try_next: + i = find_overlapped_early(start, end); + if (i >= max_early_res) + return; + + r = &early_res[i]; + /* hole ? */ + if (r->end >= end && r->start <= start) { + drop_range_partial(i, start, end); + return; + } + + drop_range_partial(i, start, end); + goto try_next; +} + +#ifdef CONFIG_NO_BOOTMEM +static void __init subtract_early_res(struct range *range, int az) +{ + int i, count; + u64 final_start, final_end; + int idx = 0; + + count = 0; + for (i = 0; i < max_early_res && early_res[i].end; i++) + count++; + + /* need to skip first one ?*/ + if (early_res != early_res_x) + idx = 1; + +#define DEBUG_PRINT_EARLY_RES 1 + +#if DEBUG_PRINT_EARLY_RES + printk(KERN_INFO "Subtract (%d early reservations)\n", count); +#endif + for (i = idx; i < count; i++) { + struct early_res *r = &early_res[i]; +#if DEBUG_PRINT_EARLY_RES + printk(KERN_INFO " #%d [%010llx - %010llx] %15s\n", i, + r->start, r->end, r->name); +#endif + final_start = PFN_DOWN(r->start); + final_end = PFN_UP(r->end); + if (final_start >= final_end) + continue; + subtract_range(range, az, final_start, final_end); + } + +} + +int __init get_free_all_memory_range(struct range **rangep, int nodeid) +{ + int i, count; + u64 start = 0, end; + u64 size; + u64 mem; + struct range *range; + int nr_range; + + count = 0; + for (i = 0; i < max_early_res && early_res[i].end; i++) + count++; + + count *= 2; + + size = sizeof(struct range) * count; + end = get_max_mapped(); +#ifdef MAX_DMA32_PFN + if (end > (MAX_DMA32_PFN << PAGE_SHIFT)) + start = MAX_DMA32_PFN << PAGE_SHIFT; +#endif + mem = find_fw_memmap_area(start, end, size, sizeof(struct range)); + if (mem == -1ULL) + panic("can not find more space for range free"); + + range = __va(mem); + /* use early_node_map[] and early_res to get range array at first */ + memset(range, 0, size); + nr_range = 0; + + /* need to go over early_node_map to find out good range for node */ + nr_range = add_from_early_node_map(range, count, nr_range, nodeid); +#ifdef CONFIG_X86_32 + subtract_range(range, count, max_low_pfn, -1ULL); +#endif + subtract_early_res(range, count); + nr_range = clean_sort_range(range, count); + + /* need to clear it ? */ + if (nodeid == MAX_NUMNODES) { + memset(&early_res[0], 0, + sizeof(struct early_res) * max_early_res); + early_res = NULL; + max_early_res = 0; + } + + *rangep = range; + return nr_range; +} +#else +void __init early_res_to_bootmem(u64 start, u64 end) +{ + int i, count; + u64 final_start, final_end; + int idx = 0; + + count = 0; + for (i = 0; i < max_early_res && early_res[i].end; i++) + count++; + + /* need to skip first one ?*/ + if (early_res != early_res_x) + idx = 1; + + printk(KERN_INFO "(%d/%d early reservations) ==> bootmem [%010llx - %010llx]\n", + count - idx, max_early_res, start, end); + for (i = idx; i < count; i++) { + struct early_res *r = &early_res[i]; + printk(KERN_INFO " #%d [%010llx - %010llx] %16s", i, + r->start, r->end, r->name); + final_start = max(start, r->start); + final_end = min(end, r->end); + if (final_start >= final_end) { + printk(KERN_CONT "\n"); + continue; + } + printk(KERN_CONT " ==> [%010llx - %010llx]\n", + final_start, final_end); + reserve_bootmem_generic(final_start, final_end - final_start, + BOOTMEM_DEFAULT); + } + /* clear them */ + memset(&early_res[0], 0, sizeof(struct early_res) * max_early_res); + early_res = NULL; + max_early_res = 0; + early_res_count = 0; +} +#endif + +/* Check for already reserved areas */ +static inline int __init bad_addr(u64 *addrp, u64 size, u64 align) +{ + int i; + u64 addr = *addrp; + int changed = 0; + struct early_res *r; +again: + i = find_overlapped_early(addr, addr + size); + r = &early_res[i]; + if (i < max_early_res && r->end) { + *addrp = addr = round_up(r->end, align); + changed = 1; + goto again; + } + return changed; +} + +/* Check for already reserved areas */ +static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align) +{ + int i; + u64 addr = *addrp, last; + u64 size = *sizep; + int changed = 0; +again: + last = addr + size; + for (i = 0; i < max_early_res && early_res[i].end; i++) { + struct early_res *r = &early_res[i]; + if (last > r->start && addr < r->start) { + size = r->start - addr; + changed = 1; + goto again; + } + if (last > r->end && addr < r->end) { + addr = round_up(r->end, align); + size = last - addr; + changed = 1; + goto again; + } + if (last <= r->end && addr >= r->start) { + (*sizep)++; + return 0; + } + } + if (changed) { + *addrp = addr; + *sizep = size; + } + return changed; +} + +/* + * Find a free area with specified alignment in a specific range. + * only with the area.between start to end is active range from early_node_map + * so they are good as RAM + */ +u64 __init find_early_area(u64 ei_start, u64 ei_last, u64 start, u64 end, + u64 size, u64 align) +{ + u64 addr, last; + + addr = round_up(ei_start, align); + if (addr < start) + addr = round_up(start, align); + if (addr >= ei_last) + goto out; + while (bad_addr(&addr, size, align) && addr+size <= ei_last) + ; + last = addr + size; + if (last > ei_last) + goto out; + if (last > end) + goto out; + + return addr; + +out: + return -1ULL; +} + +u64 __init find_early_area_size(u64 ei_start, u64 ei_last, u64 start, + u64 *sizep, u64 align) +{ + u64 addr, last; + + addr = round_up(ei_start, align); + if (addr < start) + addr = round_up(start, align); + if (addr >= ei_last) + goto out; + *sizep = ei_last - addr; + while (bad_addr_size(&addr, sizep, align) && addr + *sizep <= ei_last) + ; + last = addr + *sizep; + if (last > ei_last) + goto out; + + return addr; + +out: + return -1ULL; +} diff --git a/kernel/elfcore.c b/kernel/elfcore.c new file mode 100644 index 0000000..ff915ef --- /dev/null +++ b/kernel/elfcore.c @@ -0,0 +1,28 @@ +#include <linux/elf.h> +#include <linux/fs.h> +#include <linux/mm.h> + +#include <asm/elf.h> + + +Elf_Half __weak elf_core_extra_phdrs(void) +{ + return 0; +} + +int __weak elf_core_write_extra_phdrs(struct file *file, loff_t offset, size_t *size, + unsigned long limit) +{ + return 1; +} + +int __weak elf_core_write_extra_data(struct file *file, size_t *size, + unsigned long limit) +{ + return 1; +} + +size_t __weak elf_core_extra_data_size(void) +{ + return 0; +} diff --git a/kernel/exit.c b/kernel/exit.c index 546774a..ce1e48c 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -85,7 +85,9 @@ static void __exit_signal(struct task_struct *tsk) BUG_ON(!sig); BUG_ON(!atomic_read(&sig->count)); - sighand = rcu_dereference(tsk->sighand); + sighand = rcu_dereference_check(tsk->sighand, + rcu_read_lock_held() || + lockdep_is_held(&tasklist_lock)); spin_lock(&sighand->siglock); posix_cpu_timers_exit(tsk); @@ -170,8 +172,10 @@ void release_task(struct task_struct * p) repeat: tracehook_prepare_release_task(p); /* don't need to get the RCU readlock here - the process is dead and - * can't be modifying its own credentials */ + * can't be modifying its own credentials. But shut RCU-lockdep up */ + rcu_read_lock(); atomic_dec(&__task_cred(p)->user->processes); + rcu_read_unlock(); proc_flush_task(p); @@ -473,9 +477,11 @@ static void close_files(struct files_struct * files) /* * It is safe to dereference the fd table without RCU or * ->file_lock because this is the last reference to the - * files structure. + * files structure. But use RCU to shut RCU-lockdep up. */ + rcu_read_lock(); fdt = files_fdtable(files); + rcu_read_unlock(); for (;;) { unsigned long set; i = j * __NFDBITS; @@ -521,10 +527,12 @@ void put_files_struct(struct files_struct *files) * at the end of the RCU grace period. Otherwise, * you can free files immediately. */ + rcu_read_lock(); fdt = files_fdtable(files); if (fdt != &files->fdtab) kmem_cache_free(files_cachep, files); free_fdtable(fdt); + rcu_read_unlock(); } } @@ -944,7 +952,8 @@ NORET_TYPE void do_exit(long code) preempt_count()); acct_update_integrals(tsk); - + /* sync mm's RSS info before statistics gathering */ + sync_mm_rss(tsk, tsk->mm); group_dead = atomic_dec_and_test(&tsk->signal->live); if (group_dead) { hrtimer_cancel(&tsk->signal->real_timer); @@ -1180,7 +1189,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) if (unlikely(wo->wo_flags & WNOWAIT)) { int exit_code = p->exit_code; - int why, status; + int why; get_task_struct(p); read_unlock(&tasklist_lock); diff --git a/kernel/fork.c b/kernel/fork.c index f88bd98..b0ec34a 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -86,6 +86,7 @@ int max_threads; /* tunable limit on nr_threads */ DEFINE_PER_CPU(unsigned long, process_counts) = 0; __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ +EXPORT_SYMBOL_GPL(tasklist_lock); int nr_processes(void) { @@ -328,15 +329,17 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) if (!tmp) goto fail_nomem; *tmp = *mpnt; + INIT_LIST_HEAD(&tmp->anon_vma_chain); pol = mpol_dup(vma_policy(mpnt)); retval = PTR_ERR(pol); if (IS_ERR(pol)) goto fail_nomem_policy; vma_set_policy(tmp, pol); + if (anon_vma_fork(tmp, mpnt)) + goto fail_nomem_anon_vma_fork; tmp->vm_flags &= ~VM_LOCKED; tmp->vm_mm = mm; tmp->vm_next = NULL; - anon_vma_link(tmp); file = tmp->vm_file; if (file) { struct inode *inode = file->f_path.dentry->d_inode; @@ -391,6 +394,8 @@ out: flush_tlb_mm(oldmm); up_write(&oldmm->mmap_sem); return retval; +fail_nomem_anon_vma_fork: + mpol_put(pol); fail_nomem_policy: kmem_cache_free(vm_area_cachep, tmp); fail_nomem: @@ -454,8 +459,7 @@ static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; mm->core_state = NULL; mm->nr_ptes = 0; - set_mm_counter(mm, file_rss, 0); - set_mm_counter(mm, anon_rss, 0); + memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); spin_lock_init(&mm->page_table_lock); mm->free_area_cache = TASK_UNMAPPED_BASE; mm->cached_hole_size = ~0UL; @@ -824,6 +828,8 @@ void __cleanup_sighand(struct sighand_struct *sighand) */ static void posix_cpu_timers_init_group(struct signal_struct *sig) { + unsigned long cpu_limit; + /* Thread group counters. */ thread_group_cputime_init(sig); @@ -838,9 +844,9 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig) sig->cputime_expires.virt_exp = cputime_zero; sig->cputime_expires.sched_exp = 0; - if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { - sig->cputime_expires.prof_exp = - secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); + cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); + if (cpu_limit != RLIM_INFINITY) { + sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); sig->cputimer.running = 1; } @@ -1033,7 +1039,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, #endif retval = -EAGAIN; if (atomic_read(&p->real_cred->user->processes) >= - p->signal->rlim[RLIMIT_NPROC].rlim_cur) { + task_rlimit(p, RLIMIT_NPROC)) { if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && p->real_cred->user != INIT_USER) goto bad_fork_free; diff --git a/kernel/futex_compat.c b/kernel/futex_compat.c index 2357165..d49afb2 100644 --- a/kernel/futex_compat.c +++ b/kernel/futex_compat.c @@ -146,7 +146,7 @@ compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, struct task_struct *p; ret = -ESRCH; - read_lock(&tasklist_lock); + rcu_read_lock(); p = find_task_by_vpid(pid); if (!p) goto err_unlock; @@ -157,7 +157,7 @@ compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, !capable(CAP_SYS_PTRACE)) goto err_unlock; head = p->compat_robust_list; - read_unlock(&tasklist_lock); + rcu_read_unlock(); } if (put_user(sizeof(*head), len_ptr)) @@ -165,7 +165,7 @@ compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, return put_user(ptr_to_compat(head), head_ptr); err_unlock: - read_unlock(&tasklist_lock); + rcu_read_unlock(); return ret; } diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c index ecc3fa2..d70394f 100644 --- a/kernel/irq/chip.c +++ b/kernel/irq/chip.c @@ -18,11 +18,7 @@ #include "internals.h" -/** - * dynamic_irq_init - initialize a dynamically allocated irq - * @irq: irq number to initialize - */ -void dynamic_irq_init(unsigned int irq) +static void dynamic_irq_init_x(unsigned int irq, bool keep_chip_data) { struct irq_desc *desc; unsigned long flags; @@ -41,7 +37,8 @@ void dynamic_irq_init(unsigned int irq) desc->depth = 1; desc->msi_desc = NULL; desc->handler_data = NULL; - desc->chip_data = NULL; + if (!keep_chip_data) + desc->chip_data = NULL; desc->action = NULL; desc->irq_count = 0; desc->irqs_unhandled = 0; @@ -55,10 +52,26 @@ void dynamic_irq_init(unsigned int irq) } /** - * dynamic_irq_cleanup - cleanup a dynamically allocated irq + * dynamic_irq_init - initialize a dynamically allocated irq * @irq: irq number to initialize */ -void dynamic_irq_cleanup(unsigned int irq) +void dynamic_irq_init(unsigned int irq) +{ + dynamic_irq_init_x(irq, false); +} + +/** + * dynamic_irq_init_keep_chip_data - initialize a dynamically allocated irq + * @irq: irq number to initialize + * + * does not set irq_to_desc(irq)->chip_data to NULL + */ +void dynamic_irq_init_keep_chip_data(unsigned int irq) +{ + dynamic_irq_init_x(irq, true); +} + +static void dynamic_irq_cleanup_x(unsigned int irq, bool keep_chip_data) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; @@ -77,7 +90,8 @@ void dynamic_irq_cleanup(unsigned int irq) } desc->msi_desc = NULL; desc->handler_data = NULL; - desc->chip_data = NULL; + if (!keep_chip_data) + desc->chip_data = NULL; desc->handle_irq = handle_bad_irq; desc->chip = &no_irq_chip; desc->name = NULL; @@ -85,6 +99,26 @@ void dynamic_irq_cleanup(unsigned int irq) raw_spin_unlock_irqrestore(&desc->lock, flags); } +/** + * dynamic_irq_cleanup - cleanup a dynamically allocated irq + * @irq: irq number to initialize + */ +void dynamic_irq_cleanup(unsigned int irq) +{ + dynamic_irq_cleanup_x(irq, false); +} + +/** + * dynamic_irq_cleanup_keep_chip_data - cleanup a dynamically allocated irq + * @irq: irq number to initialize + * + * does not set irq_to_desc(irq)->chip_data to NULL + */ +void dynamic_irq_cleanup_keep_chip_data(unsigned int irq) +{ + dynamic_irq_cleanup_x(irq, true); +} + /** * set_irq_chip - set the irq chip for an irq diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index 814940e..76d5a67 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c @@ -19,7 +19,7 @@ #include <linux/kernel_stat.h> #include <linux/rculist.h> #include <linux/hash.h> -#include <linux/bootmem.h> +#include <linux/radix-tree.h> #include <trace/events/irq.h> #include "internals.h" @@ -87,12 +87,8 @@ void __ref init_kstat_irqs(struct irq_desc *desc, int node, int nr) { void *ptr; - if (slab_is_available()) - ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs), - GFP_ATOMIC, node); - else - ptr = alloc_bootmem_node(NODE_DATA(node), - nr * sizeof(*desc->kstat_irqs)); + ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs), + GFP_ATOMIC, node); /* * don't overwite if can not get new one @@ -132,7 +128,26 @@ static void init_one_irq_desc(int irq, struct irq_desc *desc, int node) */ DEFINE_RAW_SPINLOCK(sparse_irq_lock); -struct irq_desc **irq_desc_ptrs __read_mostly; +static RADIX_TREE(irq_desc_tree, GFP_ATOMIC); + +static void set_irq_desc(unsigned int irq, struct irq_desc *desc) +{ + radix_tree_insert(&irq_desc_tree, irq, desc); +} + +struct irq_desc *irq_to_desc(unsigned int irq) +{ + return radix_tree_lookup(&irq_desc_tree, irq); +} + +void replace_irq_desc(unsigned int irq, struct irq_desc *desc) +{ + void **ptr; + + ptr = radix_tree_lookup_slot(&irq_desc_tree, irq); + if (ptr) + radix_tree_replace_slot(ptr, desc); +} static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = { [0 ... NR_IRQS_LEGACY-1] = { @@ -164,9 +179,6 @@ int __init early_irq_init(void) legacy_count = ARRAY_SIZE(irq_desc_legacy); node = first_online_node; - /* allocate irq_desc_ptrs array based on nr_irqs */ - irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT); - /* allocate based on nr_cpu_ids */ kstat_irqs_legacy = kzalloc_node(NR_IRQS_LEGACY * nr_cpu_ids * sizeof(int), GFP_NOWAIT, node); @@ -180,23 +192,12 @@ int __init early_irq_init(void) lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); alloc_desc_masks(&desc[i], node, true); init_desc_masks(&desc[i]); - irq_desc_ptrs[i] = desc + i; + set_irq_desc(i, &desc[i]); } - for (i = legacy_count; i < nr_irqs; i++) - irq_desc_ptrs[i] = NULL; - return arch_early_irq_init(); } -struct irq_desc *irq_to_desc(unsigned int irq) -{ - if (irq_desc_ptrs && irq < nr_irqs) - return irq_desc_ptrs[irq]; - - return NULL; -} - struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node) { struct irq_desc *desc; @@ -208,21 +209,18 @@ struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node) return NULL; } - desc = irq_desc_ptrs[irq]; + desc = irq_to_desc(irq); if (desc) return desc; raw_spin_lock_irqsave(&sparse_irq_lock, flags); /* We have to check it to avoid races with another CPU */ - desc = irq_desc_ptrs[irq]; + desc = irq_to_desc(irq); if (desc) goto out_unlock; - if (slab_is_available()) - desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node); - else - desc = alloc_bootmem_node(NODE_DATA(node), sizeof(*desc)); + desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node); printk(KERN_DEBUG " alloc irq_desc for %d on node %d\n", irq, node); if (!desc) { @@ -231,7 +229,7 @@ struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node) } init_one_irq_desc(irq, desc, node); - irq_desc_ptrs[irq] = desc; + set_irq_desc(irq, desc); out_unlock: raw_spin_unlock_irqrestore(&sparse_irq_lock, flags); diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h index b2821f0..c63f3bc 100644 --- a/kernel/irq/internals.h +++ b/kernel/irq/internals.h @@ -21,11 +21,7 @@ extern void clear_kstat_irqs(struct irq_desc *desc); extern raw_spinlock_t sparse_irq_lock; #ifdef CONFIG_SPARSE_IRQ -/* irq_desc_ptrs allocated at boot time */ -extern struct irq_desc **irq_desc_ptrs; -#else -/* irq_desc_ptrs is a fixed size array */ -extern struct irq_desc *irq_desc_ptrs[NR_IRQS]; +void replace_irq_desc(unsigned int irq, struct irq_desc *desc); #endif #ifdef CONFIG_PROC_FS diff --git a/kernel/irq/numa_migrate.c b/kernel/irq/numa_migrate.c index 26bac9d..963559d 100644 --- a/kernel/irq/numa_migrate.c +++ b/kernel/irq/numa_migrate.c @@ -70,7 +70,7 @@ static struct irq_desc *__real_move_irq_desc(struct irq_desc *old_desc, raw_spin_lock_irqsave(&sparse_irq_lock, flags); /* We have to check it to avoid races with another CPU */ - desc = irq_desc_ptrs[irq]; + desc = irq_to_desc(irq); if (desc && old_desc != desc) goto out_unlock; @@ -90,7 +90,7 @@ static struct irq_desc *__real_move_irq_desc(struct irq_desc *old_desc, goto out_unlock; } - irq_desc_ptrs[irq] = desc; + replace_irq_desc(irq, desc); raw_spin_unlock_irqrestore(&sparse_irq_lock, flags); /* free the old one */ diff --git a/kernel/kexec.c b/kernel/kexec.c index ef077fb..87ebe8a 100644 --- a/kernel/kexec.c +++ b/kernel/kexec.c @@ -41,7 +41,7 @@ #include <asm/sections.h> /* Per cpu memory for storing cpu states in case of system crash. */ -note_buf_t* crash_notes; +note_buf_t __percpu *crash_notes; /* vmcoreinfo stuff */ static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; diff --git a/kernel/kprobes.c b/kernel/kprobes.c index ccec774..fa034d2 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c @@ -42,9 +42,11 @@ #include <linux/freezer.h> #include <linux/seq_file.h> #include <linux/debugfs.h> +#include <linux/sysctl.h> #include <linux/kdebug.h> #include <linux/memory.h> #include <linux/ftrace.h> +#include <linux/cpu.h> #include <asm-generic/sections.h> #include <asm/cacheflush.h> @@ -105,57 +107,74 @@ static struct kprobe_blackpoint kprobe_blacklist[] = { * stepping on the instruction on a vmalloced/kmalloced/data page * is a recipe for disaster */ -#define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) - struct kprobe_insn_page { struct list_head list; kprobe_opcode_t *insns; /* Page of instruction slots */ - char slot_used[INSNS_PER_PAGE]; int nused; int ngarbage; + char slot_used[]; +}; + +#define KPROBE_INSN_PAGE_SIZE(slots) \ + (offsetof(struct kprobe_insn_page, slot_used) + \ + (sizeof(char) * (slots))) + +struct kprobe_insn_cache { + struct list_head pages; /* list of kprobe_insn_page */ + size_t insn_size; /* size of instruction slot */ + int nr_garbage; }; +static int slots_per_page(struct kprobe_insn_cache *c) +{ + return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); +} + enum kprobe_slot_state { SLOT_CLEAN = 0, SLOT_DIRTY = 1, SLOT_USED = 2, }; -static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */ -static LIST_HEAD(kprobe_insn_pages); -static int kprobe_garbage_slots; -static int collect_garbage_slots(void); +static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ +static struct kprobe_insn_cache kprobe_insn_slots = { + .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), + .insn_size = MAX_INSN_SIZE, + .nr_garbage = 0, +}; +static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); /** * __get_insn_slot() - Find a slot on an executable page for an instruction. * We allocate an executable page if there's no room on existing ones. */ -static kprobe_opcode_t __kprobes *__get_insn_slot(void) +static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip; retry: - list_for_each_entry(kip, &kprobe_insn_pages, list) { - if (kip->nused < INSNS_PER_PAGE) { + list_for_each_entry(kip, &c->pages, list) { + if (kip->nused < slots_per_page(c)) { int i; - for (i = 0; i < INSNS_PER_PAGE; i++) { + for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_CLEAN) { kip->slot_used[i] = SLOT_USED; kip->nused++; - return kip->insns + (i * MAX_INSN_SIZE); + return kip->insns + (i * c->insn_size); } } - /* Surprise! No unused slots. Fix kip->nused. */ - kip->nused = INSNS_PER_PAGE; + /* kip->nused is broken. Fix it. */ + kip->nused = slots_per_page(c); + WARN_ON(1); } } /* If there are any garbage slots, collect it and try again. */ - if (kprobe_garbage_slots && collect_garbage_slots() == 0) { + if (c->nr_garbage && collect_garbage_slots(c) == 0) goto retry; - } - /* All out of space. Need to allocate a new page. Use slot 0. */ - kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL); + + /* All out of space. Need to allocate a new page. */ + kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); if (!kip) return NULL; @@ -170,20 +189,23 @@ static kprobe_opcode_t __kprobes *__get_insn_slot(void) return NULL; } INIT_LIST_HEAD(&kip->list); - list_add(&kip->list, &kprobe_insn_pages); - memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE); + memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); kip->slot_used[0] = SLOT_USED; kip->nused = 1; kip->ngarbage = 0; + list_add(&kip->list, &c->pages); return kip->insns; } + kprobe_opcode_t __kprobes *get_insn_slot(void) { - kprobe_opcode_t *ret; + kprobe_opcode_t *ret = NULL; + mutex_lock(&kprobe_insn_mutex); - ret = __get_insn_slot(); + ret = __get_insn_slot(&kprobe_insn_slots); mutex_unlock(&kprobe_insn_mutex); + return ret; } @@ -199,7 +221,7 @@ static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) * so as not to have to set it up again the * next time somebody inserts a probe. */ - if (!list_is_singular(&kprobe_insn_pages)) { + if (!list_is_singular(&kip->list)) { list_del(&kip->list); module_free(NULL, kip->insns); kfree(kip); @@ -209,51 +231,84 @@ static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) return 0; } -static int __kprobes collect_garbage_slots(void) +static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip, *next; /* Ensure no-one is interrupted on the garbages */ synchronize_sched(); - list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) { + list_for_each_entry_safe(kip, next, &c->pages, list) { int i; if (kip->ngarbage == 0) continue; kip->ngarbage = 0; /* we will collect all garbages */ - for (i = 0; i < INSNS_PER_PAGE; i++) { + for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) break; } } - kprobe_garbage_slots = 0; + c->nr_garbage = 0; return 0; } -void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) +static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, + kprobe_opcode_t *slot, int dirty) { struct kprobe_insn_page *kip; - mutex_lock(&kprobe_insn_mutex); - list_for_each_entry(kip, &kprobe_insn_pages, list) { - if (kip->insns <= slot && - slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { - int i = (slot - kip->insns) / MAX_INSN_SIZE; + list_for_each_entry(kip, &c->pages, list) { + long idx = ((long)slot - (long)kip->insns) / c->insn_size; + if (idx >= 0 && idx < slots_per_page(c)) { + WARN_ON(kip->slot_used[idx] != SLOT_USED); if (dirty) { - kip->slot_used[i] = SLOT_DIRTY; + kip->slot_used[idx] = SLOT_DIRTY; kip->ngarbage++; + if (++c->nr_garbage > slots_per_page(c)) + collect_garbage_slots(c); } else - collect_one_slot(kip, i); - break; + collect_one_slot(kip, idx); + return; } } + /* Could not free this slot. */ + WARN_ON(1); +} - if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE) - collect_garbage_slots(); - +void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) +{ + mutex_lock(&kprobe_insn_mutex); + __free_insn_slot(&kprobe_insn_slots, slot, dirty); mutex_unlock(&kprobe_insn_mutex); } +#ifdef CONFIG_OPTPROBES +/* For optimized_kprobe buffer */ +static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ +static struct kprobe_insn_cache kprobe_optinsn_slots = { + .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), + /* .insn_size is initialized later */ + .nr_garbage = 0, +}; +/* Get a slot for optimized_kprobe buffer */ +kprobe_opcode_t __kprobes *get_optinsn_slot(void) +{ + kprobe_opcode_t *ret = NULL; + + mutex_lock(&kprobe_optinsn_mutex); + ret = __get_insn_slot(&kprobe_optinsn_slots); + mutex_unlock(&kprobe_optinsn_mutex); + + return ret; +} + +void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) +{ + mutex_lock(&kprobe_optinsn_mutex); + __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); + mutex_unlock(&kprobe_optinsn_mutex); +} +#endif #endif /* We have preemption disabled.. so it is safe to use __ versions */ @@ -284,23 +339,401 @@ struct kprobe __kprobes *get_kprobe(void *addr) if (p->addr == addr) return p; } + + return NULL; +} + +static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); + +/* Return true if the kprobe is an aggregator */ +static inline int kprobe_aggrprobe(struct kprobe *p) +{ + return p->pre_handler == aggr_pre_handler; +} + +/* + * Keep all fields in the kprobe consistent + */ +static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) +{ + memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); + memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); +} + +#ifdef CONFIG_OPTPROBES +/* NOTE: change this value only with kprobe_mutex held */ +static bool kprobes_allow_optimization; + +/* + * Call all pre_handler on the list, but ignores its return value. + * This must be called from arch-dep optimized caller. + */ +void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) +{ + struct kprobe *kp; + + list_for_each_entry_rcu(kp, &p->list, list) { + if (kp->pre_handler && likely(!kprobe_disabled(kp))) { + set_kprobe_instance(kp); + kp->pre_handler(kp, regs); + } + reset_kprobe_instance(); + } +} + +/* Return true(!0) if the kprobe is ready for optimization. */ +static inline int kprobe_optready(struct kprobe *p) +{ + struct optimized_kprobe *op; + + if (kprobe_aggrprobe(p)) { + op = container_of(p, struct optimized_kprobe, kp); + return arch_prepared_optinsn(&op->optinsn); + } + + return 0; +} + +/* + * Return an optimized kprobe whose optimizing code replaces + * instructions including addr (exclude breakpoint). + */ +struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) +{ + int i; + struct kprobe *p = NULL; + struct optimized_kprobe *op; + + /* Don't check i == 0, since that is a breakpoint case. */ + for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) + p = get_kprobe((void *)(addr - i)); + + if (p && kprobe_optready(p)) { + op = container_of(p, struct optimized_kprobe, kp); + if (arch_within_optimized_kprobe(op, addr)) + return p; + } + return NULL; } +/* Optimization staging list, protected by kprobe_mutex */ +static LIST_HEAD(optimizing_list); + +static void kprobe_optimizer(struct work_struct *work); +static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); +#define OPTIMIZE_DELAY 5 + +/* Kprobe jump optimizer */ +static __kprobes void kprobe_optimizer(struct work_struct *work) +{ + struct optimized_kprobe *op, *tmp; + + /* Lock modules while optimizing kprobes */ + mutex_lock(&module_mutex); + mutex_lock(&kprobe_mutex); + if (kprobes_all_disarmed || !kprobes_allow_optimization) + goto end; + + /* + * Wait for quiesence period to ensure all running interrupts + * are done. Because optprobe may modify multiple instructions + * there is a chance that Nth instruction is interrupted. In that + * case, running interrupt can return to 2nd-Nth byte of jump + * instruction. This wait is for avoiding it. + */ + synchronize_sched(); + + /* + * The optimization/unoptimization refers online_cpus via + * stop_machine() and cpu-hotplug modifies online_cpus. + * And same time, text_mutex will be held in cpu-hotplug and here. + * This combination can cause a deadlock (cpu-hotplug try to lock + * text_mutex but stop_machine can not be done because online_cpus + * has been changed) + * To avoid this deadlock, we need to call get_online_cpus() + * for preventing cpu-hotplug outside of text_mutex locking. + */ + get_online_cpus(); + mutex_lock(&text_mutex); + list_for_each_entry_safe(op, tmp, &optimizing_list, list) { + WARN_ON(kprobe_disabled(&op->kp)); + if (arch_optimize_kprobe(op) < 0) + op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; + list_del_init(&op->list); + } + mutex_unlock(&text_mutex); + put_online_cpus(); +end: + mutex_unlock(&kprobe_mutex); + mutex_unlock(&module_mutex); +} + +/* Optimize kprobe if p is ready to be optimized */ +static __kprobes void optimize_kprobe(struct kprobe *p) +{ + struct optimized_kprobe *op; + + /* Check if the kprobe is disabled or not ready for optimization. */ + if (!kprobe_optready(p) || !kprobes_allow_optimization || + (kprobe_disabled(p) || kprobes_all_disarmed)) + return; + + /* Both of break_handler and post_handler are not supported. */ + if (p->break_handler || p->post_handler) + return; + + op = container_of(p, struct optimized_kprobe, kp); + + /* Check there is no other kprobes at the optimized instructions */ + if (arch_check_optimized_kprobe(op) < 0) + return; + + /* Check if it is already optimized. */ + if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) + return; + + op->kp.flags |= KPROBE_FLAG_OPTIMIZED; + list_add(&op->list, &optimizing_list); + if (!delayed_work_pending(&optimizing_work)) + schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); +} + +/* Unoptimize a kprobe if p is optimized */ +static __kprobes void unoptimize_kprobe(struct kprobe *p) +{ + struct optimized_kprobe *op; + + if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) { + op = container_of(p, struct optimized_kprobe, kp); + if (!list_empty(&op->list)) + /* Dequeue from the optimization queue */ + list_del_init(&op->list); + else + /* Replace jump with break */ + arch_unoptimize_kprobe(op); + op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; + } +} + +/* Remove optimized instructions */ +static void __kprobes kill_optimized_kprobe(struct kprobe *p) +{ + struct optimized_kprobe *op; + + op = container_of(p, struct optimized_kprobe, kp); + if (!list_empty(&op->list)) { + /* Dequeue from the optimization queue */ + list_del_init(&op->list); + op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; + } + /* Don't unoptimize, because the target code will be freed. */ + arch_remove_optimized_kprobe(op); +} + +/* Try to prepare optimized instructions */ +static __kprobes void prepare_optimized_kprobe(struct kprobe *p) +{ + struct optimized_kprobe *op; + + op = container_of(p, struct optimized_kprobe, kp); + arch_prepare_optimized_kprobe(op); +} + +/* Free optimized instructions and optimized_kprobe */ +static __kprobes void free_aggr_kprobe(struct kprobe *p) +{ + struct optimized_kprobe *op; + + op = container_of(p, struct optimized_kprobe, kp); + arch_remove_optimized_kprobe(op); + kfree(op); +} + +/* Allocate new optimized_kprobe and try to prepare optimized instructions */ +static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) +{ + struct optimized_kprobe *op; + + op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); + if (!op) + return NULL; + + INIT_LIST_HEAD(&op->list); + op->kp.addr = p->addr; + arch_prepare_optimized_kprobe(op); + + return &op->kp; +} + +static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); + +/* + * Prepare an optimized_kprobe and optimize it + * NOTE: p must be a normal registered kprobe + */ +static __kprobes void try_to_optimize_kprobe(struct kprobe *p) +{ + struct kprobe *ap; + struct optimized_kprobe *op; + + ap = alloc_aggr_kprobe(p); + if (!ap) + return; + + op = container_of(ap, struct optimized_kprobe, kp); + if (!arch_prepared_optinsn(&op->optinsn)) { + /* If failed to setup optimizing, fallback to kprobe */ + free_aggr_kprobe(ap); + return; + } + + init_aggr_kprobe(ap, p); + optimize_kprobe(ap); +} + +#ifdef CONFIG_SYSCTL +static void __kprobes optimize_all_kprobes(void) +{ + struct hlist_head *head; + struct hlist_node *node; + struct kprobe *p; + unsigned int i; + + /* If optimization is already allowed, just return */ + if (kprobes_allow_optimization) + return; + + kprobes_allow_optimization = true; + mutex_lock(&text_mutex); + for (i = 0; i < KPROBE_TABLE_SIZE; i++) { + head = &kprobe_table[i]; + hlist_for_each_entry_rcu(p, node, head, hlist) + if (!kprobe_disabled(p)) + optimize_kprobe(p); + } + mutex_unlock(&text_mutex); + printk(KERN_INFO "Kprobes globally optimized\n"); +} + +static void __kprobes unoptimize_all_kprobes(void) +{ + struct hlist_head *head; + struct hlist_node *node; + struct kprobe *p; + unsigned int i; + + /* If optimization is already prohibited, just return */ + if (!kprobes_allow_optimization) + return; + + kprobes_allow_optimization = false; + printk(KERN_INFO "Kprobes globally unoptimized\n"); + get_online_cpus(); /* For avoiding text_mutex deadlock */ + mutex_lock(&text_mutex); + for (i = 0; i < KPROBE_TABLE_SIZE; i++) { + head = &kprobe_table[i]; + hlist_for_each_entry_rcu(p, node, head, hlist) { + if (!kprobe_disabled(p)) + unoptimize_kprobe(p); + } + } + + mutex_unlock(&text_mutex); + put_online_cpus(); + /* Allow all currently running kprobes to complete */ + synchronize_sched(); +} + +int sysctl_kprobes_optimization; +int proc_kprobes_optimization_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, + loff_t *ppos) +{ + int ret; + + mutex_lock(&kprobe_mutex); + sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; + ret = proc_dointvec_minmax(table, write, buffer, length, ppos); + + if (sysctl_kprobes_optimization) + optimize_all_kprobes(); + else + unoptimize_all_kprobes(); + mutex_unlock(&kprobe_mutex); + + return ret; +} +#endif /* CONFIG_SYSCTL */ + +static void __kprobes __arm_kprobe(struct kprobe *p) +{ + struct kprobe *old_p; + + /* Check collision with other optimized kprobes */ + old_p = get_optimized_kprobe((unsigned long)p->addr); + if (unlikely(old_p)) + unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */ + + arch_arm_kprobe(p); + optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ +} + +static void __kprobes __disarm_kprobe(struct kprobe *p) +{ + struct kprobe *old_p; + + unoptimize_kprobe(p); /* Try to unoptimize */ + arch_disarm_kprobe(p); + + /* If another kprobe was blocked, optimize it. */ + old_p = get_optimized_kprobe((unsigned long)p->addr); + if (unlikely(old_p)) + optimize_kprobe(old_p); +} + +#else /* !CONFIG_OPTPROBES */ + +#define optimize_kprobe(p) do {} while (0) +#define unoptimize_kprobe(p) do {} while (0) +#define kill_optimized_kprobe(p) do {} while (0) +#define prepare_optimized_kprobe(p) do {} while (0) +#define try_to_optimize_kprobe(p) do {} while (0) +#define __arm_kprobe(p) arch_arm_kprobe(p) +#define __disarm_kprobe(p) arch_disarm_kprobe(p) + +static __kprobes void free_aggr_kprobe(struct kprobe *p) +{ + kfree(p); +} + +static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) +{ + return kzalloc(sizeof(struct kprobe), GFP_KERNEL); +} +#endif /* CONFIG_OPTPROBES */ + /* Arm a kprobe with text_mutex */ static void __kprobes arm_kprobe(struct kprobe *kp) { + /* + * Here, since __arm_kprobe() doesn't use stop_machine(), + * this doesn't cause deadlock on text_mutex. So, we don't + * need get_online_cpus(). + */ mutex_lock(&text_mutex); - arch_arm_kprobe(kp); + __arm_kprobe(kp); mutex_unlock(&text_mutex); } /* Disarm a kprobe with text_mutex */ static void __kprobes disarm_kprobe(struct kprobe *kp) { + get_online_cpus(); /* For avoiding text_mutex deadlock */ mutex_lock(&text_mutex); - arch_disarm_kprobe(kp); + __disarm_kprobe(kp); mutex_unlock(&text_mutex); + put_online_cpus(); } /* @@ -369,7 +802,7 @@ static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) { struct kprobe *kp; - if (p->pre_handler != aggr_pre_handler) { + if (!kprobe_aggrprobe(p)) { p->nmissed++; } else { list_for_each_entry_rcu(kp, &p->list, list) @@ -493,21 +926,16 @@ static void __kprobes cleanup_rp_inst(struct kretprobe *rp) } /* - * Keep all fields in the kprobe consistent - */ -static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) -{ - memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); - memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); -} - -/* * Add the new probe to ap->list. Fail if this is the * second jprobe at the address - two jprobes can't coexist */ static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) { BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); + + if (p->break_handler || p->post_handler) + unoptimize_kprobe(ap); /* Fall back to normal kprobe */ + if (p->break_handler) { if (ap->break_handler) return -EEXIST; @@ -522,7 +950,7 @@ static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) ap->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed) /* Arm the breakpoint again. */ - arm_kprobe(ap); + __arm_kprobe(ap); } return 0; } @@ -531,12 +959,13 @@ static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) * Fill in the required fields of the "manager kprobe". Replace the * earlier kprobe in the hlist with the manager kprobe */ -static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p) +static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) { + /* Copy p's insn slot to ap */ copy_kprobe(p, ap); flush_insn_slot(ap); ap->addr = p->addr; - ap->flags = p->flags; + ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; ap->pre_handler = aggr_pre_handler; ap->fault_handler = aggr_fault_handler; /* We don't care the kprobe which has gone. */ @@ -546,8 +975,9 @@ static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p) ap->break_handler = aggr_break_handler; INIT_LIST_HEAD(&ap->list); - list_add_rcu(&p->list, &ap->list); + INIT_HLIST_NODE(&ap->hlist); + list_add_rcu(&p->list, &ap->list); hlist_replace_rcu(&p->hlist, &ap->hlist); } @@ -561,12 +991,12 @@ static int __kprobes register_aggr_kprobe(struct kprobe *old_p, int ret = 0; struct kprobe *ap = old_p; - if (old_p->pre_handler != aggr_pre_handler) { - /* If old_p is not an aggr_probe, create new aggr_kprobe. */ - ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL); + if (!kprobe_aggrprobe(old_p)) { + /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */ + ap = alloc_aggr_kprobe(old_p); if (!ap) return -ENOMEM; - add_aggr_kprobe(ap, old_p); + init_aggr_kprobe(ap, old_p); } if (kprobe_gone(ap)) { @@ -585,6 +1015,9 @@ static int __kprobes register_aggr_kprobe(struct kprobe *old_p, */ return ret; + /* Prepare optimized instructions if possible. */ + prepare_optimized_kprobe(ap); + /* * Clear gone flag to prevent allocating new slot again, and * set disabled flag because it is not armed yet. @@ -593,6 +1026,7 @@ static int __kprobes register_aggr_kprobe(struct kprobe *old_p, | KPROBE_FLAG_DISABLED; } + /* Copy ap's insn slot to p */ copy_kprobe(ap, p); return add_new_kprobe(ap, p); } @@ -743,27 +1177,34 @@ int __kprobes register_kprobe(struct kprobe *p) p->nmissed = 0; INIT_LIST_HEAD(&p->list); mutex_lock(&kprobe_mutex); + + get_online_cpus(); /* For avoiding text_mutex deadlock. */ + mutex_lock(&text_mutex); + old_p = get_kprobe(p->addr); if (old_p) { + /* Since this may unoptimize old_p, locking text_mutex. */ ret = register_aggr_kprobe(old_p, p); goto out; } - mutex_lock(&text_mutex); ret = arch_prepare_kprobe(p); if (ret) - goto out_unlock_text; + goto out; INIT_HLIST_NODE(&p->hlist); hlist_add_head_rcu(&p->hlist, &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); if (!kprobes_all_disarmed && !kprobe_disabled(p)) - arch_arm_kprobe(p); + __arm_kprobe(p); + + /* Try to optimize kprobe */ + try_to_optimize_kprobe(p); -out_unlock_text: - mutex_unlock(&text_mutex); out: + mutex_unlock(&text_mutex); + put_online_cpus(); mutex_unlock(&kprobe_mutex); if (probed_mod) @@ -785,7 +1226,7 @@ static int __kprobes __unregister_kprobe_top(struct kprobe *p) return -EINVAL; if (old_p == p || - (old_p->pre_handler == aggr_pre_handler && + (kprobe_aggrprobe(old_p) && list_is_singular(&old_p->list))) { /* * Only probe on the hash list. Disarm only if kprobes are @@ -793,7 +1234,7 @@ static int __kprobes __unregister_kprobe_top(struct kprobe *p) * already have been removed. We save on flushing icache. */ if (!kprobes_all_disarmed && !kprobe_disabled(old_p)) - disarm_kprobe(p); + disarm_kprobe(old_p); hlist_del_rcu(&old_p->hlist); } else { if (p->break_handler && !kprobe_gone(p)) @@ -809,8 +1250,13 @@ noclean: list_del_rcu(&p->list); if (!kprobe_disabled(old_p)) { try_to_disable_aggr_kprobe(old_p); - if (!kprobes_all_disarmed && kprobe_disabled(old_p)) - disarm_kprobe(old_p); + if (!kprobes_all_disarmed) { + if (kprobe_disabled(old_p)) + disarm_kprobe(old_p); + else + /* Try to optimize this probe again */ + optimize_kprobe(old_p); + } } } return 0; @@ -827,7 +1273,7 @@ static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) old_p = list_entry(p->list.next, struct kprobe, list); list_del(&p->list); arch_remove_kprobe(old_p); - kfree(old_p); + free_aggr_kprobe(old_p); } } @@ -1123,7 +1569,7 @@ static void __kprobes kill_kprobe(struct kprobe *p) struct kprobe *kp; p->flags |= KPROBE_FLAG_GONE; - if (p->pre_handler == aggr_pre_handler) { + if (kprobe_aggrprobe(p)) { /* * If this is an aggr_kprobe, we have to list all the * chained probes and mark them GONE. @@ -1132,6 +1578,7 @@ static void __kprobes kill_kprobe(struct kprobe *p) kp->flags |= KPROBE_FLAG_GONE; p->post_handler = NULL; p->break_handler = NULL; + kill_optimized_kprobe(p); } /* * Here, we can remove insn_slot safely, because no thread calls @@ -1241,6 +1688,15 @@ static int __init init_kprobes(void) } } +#if defined(CONFIG_OPTPROBES) +#if defined(__ARCH_WANT_KPROBES_INSN_SLOT) + /* Init kprobe_optinsn_slots */ + kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; +#endif + /* By default, kprobes can be optimized */ + kprobes_allow_optimization = true; +#endif + /* By default, kprobes are armed */ kprobes_all_disarmed = false; @@ -1259,7 +1715,7 @@ static int __init init_kprobes(void) #ifdef CONFIG_DEBUG_FS static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, - const char *sym, int offset,char *modname) + const char *sym, int offset, char *modname, struct kprobe *pp) { char *kprobe_type; @@ -1269,19 +1725,21 @@ static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, kprobe_type = "j"; else kprobe_type = "k"; + if (sym) - seq_printf(pi, "%p %s %s+0x%x %s %s%s\n", + seq_printf(pi, "%p %s %s+0x%x %s ", p->addr, kprobe_type, sym, offset, - (modname ? modname : " "), - (kprobe_gone(p) ? "[GONE]" : ""), - ((kprobe_disabled(p) && !kprobe_gone(p)) ? - "[DISABLED]" : "")); + (modname ? modname : " ")); else - seq_printf(pi, "%p %s %p %s%s\n", - p->addr, kprobe_type, p->addr, - (kprobe_gone(p) ? "[GONE]" : ""), - ((kprobe_disabled(p) && !kprobe_gone(p)) ? - "[DISABLED]" : "")); + seq_printf(pi, "%p %s %p ", + p->addr, kprobe_type, p->addr); + + if (!pp) + pp = p; + seq_printf(pi, "%s%s%s\n", + (kprobe_gone(p) ? "[GONE]" : ""), + ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), + (kprobe_optimized(pp) ? "[OPTIMIZED]" : "")); } static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) @@ -1317,11 +1775,11 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) hlist_for_each_entry_rcu(p, node, head, hlist) { sym = kallsyms_lookup((unsigned long)p->addr, NULL, &offset, &modname, namebuf); - if (p->pre_handler == aggr_pre_handler) { + if (kprobe_aggrprobe(p)) { list_for_each_entry_rcu(kp, &p->list, list) - report_probe(pi, kp, sym, offset, modname); + report_probe(pi, kp, sym, offset, modname, p); } else - report_probe(pi, p, sym, offset, modname); + report_probe(pi, p, sym, offset, modname, NULL); } preempt_enable(); return 0; @@ -1399,12 +1857,13 @@ int __kprobes enable_kprobe(struct kprobe *kp) goto out; } - if (!kprobes_all_disarmed && kprobe_disabled(p)) - arm_kprobe(p); - - p->flags &= ~KPROBE_FLAG_DISABLED; if (p != kp) kp->flags &= ~KPROBE_FLAG_DISABLED; + + if (!kprobes_all_disarmed && kprobe_disabled(p)) { + p->flags &= ~KPROBE_FLAG_DISABLED; + arm_kprobe(p); + } out: mutex_unlock(&kprobe_mutex); return ret; @@ -1424,12 +1883,13 @@ static void __kprobes arm_all_kprobes(void) if (!kprobes_all_disarmed) goto already_enabled; + /* Arming kprobes doesn't optimize kprobe itself */ mutex_lock(&text_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry_rcu(p, node, head, hlist) if (!kprobe_disabled(p)) - arch_arm_kprobe(p); + __arm_kprobe(p); } mutex_unlock(&text_mutex); @@ -1456,16 +1916,23 @@ static void __kprobes disarm_all_kprobes(void) kprobes_all_disarmed = true; printk(KERN_INFO "Kprobes globally disabled\n"); + + /* + * Here we call get_online_cpus() for avoiding text_mutex deadlock, + * because disarming may also unoptimize kprobes. + */ + get_online_cpus(); mutex_lock(&text_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry_rcu(p, node, head, hlist) { if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) - arch_disarm_kprobe(p); + __disarm_kprobe(p); } } mutex_unlock(&text_mutex); + put_online_cpus(); mutex_unlock(&kprobe_mutex); /* Allow all currently running kprobes to complete */ synchronize_sched(); diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c index 3feaf5a..6b1ccc3 100644 --- a/kernel/ksysfs.c +++ b/kernel/ksysfs.c @@ -197,16 +197,8 @@ static int __init ksysfs_init(void) goto group_exit; } - /* create the /sys/kernel/uids/ directory */ - error = uids_sysfs_init(); - if (error) - goto notes_exit; - return 0; -notes_exit: - if (notes_size > 0) - sysfs_remove_bin_file(kernel_kobj, ¬es_attr); group_exit: sysfs_remove_group(kernel_kobj, &kernel_attr_group); kset_exit: diff --git a/kernel/kthread.c b/kernel/kthread.c index fbb6222..82ed0ea 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -101,7 +101,7 @@ static void create_kthread(struct kthread_create_info *create) * * Description: This helper function creates and names a kernel * thread. The thread will be stopped: use wake_up_process() to start - * it. See also kthread_run(), kthread_create_on_cpu(). + * it. See also kthread_run(). * * When woken, the thread will run @threadfn() with @data as its * argument. @threadfn() can either call do_exit() directly if it is a diff --git a/kernel/lockdep.c b/kernel/lockdep.c index c62ec14..0c30d04 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c @@ -3809,3 +3809,21 @@ void lockdep_sys_exit(void) lockdep_print_held_locks(curr); } } + +void lockdep_rcu_dereference(const char *file, const int line) +{ + struct task_struct *curr = current; + + if (!debug_locks_off()) + return; + printk("\n===================================================\n"); + printk( "[ INFO: suspicious rcu_dereference_check() usage. ]\n"); + printk( "---------------------------------------------------\n"); + printk("%s:%d invoked rcu_dereference_check() without protection!\n", + file, line); + printk("\nother info that might help us debug this:\n\n"); + lockdep_print_held_locks(curr); + printk("\nstack backtrace:\n"); + dump_stack(); +} +EXPORT_SYMBOL_GPL(lockdep_rcu_dereference); diff --git a/kernel/module.c b/kernel/module.c index f82386b..c968d36 100644 --- a/kernel/module.c +++ b/kernel/module.c @@ -474,9 +474,10 @@ static void module_unload_init(struct module *mod) INIT_LIST_HEAD(&mod->modules_which_use_me); for_each_possible_cpu(cpu) - local_set(__module_ref_addr(mod, cpu), 0); + per_cpu_ptr(mod->refptr, cpu)->count = 0; + /* Hold reference count during initialization. */ - local_set(__module_ref_addr(mod, raw_smp_processor_id()), 1); + __this_cpu_write(mod->refptr->count, 1); /* Backwards compatibility macros put refcount during init. */ mod->waiter = current; } @@ -619,7 +620,7 @@ unsigned int module_refcount(struct module *mod) int cpu; for_each_possible_cpu(cpu) - total += local_read(__module_ref_addr(mod, cpu)); + total += per_cpu_ptr(mod->refptr, cpu)->count; return total; } EXPORT_SYMBOL(module_refcount); @@ -796,14 +797,15 @@ static struct module_attribute refcnt = { void module_put(struct module *module) { if (module) { - unsigned int cpu = get_cpu(); - local_dec(__module_ref_addr(module, cpu)); + preempt_disable(); + __this_cpu_dec(module->refptr->count); + trace_module_put(module, _RET_IP_, - local_read(__module_ref_addr(module, cpu))); + __this_cpu_read(module->refptr->count)); /* Maybe they're waiting for us to drop reference? */ if (unlikely(!module_is_live(module))) wake_up_process(module->waiter); - put_cpu(); + preempt_enable(); } } EXPORT_SYMBOL(module_put); @@ -1083,6 +1085,7 @@ static void add_sect_attrs(struct module *mod, unsigned int nsect, if (sattr->name == NULL) goto out; sect_attrs->nsections++; + sysfs_attr_init(&sattr->mattr.attr); sattr->mattr.show = module_sect_show; sattr->mattr.store = NULL; sattr->mattr.attr.name = sattr->name; @@ -1178,6 +1181,7 @@ static void add_notes_attrs(struct module *mod, unsigned int nsect, if (sect_empty(&sechdrs[i])) continue; if (sechdrs[i].sh_type == SHT_NOTE) { + sysfs_bin_attr_init(nattr); nattr->attr.name = mod->sect_attrs->attrs[loaded].name; nattr->attr.mode = S_IRUGO; nattr->size = sechdrs[i].sh_size; @@ -1250,6 +1254,7 @@ int module_add_modinfo_attrs(struct module *mod) if (!attr->test || (attr->test && attr->test(mod))) { memcpy(temp_attr, attr, sizeof(*temp_attr)); + sysfs_attr_init(&temp_attr->attr); error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr); ++temp_attr; } @@ -1397,9 +1402,9 @@ static void free_module(struct module *mod) kfree(mod->args); if (mod->percpu) percpu_modfree(mod->percpu); -#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) +#if defined(CONFIG_MODULE_UNLOAD) if (mod->refptr) - percpu_modfree(mod->refptr); + free_percpu(mod->refptr); #endif /* Free lock-classes: */ lockdep_free_key_range(mod->module_core, mod->core_size); @@ -2162,9 +2167,8 @@ static noinline struct module *load_module(void __user *umod, mod = (void *)sechdrs[modindex].sh_addr; kmemleak_load_module(mod, hdr, sechdrs, secstrings); -#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) - mod->refptr = percpu_modalloc(sizeof(local_t), __alignof__(local_t), - mod->name); +#if defined(CONFIG_MODULE_UNLOAD) + mod->refptr = alloc_percpu(struct module_ref); if (!mod->refptr) { err = -ENOMEM; goto free_init; @@ -2396,8 +2400,8 @@ static noinline struct module *load_module(void __user *umod, kobject_put(&mod->mkobj.kobj); free_unload: module_unload_free(mod); -#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) - percpu_modfree(mod->refptr); +#if defined(CONFIG_MODULE_UNLOAD) + free_percpu(mod->refptr); free_init: #endif module_free(mod, mod->module_init); diff --git a/kernel/notifier.c b/kernel/notifier.c index acd24e7..2488ba7 100644 --- a/kernel/notifier.c +++ b/kernel/notifier.c @@ -78,10 +78,10 @@ static int __kprobes notifier_call_chain(struct notifier_block **nl, int ret = NOTIFY_DONE; struct notifier_block *nb, *next_nb; - nb = rcu_dereference(*nl); + nb = rcu_dereference_raw(*nl); while (nb && nr_to_call) { - next_nb = rcu_dereference(nb->next); + next_nb = rcu_dereference_raw(nb->next); #ifdef CONFIG_DEBUG_NOTIFIERS if (unlikely(!func_ptr_is_kernel_text(nb->notifier_call))) { @@ -309,7 +309,7 @@ int __blocking_notifier_call_chain(struct blocking_notifier_head *nh, * racy then it does not matter what the result of the test * is, we re-check the list after having taken the lock anyway: */ - if (rcu_dereference(nh->head)) { + if (rcu_dereference_raw(nh->head)) { down_read(&nh->rwsem); ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls); diff --git a/kernel/padata.c b/kernel/padata.c new file mode 100644 index 0000000..93caf65 --- /dev/null +++ b/kernel/padata.c @@ -0,0 +1,696 @@ +/* + * padata.c - generic interface to process data streams in parallel + * + * Copyright (C) 2008, 2009 secunet Security Networks AG + * Copyright (C) 2008, 2009 Steffen Klassert <steffen.klassert@secunet.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include <linux/module.h> +#include <linux/cpumask.h> +#include <linux/err.h> +#include <linux/cpu.h> +#include <linux/padata.h> +#include <linux/mutex.h> +#include <linux/sched.h> +#include <linux/rcupdate.h> + +#define MAX_SEQ_NR INT_MAX - NR_CPUS +#define MAX_OBJ_NUM 10000 * NR_CPUS + +static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index) +{ + int cpu, target_cpu; + + target_cpu = cpumask_first(pd->cpumask); + for (cpu = 0; cpu < cpu_index; cpu++) + target_cpu = cpumask_next(target_cpu, pd->cpumask); + + return target_cpu; +} + +static int padata_cpu_hash(struct padata_priv *padata) +{ + int cpu_index; + struct parallel_data *pd; + + pd = padata->pd; + + /* + * Hash the sequence numbers to the cpus by taking + * seq_nr mod. number of cpus in use. + */ + cpu_index = padata->seq_nr % cpumask_weight(pd->cpumask); + + return padata_index_to_cpu(pd, cpu_index); +} + +static void padata_parallel_worker(struct work_struct *work) +{ + struct padata_queue *queue; + struct parallel_data *pd; + struct padata_instance *pinst; + LIST_HEAD(local_list); + + local_bh_disable(); + queue = container_of(work, struct padata_queue, pwork); + pd = queue->pd; + pinst = pd->pinst; + + spin_lock(&queue->parallel.lock); + list_replace_init(&queue->parallel.list, &local_list); + spin_unlock(&queue->parallel.lock); + + while (!list_empty(&local_list)) { + struct padata_priv *padata; + + padata = list_entry(local_list.next, + struct padata_priv, list); + + list_del_init(&padata->list); + + padata->parallel(padata); + } + + local_bh_enable(); +} + +/* + * padata_do_parallel - padata parallelization function + * + * @pinst: padata instance + * @padata: object to be parallelized + * @cb_cpu: cpu the serialization callback function will run on, + * must be in the cpumask of padata. + * + * The parallelization callback function will run with BHs off. + * Note: Every object which is parallelized by padata_do_parallel + * must be seen by padata_do_serial. + */ +int padata_do_parallel(struct padata_instance *pinst, + struct padata_priv *padata, int cb_cpu) +{ + int target_cpu, err; + struct padata_queue *queue; + struct parallel_data *pd; + + rcu_read_lock_bh(); + + pd = rcu_dereference(pinst->pd); + + err = 0; + if (!(pinst->flags & PADATA_INIT)) + goto out; + + err = -EBUSY; + if ((pinst->flags & PADATA_RESET)) + goto out; + + if (atomic_read(&pd->refcnt) >= MAX_OBJ_NUM) + goto out; + + err = -EINVAL; + if (!cpumask_test_cpu(cb_cpu, pd->cpumask)) + goto out; + + err = -EINPROGRESS; + atomic_inc(&pd->refcnt); + padata->pd = pd; + padata->cb_cpu = cb_cpu; + + if (unlikely(atomic_read(&pd->seq_nr) == pd->max_seq_nr)) + atomic_set(&pd->seq_nr, -1); + + padata->seq_nr = atomic_inc_return(&pd->seq_nr); + + target_cpu = padata_cpu_hash(padata); + queue = per_cpu_ptr(pd->queue, target_cpu); + + spin_lock(&queue->parallel.lock); + list_add_tail(&padata->list, &queue->parallel.list); + spin_unlock(&queue->parallel.lock); + + queue_work_on(target_cpu, pinst->wq, &queue->pwork); + +out: + rcu_read_unlock_bh(); + + return err; +} +EXPORT_SYMBOL(padata_do_parallel); + +static struct padata_priv *padata_get_next(struct parallel_data *pd) +{ + int cpu, num_cpus, empty, calc_seq_nr; + int seq_nr, next_nr, overrun, next_overrun; + struct padata_queue *queue, *next_queue; + struct padata_priv *padata; + struct padata_list *reorder; + + empty = 0; + next_nr = -1; + next_overrun = 0; + next_queue = NULL; + + num_cpus = cpumask_weight(pd->cpumask); + + for_each_cpu(cpu, pd->cpumask) { + queue = per_cpu_ptr(pd->queue, cpu); + reorder = &queue->reorder; + + /* + * Calculate the seq_nr of the object that should be + * next in this queue. + */ + overrun = 0; + calc_seq_nr = (atomic_read(&queue->num_obj) * num_cpus) + + queue->cpu_index; + + if (unlikely(calc_seq_nr > pd->max_seq_nr)) { + calc_seq_nr = calc_seq_nr - pd->max_seq_nr - 1; + overrun = 1; + } + + if (!list_empty(&reorder->list)) { + padata = list_entry(reorder->list.next, + struct padata_priv, list); + + seq_nr = padata->seq_nr; + BUG_ON(calc_seq_nr != seq_nr); + } else { + seq_nr = calc_seq_nr; + empty++; + } + + if (next_nr < 0 || seq_nr < next_nr + || (next_overrun && !overrun)) { + next_nr = seq_nr; + next_overrun = overrun; + next_queue = queue; + } + } + + padata = NULL; + + if (empty == num_cpus) + goto out; + + reorder = &next_queue->reorder; + + if (!list_empty(&reorder->list)) { + padata = list_entry(reorder->list.next, + struct padata_priv, list); + + if (unlikely(next_overrun)) { + for_each_cpu(cpu, pd->cpumask) { + queue = per_cpu_ptr(pd->queue, cpu); + atomic_set(&queue->num_obj, 0); + } + } + + spin_lock(&reorder->lock); + list_del_init(&padata->list); + atomic_dec(&pd->reorder_objects); + spin_unlock(&reorder->lock); + + atomic_inc(&next_queue->num_obj); + + goto out; + } + + if (next_nr % num_cpus == next_queue->cpu_index) { + padata = ERR_PTR(-ENODATA); + goto out; + } + + padata = ERR_PTR(-EINPROGRESS); +out: + return padata; +} + +static void padata_reorder(struct parallel_data *pd) +{ + struct padata_priv *padata; + struct padata_queue *queue; + struct padata_instance *pinst = pd->pinst; + +try_again: + if (!spin_trylock_bh(&pd->lock)) + goto out; + + while (1) { + padata = padata_get_next(pd); + + if (!padata || PTR_ERR(padata) == -EINPROGRESS) + break; + + if (PTR_ERR(padata) == -ENODATA) { + spin_unlock_bh(&pd->lock); + goto out; + } + + queue = per_cpu_ptr(pd->queue, padata->cb_cpu); + + spin_lock(&queue->serial.lock); + list_add_tail(&padata->list, &queue->serial.list); + spin_unlock(&queue->serial.lock); + + queue_work_on(padata->cb_cpu, pinst->wq, &queue->swork); + } + + spin_unlock_bh(&pd->lock); + + if (atomic_read(&pd->reorder_objects)) + goto try_again; + +out: + return; +} + +static void padata_serial_worker(struct work_struct *work) +{ + struct padata_queue *queue; + struct parallel_data *pd; + LIST_HEAD(local_list); + + local_bh_disable(); + queue = container_of(work, struct padata_queue, swork); + pd = queue->pd; + + spin_lock(&queue->serial.lock); + list_replace_init(&queue->serial.list, &local_list); + spin_unlock(&queue->serial.lock); + + while (!list_empty(&local_list)) { + struct padata_priv *padata; + + padata = list_entry(local_list.next, + struct padata_priv, list); + + list_del_init(&padata->list); + + padata->serial(padata); + atomic_dec(&pd->refcnt); + } + local_bh_enable(); +} + +/* + * padata_do_serial - padata serialization function + * + * @padata: object to be serialized. + * + * padata_do_serial must be called for every parallelized object. + * The serialization callback function will run with BHs off. + */ +void padata_do_serial(struct padata_priv *padata) +{ + int cpu; + struct padata_queue *queue; + struct parallel_data *pd; + + pd = padata->pd; + + cpu = get_cpu(); + queue = per_cpu_ptr(pd->queue, cpu); + + spin_lock(&queue->reorder.lock); + atomic_inc(&pd->reorder_objects); + list_add_tail(&padata->list, &queue->reorder.list); + spin_unlock(&queue->reorder.lock); + + put_cpu(); + + padata_reorder(pd); +} +EXPORT_SYMBOL(padata_do_serial); + +static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, + const struct cpumask *cpumask) +{ + int cpu, cpu_index, num_cpus; + struct padata_queue *queue; + struct parallel_data *pd; + + cpu_index = 0; + + pd = kzalloc(sizeof(struct parallel_data), GFP_KERNEL); + if (!pd) + goto err; + + pd->queue = alloc_percpu(struct padata_queue); + if (!pd->queue) + goto err_free_pd; + + if (!alloc_cpumask_var(&pd->cpumask, GFP_KERNEL)) + goto err_free_queue; + + for_each_possible_cpu(cpu) { + queue = per_cpu_ptr(pd->queue, cpu); + + queue->pd = pd; + + if (cpumask_test_cpu(cpu, cpumask) + && cpumask_test_cpu(cpu, cpu_active_mask)) { + queue->cpu_index = cpu_index; + cpu_index++; + } else + queue->cpu_index = -1; + + INIT_LIST_HEAD(&queue->reorder.list); + INIT_LIST_HEAD(&queue->parallel.list); + INIT_LIST_HEAD(&queue->serial.list); + spin_lock_init(&queue->reorder.lock); + spin_lock_init(&queue->parallel.lock); + spin_lock_init(&queue->serial.lock); + + INIT_WORK(&queue->pwork, padata_parallel_worker); + INIT_WORK(&queue->swork, padata_serial_worker); + atomic_set(&queue->num_obj, 0); + } + + cpumask_and(pd->cpumask, cpumask, cpu_active_mask); + + num_cpus = cpumask_weight(pd->cpumask); + pd->max_seq_nr = (MAX_SEQ_NR / num_cpus) * num_cpus - 1; + + atomic_set(&pd->seq_nr, -1); + atomic_set(&pd->reorder_objects, 0); + atomic_set(&pd->refcnt, 0); + pd->pinst = pinst; + spin_lock_init(&pd->lock); + + return pd; + +err_free_queue: + free_percpu(pd->queue); +err_free_pd: + kfree(pd); +err: + return NULL; +} + +static void padata_free_pd(struct parallel_data *pd) +{ + free_cpumask_var(pd->cpumask); + free_percpu(pd->queue); + kfree(pd); +} + +static void padata_replace(struct padata_instance *pinst, + struct parallel_data *pd_new) +{ + struct parallel_data *pd_old = pinst->pd; + + pinst->flags |= PADATA_RESET; + + rcu_assign_pointer(pinst->pd, pd_new); + + synchronize_rcu(); + + while (atomic_read(&pd_old->refcnt) != 0) + yield(); + + flush_workqueue(pinst->wq); + + padata_free_pd(pd_old); + + pinst->flags &= ~PADATA_RESET; +} + +/* + * padata_set_cpumask - set the cpumask that padata should use + * + * @pinst: padata instance + * @cpumask: the cpumask to use + */ +int padata_set_cpumask(struct padata_instance *pinst, + cpumask_var_t cpumask) +{ + struct parallel_data *pd; + int err = 0; + + might_sleep(); + + mutex_lock(&pinst->lock); + + pd = padata_alloc_pd(pinst, cpumask); + if (!pd) { + err = -ENOMEM; + goto out; + } + + cpumask_copy(pinst->cpumask, cpumask); + + padata_replace(pinst, pd); + +out: + mutex_unlock(&pinst->lock); + + return err; +} +EXPORT_SYMBOL(padata_set_cpumask); + +static int __padata_add_cpu(struct padata_instance *pinst, int cpu) +{ + struct parallel_data *pd; + + if (cpumask_test_cpu(cpu, cpu_active_mask)) { + pd = padata_alloc_pd(pinst, pinst->cpumask); + if (!pd) + return -ENOMEM; + + padata_replace(pinst, pd); + } + + return 0; +} + +/* + * padata_add_cpu - add a cpu to the padata cpumask + * + * @pinst: padata instance + * @cpu: cpu to add + */ +int padata_add_cpu(struct padata_instance *pinst, int cpu) +{ + int err; + + might_sleep(); + + mutex_lock(&pinst->lock); + + cpumask_set_cpu(cpu, pinst->cpumask); + err = __padata_add_cpu(pinst, cpu); + + mutex_unlock(&pinst->lock); + + return err; +} +EXPORT_SYMBOL(padata_add_cpu); + +static int __padata_remove_cpu(struct padata_instance *pinst, int cpu) +{ + struct parallel_data *pd; + + if (cpumask_test_cpu(cpu, cpu_online_mask)) { + pd = padata_alloc_pd(pinst, pinst->cpumask); + if (!pd) + return -ENOMEM; + + padata_replace(pinst, pd); + } + + return 0; +} + +/* + * padata_remove_cpu - remove a cpu from the padata cpumask + * + * @pinst: padata instance + * @cpu: cpu to remove + */ +int padata_remove_cpu(struct padata_instance *pinst, int cpu) +{ + int err; + + might_sleep(); + + mutex_lock(&pinst->lock); + + cpumask_clear_cpu(cpu, pinst->cpumask); + err = __padata_remove_cpu(pinst, cpu); + + mutex_unlock(&pinst->lock); + + return err; +} +EXPORT_SYMBOL(padata_remove_cpu); + +/* + * padata_start - start the parallel processing + * + * @pinst: padata instance to start + */ +void padata_start(struct padata_instance *pinst) +{ + might_sleep(); + + mutex_lock(&pinst->lock); + pinst->flags |= PADATA_INIT; + mutex_unlock(&pinst->lock); +} +EXPORT_SYMBOL(padata_start); + +/* + * padata_stop - stop the parallel processing + * + * @pinst: padata instance to stop + */ +void padata_stop(struct padata_instance *pinst) +{ + might_sleep(); + + mutex_lock(&pinst->lock); + pinst->flags &= ~PADATA_INIT; + mutex_unlock(&pinst->lock); +} +EXPORT_SYMBOL(padata_stop); + +static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + int err; + struct padata_instance *pinst; + int cpu = (unsigned long)hcpu; + + pinst = container_of(nfb, struct padata_instance, cpu_notifier); + + switch (action) { + case CPU_ONLINE: + case CPU_ONLINE_FROZEN: + if (!cpumask_test_cpu(cpu, pinst->cpumask)) + break; + mutex_lock(&pinst->lock); + err = __padata_add_cpu(pinst, cpu); + mutex_unlock(&pinst->lock); + if (err) + return NOTIFY_BAD; + break; + + case CPU_DOWN_PREPARE: + case CPU_DOWN_PREPARE_FROZEN: + if (!cpumask_test_cpu(cpu, pinst->cpumask)) + break; + mutex_lock(&pinst->lock); + err = __padata_remove_cpu(pinst, cpu); + mutex_unlock(&pinst->lock); + if (err) + return NOTIFY_BAD; + break; + + case CPU_UP_CANCELED: + case CPU_UP_CANCELED_FROZEN: + if (!cpumask_test_cpu(cpu, pinst->cpumask)) + break; + mutex_lock(&pinst->lock); + __padata_remove_cpu(pinst, cpu); + mutex_unlock(&pinst->lock); + + case CPU_DOWN_FAILED: + case CPU_DOWN_FAILED_FROZEN: + if (!cpumask_test_cpu(cpu, pinst->cpumask)) + break; + mutex_lock(&pinst->lock); + __padata_add_cpu(pinst, cpu); + mutex_unlock(&pinst->lock); + } + + return NOTIFY_OK; +} + +/* + * padata_alloc - allocate and initialize a padata instance + * + * @cpumask: cpumask that padata uses for parallelization + * @wq: workqueue to use for the allocated padata instance + */ +struct padata_instance *padata_alloc(const struct cpumask *cpumask, + struct workqueue_struct *wq) +{ + int err; + struct padata_instance *pinst; + struct parallel_data *pd; + + pinst = kzalloc(sizeof(struct padata_instance), GFP_KERNEL); + if (!pinst) + goto err; + + pd = padata_alloc_pd(pinst, cpumask); + if (!pd) + goto err_free_inst; + + if (!alloc_cpumask_var(&pinst->cpumask, GFP_KERNEL)) + goto err_free_pd; + + rcu_assign_pointer(pinst->pd, pd); + + pinst->wq = wq; + + cpumask_copy(pinst->cpumask, cpumask); + + pinst->flags = 0; + + pinst->cpu_notifier.notifier_call = padata_cpu_callback; + pinst->cpu_notifier.priority = 0; + err = register_hotcpu_notifier(&pinst->cpu_notifier); + if (err) + goto err_free_cpumask; + + mutex_init(&pinst->lock); + + return pinst; + +err_free_cpumask: + free_cpumask_var(pinst->cpumask); +err_free_pd: + padata_free_pd(pd); +err_free_inst: + kfree(pinst); +err: + return NULL; +} +EXPORT_SYMBOL(padata_alloc); + +/* + * padata_free - free a padata instance + * + * @ padata_inst: padata instance to free + */ +void padata_free(struct padata_instance *pinst) +{ + padata_stop(pinst); + + synchronize_rcu(); + + while (atomic_read(&pinst->pd->refcnt) != 0) + yield(); + + unregister_hotcpu_notifier(&pinst->cpu_notifier); + padata_free_pd(pinst->pd); + free_cpumask_var(pinst->cpumask); + kfree(pinst); +} +EXPORT_SYMBOL(padata_free); diff --git a/kernel/panic.c b/kernel/panic.c index c787333..13d966b 100644 --- a/kernel/panic.c +++ b/kernel/panic.c @@ -36,15 +36,36 @@ ATOMIC_NOTIFIER_HEAD(panic_notifier_list); EXPORT_SYMBOL(panic_notifier_list); -static long no_blink(long time) -{ - return 0; -} - /* Returns how long it waited in ms */ long (*panic_blink)(long time); EXPORT_SYMBOL(panic_blink); +static void panic_blink_one_second(void) +{ + static long i = 0, end; + + if (panic_blink) { + end = i + MSEC_PER_SEC; + + while (i < end) { + i += panic_blink(i); + mdelay(1); + i++; + } + } else { + /* + * When running under a hypervisor a small mdelay may get + * rounded up to the hypervisor timeslice. For example, with + * a 1ms in 10ms hypervisor timeslice we might inflate a + * mdelay(1) loop by 10x. + * + * If we have nothing to blink, spin on 1 second calls to + * mdelay to avoid this. + */ + mdelay(MSEC_PER_SEC); + } +} + /** * panic - halt the system * @fmt: The text string to print @@ -95,9 +116,6 @@ NORET_TYPE void panic(const char * fmt, ...) bust_spinlocks(0); - if (!panic_blink) - panic_blink = no_blink; - if (panic_timeout > 0) { /* * Delay timeout seconds before rebooting the machine. @@ -105,11 +123,9 @@ NORET_TYPE void panic(const char * fmt, ...) */ printk(KERN_EMERG "Rebooting in %d seconds..", panic_timeout); - for (i = 0; i < panic_timeout*1000; ) { + for (i = 0; i < panic_timeout; i++) { touch_nmi_watchdog(); - i += panic_blink(i); - mdelay(1); - i++; + panic_blink_one_second(); } /* * This will not be a clean reboot, with everything @@ -135,11 +151,9 @@ NORET_TYPE void panic(const char * fmt, ...) } #endif local_irq_enable(); - for (i = 0; ; ) { + while (1) { touch_softlockup_watchdog(); - i += panic_blink(i); - mdelay(1); - i++; + panic_blink_one_second(); } } diff --git a/kernel/params.c b/kernel/params.c index cf1b691..d55a53e 100644 --- a/kernel/params.c +++ b/kernel/params.c @@ -24,7 +24,6 @@ #include <linux/err.h> #include <linux/slab.h> #include <linux/ctype.h> -#include <linux/string.h> #if 0 #define DEBUGP printk @@ -517,6 +516,7 @@ static __modinit int add_sysfs_param(struct module_kobject *mk, new->grp.attrs = attrs; /* Tack new one on the end. */ + sysfs_attr_init(&new->attrs[num].mattr.attr); new->attrs[num].param = kp; new->attrs[num].mattr.show = param_attr_show; new->attrs[num].mattr.store = param_attr_store; @@ -723,7 +723,7 @@ static ssize_t module_attr_store(struct kobject *kobj, return ret; } -static struct sysfs_ops module_sysfs_ops = { +static const struct sysfs_ops module_sysfs_ops = { .show = module_attr_show, .store = module_attr_store, }; @@ -737,7 +737,7 @@ static int uevent_filter(struct kset *kset, struct kobject *kobj) return 0; } -static struct kset_uevent_ops module_uevent_ops = { +static const struct kset_uevent_ops module_uevent_ops = { .filter = uevent_filter, }; diff --git a/kernel/perf_event.c b/kernel/perf_event.c index 482d5e1..e687450 100644 --- a/kernel/perf_event.c +++ b/kernel/perf_event.c @@ -2595,7 +2595,7 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma) if (user_locked > user_lock_limit) extra = user_locked - user_lock_limit; - lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; + lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; locked = vma->vm_mm->locked_vm + extra; @@ -5466,13 +5466,16 @@ void __init perf_event_init(void) register_cpu_notifier(&perf_cpu_nb); } -static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) +static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, + struct sysdev_class_attribute *attr, + char *buf) { return sprintf(buf, "%d\n", perf_reserved_percpu); } static ssize_t perf_set_reserve_percpu(struct sysdev_class *class, + struct sysdev_class_attribute *attr, const char *buf, size_t count) { @@ -5501,13 +5504,17 @@ perf_set_reserve_percpu(struct sysdev_class *class, return count; } -static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) +static ssize_t perf_show_overcommit(struct sysdev_class *class, + struct sysdev_class_attribute *attr, + char *buf) { return sprintf(buf, "%d\n", perf_overcommit); } static ssize_t -perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) +perf_set_overcommit(struct sysdev_class *class, + struct sysdev_class_attribute *attr, + const char *buf, size_t count) { unsigned long val; int err; diff --git a/kernel/pid.c b/kernel/pid.c index 2e17c9c..86b2969 100644 --- a/kernel/pid.c +++ b/kernel/pid.c @@ -367,7 +367,7 @@ struct task_struct *pid_task(struct pid *pid, enum pid_type type) struct task_struct *result = NULL; if (pid) { struct hlist_node *first; - first = rcu_dereference(pid->tasks[type].first); + first = rcu_dereference_check(pid->tasks[type].first, rcu_read_lock_held() || lockdep_is_held(&tasklist_lock)); if (first) result = hlist_entry(first, struct task_struct, pids[(type)].node); } @@ -376,7 +376,7 @@ struct task_struct *pid_task(struct pid *pid, enum pid_type type) EXPORT_SYMBOL(pid_task); /* - * Must be called under rcu_read_lock() or with tasklist_lock read-held. + * Must be called under rcu_read_lock(). */ struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) { diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index 438ff45..1a22dfd 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c @@ -982,6 +982,7 @@ static void check_thread_timers(struct task_struct *tsk, int maxfire; struct list_head *timers = tsk->cpu_timers; struct signal_struct *const sig = tsk->signal; + unsigned long soft; maxfire = 20; tsk->cputime_expires.prof_exp = cputime_zero; @@ -1030,9 +1031,10 @@ static void check_thread_timers(struct task_struct *tsk, /* * Check for the special case thread timers. */ - if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) { - unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max; - unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur; + soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); + if (soft != RLIM_INFINITY) { + unsigned long hard = + ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); if (hard != RLIM_INFINITY && tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { @@ -1043,14 +1045,13 @@ static void check_thread_timers(struct task_struct *tsk, __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } - if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) { + if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { /* * At the soft limit, send a SIGXCPU every second. */ - if (sig->rlim[RLIMIT_RTTIME].rlim_cur - < sig->rlim[RLIMIT_RTTIME].rlim_max) { - sig->rlim[RLIMIT_RTTIME].rlim_cur += - USEC_PER_SEC; + if (soft < hard) { + soft += USEC_PER_SEC; + sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; } printk(KERN_INFO "RT Watchdog Timeout: %s[%d]\n", @@ -1121,6 +1122,7 @@ static void check_process_timers(struct task_struct *tsk, unsigned long long sum_sched_runtime, sched_expires; struct list_head *timers = sig->cpu_timers; struct task_cputime cputime; + unsigned long soft; /* * Don't sample the current process CPU clocks if there are no timers. @@ -1193,11 +1195,13 @@ static void check_process_timers(struct task_struct *tsk, SIGPROF); check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, SIGVTALRM); - - if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { + soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); + if (soft != RLIM_INFINITY) { unsigned long psecs = cputime_to_secs(ptime); + unsigned long hard = + ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); cputime_t x; - if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { + if (psecs >= hard) { /* * At the hard limit, we just die. * No need to calculate anything else now. @@ -1205,17 +1209,17 @@ static void check_process_timers(struct task_struct *tsk, __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } - if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { + if (psecs >= soft) { /* * At the soft limit, send a SIGXCPU every second. */ __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); - if (sig->rlim[RLIMIT_CPU].rlim_cur - < sig->rlim[RLIMIT_CPU].rlim_max) { - sig->rlim[RLIMIT_CPU].rlim_cur++; + if (soft < hard) { + soft++; + sig->rlim[RLIMIT_CPU].rlim_cur = soft; } } - x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); + x = secs_to_cputime(soft); if (cputime_eq(prof_expires, cputime_zero) || cputime_lt(x, prof_expires)) { prof_expires = x; diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index 4954407..00d1fda 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c @@ -256,7 +256,7 @@ static int posix_get_monotonic_coarse(clockid_t which_clock, return 0; } -int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) +static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) { *tp = ktime_to_timespec(KTIME_LOW_RES); return 0; diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig index 91e09d3..5c36ea9 100644 --- a/kernel/power/Kconfig +++ b/kernel/power/Kconfig @@ -27,6 +27,15 @@ config PM_DEBUG code. This is helpful when debugging and reporting PM bugs, like suspend support. +config PM_ADVANCED_DEBUG + bool "Extra PM attributes in sysfs for low-level debugging/testing" + depends on PM_DEBUG + default n + ---help--- + Add extra sysfs attributes allowing one to access some Power Management + fields of device objects from user space. If you are not a kernel + developer interested in debugging/testing Power Management, say "no". + config PM_VERBOSE bool "Verbose Power Management debugging" depends on PM_DEBUG @@ -85,6 +94,11 @@ config PM_SLEEP depends on SUSPEND || HIBERNATION || XEN_SAVE_RESTORE default y +config PM_SLEEP_ADVANCED_DEBUG + bool + depends on PM_ADVANCED_DEBUG + default n + config SUSPEND bool "Suspend to RAM and standby" depends on PM && ARCH_SUSPEND_POSSIBLE @@ -222,3 +236,8 @@ config PM_RUNTIME and the bus type drivers of the buses the devices are on are responsible for the actual handling of the autosuspend requests and wake-up events. + +config PM_OPS + bool + depends on PM_SLEEP || PM_RUNTIME + default y diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c index bbfe472..da5288e 100644 --- a/kernel/power/hibernate.c +++ b/kernel/power/hibernate.c @@ -323,6 +323,7 @@ static int create_image(int platform_mode) int hibernation_snapshot(int platform_mode) { int error; + gfp_t saved_mask; error = platform_begin(platform_mode); if (error) @@ -334,6 +335,7 @@ int hibernation_snapshot(int platform_mode) goto Close; suspend_console(); + saved_mask = clear_gfp_allowed_mask(GFP_IOFS); error = dpm_suspend_start(PMSG_FREEZE); if (error) goto Recover_platform; @@ -351,6 +353,7 @@ int hibernation_snapshot(int platform_mode) dpm_resume_end(in_suspend ? (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); + set_gfp_allowed_mask(saved_mask); resume_console(); Close: platform_end(platform_mode); @@ -445,14 +448,17 @@ static int resume_target_kernel(bool platform_mode) int hibernation_restore(int platform_mode) { int error; + gfp_t saved_mask; pm_prepare_console(); suspend_console(); + saved_mask = clear_gfp_allowed_mask(GFP_IOFS); error = dpm_suspend_start(PMSG_QUIESCE); if (!error) { error = resume_target_kernel(platform_mode); dpm_resume_end(PMSG_RECOVER); } + set_gfp_allowed_mask(saved_mask); resume_console(); pm_restore_console(); return error; @@ -466,6 +472,7 @@ int hibernation_restore(int platform_mode) int hibernation_platform_enter(void) { int error; + gfp_t saved_mask; if (!hibernation_ops) return -ENOSYS; @@ -481,6 +488,7 @@ int hibernation_platform_enter(void) entering_platform_hibernation = true; suspend_console(); + saved_mask = clear_gfp_allowed_mask(GFP_IOFS); error = dpm_suspend_start(PMSG_HIBERNATE); if (error) { if (hibernation_ops->recover) @@ -518,6 +526,7 @@ int hibernation_platform_enter(void) Resume_devices: entering_platform_hibernation = false; dpm_resume_end(PMSG_RESTORE); + set_gfp_allowed_mask(saved_mask); resume_console(); Close: diff --git a/kernel/power/main.c b/kernel/power/main.c index 0998c71..b58800b 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c @@ -44,6 +44,32 @@ int pm_notifier_call_chain(unsigned long val) == NOTIFY_BAD) ? -EINVAL : 0; } +/* If set, devices may be suspended and resumed asynchronously. */ +int pm_async_enabled = 1; + +static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%d\n", pm_async_enabled); +} + +static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr, + const char *buf, size_t n) +{ + unsigned long val; + + if (strict_strtoul(buf, 10, &val)) + return -EINVAL; + + if (val > 1) + return -EINVAL; + + pm_async_enabled = val; + return n; +} + +power_attr(pm_async); + #ifdef CONFIG_PM_DEBUG int pm_test_level = TEST_NONE; @@ -208,9 +234,12 @@ static struct attribute * g[] = { #ifdef CONFIG_PM_TRACE &pm_trace_attr.attr, #endif -#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_PM_DEBUG) +#ifdef CONFIG_PM_SLEEP + &pm_async_attr.attr, +#ifdef CONFIG_PM_DEBUG &pm_test_attr.attr, #endif +#endif NULL, }; diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 36cb168..830cade 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c @@ -1181,7 +1181,7 @@ static void free_unnecessary_pages(void) memory_bm_position_reset(©_bm); - while (to_free_normal > 0 && to_free_highmem > 0) { + while (to_free_normal > 0 || to_free_highmem > 0) { unsigned long pfn = memory_bm_next_pfn(©_bm); struct page *page = pfn_to_page(pfn); @@ -1500,7 +1500,7 @@ asmlinkage int swsusp_save(void) { unsigned int nr_pages, nr_highmem; - printk(KERN_INFO "PM: Creating hibernation image: \n"); + printk(KERN_INFO "PM: Creating hibernation image:\n"); drain_local_pages(NULL); nr_pages = count_data_pages(); diff --git a/kernel/power/suspend.c b/kernel/power/suspend.c index 6f10dfc..44cce10 100644 --- a/kernel/power/suspend.c +++ b/kernel/power/suspend.c @@ -189,6 +189,7 @@ static int suspend_enter(suspend_state_t state) int suspend_devices_and_enter(suspend_state_t state) { int error; + gfp_t saved_mask; if (!suspend_ops) return -ENOSYS; @@ -199,6 +200,7 @@ int suspend_devices_and_enter(suspend_state_t state) goto Close; } suspend_console(); + saved_mask = clear_gfp_allowed_mask(GFP_IOFS); suspend_test_start(); error = dpm_suspend_start(PMSG_SUSPEND); if (error) { @@ -215,6 +217,7 @@ int suspend_devices_and_enter(suspend_state_t state) suspend_test_start(); dpm_resume_end(PMSG_RESUME); suspend_test_finish("resume devices"); + set_gfp_allowed_mask(saved_mask); resume_console(); Close: if (suspend_ops->end) diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 09b2b0a..1d57573 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c @@ -657,10 +657,6 @@ int swsusp_read(unsigned int *flags_p) struct swsusp_info *header; *flags_p = swsusp_header->flags; - if (IS_ERR(resume_bdev)) { - pr_debug("PM: Image device not initialised\n"); - return PTR_ERR(resume_bdev); - } memset(&snapshot, 0, sizeof(struct snapshot_handle)); error = snapshot_write_next(&snapshot, PAGE_SIZE); diff --git a/kernel/power/swsusp.c b/kernel/power/swsusp.c deleted file mode 100644 index 5b3601b..0000000 --- a/kernel/power/swsusp.c +++ /dev/null @@ -1,58 +0,0 @@ -/* - * linux/kernel/power/swsusp.c - * - * This file provides code to write suspend image to swap and read it back. - * - * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu> - * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz> - * - * This file is released under the GPLv2. - * - * I'd like to thank the following people for their work: - * - * Pavel Machek <pavel@ucw.cz>: - * Modifications, defectiveness pointing, being with me at the very beginning, - * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. - * - * Steve Doddi <dirk@loth.demon.co.uk>: - * Support the possibility of hardware state restoring. - * - * Raph <grey.havens@earthling.net>: - * Support for preserving states of network devices and virtual console - * (including X and svgatextmode) - * - * Kurt Garloff <garloff@suse.de>: - * Straightened the critical function in order to prevent compilers from - * playing tricks with local variables. - * - * Andreas Mohr <a.mohr@mailto.de> - * - * Alex Badea <vampire@go.ro>: - * Fixed runaway init - * - * Rafael J. Wysocki <rjw@sisk.pl> - * Reworked the freeing of memory and the handling of swap - * - * More state savers are welcome. Especially for the scsi layer... - * - * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt - */ - -#include <linux/mm.h> -#include <linux/suspend.h> -#include <linux/spinlock.h> -#include <linux/kernel.h> -#include <linux/major.h> -#include <linux/swap.h> -#include <linux/pm.h> -#include <linux/swapops.h> -#include <linux/bootmem.h> -#include <linux/syscalls.h> -#include <linux/highmem.h> -#include <linux/time.h> -#include <linux/rbtree.h> -#include <linux/io.h> - -#include "power.h" - -int in_suspend __nosavedata = 0; diff --git a/kernel/power/user.c b/kernel/power/user.c index bf0014d..4d22896 100644 --- a/kernel/power/user.c +++ b/kernel/power/user.c @@ -195,6 +195,15 @@ static ssize_t snapshot_write(struct file *filp, const char __user *buf, return res; } +static void snapshot_deprecated_ioctl(unsigned int cmd) +{ + if (printk_ratelimit()) + printk(KERN_NOTICE "%pf: ioctl '%.8x' is deprecated and will " + "be removed soon, update your suspend-to-disk " + "utilities\n", + __builtin_return_address(0), cmd); +} + static long snapshot_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { @@ -246,8 +255,9 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd, data->frozen = 0; break; - case SNAPSHOT_CREATE_IMAGE: case SNAPSHOT_ATOMIC_SNAPSHOT: + snapshot_deprecated_ioctl(cmd); + case SNAPSHOT_CREATE_IMAGE: if (data->mode != O_RDONLY || !data->frozen || data->ready) { error = -EPERM; break; @@ -275,8 +285,9 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd, data->ready = 0; break; - case SNAPSHOT_PREF_IMAGE_SIZE: case SNAPSHOT_SET_IMAGE_SIZE: + snapshot_deprecated_ioctl(cmd); + case SNAPSHOT_PREF_IMAGE_SIZE: image_size = arg; break; @@ -290,15 +301,17 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd, error = put_user(size, (loff_t __user *)arg); break; - case SNAPSHOT_AVAIL_SWAP_SIZE: case SNAPSHOT_AVAIL_SWAP: + snapshot_deprecated_ioctl(cmd); + case SNAPSHOT_AVAIL_SWAP_SIZE: size = count_swap_pages(data->swap, 1); size <<= PAGE_SHIFT; error = put_user(size, (loff_t __user *)arg); break; - case SNAPSHOT_ALLOC_SWAP_PAGE: case SNAPSHOT_GET_SWAP_PAGE: + snapshot_deprecated_ioctl(cmd); + case SNAPSHOT_ALLOC_SWAP_PAGE: if (data->swap < 0 || data->swap >= MAX_SWAPFILES) { error = -ENODEV; break; @@ -321,6 +334,7 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd, break; case SNAPSHOT_SET_SWAP_FILE: /* This ioctl is deprecated */ + snapshot_deprecated_ioctl(cmd); if (!swsusp_swap_in_use()) { /* * User space encodes device types as two-byte values, @@ -362,6 +376,7 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd, break; case SNAPSHOT_PMOPS: /* This ioctl is deprecated */ + snapshot_deprecated_ioctl(cmd); error = -EINVAL; switch (arg) { diff --git a/kernel/printk.c b/kernel/printk.c index 1751c456..75077ad 100644 --- a/kernel/printk.c +++ b/kernel/printk.c @@ -35,6 +35,7 @@ #include <linux/kexec.h> #include <linux/ratelimit.h> #include <linux/kmsg_dump.h> +#include <linux/syslog.h> #include <asm/uaccess.h> @@ -69,8 +70,6 @@ int console_printk[4] = { DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ }; -static int saved_console_loglevel = -1; - /* * Low level drivers may need that to know if they can schedule in * their unblank() callback or not. So let's export it. @@ -145,6 +144,7 @@ static char __log_buf[__LOG_BUF_LEN]; static char *log_buf = __log_buf; static int log_buf_len = __LOG_BUF_LEN; static unsigned logged_chars; /* Number of chars produced since last read+clear operation */ +static int saved_console_loglevel = -1; #ifdef CONFIG_KEXEC /* @@ -258,38 +258,23 @@ static inline void boot_delay_msec(void) } #endif -/* - * Commands to do_syslog: - * - * 0 -- Close the log. Currently a NOP. - * 1 -- Open the log. Currently a NOP. - * 2 -- Read from the log. - * 3 -- Read all messages remaining in the ring buffer. - * 4 -- Read and clear all messages remaining in the ring buffer - * 5 -- Clear ring buffer. - * 6 -- Disable printk's to console - * 7 -- Enable printk's to console - * 8 -- Set level of messages printed to console - * 9 -- Return number of unread characters in the log buffer - * 10 -- Return size of the log buffer - */ -int do_syslog(int type, char __user *buf, int len) +int do_syslog(int type, char __user *buf, int len, bool from_file) { unsigned i, j, limit, count; int do_clear = 0; char c; int error = 0; - error = security_syslog(type); + error = security_syslog(type, from_file); if (error) return error; switch (type) { - case 0: /* Close log */ + case SYSLOG_ACTION_CLOSE: /* Close log */ break; - case 1: /* Open log */ + case SYSLOG_ACTION_OPEN: /* Open log */ break; - case 2: /* Read from log */ + case SYSLOG_ACTION_READ: /* Read from log */ error = -EINVAL; if (!buf || len < 0) goto out; @@ -320,10 +305,12 @@ int do_syslog(int type, char __user *buf, int len) if (!error) error = i; break; - case 4: /* Read/clear last kernel messages */ + /* Read/clear last kernel messages */ + case SYSLOG_ACTION_READ_CLEAR: do_clear = 1; /* FALL THRU */ - case 3: /* Read last kernel messages */ + /* Read last kernel messages */ + case SYSLOG_ACTION_READ_ALL: error = -EINVAL; if (!buf || len < 0) goto out; @@ -376,21 +363,25 @@ int do_syslog(int type, char __user *buf, int len) } } break; - case 5: /* Clear ring buffer */ + /* Clear ring buffer */ + case SYSLOG_ACTION_CLEAR: logged_chars = 0; break; - case 6: /* Disable logging to console */ + /* Disable logging to console */ + case SYSLOG_ACTION_CONSOLE_OFF: if (saved_console_loglevel == -1) saved_console_loglevel = console_loglevel; console_loglevel = minimum_console_loglevel; break; - case 7: /* Enable logging to console */ + /* Enable logging to console */ + case SYSLOG_ACTION_CONSOLE_ON: if (saved_console_loglevel != -1) { console_loglevel = saved_console_loglevel; saved_console_loglevel = -1; } break; - case 8: /* Set level of messages printed to console */ + /* Set level of messages printed to console */ + case SYSLOG_ACTION_CONSOLE_LEVEL: error = -EINVAL; if (len < 1 || len > 8) goto out; @@ -401,10 +392,12 @@ int do_syslog(int type, char __user *buf, int len) saved_console_loglevel = -1; error = 0; break; - case 9: /* Number of chars in the log buffer */ + /* Number of chars in the log buffer */ + case SYSLOG_ACTION_SIZE_UNREAD: error = log_end - log_start; break; - case 10: /* Size of the log buffer */ + /* Size of the log buffer */ + case SYSLOG_ACTION_SIZE_BUFFER: error = log_buf_len; break; default: @@ -417,7 +410,7 @@ out: SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) { - return do_syslog(type, buf, len); + return do_syslog(type, buf, len, SYSLOG_FROM_CALL); } /* diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 23bd09c..42ad8ae 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c @@ -22,6 +22,7 @@ #include <linux/pid_namespace.h> #include <linux/syscalls.h> #include <linux/uaccess.h> +#include <linux/regset.h> /* @@ -511,6 +512,47 @@ static int ptrace_resume(struct task_struct *child, long request, long data) return 0; } +#ifdef CONFIG_HAVE_ARCH_TRACEHOOK + +static const struct user_regset * +find_regset(const struct user_regset_view *view, unsigned int type) +{ + const struct user_regset *regset; + int n; + + for (n = 0; n < view->n; ++n) { + regset = view->regsets + n; + if (regset->core_note_type == type) + return regset; + } + + return NULL; +} + +static int ptrace_regset(struct task_struct *task, int req, unsigned int type, + struct iovec *kiov) +{ + const struct user_regset_view *view = task_user_regset_view(task); + const struct user_regset *regset = find_regset(view, type); + int regset_no; + + if (!regset || (kiov->iov_len % regset->size) != 0) + return -EINVAL; + + regset_no = regset - view->regsets; + kiov->iov_len = min(kiov->iov_len, + (__kernel_size_t) (regset->n * regset->size)); + + if (req == PTRACE_GETREGSET) + return copy_regset_to_user(task, view, regset_no, 0, + kiov->iov_len, kiov->iov_base); + else + return copy_regset_from_user(task, view, regset_no, 0, + kiov->iov_len, kiov->iov_base); +} + +#endif + int ptrace_request(struct task_struct *child, long request, long addr, long data) { @@ -573,6 +615,26 @@ int ptrace_request(struct task_struct *child, long request, return 0; return ptrace_resume(child, request, SIGKILL); +#ifdef CONFIG_HAVE_ARCH_TRACEHOOK + case PTRACE_GETREGSET: + case PTRACE_SETREGSET: + { + struct iovec kiov; + struct iovec __user *uiov = (struct iovec __user *) data; + + if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) + return -EFAULT; + + if (__get_user(kiov.iov_base, &uiov->iov_base) || + __get_user(kiov.iov_len, &uiov->iov_len)) + return -EFAULT; + + ret = ptrace_regset(child, request, addr, &kiov); + if (!ret) + ret = __put_user(kiov.iov_len, &uiov->iov_len); + break; + } +#endif default: break; } @@ -711,6 +773,32 @@ int compat_ptrace_request(struct task_struct *child, compat_long_t request, else ret = ptrace_setsiginfo(child, &siginfo); break; +#ifdef CONFIG_HAVE_ARCH_TRACEHOOK + case PTRACE_GETREGSET: + case PTRACE_SETREGSET: + { + struct iovec kiov; + struct compat_iovec __user *uiov = + (struct compat_iovec __user *) datap; + compat_uptr_t ptr; + compat_size_t len; + + if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) + return -EFAULT; + + if (__get_user(ptr, &uiov->iov_base) || + __get_user(len, &uiov->iov_len)) + return -EFAULT; + + kiov.iov_base = compat_ptr(ptr); + kiov.iov_len = len; + + ret = ptrace_regset(child, request, addr, &kiov); + if (!ret) + ret = __put_user(kiov.iov_len, &uiov->iov_len); + break; + } +#endif default: ret = ptrace_request(child, request, addr, data); diff --git a/kernel/range.c b/kernel/range.c new file mode 100644 index 0000000..74e2e61 --- /dev/null +++ b/kernel/range.c @@ -0,0 +1,163 @@ +/* + * Range add and subtract + */ +#include <linux/module.h> +#include <linux/init.h> +#include <linux/sort.h> + +#include <linux/range.h> + +#ifndef ARRAY_SIZE +#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) +#endif + +int add_range(struct range *range, int az, int nr_range, u64 start, u64 end) +{ + if (start >= end) + return nr_range; + + /* Out of slots: */ + if (nr_range >= az) + return nr_range; + + range[nr_range].start = start; + range[nr_range].end = end; + + nr_range++; + + return nr_range; +} + +int add_range_with_merge(struct range *range, int az, int nr_range, + u64 start, u64 end) +{ + int i; + + if (start >= end) + return nr_range; + + /* Try to merge it with old one: */ + for (i = 0; i < nr_range; i++) { + u64 final_start, final_end; + u64 common_start, common_end; + + if (!range[i].end) + continue; + + common_start = max(range[i].start, start); + common_end = min(range[i].end, end); + if (common_start > common_end) + continue; + + final_start = min(range[i].start, start); + final_end = max(range[i].end, end); + + range[i].start = final_start; + range[i].end = final_end; + return nr_range; + } + + /* Need to add it: */ + return add_range(range, az, nr_range, start, end); +} + +void subtract_range(struct range *range, int az, u64 start, u64 end) +{ + int i, j; + + if (start >= end) + return; + + for (j = 0; j < az; j++) { + if (!range[j].end) + continue; + + if (start <= range[j].start && end >= range[j].end) { + range[j].start = 0; + range[j].end = 0; + continue; + } + + if (start <= range[j].start && end < range[j].end && + range[j].start < end) { + range[j].start = end; + continue; + } + + + if (start > range[j].start && end >= range[j].end && + range[j].end > start) { + range[j].end = start; + continue; + } + + if (start > range[j].start && end < range[j].end) { + /* Find the new spare: */ + for (i = 0; i < az; i++) { + if (range[i].end == 0) + break; + } + if (i < az) { + range[i].end = range[j].end; + range[i].start = end; + } else { + printk(KERN_ERR "run of slot in ranges\n"); + } + range[j].end = start; + continue; + } + } +} + +static int cmp_range(const void *x1, const void *x2) +{ + const struct range *r1 = x1; + const struct range *r2 = x2; + s64 start1, start2; + + start1 = r1->start; + start2 = r2->start; + + return start1 - start2; +} + +int clean_sort_range(struct range *range, int az) +{ + int i, j, k = az - 1, nr_range = 0; + + for (i = 0; i < k; i++) { + if (range[i].end) + continue; + for (j = k; j > i; j--) { + if (range[j].end) { + k = j; + break; + } + } + if (j == i) + break; + range[i].start = range[k].start; + range[i].end = range[k].end; + range[k].start = 0; + range[k].end = 0; + k--; + } + /* count it */ + for (i = 0; i < az; i++) { + if (!range[i].end) { + nr_range = i; + break; + } + } + + /* sort them */ + sort(range, nr_range, sizeof(struct range), cmp_range, NULL); + + return nr_range; +} + +void sort_range(struct range *range, int nr_range) +{ + /* sort them */ + sort(range, nr_range, sizeof(struct range), cmp_range, NULL); +} diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index 9b7fd47..f1125c1 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c @@ -44,14 +44,43 @@ #include <linux/cpu.h> #include <linux/mutex.h> #include <linux/module.h> +#include <linux/kernel_stat.h> #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key rcu_lock_key; struct lockdep_map rcu_lock_map = STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); EXPORT_SYMBOL_GPL(rcu_lock_map); + +static struct lock_class_key rcu_bh_lock_key; +struct lockdep_map rcu_bh_lock_map = + STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); +EXPORT_SYMBOL_GPL(rcu_bh_lock_map); + +static struct lock_class_key rcu_sched_lock_key; +struct lockdep_map rcu_sched_lock_map = + STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); +EXPORT_SYMBOL_GPL(rcu_sched_lock_map); #endif +int rcu_scheduler_active __read_mostly; +EXPORT_SYMBOL_GPL(rcu_scheduler_active); + +/* + * This function is invoked towards the end of the scheduler's initialization + * process. Before this is called, the idle task might contain + * RCU read-side critical sections (during which time, this idle + * task is booting the system). After this function is called, the + * idle tasks are prohibited from containing RCU read-side critical + * sections. + */ +void rcu_scheduler_starting(void) +{ + WARN_ON(num_online_cpus() != 1); + WARN_ON(nr_context_switches() > 0); + rcu_scheduler_active = 1; +} + /* * Awaken the corresponding synchronize_rcu() instance now that a * grace period has elapsed. diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 9bb5217..58df55b 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c @@ -61,6 +61,9 @@ static int test_no_idle_hz; /* Test RCU's support for tickless idle CPUs. */ static int shuffle_interval = 3; /* Interval between shuffles (in sec)*/ static int stutter = 5; /* Start/stop testing interval (in sec) */ static int irqreader = 1; /* RCU readers from irq (timers). */ +static int fqs_duration = 0; /* Duration of bursts (us), 0 to disable. */ +static int fqs_holdoff = 0; /* Hold time within burst (us). */ +static int fqs_stutter = 3; /* Wait time between bursts (s). */ static char *torture_type = "rcu"; /* What RCU implementation to torture. */ module_param(nreaders, int, 0444); @@ -79,6 +82,12 @@ module_param(stutter, int, 0444); MODULE_PARM_DESC(stutter, "Number of seconds to run/halt test"); module_param(irqreader, int, 0444); MODULE_PARM_DESC(irqreader, "Allow RCU readers from irq handlers"); +module_param(fqs_duration, int, 0444); +MODULE_PARM_DESC(fqs_duration, "Duration of fqs bursts (us)"); +module_param(fqs_holdoff, int, 0444); +MODULE_PARM_DESC(fqs_holdoff, "Holdoff time within fqs bursts (us)"); +module_param(fqs_stutter, int, 0444); +MODULE_PARM_DESC(fqs_stutter, "Wait time between fqs bursts (s)"); module_param(torture_type, charp, 0444); MODULE_PARM_DESC(torture_type, "Type of RCU to torture (rcu, rcu_bh, srcu)"); @@ -99,6 +108,7 @@ static struct task_struct **reader_tasks; static struct task_struct *stats_task; static struct task_struct *shuffler_task; static struct task_struct *stutter_task; +static struct task_struct *fqs_task; #define RCU_TORTURE_PIPE_LEN 10 @@ -263,6 +273,7 @@ struct rcu_torture_ops { void (*deferred_free)(struct rcu_torture *p); void (*sync)(void); void (*cb_barrier)(void); + void (*fqs)(void); int (*stats)(char *page); int irq_capable; char *name; @@ -347,6 +358,7 @@ static struct rcu_torture_ops rcu_ops = { .deferred_free = rcu_torture_deferred_free, .sync = synchronize_rcu, .cb_barrier = rcu_barrier, + .fqs = rcu_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu" @@ -388,6 +400,7 @@ static struct rcu_torture_ops rcu_sync_ops = { .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_rcu, .cb_barrier = NULL, + .fqs = rcu_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu_sync" @@ -403,6 +416,7 @@ static struct rcu_torture_ops rcu_expedited_ops = { .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_rcu_expedited, .cb_barrier = NULL, + .fqs = rcu_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu_expedited" @@ -465,6 +479,7 @@ static struct rcu_torture_ops rcu_bh_ops = { .deferred_free = rcu_bh_torture_deferred_free, .sync = rcu_bh_torture_synchronize, .cb_barrier = rcu_barrier_bh, + .fqs = rcu_bh_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu_bh" @@ -480,6 +495,7 @@ static struct rcu_torture_ops rcu_bh_sync_ops = { .deferred_free = rcu_sync_torture_deferred_free, .sync = rcu_bh_torture_synchronize, .cb_barrier = NULL, + .fqs = rcu_bh_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu_bh_sync" @@ -621,6 +637,7 @@ static struct rcu_torture_ops sched_ops = { .deferred_free = rcu_sched_torture_deferred_free, .sync = sched_torture_synchronize, .cb_barrier = rcu_barrier_sched, + .fqs = rcu_sched_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "sched" @@ -636,6 +653,7 @@ static struct rcu_torture_ops sched_sync_ops = { .deferred_free = rcu_sync_torture_deferred_free, .sync = sched_torture_synchronize, .cb_barrier = NULL, + .fqs = rcu_sched_force_quiescent_state, .stats = NULL, .name = "sched_sync" }; @@ -650,12 +668,45 @@ static struct rcu_torture_ops sched_expedited_ops = { .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_sched_expedited, .cb_barrier = NULL, + .fqs = rcu_sched_force_quiescent_state, .stats = rcu_expedited_torture_stats, .irq_capable = 1, .name = "sched_expedited" }; /* + * RCU torture force-quiescent-state kthread. Repeatedly induces + * bursts of calls to force_quiescent_state(), increasing the probability + * of occurrence of some important types of race conditions. + */ +static int +rcu_torture_fqs(void *arg) +{ + unsigned long fqs_resume_time; + int fqs_burst_remaining; + + VERBOSE_PRINTK_STRING("rcu_torture_fqs task started"); + do { + fqs_resume_time = jiffies + fqs_stutter * HZ; + while (jiffies - fqs_resume_time > LONG_MAX) { + schedule_timeout_interruptible(1); + } + fqs_burst_remaining = fqs_duration; + while (fqs_burst_remaining > 0) { + cur_ops->fqs(); + udelay(fqs_holdoff); + fqs_burst_remaining -= fqs_holdoff; + } + rcu_stutter_wait("rcu_torture_fqs"); + } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); + VERBOSE_PRINTK_STRING("rcu_torture_fqs task stopping"); + rcutorture_shutdown_absorb("rcu_torture_fqs"); + while (!kthread_should_stop()) + schedule_timeout_uninterruptible(1); + return 0; +} + +/* * RCU torture writer kthread. Repeatedly substitutes a new structure * for that pointed to by rcu_torture_current, freeing the old structure * after a series of grace periods (the "pipeline"). @@ -745,7 +796,11 @@ static void rcu_torture_timer(unsigned long unused) idx = cur_ops->readlock(); completed = cur_ops->completed(); - p = rcu_dereference(rcu_torture_current); + p = rcu_dereference_check(rcu_torture_current, + rcu_read_lock_held() || + rcu_read_lock_bh_held() || + rcu_read_lock_sched_held() || + srcu_read_lock_held(&srcu_ctl)); if (p == NULL) { /* Leave because rcu_torture_writer is not yet underway */ cur_ops->readunlock(idx); @@ -763,13 +818,13 @@ static void rcu_torture_timer(unsigned long unused) /* Should not happen, but... */ pipe_count = RCU_TORTURE_PIPE_LEN; } - __this_cpu_inc(per_cpu_var(rcu_torture_count)[pipe_count]); + __this_cpu_inc(rcu_torture_count[pipe_count]); completed = cur_ops->completed() - completed; if (completed > RCU_TORTURE_PIPE_LEN) { /* Should not happen, but... */ completed = RCU_TORTURE_PIPE_LEN; } - __this_cpu_inc(per_cpu_var(rcu_torture_batch)[completed]); + __this_cpu_inc(rcu_torture_batch[completed]); preempt_enable(); cur_ops->readunlock(idx); } @@ -798,11 +853,15 @@ rcu_torture_reader(void *arg) do { if (irqreader && cur_ops->irq_capable) { if (!timer_pending(&t)) - mod_timer(&t, 1); + mod_timer(&t, jiffies + 1); } idx = cur_ops->readlock(); completed = cur_ops->completed(); - p = rcu_dereference(rcu_torture_current); + p = rcu_dereference_check(rcu_torture_current, + rcu_read_lock_held() || + rcu_read_lock_bh_held() || + rcu_read_lock_sched_held() || + srcu_read_lock_held(&srcu_ctl)); if (p == NULL) { /* Wait for rcu_torture_writer to get underway */ cur_ops->readunlock(idx); @@ -818,13 +877,13 @@ rcu_torture_reader(void *arg) /* Should not happen, but... */ pipe_count = RCU_TORTURE_PIPE_LEN; } - __this_cpu_inc(per_cpu_var(rcu_torture_count)[pipe_count]); + __this_cpu_inc(rcu_torture_count[pipe_count]); completed = cur_ops->completed() - completed; if (completed > RCU_TORTURE_PIPE_LEN) { /* Should not happen, but... */ completed = RCU_TORTURE_PIPE_LEN; } - __this_cpu_inc(per_cpu_var(rcu_torture_batch)[completed]); + __this_cpu_inc(rcu_torture_batch[completed]); preempt_enable(); cur_ops->readunlock(idx); schedule(); @@ -1030,10 +1089,11 @@ rcu_torture_print_module_parms(char *tag) printk(KERN_ALERT "%s" TORTURE_FLAG "--- %s: nreaders=%d nfakewriters=%d " "stat_interval=%d verbose=%d test_no_idle_hz=%d " - "shuffle_interval=%d stutter=%d irqreader=%d\n", + "shuffle_interval=%d stutter=%d irqreader=%d " + "fqs_duration=%d fqs_holdoff=%d fqs_stutter=%d\n", torture_type, tag, nrealreaders, nfakewriters, stat_interval, verbose, test_no_idle_hz, shuffle_interval, - stutter, irqreader); + stutter, irqreader, fqs_duration, fqs_holdoff, fqs_stutter); } static struct notifier_block rcutorture_nb = { @@ -1109,6 +1169,12 @@ rcu_torture_cleanup(void) } stats_task = NULL; + if (fqs_task) { + VERBOSE_PRINTK_STRING("Stopping rcu_torture_fqs task"); + kthread_stop(fqs_task); + } + fqs_task = NULL; + /* Wait for all RCU callbacks to fire. */ if (cur_ops->cb_barrier != NULL) @@ -1154,6 +1220,11 @@ rcu_torture_init(void) mutex_unlock(&fullstop_mutex); return -EINVAL; } + if (cur_ops->fqs == NULL && fqs_duration != 0) { + printk(KERN_ALERT "rcu-torture: ->fqs NULL and non-zero " + "fqs_duration, fqs disabled.\n"); + fqs_duration = 0; + } if (cur_ops->init) cur_ops->init(); /* no "goto unwind" prior to this point!!! */ @@ -1282,6 +1353,19 @@ rcu_torture_init(void) goto unwind; } } + if (fqs_duration < 0) + fqs_duration = 0; + if (fqs_duration) { + /* Create the stutter thread */ + fqs_task = kthread_run(rcu_torture_fqs, NULL, + "rcu_torture_fqs"); + if (IS_ERR(fqs_task)) { + firsterr = PTR_ERR(fqs_task); + VERBOSE_PRINTK_ERRSTRING("Failed to create fqs"); + fqs_task = NULL; + goto unwind; + } + } register_reboot_notifier(&rcutorture_nb); mutex_unlock(&fullstop_mutex); return 0; diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 53ae959..3ec8160 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c @@ -46,7 +46,6 @@ #include <linux/cpu.h> #include <linux/mutex.h> #include <linux/time.h> -#include <linux/kernel_stat.h> #include "rcutree.h" @@ -66,11 +65,11 @@ static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; .signaled = RCU_GP_IDLE, \ .gpnum = -300, \ .completed = -300, \ - .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ + .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \ .orphan_cbs_list = NULL, \ .orphan_cbs_tail = &name.orphan_cbs_list, \ .orphan_qlen = 0, \ - .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ + .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \ .n_force_qs = 0, \ .n_force_qs_ngp = 0, \ } @@ -81,9 +80,6 @@ DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); -static int rcu_scheduler_active __read_mostly; - - /* * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s * permit this function to be invoked without holding the root rcu_node @@ -157,6 +153,24 @@ long rcu_batches_completed_bh(void) EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); /* + * Force a quiescent state for RCU BH. + */ +void rcu_bh_force_quiescent_state(void) +{ + force_quiescent_state(&rcu_bh_state, 0); +} +EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); + +/* + * Force a quiescent state for RCU-sched. + */ +void rcu_sched_force_quiescent_state(void) +{ + force_quiescent_state(&rcu_sched_state, 0); +} +EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); + +/* * Does the CPU have callbacks ready to be invoked? */ static int @@ -439,10 +453,10 @@ static void print_other_cpu_stall(struct rcu_state *rsp) /* Only let one CPU complain about others per time interval. */ - spin_lock_irqsave(&rnp->lock, flags); + raw_spin_lock_irqsave(&rnp->lock, flags); delta = jiffies - rsp->jiffies_stall; if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; @@ -452,13 +466,15 @@ static void print_other_cpu_stall(struct rcu_state *rsp) * due to CPU offlining. */ rcu_print_task_stall(rnp); - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); /* OK, time to rat on our buddy... */ printk(KERN_ERR "INFO: RCU detected CPU stalls:"); rcu_for_each_leaf_node(rsp, rnp) { + raw_spin_lock_irqsave(&rnp->lock, flags); rcu_print_task_stall(rnp); + raw_spin_unlock_irqrestore(&rnp->lock, flags); if (rnp->qsmask == 0) continue; for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) @@ -469,6 +485,10 @@ static void print_other_cpu_stall(struct rcu_state *rsp) smp_processor_id(), (long)(jiffies - rsp->gp_start)); trigger_all_cpu_backtrace(); + /* If so configured, complain about tasks blocking the grace period. */ + + rcu_print_detail_task_stall(rsp); + force_quiescent_state(rsp, 0); /* Kick them all. */ } @@ -481,11 +501,11 @@ static void print_cpu_stall(struct rcu_state *rsp) smp_processor_id(), jiffies - rsp->gp_start); trigger_all_cpu_backtrace(); - spin_lock_irqsave(&rnp->lock, flags); - if ((long)(jiffies - rsp->jiffies_stall) >= 0) + raw_spin_lock_irqsave(&rnp->lock, flags); + if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); set_need_resched(); /* kick ourselves to get things going. */ } @@ -545,12 +565,12 @@ static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) local_irq_save(flags); rnp = rdp->mynode; if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ - !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ + !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ local_irq_restore(flags); return; } __note_new_gpnum(rsp, rnp, rdp); - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* @@ -609,12 +629,12 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) local_irq_save(flags); rnp = rdp->mynode; if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ - !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ + !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ local_irq_restore(flags); return; } __rcu_process_gp_end(rsp, rnp, rdp); - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* @@ -659,12 +679,14 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) struct rcu_data *rdp = rsp->rda[smp_processor_id()]; struct rcu_node *rnp = rcu_get_root(rsp); - if (!cpu_needs_another_gp(rsp, rdp)) { + if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) { + if (cpu_needs_another_gp(rsp, rdp)) + rsp->fqs_need_gp = 1; if (rnp->completed == rsp->completed) { - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ /* * Propagate new ->completed value to rcu_node structures @@ -672,9 +694,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) * of the next grace period to process their callbacks. */ rcu_for_each_node_breadth_first(rsp, rnp) { - spin_lock(&rnp->lock); /* irqs already disabled. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rnp->completed = rsp->completed; - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ } local_irq_restore(flags); return; @@ -695,15 +717,15 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) rnp->completed = rsp->completed; rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ rcu_start_gp_per_cpu(rsp, rnp, rdp); - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } - spin_unlock(&rnp->lock); /* leave irqs disabled. */ + raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */ /* Exclude any concurrent CPU-hotplug operations. */ - spin_lock(&rsp->onofflock); /* irqs already disabled. */ + raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ /* * Set the quiescent-state-needed bits in all the rcu_node @@ -723,21 +745,21 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) * irqs disabled. */ rcu_for_each_node_breadth_first(rsp, rnp) { - spin_lock(&rnp->lock); /* irqs already disabled. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rcu_preempt_check_blocked_tasks(rnp); rnp->qsmask = rnp->qsmaskinit; rnp->gpnum = rsp->gpnum; rnp->completed = rsp->completed; if (rnp == rdp->mynode) rcu_start_gp_per_cpu(rsp, rnp, rdp); - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ } rnp = rcu_get_root(rsp); - spin_lock(&rnp->lock); /* irqs already disabled. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ - spin_unlock(&rnp->lock); /* irqs remain disabled. */ - spin_unlock_irqrestore(&rsp->onofflock, flags); + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock_irqrestore(&rsp->onofflock, flags); } /* @@ -776,14 +798,14 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, if (!(rnp->qsmask & mask)) { /* Our bit has already been cleared, so done. */ - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } rnp->qsmask &= ~mask; if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { /* Other bits still set at this level, so done. */ - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } mask = rnp->grpmask; @@ -793,10 +815,10 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, break; } - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); rnp_c = rnp; rnp = rnp->parent; - spin_lock_irqsave(&rnp->lock, flags); + raw_spin_lock_irqsave(&rnp->lock, flags); WARN_ON_ONCE(rnp_c->qsmask); } @@ -825,7 +847,7 @@ rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long las struct rcu_node *rnp; rnp = rdp->mynode; - spin_lock_irqsave(&rnp->lock, flags); + raw_spin_lock_irqsave(&rnp->lock, flags); if (lastcomp != rnp->completed) { /* @@ -837,12 +859,12 @@ rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long las * race occurred. */ rdp->passed_quiesc = 0; /* try again later! */ - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } mask = rdp->grpmask; if ((rnp->qsmask & mask) == 0) { - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } else { rdp->qs_pending = 0; @@ -906,7 +928,7 @@ static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) if (rdp->nxtlist == NULL) return; /* irqs disabled, so comparison is stable. */ - spin_lock(&rsp->onofflock); /* irqs already disabled. */ + raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ *rsp->orphan_cbs_tail = rdp->nxtlist; rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL]; rdp->nxtlist = NULL; @@ -914,7 +936,7 @@ static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) rdp->nxttail[i] = &rdp->nxtlist; rsp->orphan_qlen += rdp->qlen; rdp->qlen = 0; - spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ + raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ } /* @@ -925,10 +947,10 @@ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) unsigned long flags; struct rcu_data *rdp; - spin_lock_irqsave(&rsp->onofflock, flags); + raw_spin_lock_irqsave(&rsp->onofflock, flags); rdp = rsp->rda[smp_processor_id()]; if (rsp->orphan_cbs_list == NULL) { - spin_unlock_irqrestore(&rsp->onofflock, flags); + raw_spin_unlock_irqrestore(&rsp->onofflock, flags); return; } *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list; @@ -937,7 +959,7 @@ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) rsp->orphan_cbs_list = NULL; rsp->orphan_cbs_tail = &rsp->orphan_cbs_list; rsp->orphan_qlen = 0; - spin_unlock_irqrestore(&rsp->onofflock, flags); + raw_spin_unlock_irqrestore(&rsp->onofflock, flags); } /* @@ -953,23 +975,23 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) struct rcu_node *rnp; /* Exclude any attempts to start a new grace period. */ - spin_lock_irqsave(&rsp->onofflock, flags); + raw_spin_lock_irqsave(&rsp->onofflock, flags); /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ mask = rdp->grpmask; /* rnp->grplo is constant. */ do { - spin_lock(&rnp->lock); /* irqs already disabled. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rnp->qsmaskinit &= ~mask; if (rnp->qsmaskinit != 0) { if (rnp != rdp->mynode) - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ break; } if (rnp == rdp->mynode) need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); else - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ mask = rnp->grpmask; rnp = rnp->parent; } while (rnp != NULL); @@ -980,12 +1002,12 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) * because invoking rcu_report_unblock_qs_rnp() with ->onofflock * held leads to deadlock. */ - spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ + raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ rnp = rdp->mynode; if (need_report & RCU_OFL_TASKS_NORM_GP) rcu_report_unblock_qs_rnp(rnp, flags); else - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); if (need_report & RCU_OFL_TASKS_EXP_GP) rcu_report_exp_rnp(rsp, rnp); @@ -1144,11 +1166,9 @@ void rcu_check_callbacks(int cpu, int user) /* * Scan the leaf rcu_node structures, processing dyntick state for any that * have not yet encountered a quiescent state, using the function specified. - * Returns 1 if the current grace period ends while scanning (possibly - * because we made it end). + * The caller must have suppressed start of new grace periods. */ -static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, - int (*f)(struct rcu_data *)) +static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *)) { unsigned long bit; int cpu; @@ -1158,13 +1178,13 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, rcu_for_each_leaf_node(rsp, rnp) { mask = 0; - spin_lock_irqsave(&rnp->lock, flags); - if (rnp->completed != lastcomp) { - spin_unlock_irqrestore(&rnp->lock, flags); - return 1; + raw_spin_lock_irqsave(&rnp->lock, flags); + if (!rcu_gp_in_progress(rsp)) { + raw_spin_unlock_irqrestore(&rnp->lock, flags); + return; } if (rnp->qsmask == 0) { - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); continue; } cpu = rnp->grplo; @@ -1173,15 +1193,14 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu])) mask |= bit; } - if (mask != 0 && rnp->completed == lastcomp) { + if (mask != 0) { /* rcu_report_qs_rnp() releases rnp->lock. */ rcu_report_qs_rnp(mask, rsp, rnp, flags); continue; } - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } - return 0; } /* @@ -1191,32 +1210,26 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, static void force_quiescent_state(struct rcu_state *rsp, int relaxed) { unsigned long flags; - long lastcomp; struct rcu_node *rnp = rcu_get_root(rsp); - u8 signaled; - u8 forcenow; if (!rcu_gp_in_progress(rsp)) return; /* No grace period in progress, nothing to force. */ - if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { + if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) { rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ return; /* Someone else is already on the job. */ } - if (relaxed && - (long)(rsp->jiffies_force_qs - jiffies) >= 0) - goto unlock_ret; /* no emergency and done recently. */ + if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies)) + goto unlock_fqs_ret; /* no emergency and done recently. */ rsp->n_force_qs++; - spin_lock(&rnp->lock); - lastcomp = rsp->gpnum - 1; - signaled = rsp->signaled; + raw_spin_lock(&rnp->lock); /* irqs already disabled */ rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; if(!rcu_gp_in_progress(rsp)) { rsp->n_force_qs_ngp++; - spin_unlock(&rnp->lock); - goto unlock_ret; /* no GP in progress, time updated. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ + goto unlock_fqs_ret; /* no GP in progress, time updated. */ } - spin_unlock(&rnp->lock); - switch (signaled) { + rsp->fqs_active = 1; + switch (rsp->signaled) { case RCU_GP_IDLE: case RCU_GP_INIT: @@ -1224,45 +1237,38 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed) case RCU_SAVE_DYNTICK: + raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) break; /* So gcc recognizes the dead code. */ /* Record dyntick-idle state. */ - if (rcu_process_dyntick(rsp, lastcomp, - dyntick_save_progress_counter)) - goto unlock_ret; - /* fall into next case. */ - - case RCU_SAVE_COMPLETED: - - /* Update state, record completion counter. */ - forcenow = 0; - spin_lock(&rnp->lock); - if (lastcomp + 1 == rsp->gpnum && - lastcomp == rsp->completed && - rsp->signaled == signaled) { + force_qs_rnp(rsp, dyntick_save_progress_counter); + raw_spin_lock(&rnp->lock); /* irqs already disabled */ + if (rcu_gp_in_progress(rsp)) rsp->signaled = RCU_FORCE_QS; - rsp->completed_fqs = lastcomp; - forcenow = signaled == RCU_SAVE_COMPLETED; - } - spin_unlock(&rnp->lock); - if (!forcenow) - break; - /* fall into next case. */ + break; case RCU_FORCE_QS: /* Check dyntick-idle state, send IPI to laggarts. */ - if (rcu_process_dyntick(rsp, rsp->completed_fqs, - rcu_implicit_dynticks_qs)) - goto unlock_ret; + raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ + force_qs_rnp(rsp, rcu_implicit_dynticks_qs); /* Leave state in case more forcing is required. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled */ break; } -unlock_ret: - spin_unlock_irqrestore(&rsp->fqslock, flags); + rsp->fqs_active = 0; + if (rsp->fqs_need_gp) { + raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */ + rsp->fqs_need_gp = 0; + rcu_start_gp(rsp, flags); /* releases rnp->lock */ + return; + } + raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ +unlock_fqs_ret: + raw_spin_unlock_irqrestore(&rsp->fqslock, flags); } #else /* #ifdef CONFIG_SMP */ @@ -1290,7 +1296,7 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) * If an RCU GP has gone long enough, go check for dyntick * idle CPUs and, if needed, send resched IPIs. */ - if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) + if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) force_quiescent_state(rsp, 1); /* @@ -1304,7 +1310,7 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) /* Does this CPU require a not-yet-started grace period? */ if (cpu_needs_another_gp(rsp, rdp)) { - spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); + raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); rcu_start_gp(rsp, flags); /* releases above lock */ } @@ -1335,6 +1341,9 @@ static void rcu_process_callbacks(struct softirq_action *unused) * grace-period manipulations above. */ smp_mb(); /* See above block comment. */ + + /* If we are last CPU on way to dyntick-idle mode, accelerate it. */ + rcu_needs_cpu_flush(); } static void @@ -1369,7 +1378,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), unsigned long nestflag; struct rcu_node *rnp_root = rcu_get_root(rsp); - spin_lock_irqsave(&rnp_root->lock, nestflag); + raw_spin_lock_irqsave(&rnp_root->lock, nestflag); rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ } @@ -1387,7 +1396,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), force_quiescent_state(rsp, 0); rdp->n_force_qs_snap = rsp->n_force_qs; rdp->qlen_last_fqs_check = rdp->qlen; - } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) + } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) force_quiescent_state(rsp, 1); local_irq_restore(flags); } @@ -1520,7 +1529,7 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) /* Has an RCU GP gone long enough to send resched IPIs &c? */ if (rcu_gp_in_progress(rsp) && - ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) { + ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) { rdp->n_rp_need_fqs++; return 1; } @@ -1545,10 +1554,9 @@ static int rcu_pending(int cpu) /* * Check to see if any future RCU-related work will need to be done * by the current CPU, even if none need be done immediately, returning - * 1 if so. This function is part of the RCU implementation; it is -not- - * an exported member of the RCU API. + * 1 if so. */ -int rcu_needs_cpu(int cpu) +static int rcu_needs_cpu_quick_check(int cpu) { /* RCU callbacks either ready or pending? */ return per_cpu(rcu_sched_data, cpu).nxtlist || @@ -1556,21 +1564,6 @@ int rcu_needs_cpu(int cpu) rcu_preempt_needs_cpu(cpu); } -/* - * This function is invoked towards the end of the scheduler's initialization - * process. Before this is called, the idle task might contain - * RCU read-side critical sections (during which time, this idle - * task is booting the system). After this function is called, the - * idle tasks are prohibited from containing RCU read-side critical - * sections. - */ -void rcu_scheduler_starting(void) -{ - WARN_ON(num_online_cpus() != 1); - WARN_ON(nr_context_switches() > 0); - rcu_scheduler_active = 1; -} - static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; static atomic_t rcu_barrier_cpu_count; static DEFINE_MUTEX(rcu_barrier_mutex); @@ -1659,7 +1652,7 @@ rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) struct rcu_node *rnp = rcu_get_root(rsp); /* Set up local state, ensuring consistent view of global state. */ - spin_lock_irqsave(&rnp->lock, flags); + raw_spin_lock_irqsave(&rnp->lock, flags); rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); rdp->nxtlist = NULL; for (i = 0; i < RCU_NEXT_SIZE; i++) @@ -1669,7 +1662,7 @@ rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) rdp->dynticks = &per_cpu(rcu_dynticks, cpu); #endif /* #ifdef CONFIG_NO_HZ */ rdp->cpu = cpu; - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* @@ -1687,7 +1680,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) struct rcu_node *rnp = rcu_get_root(rsp); /* Set up local state, ensuring consistent view of global state. */ - spin_lock_irqsave(&rnp->lock, flags); + raw_spin_lock_irqsave(&rnp->lock, flags); rdp->passed_quiesc = 0; /* We could be racing with new GP, */ rdp->qs_pending = 1; /* so set up to respond to current GP. */ rdp->beenonline = 1; /* We have now been online. */ @@ -1695,7 +1688,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) rdp->qlen_last_fqs_check = 0; rdp->n_force_qs_snap = rsp->n_force_qs; rdp->blimit = blimit; - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ /* * A new grace period might start here. If so, we won't be part @@ -1703,14 +1696,14 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) */ /* Exclude any attempts to start a new GP on large systems. */ - spin_lock(&rsp->onofflock); /* irqs already disabled. */ + raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ /* Add CPU to rcu_node bitmasks. */ rnp = rdp->mynode; mask = rdp->grpmask; do { /* Exclude any attempts to start a new GP on small systems. */ - spin_lock(&rnp->lock); /* irqs already disabled. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rnp->qsmaskinit |= mask; mask = rnp->grpmask; if (rnp == rdp->mynode) { @@ -1718,11 +1711,11 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) rdp->completed = rnp->completed; rdp->passed_quiesc_completed = rnp->completed - 1; } - spin_unlock(&rnp->lock); /* irqs already disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ rnp = rnp->parent; } while (rnp != NULL && !(rnp->qsmaskinit & mask)); - spin_unlock_irqrestore(&rsp->onofflock, flags); + raw_spin_unlock_irqrestore(&rsp->onofflock, flags); } static void __cpuinit rcu_online_cpu(int cpu) @@ -1806,11 +1799,17 @@ static void __init rcu_init_levelspread(struct rcu_state *rsp) */ static void __init rcu_init_one(struct rcu_state *rsp) { + static char *buf[] = { "rcu_node_level_0", + "rcu_node_level_1", + "rcu_node_level_2", + "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */ int cpustride = 1; int i; int j; struct rcu_node *rnp; + BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ + /* Initialize the level-tracking arrays. */ for (i = 1; i < NUM_RCU_LVLS; i++) @@ -1823,8 +1822,9 @@ static void __init rcu_init_one(struct rcu_state *rsp) cpustride *= rsp->levelspread[i]; rnp = rsp->level[i]; for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { - spin_lock_init(&rnp->lock); - lockdep_set_class(&rnp->lock, &rcu_node_class[i]); + raw_spin_lock_init(&rnp->lock); + lockdep_set_class_and_name(&rnp->lock, + &rcu_node_class[i], buf[i]); rnp->gpnum = 0; rnp->qsmask = 0; rnp->qsmaskinit = 0; @@ -1876,7 +1876,7 @@ do { \ void __init rcu_init(void) { - int i; + int cpu; rcu_bootup_announce(); #ifdef CONFIG_RCU_CPU_STALL_DETECTOR @@ -1896,8 +1896,8 @@ void __init rcu_init(void) * or the scheduler are operational. */ cpu_notifier(rcu_cpu_notify, 0); - for_each_online_cpu(i) - rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i); + for_each_online_cpu(cpu) + rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); } #include "rcutree_plugin.h" diff --git a/kernel/rcutree.h b/kernel/rcutree.h index d2a0046..1439eb5 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h @@ -90,12 +90,12 @@ struct rcu_dynticks { * Definition for node within the RCU grace-period-detection hierarchy. */ struct rcu_node { - spinlock_t lock; /* Root rcu_node's lock protects some */ + raw_spinlock_t lock; /* Root rcu_node's lock protects some */ /* rcu_state fields as well as following. */ - long gpnum; /* Current grace period for this node. */ + unsigned long gpnum; /* Current grace period for this node. */ /* This will either be equal to or one */ /* behind the root rcu_node's gpnum. */ - long completed; /* Last grace period completed for this node. */ + unsigned long completed; /* Last GP completed for this node. */ /* This will either be equal to or one */ /* behind the root rcu_node's gpnum. */ unsigned long qsmask; /* CPUs or groups that need to switch in */ @@ -161,11 +161,11 @@ struct rcu_node { /* Per-CPU data for read-copy update. */ struct rcu_data { /* 1) quiescent-state and grace-period handling : */ - long completed; /* Track rsp->completed gp number */ + unsigned long completed; /* Track rsp->completed gp number */ /* in order to detect GP end. */ - long gpnum; /* Highest gp number that this CPU */ + unsigned long gpnum; /* Highest gp number that this CPU */ /* is aware of having started. */ - long passed_quiesc_completed; + unsigned long passed_quiesc_completed; /* Value of completed at time of qs. */ bool passed_quiesc; /* User-mode/idle loop etc. */ bool qs_pending; /* Core waits for quiesc state. */ @@ -221,14 +221,14 @@ struct rcu_data { unsigned long resched_ipi; /* Sent a resched IPI. */ /* 5) __rcu_pending() statistics. */ - long n_rcu_pending; /* rcu_pending() calls since boot. */ - long n_rp_qs_pending; - long n_rp_cb_ready; - long n_rp_cpu_needs_gp; - long n_rp_gp_completed; - long n_rp_gp_started; - long n_rp_need_fqs; - long n_rp_need_nothing; + unsigned long n_rcu_pending; /* rcu_pending() calls since boot. */ + unsigned long n_rp_qs_pending; + unsigned long n_rp_cb_ready; + unsigned long n_rp_cpu_needs_gp; + unsigned long n_rp_gp_completed; + unsigned long n_rp_gp_started; + unsigned long n_rp_need_fqs; + unsigned long n_rp_need_nothing; int cpu; }; @@ -237,12 +237,11 @@ struct rcu_data { #define RCU_GP_IDLE 0 /* No grace period in progress. */ #define RCU_GP_INIT 1 /* Grace period being initialized. */ #define RCU_SAVE_DYNTICK 2 /* Need to scan dyntick state. */ -#define RCU_SAVE_COMPLETED 3 /* Need to save rsp->completed. */ -#define RCU_FORCE_QS 4 /* Need to force quiescent state. */ +#define RCU_FORCE_QS 3 /* Need to force quiescent state. */ #ifdef CONFIG_NO_HZ #define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK #else /* #ifdef CONFIG_NO_HZ */ -#define RCU_SIGNAL_INIT RCU_SAVE_COMPLETED +#define RCU_SIGNAL_INIT RCU_FORCE_QS #endif /* #else #ifdef CONFIG_NO_HZ */ #define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */ @@ -256,6 +255,9 @@ struct rcu_data { #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ +#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) +#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) + /* * RCU global state, including node hierarchy. This hierarchy is * represented in "heap" form in a dense array. The root (first level) @@ -277,12 +279,19 @@ struct rcu_state { u8 signaled ____cacheline_internodealigned_in_smp; /* Force QS state. */ - long gpnum; /* Current gp number. */ - long completed; /* # of last completed gp. */ + u8 fqs_active; /* force_quiescent_state() */ + /* is running. */ + u8 fqs_need_gp; /* A CPU was prevented from */ + /* starting a new grace */ + /* period because */ + /* force_quiescent_state() */ + /* was running. */ + unsigned long gpnum; /* Current gp number. */ + unsigned long completed; /* # of last completed gp. */ /* End of fields guarded by root rcu_node's lock. */ - spinlock_t onofflock; /* exclude on/offline and */ + raw_spinlock_t onofflock; /* exclude on/offline and */ /* starting new GP. Also */ /* protects the following */ /* orphan_cbs fields. */ @@ -292,10 +301,8 @@ struct rcu_state { /* going offline. */ struct rcu_head **orphan_cbs_tail; /* And tail pointer. */ long orphan_qlen; /* Number of orphaned cbs. */ - spinlock_t fqslock; /* Only one task forcing */ + raw_spinlock_t fqslock; /* Only one task forcing */ /* quiescent states. */ - long completed_fqs; /* Value of completed @ snap. */ - /* Protected by fqslock. */ unsigned long jiffies_force_qs; /* Time at which to invoke */ /* force_quiescent_state(). */ unsigned long n_force_qs; /* Number of calls to */ @@ -319,8 +326,6 @@ struct rcu_state { #define RCU_OFL_TASKS_EXP_GP 0x2 /* Tasks blocking expedited */ /* GP were moved to root. */ -#ifdef RCU_TREE_NONCORE - /* * RCU implementation internal declarations: */ @@ -335,7 +340,7 @@ extern struct rcu_state rcu_preempt_state; DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data); #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ -#else /* #ifdef RCU_TREE_NONCORE */ +#ifndef RCU_TREE_NONCORE /* Forward declarations for rcutree_plugin.h */ static void rcu_bootup_announce(void); @@ -347,6 +352,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags); #endif /* #ifdef CONFIG_HOTPLUG_CPU */ #ifdef CONFIG_RCU_CPU_STALL_DETECTOR +static void rcu_print_detail_task_stall(struct rcu_state *rsp); static void rcu_print_task_stall(struct rcu_node *rnp); #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp); @@ -367,5 +373,6 @@ static int rcu_preempt_needs_cpu(int cpu); static void __cpuinit rcu_preempt_init_percpu_data(int cpu); static void rcu_preempt_send_cbs_to_orphanage(void); static void __init __rcu_init_preempt(void); +static void rcu_needs_cpu_flush(void); -#endif /* #else #ifdef RCU_TREE_NONCORE */ +#endif /* #ifndef RCU_TREE_NONCORE */ diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index 37fbccd..464ad2c 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h @@ -62,6 +62,15 @@ long rcu_batches_completed(void) EXPORT_SYMBOL_GPL(rcu_batches_completed); /* + * Force a quiescent state for preemptible RCU. + */ +void rcu_force_quiescent_state(void) +{ + force_quiescent_state(&rcu_preempt_state, 0); +} +EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); + +/* * Record a preemptable-RCU quiescent state for the specified CPU. Note * that this just means that the task currently running on the CPU is * not in a quiescent state. There might be any number of tasks blocked @@ -102,7 +111,7 @@ static void rcu_preempt_note_context_switch(int cpu) /* Possibly blocking in an RCU read-side critical section. */ rdp = rcu_preempt_state.rda[cpu]; rnp = rdp->mynode; - spin_lock_irqsave(&rnp->lock, flags); + raw_spin_lock_irqsave(&rnp->lock, flags); t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; t->rcu_blocked_node = rnp; @@ -123,7 +132,7 @@ static void rcu_preempt_note_context_switch(int cpu) WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* @@ -180,7 +189,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) struct rcu_node *rnp_p; if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); return; /* Still need more quiescent states! */ } @@ -197,8 +206,8 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) /* Report up the rest of the hierarchy. */ mask = rnp->grpmask; - spin_unlock(&rnp->lock); /* irqs remain disabled. */ - spin_lock(&rnp_p->lock); /* irqs already disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); } @@ -248,10 +257,10 @@ static void rcu_read_unlock_special(struct task_struct *t) */ for (;;) { rnp = t->rcu_blocked_node; - spin_lock(&rnp->lock); /* irqs already disabled. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ if (rnp == t->rcu_blocked_node) break; - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ } empty = !rcu_preempted_readers(rnp); empty_exp = !rcu_preempted_readers_exp(rnp); @@ -265,7 +274,7 @@ static void rcu_read_unlock_special(struct task_struct *t) * Note that rcu_report_unblock_qs_rnp() releases rnp->lock. */ if (empty) - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); else rcu_report_unblock_qs_rnp(rnp, flags); @@ -295,29 +304,73 @@ void __rcu_read_unlock(void) if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) rcu_read_unlock_special(t); +#ifdef CONFIG_PROVE_LOCKING + WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0); +#endif /* #ifdef CONFIG_PROVE_LOCKING */ } EXPORT_SYMBOL_GPL(__rcu_read_unlock); #ifdef CONFIG_RCU_CPU_STALL_DETECTOR +#ifdef CONFIG_RCU_CPU_STALL_VERBOSE + +/* + * Dump detailed information for all tasks blocking the current RCU + * grace period on the specified rcu_node structure. + */ +static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) +{ + unsigned long flags; + struct list_head *lp; + int phase; + struct task_struct *t; + + if (rcu_preempted_readers(rnp)) { + raw_spin_lock_irqsave(&rnp->lock, flags); + phase = rnp->gpnum & 0x1; + lp = &rnp->blocked_tasks[phase]; + list_for_each_entry(t, lp, rcu_node_entry) + sched_show_task(t); + raw_spin_unlock_irqrestore(&rnp->lock, flags); + } +} + +/* + * Dump detailed information for all tasks blocking the current RCU + * grace period. + */ +static void rcu_print_detail_task_stall(struct rcu_state *rsp) +{ + struct rcu_node *rnp = rcu_get_root(rsp); + + rcu_print_detail_task_stall_rnp(rnp); + rcu_for_each_leaf_node(rsp, rnp) + rcu_print_detail_task_stall_rnp(rnp); +} + +#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ + +static void rcu_print_detail_task_stall(struct rcu_state *rsp) +{ +} + +#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ + /* * Scan the current list of tasks blocked within RCU read-side critical * sections, printing out the tid of each. */ static void rcu_print_task_stall(struct rcu_node *rnp) { - unsigned long flags; struct list_head *lp; int phase; struct task_struct *t; if (rcu_preempted_readers(rnp)) { - spin_lock_irqsave(&rnp->lock, flags); phase = rnp->gpnum & 0x1; lp = &rnp->blocked_tasks[phase]; list_for_each_entry(t, lp, rcu_node_entry) printk(" P%d", t->pid); - spin_unlock_irqrestore(&rnp->lock, flags); } } @@ -388,11 +441,11 @@ static int rcu_preempt_offline_tasks(struct rcu_state *rsp, lp_root = &rnp_root->blocked_tasks[i]; while (!list_empty(lp)) { tp = list_entry(lp->next, typeof(*tp), rcu_node_entry); - spin_lock(&rnp_root->lock); /* irqs already disabled */ + raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ list_del(&tp->rcu_node_entry); tp->rcu_blocked_node = rnp_root; list_add(&tp->rcu_node_entry, lp_root); - spin_unlock(&rnp_root->lock); /* irqs remain disabled */ + raw_spin_unlock(&rnp_root->lock); /* irqs remain disabled */ } } return retval; @@ -516,7 +569,7 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) unsigned long flags; unsigned long mask; - spin_lock_irqsave(&rnp->lock, flags); + raw_spin_lock_irqsave(&rnp->lock, flags); for (;;) { if (!sync_rcu_preempt_exp_done(rnp)) break; @@ -525,12 +578,12 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) break; } mask = rnp->grpmask; - spin_unlock(&rnp->lock); /* irqs remain disabled */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ rnp = rnp->parent; - spin_lock(&rnp->lock); /* irqs already disabled */ + raw_spin_lock(&rnp->lock); /* irqs already disabled */ rnp->expmask &= ~mask; } - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* @@ -545,11 +598,11 @@ sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) { int must_wait; - spin_lock(&rnp->lock); /* irqs already disabled */ + raw_spin_lock(&rnp->lock); /* irqs already disabled */ list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]); list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]); must_wait = rcu_preempted_readers_exp(rnp); - spin_unlock(&rnp->lock); /* irqs remain disabled */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ if (!must_wait) rcu_report_exp_rnp(rsp, rnp); } @@ -594,13 +647,13 @@ void synchronize_rcu_expedited(void) /* force all RCU readers onto blocked_tasks[]. */ synchronize_sched_expedited(); - spin_lock_irqsave(&rsp->onofflock, flags); + raw_spin_lock_irqsave(&rsp->onofflock, flags); /* Initialize ->expmask for all non-leaf rcu_node structures. */ rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { - spin_lock(&rnp->lock); /* irqs already disabled. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rnp->expmask = rnp->qsmaskinit; - spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ } /* Snapshot current state of ->blocked_tasks[] lists. */ @@ -609,7 +662,7 @@ void synchronize_rcu_expedited(void) if (NUM_RCU_NODES > 1) sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); - spin_unlock_irqrestore(&rsp->onofflock, flags); + raw_spin_unlock_irqrestore(&rsp->onofflock, flags); /* Wait for snapshotted ->blocked_tasks[] lists to drain. */ rnp = rcu_get_root(rsp); @@ -713,6 +766,16 @@ long rcu_batches_completed(void) EXPORT_SYMBOL_GPL(rcu_batches_completed); /* + * Force a quiescent state for RCU, which, because there is no preemptible + * RCU, becomes the same as rcu-sched. + */ +void rcu_force_quiescent_state(void) +{ + rcu_sched_force_quiescent_state(); +} +EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); + +/* * Because preemptable RCU does not exist, we never have to check for * CPUs being in quiescent states. */ @@ -734,7 +797,7 @@ static int rcu_preempted_readers(struct rcu_node *rnp) /* Because preemptible RCU does not exist, no quieting of tasks. */ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) { - spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore(&rnp->lock, flags); } #endif /* #ifdef CONFIG_HOTPLUG_CPU */ @@ -745,6 +808,14 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) * Because preemptable RCU does not exist, we never have to check for * tasks blocked within RCU read-side critical sections. */ +static void rcu_print_detail_task_stall(struct rcu_state *rsp) +{ +} + +/* + * Because preemptable RCU does not exist, we never have to check for + * tasks blocked within RCU read-side critical sections. + */ static void rcu_print_task_stall(struct rcu_node *rnp) { } @@ -884,3 +955,113 @@ static void __init __rcu_init_preempt(void) } #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ + +#if !defined(CONFIG_RCU_FAST_NO_HZ) + +/* + * Check to see if any future RCU-related work will need to be done + * by the current CPU, even if none need be done immediately, returning + * 1 if so. This function is part of the RCU implementation; it is -not- + * an exported member of the RCU API. + * + * Because we have preemptible RCU, just check whether this CPU needs + * any flavor of RCU. Do not chew up lots of CPU cycles with preemption + * disabled in a most-likely vain attempt to cause RCU not to need this CPU. + */ +int rcu_needs_cpu(int cpu) +{ + return rcu_needs_cpu_quick_check(cpu); +} + +/* + * Check to see if we need to continue a callback-flush operations to + * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle + * entry is not configured, so we never do need to. + */ +static void rcu_needs_cpu_flush(void) +{ +} + +#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ + +#define RCU_NEEDS_CPU_FLUSHES 5 +static DEFINE_PER_CPU(int, rcu_dyntick_drain); +static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff); + +/* + * Check to see if any future RCU-related work will need to be done + * by the current CPU, even if none need be done immediately, returning + * 1 if so. This function is part of the RCU implementation; it is -not- + * an exported member of the RCU API. + * + * Because we are not supporting preemptible RCU, attempt to accelerate + * any current grace periods so that RCU no longer needs this CPU, but + * only if all other CPUs are already in dynticks-idle mode. This will + * allow the CPU cores to be powered down immediately, as opposed to after + * waiting many milliseconds for grace periods to elapse. + * + * Because it is not legal to invoke rcu_process_callbacks() with irqs + * disabled, we do one pass of force_quiescent_state(), then do a + * raise_softirq() to cause rcu_process_callbacks() to be invoked later. + * The per-cpu rcu_dyntick_drain variable controls the sequencing. + */ +int rcu_needs_cpu(int cpu) +{ + int c = 0; + int thatcpu; + + /* Don't bother unless we are the last non-dyntick-idle CPU. */ + for_each_cpu_not(thatcpu, nohz_cpu_mask) + if (thatcpu != cpu) { + per_cpu(rcu_dyntick_drain, cpu) = 0; + per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1; + return rcu_needs_cpu_quick_check(cpu); + } + + /* Check and update the rcu_dyntick_drain sequencing. */ + if (per_cpu(rcu_dyntick_drain, cpu) <= 0) { + /* First time through, initialize the counter. */ + per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES; + } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) { + /* We have hit the limit, so time to give up. */ + per_cpu(rcu_dyntick_holdoff, cpu) = jiffies; + return rcu_needs_cpu_quick_check(cpu); + } + + /* Do one step pushing remaining RCU callbacks through. */ + if (per_cpu(rcu_sched_data, cpu).nxtlist) { + rcu_sched_qs(cpu); + force_quiescent_state(&rcu_sched_state, 0); + c = c || per_cpu(rcu_sched_data, cpu).nxtlist; + } + if (per_cpu(rcu_bh_data, cpu).nxtlist) { + rcu_bh_qs(cpu); + force_quiescent_state(&rcu_bh_state, 0); + c = c || per_cpu(rcu_bh_data, cpu).nxtlist; + } + + /* If RCU callbacks are still pending, RCU still needs this CPU. */ + if (c) { + raise_softirq(RCU_SOFTIRQ); + per_cpu(rcu_dyntick_holdoff, cpu) = jiffies; + } + return c; +} + +/* + * Check to see if we need to continue a callback-flush operations to + * allow the last CPU to enter dyntick-idle mode. + */ +static void rcu_needs_cpu_flush(void) +{ + int cpu = smp_processor_id(); + unsigned long flags; + + if (per_cpu(rcu_dyntick_drain, cpu) <= 0) + return; + local_irq_save(flags); + (void)rcu_needs_cpu(cpu); + local_irq_restore(flags); +} + +#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index 9d2c884..d45db2e 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c @@ -50,7 +50,7 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) { if (!rdp->beenonline) return; - seq_printf(m, "%3d%cc=%ld g=%ld pq=%d pqc=%ld qp=%d", + seq_printf(m, "%3d%cc=%lu g=%lu pq=%d pqc=%lu qp=%d", rdp->cpu, cpu_is_offline(rdp->cpu) ? '!' : ' ', rdp->completed, rdp->gpnum, @@ -105,7 +105,7 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp) { if (!rdp->beenonline) return; - seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", + seq_printf(m, "%d,%s,%lu,%lu,%d,%lu,%d", rdp->cpu, cpu_is_offline(rdp->cpu) ? "\"N\"" : "\"Y\"", rdp->completed, rdp->gpnum, @@ -155,13 +155,13 @@ static const struct file_operations rcudata_csv_fops = { static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp) { - long gpnum; + unsigned long gpnum; int level = 0; int phase; struct rcu_node *rnp; gpnum = rsp->gpnum; - seq_printf(m, "c=%ld g=%ld s=%d jfq=%ld j=%x " + seq_printf(m, "c=%lu g=%lu s=%d jfq=%ld j=%x " "nfqs=%lu/nfqsng=%lu(%lu) fqlh=%lu oqlen=%ld\n", rsp->completed, gpnum, rsp->signaled, (long)(rsp->jiffies_force_qs - jiffies), @@ -215,12 +215,12 @@ static const struct file_operations rcuhier_fops = { static int show_rcugp(struct seq_file *m, void *unused) { #ifdef CONFIG_TREE_PREEMPT_RCU - seq_printf(m, "rcu_preempt: completed=%ld gpnum=%ld\n", + seq_printf(m, "rcu_preempt: completed=%ld gpnum=%lu\n", rcu_preempt_state.completed, rcu_preempt_state.gpnum); #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ - seq_printf(m, "rcu_sched: completed=%ld gpnum=%ld\n", + seq_printf(m, "rcu_sched: completed=%ld gpnum=%lu\n", rcu_sched_state.completed, rcu_sched_state.gpnum); - seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", + seq_printf(m, "rcu_bh: completed=%ld gpnum=%lu\n", rcu_bh_state.completed, rcu_bh_state.gpnum); return 0; } diff --git a/kernel/relay.c b/kernel/relay.c index c705a41..3d97f28 100644 --- a/kernel/relay.c +++ b/kernel/relay.c @@ -1215,14 +1215,14 @@ static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) /* * subbuf_splice_actor - splice up to one subbuf's worth of data */ -static int subbuf_splice_actor(struct file *in, +static ssize_t subbuf_splice_actor(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags, int *nonpad_ret) { - unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret; + unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; struct rchan_buf *rbuf = in->private_data; unsigned int subbuf_size = rbuf->chan->subbuf_size; uint64_t pos = (uint64_t) *ppos; @@ -1241,6 +1241,7 @@ static int subbuf_splice_actor(struct file *in, .ops = &relay_pipe_buf_ops, .spd_release = relay_page_release, }; + ssize_t ret; if (rbuf->subbufs_produced == rbuf->subbufs_consumed) return 0; diff --git a/kernel/resource.c b/kernel/resource.c index af96c1e..2d5be5d 100644 --- a/kernel/resource.c +++ b/kernel/resource.c @@ -188,6 +188,36 @@ static int __release_resource(struct resource *old) return -EINVAL; } +static void __release_child_resources(struct resource *r) +{ + struct resource *tmp, *p; + resource_size_t size; + + p = r->child; + r->child = NULL; + while (p) { + tmp = p; + p = p->sibling; + + tmp->parent = NULL; + tmp->sibling = NULL; + __release_child_resources(tmp); + + printk(KERN_DEBUG "release child resource %pR\n", tmp); + /* need to restore size, and keep flags */ + size = resource_size(tmp); + tmp->start = 0; + tmp->end = size - 1; + } +} + +void release_child_resources(struct resource *r) +{ + write_lock(&resource_lock); + __release_child_resources(r); + write_unlock(&resource_lock); +} + /** * request_resource - request and reserve an I/O or memory resource * @root: root resource descriptor @@ -274,7 +304,7 @@ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)) { struct resource res; - unsigned long pfn, len; + unsigned long pfn, end_pfn; u64 orig_end; int ret = -1; @@ -284,9 +314,10 @@ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, orig_end = res.end; while ((res.start < res.end) && (find_next_system_ram(&res, "System RAM") >= 0)) { - pfn = (unsigned long)(res.start >> PAGE_SHIFT); - len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); - ret = (*func)(pfn, len, arg); + pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; + end_pfn = (res.end + 1) >> PAGE_SHIFT; + if (end_pfn > pfn) + ret = (*func)(pfn, end_pfn - pfn, arg); if (ret) break; res.start = res.end + 1; @@ -297,14 +328,29 @@ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, #endif +static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) +{ + return 1; +} +/* + * This generic page_is_ram() returns true if specified address is + * registered as "System RAM" in iomem_resource list. + */ +int __weak page_is_ram(unsigned long pfn) +{ + return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; +} + /* * Find empty slot in the resource tree given range and alignment. */ static int find_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, - void (*alignf)(void *, struct resource *, - resource_size_t, resource_size_t), + resource_size_t (*alignf)(void *, + const struct resource *, + resource_size_t, + resource_size_t), void *alignf_data) { struct resource *this = root->child; @@ -330,7 +376,7 @@ static int find_resource(struct resource *root, struct resource *new, tmp.end = max; tmp.start = ALIGN(tmp.start, align); if (alignf) - alignf(alignf_data, &tmp, size, align); + tmp.start = alignf(alignf_data, &tmp, size, align); if (tmp.start < tmp.end && tmp.end - tmp.start >= size - 1) { new->start = tmp.start; new->end = tmp.start + size - 1; @@ -358,8 +404,10 @@ static int find_resource(struct resource *root, struct resource *new, int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, - void (*alignf)(void *, struct resource *, - resource_size_t, resource_size_t), + resource_size_t (*alignf)(void *, + const struct resource *, + resource_size_t, + resource_size_t), void *alignf_data) { int err; diff --git a/kernel/sched.c b/kernel/sched.c index 3e71ebb..150b698 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) */ static DEFINE_MUTEX(sched_domains_mutex); -#ifdef CONFIG_GROUP_SCHED +#ifdef CONFIG_CGROUP_SCHED #include <linux/cgroup.h> @@ -243,13 +243,7 @@ static LIST_HEAD(task_groups); /* task group related information */ struct task_group { -#ifdef CONFIG_CGROUP_SCHED struct cgroup_subsys_state css; -#endif - -#ifdef CONFIG_USER_SCHED - uid_t uid; -#endif #ifdef CONFIG_FAIR_GROUP_SCHED /* schedulable entities of this group on each cpu */ @@ -274,35 +268,7 @@ struct task_group { struct list_head children; }; -#ifdef CONFIG_USER_SCHED - -/* Helper function to pass uid information to create_sched_user() */ -void set_tg_uid(struct user_struct *user) -{ - user->tg->uid = user->uid; -} - -/* - * Root task group. - * Every UID task group (including init_task_group aka UID-0) will - * be a child to this group. - */ -struct task_group root_task_group; - -#ifdef CONFIG_FAIR_GROUP_SCHED -/* Default task group's sched entity on each cpu */ -static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); -/* Default task group's cfs_rq on each cpu */ -static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED -static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); -static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var); -#endif /* CONFIG_RT_GROUP_SCHED */ -#else /* !CONFIG_USER_SCHED */ #define root_task_group init_task_group -#endif /* CONFIG_USER_SCHED */ /* task_group_lock serializes add/remove of task groups and also changes to * a task group's cpu shares. @@ -318,11 +284,7 @@ static int root_task_group_empty(void) } #endif -#ifdef CONFIG_USER_SCHED -# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) -#else /* !CONFIG_USER_SCHED */ # define INIT_TASK_GROUP_LOAD NICE_0_LOAD -#endif /* CONFIG_USER_SCHED */ /* * A weight of 0 or 1 can cause arithmetics problems. @@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p) { struct task_group *tg; -#ifdef CONFIG_USER_SCHED - rcu_read_lock(); - tg = __task_cred(p)->user->tg; - rcu_read_unlock(); -#elif defined(CONFIG_CGROUP_SCHED) +#ifdef CONFIG_CGROUP_SCHED tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), struct task_group, css); #else @@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p) return NULL; } -#endif /* CONFIG_GROUP_SCHED */ +#endif /* CONFIG_CGROUP_SCHED */ /* CFS-related fields in a runqueue */ struct cfs_rq { @@ -478,7 +436,6 @@ struct rt_rq { struct rq *rq; struct list_head leaf_rt_rq_list; struct task_group *tg; - struct sched_rt_entity *rt_se; #endif }; @@ -645,6 +602,11 @@ static inline int cpu_of(struct rq *rq) #endif } +#define rcu_dereference_check_sched_domain(p) \ + rcu_dereference_check((p), \ + rcu_read_lock_sched_held() || \ + lockdep_is_held(&sched_domains_mutex)) + /* * The domain tree (rq->sd) is protected by RCU's quiescent state transition. * See detach_destroy_domains: synchronize_sched for details. @@ -653,7 +615,7 @@ static inline int cpu_of(struct rq *rq) * preempt-disabled sections. */ #define for_each_domain(cpu, __sd) \ - for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) + for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) #define this_rq() (&__get_cpu_var(runqueues)) @@ -941,16 +903,33 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ /* + * Check whether the task is waking, we use this to synchronize against + * ttwu() so that task_cpu() reports a stable number. + * + * We need to make an exception for PF_STARTING tasks because the fork + * path might require task_rq_lock() to work, eg. it can call + * set_cpus_allowed_ptr() from the cpuset clone_ns code. + */ +static inline int task_is_waking(struct task_struct *p) +{ + return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); +} + +/* * __task_rq_lock - lock the runqueue a given task resides on. * Must be called interrupts disabled. */ static inline struct rq *__task_rq_lock(struct task_struct *p) __acquires(rq->lock) { + struct rq *rq; + for (;;) { - struct rq *rq = task_rq(p); + while (task_is_waking(p)) + cpu_relax(); + rq = task_rq(p); raw_spin_lock(&rq->lock); - if (likely(rq == task_rq(p))) + if (likely(rq == task_rq(p) && !task_is_waking(p))) return rq; raw_spin_unlock(&rq->lock); } @@ -967,10 +946,12 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) struct rq *rq; for (;;) { + while (task_is_waking(p)) + cpu_relax(); local_irq_save(*flags); rq = task_rq(p); raw_spin_lock(&rq->lock); - if (likely(rq == task_rq(p))) + if (likely(rq == task_rq(p) && !task_is_waking(p))) return rq; raw_spin_unlock_irqrestore(&rq->lock, *flags); } @@ -1390,32 +1371,6 @@ static const u32 prio_to_wmult[40] = { /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, }; -static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); - -/* - * runqueue iterator, to support SMP load-balancing between different - * scheduling classes, without having to expose their internal data - * structures to the load-balancing proper: - */ -struct rq_iterator { - void *arg; - struct task_struct *(*start)(void *); - struct task_struct *(*next)(void *); -}; - -#ifdef CONFIG_SMP -static unsigned long -balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, struct sched_domain *sd, - enum cpu_idle_type idle, int *all_pinned, - int *this_best_prio, struct rq_iterator *iterator); - -static int -iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle, - struct rq_iterator *iterator); -#endif - /* Time spent by the tasks of the cpu accounting group executing in ... */ enum cpuacct_stat_index { CPUACCT_STAT_USER, /* ... user mode */ @@ -1531,7 +1486,7 @@ static unsigned long target_load(int cpu, int type) static struct sched_group *group_of(int cpu) { - struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); + struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd); if (!sd) return NULL; @@ -1566,7 +1521,7 @@ static unsigned long cpu_avg_load_per_task(int cpu) #ifdef CONFIG_FAIR_GROUP_SCHED -static __read_mostly unsigned long *update_shares_data; +static __read_mostly unsigned long __percpu *update_shares_data; static void __set_se_shares(struct sched_entity *se, unsigned long shares); @@ -1701,16 +1656,6 @@ static void update_shares(struct sched_domain *sd) } } -static void update_shares_locked(struct rq *rq, struct sched_domain *sd) -{ - if (root_task_group_empty()) - return; - - raw_spin_unlock(&rq->lock); - update_shares(sd); - raw_spin_lock(&rq->lock); -} - static void update_h_load(long cpu) { if (root_task_group_empty()) @@ -1725,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd) { } -static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) -{ -} - #endif #ifdef CONFIG_PREEMPT @@ -1805,6 +1746,51 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) raw_spin_unlock(&busiest->lock); lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); } + +/* + * double_rq_lock - safely lock two runqueues + * + * Note this does not disable interrupts like task_rq_lock, + * you need to do so manually before calling. + */ +static void double_rq_lock(struct rq *rq1, struct rq *rq2) + __acquires(rq1->lock) + __acquires(rq2->lock) +{ + BUG_ON(!irqs_disabled()); + if (rq1 == rq2) { + raw_spin_lock(&rq1->lock); + __acquire(rq2->lock); /* Fake it out ;) */ + } else { + if (rq1 < rq2) { + raw_spin_lock(&rq1->lock); + raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); + } else { + raw_spin_lock(&rq2->lock); + raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); + } + } + update_rq_clock(rq1); + update_rq_clock(rq2); +} + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static void double_rq_unlock(struct rq *rq1, struct rq *rq2) + __releases(rq1->lock) + __releases(rq2->lock) +{ + raw_spin_unlock(&rq1->lock); + if (rq1 != rq2) + raw_spin_unlock(&rq2->lock); + else + __release(rq2->lock); +} + #endif #ifdef CONFIG_FAIR_GROUP_SCHED @@ -1834,18 +1820,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) #endif } -#include "sched_stats.h" -#include "sched_idletask.c" -#include "sched_fair.c" -#include "sched_rt.c" -#ifdef CONFIG_SCHED_DEBUG -# include "sched_debug.c" -#endif +static const struct sched_class rt_sched_class; #define sched_class_highest (&rt_sched_class) #define for_each_class(class) \ for (class = sched_class_highest; class; class = class->next) +#include "sched_stats.h" + static void inc_nr_running(struct rq *rq) { rq->nr_running++; @@ -1883,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample) *avg += diff >> 3; } -static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) +static void +enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) { if (wakeup) p->se.start_runtime = p->se.sum_exec_runtime; sched_info_queued(p); - p->sched_class->enqueue_task(rq, p, wakeup); + p->sched_class->enqueue_task(rq, p, wakeup, head); p->se.on_rq = 1; } @@ -1912,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) } /* + * activate_task - move a task to the runqueue. + */ +static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) +{ + if (task_contributes_to_load(p)) + rq->nr_uninterruptible--; + + enqueue_task(rq, p, wakeup, false); + inc_nr_running(rq); +} + +/* + * deactivate_task - remove a task from the runqueue. + */ +static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) +{ + if (task_contributes_to_load(p)) + rq->nr_uninterruptible++; + + dequeue_task(rq, p, sleep); + dec_nr_running(rq); +} + +#include "sched_idletask.c" +#include "sched_fair.c" +#include "sched_rt.c" +#ifdef CONFIG_SCHED_DEBUG +# include "sched_debug.c" +#endif + +/* * __normal_prio - return the priority that is based on the static prio */ static inline int __normal_prio(struct task_struct *p) @@ -1957,30 +1971,6 @@ static int effective_prio(struct task_struct *p) return p->prio; } -/* - * activate_task - move a task to the runqueue. - */ -static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) -{ - if (task_contributes_to_load(p)) - rq->nr_uninterruptible--; - - enqueue_task(rq, p, wakeup); - inc_nr_running(rq); -} - -/* - * deactivate_task - remove a task from the runqueue. - */ -static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) -{ - if (task_contributes_to_load(p)) - rq->nr_uninterruptible++; - - dequeue_task(rq, p, sleep); - dec_nr_running(rq); -} - /** * task_curr - is this task currently executing on a CPU? * @p: the task in question. @@ -2408,14 +2398,27 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, __task_rq_unlock(rq); cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); - if (cpu != orig_cpu) + if (cpu != orig_cpu) { + /* + * Since we migrate the task without holding any rq->lock, + * we need to be careful with task_rq_lock(), since that + * might end up locking an invalid rq. + */ set_task_cpu(p, cpu); + } - rq = __task_rq_lock(p); + rq = cpu_rq(cpu); + raw_spin_lock(&rq->lock); update_rq_clock(rq); + /* + * We migrated the task without holding either rq->lock, however + * since the task is not on the task list itself, nobody else + * will try and migrate the task, hence the rq should match the + * cpu we just moved it to. + */ + WARN_ON(task_cpu(p) != cpu); WARN_ON(p->state != TASK_WAKING); - cpu = task_cpu(p); #ifdef CONFIG_SCHEDSTATS schedstat_inc(rq, ttwu_count); @@ -2663,7 +2666,13 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) set_task_cpu(p, cpu); #endif - rq = task_rq_lock(p, &flags); + /* + * Since the task is not on the rq and we still have TASK_WAKING set + * nobody else will migrate this task. + */ + rq = cpu_rq(cpu); + raw_spin_lock_irqsave(&rq->lock, flags); + BUG_ON(p->state != TASK_WAKING); p->state = TASK_RUNNING; update_rq_clock(rq); @@ -3105,50 +3114,6 @@ static void update_cpu_load(struct rq *this_rq) #ifdef CONFIG_SMP /* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - BUG_ON(!irqs_disabled()); - if (rq1 == rq2) { - raw_spin_lock(&rq1->lock); - __acquire(rq2->lock); /* Fake it out ;) */ - } else { - if (rq1 < rq2) { - raw_spin_lock(&rq1->lock); - raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); - } else { - raw_spin_lock(&rq2->lock); - raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); - } - } - update_rq_clock(rq1); - update_rq_clock(rq2); -} - -/* - * double_rq_unlock - safely unlock two runqueues - * - * Note this does not restore interrupts like task_rq_unlock, - * you need to do so manually after calling. - */ -static void double_rq_unlock(struct rq *rq1, struct rq *rq2) - __releases(rq1->lock) - __releases(rq2->lock) -{ - raw_spin_unlock(&rq1->lock); - if (rq1 != rq2) - raw_spin_unlock(&rq2->lock); - else - __release(rq2->lock); -} - -/* * sched_exec - execve() is a valuable balancing opportunity, because at * this point the task has the smallest effective memory and cache footprint. */ @@ -3196,1771 +3161,6 @@ again: task_rq_unlock(rq, &flags); } -/* - * pull_task - move a task from a remote runqueue to the local runqueue. - * Both runqueues must be locked. - */ -static void pull_task(struct rq *src_rq, struct task_struct *p, - struct rq *this_rq, int this_cpu) -{ - deactivate_task(src_rq, p, 0); - set_task_cpu(p, this_cpu); - activate_task(this_rq, p, 0); - check_preempt_curr(this_rq, p, 0); -} - -/* - * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? - */ -static -int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, - struct sched_domain *sd, enum cpu_idle_type idle, - int *all_pinned) -{ - int tsk_cache_hot = 0; - /* - * We do not migrate tasks that are: - * 1) running (obviously), or - * 2) cannot be migrated to this CPU due to cpus_allowed, or - * 3) are cache-hot on their current CPU. - */ - if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { - schedstat_inc(p, se.nr_failed_migrations_affine); - return 0; - } - *all_pinned = 0; - - if (task_running(rq, p)) { - schedstat_inc(p, se.nr_failed_migrations_running); - return 0; - } - - /* - * Aggressive migration if: - * 1) task is cache cold, or - * 2) too many balance attempts have failed. - */ - - tsk_cache_hot = task_hot(p, rq->clock, sd); - if (!tsk_cache_hot || - sd->nr_balance_failed > sd->cache_nice_tries) { -#ifdef CONFIG_SCHEDSTATS - if (tsk_cache_hot) { - schedstat_inc(sd, lb_hot_gained[idle]); - schedstat_inc(p, se.nr_forced_migrations); - } -#endif - return 1; - } - - if (tsk_cache_hot) { - schedstat_inc(p, se.nr_failed_migrations_hot); - return 0; - } - return 1; -} - -static unsigned long -balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, struct sched_domain *sd, - enum cpu_idle_type idle, int *all_pinned, - int *this_best_prio, struct rq_iterator *iterator) -{ - int loops = 0, pulled = 0, pinned = 0; - struct task_struct *p; - long rem_load_move = max_load_move; - - if (max_load_move == 0) - goto out; - - pinned = 1; - - /* - * Start the load-balancing iterator: - */ - p = iterator->start(iterator->arg); -next: - if (!p || loops++ > sysctl_sched_nr_migrate) - goto out; - - if ((p->se.load.weight >> 1) > rem_load_move || - !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { - p = iterator->next(iterator->arg); - goto next; - } - - pull_task(busiest, p, this_rq, this_cpu); - pulled++; - rem_load_move -= p->se.load.weight; - -#ifdef CONFIG_PREEMPT - /* - * NEWIDLE balancing is a source of latency, so preemptible kernels - * will stop after the first task is pulled to minimize the critical - * section. - */ - if (idle == CPU_NEWLY_IDLE) - goto out; -#endif - - /* - * We only want to steal up to the prescribed amount of weighted load. - */ - if (rem_load_move > 0) { - if (p->prio < *this_best_prio) - *this_best_prio = p->prio; - p = iterator->next(iterator->arg); - goto next; - } -out: - /* - * Right now, this is one of only two places pull_task() is called, - * so we can safely collect pull_task() stats here rather than - * inside pull_task(). - */ - schedstat_add(sd, lb_gained[idle], pulled); - - if (all_pinned) - *all_pinned = pinned; - - return max_load_move - rem_load_move; -} - -/* - * move_tasks tries to move up to max_load_move weighted load from busiest to - * this_rq, as part of a balancing operation within domain "sd". - * Returns 1 if successful and 0 otherwise. - * - * Called with both runqueues locked. - */ -static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, - struct sched_domain *sd, enum cpu_idle_type idle, - int *all_pinned) -{ - const struct sched_class *class = sched_class_highest; - unsigned long total_load_moved = 0; - int this_best_prio = this_rq->curr->prio; - - do { - total_load_moved += - class->load_balance(this_rq, this_cpu, busiest, - max_load_move - total_load_moved, - sd, idle, all_pinned, &this_best_prio); - class = class->next; - -#ifdef CONFIG_PREEMPT - /* - * NEWIDLE balancing is a source of latency, so preemptible - * kernels will stop after the first task is pulled to minimize - * the critical section. - */ - if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) - break; -#endif - } while (class && max_load_move > total_load_moved); - - return total_load_moved > 0; -} - -static int -iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle, - struct rq_iterator *iterator) -{ - struct task_struct *p = iterator->start(iterator->arg); - int pinned = 0; - - while (p) { - if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { - pull_task(busiest, p, this_rq, this_cpu); - /* - * Right now, this is only the second place pull_task() - * is called, so we can safely collect pull_task() - * stats here rather than inside pull_task(). - */ - schedstat_inc(sd, lb_gained[idle]); - - return 1; - } - p = iterator->next(iterator->arg); - } - - return 0; -} - -/* - * move_one_task tries to move exactly one task from busiest to this_rq, as - * part of active balancing operations within "domain". - * Returns 1 if successful and 0 otherwise. - * - * Called with both runqueues locked. - */ -static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle) -{ - const struct sched_class *class; - - for_each_class(class) { - if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) - return 1; - } - - return 0; -} -/********** Helpers for find_busiest_group ************************/ -/* - * sd_lb_stats - Structure to store the statistics of a sched_domain - * during load balancing. - */ -struct sd_lb_stats { - struct sched_group *busiest; /* Busiest group in this sd */ - struct sched_group *this; /* Local group in this sd */ - unsigned long total_load; /* Total load of all groups in sd */ - unsigned long total_pwr; /* Total power of all groups in sd */ - unsigned long avg_load; /* Average load across all groups in sd */ - - /** Statistics of this group */ - unsigned long this_load; - unsigned long this_load_per_task; - unsigned long this_nr_running; - - /* Statistics of the busiest group */ - unsigned long max_load; - unsigned long busiest_load_per_task; - unsigned long busiest_nr_running; - - int group_imb; /* Is there imbalance in this sd */ -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - int power_savings_balance; /* Is powersave balance needed for this sd */ - struct sched_group *group_min; /* Least loaded group in sd */ - struct sched_group *group_leader; /* Group which relieves group_min */ - unsigned long min_load_per_task; /* load_per_task in group_min */ - unsigned long leader_nr_running; /* Nr running of group_leader */ - unsigned long min_nr_running; /* Nr running of group_min */ -#endif -}; - -/* - * sg_lb_stats - stats of a sched_group required for load_balancing - */ -struct sg_lb_stats { - unsigned long avg_load; /*Avg load across the CPUs of the group */ - unsigned long group_load; /* Total load over the CPUs of the group */ - unsigned long sum_nr_running; /* Nr tasks running in the group */ - unsigned long sum_weighted_load; /* Weighted load of group's tasks */ - unsigned long group_capacity; - int group_imb; /* Is there an imbalance in the group ? */ -}; - -/** - * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. - * @group: The group whose first cpu is to be returned. - */ -static inline unsigned int group_first_cpu(struct sched_group *group) -{ - return cpumask_first(sched_group_cpus(group)); -} - -/** - * get_sd_load_idx - Obtain the load index for a given sched domain. - * @sd: The sched_domain whose load_idx is to be obtained. - * @idle: The Idle status of the CPU for whose sd load_icx is obtained. - */ -static inline int get_sd_load_idx(struct sched_domain *sd, - enum cpu_idle_type idle) -{ - int load_idx; - - switch (idle) { - case CPU_NOT_IDLE: - load_idx = sd->busy_idx; - break; - - case CPU_NEWLY_IDLE: - load_idx = sd->newidle_idx; - break; - default: - load_idx = sd->idle_idx; - break; - } - - return load_idx; -} - - -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -/** - * init_sd_power_savings_stats - Initialize power savings statistics for - * the given sched_domain, during load balancing. - * - * @sd: Sched domain whose power-savings statistics are to be initialized. - * @sds: Variable containing the statistics for sd. - * @idle: Idle status of the CPU at which we're performing load-balancing. - */ -static inline void init_sd_power_savings_stats(struct sched_domain *sd, - struct sd_lb_stats *sds, enum cpu_idle_type idle) -{ - /* - * Busy processors will not participate in power savings - * balance. - */ - if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) - sds->power_savings_balance = 0; - else { - sds->power_savings_balance = 1; - sds->min_nr_running = ULONG_MAX; - sds->leader_nr_running = 0; - } -} - -/** - * update_sd_power_savings_stats - Update the power saving stats for a - * sched_domain while performing load balancing. - * - * @group: sched_group belonging to the sched_domain under consideration. - * @sds: Variable containing the statistics of the sched_domain - * @local_group: Does group contain the CPU for which we're performing - * load balancing ? - * @sgs: Variable containing the statistics of the group. - */ -static inline void update_sd_power_savings_stats(struct sched_group *group, - struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) -{ - - if (!sds->power_savings_balance) - return; - - /* - * If the local group is idle or completely loaded - * no need to do power savings balance at this domain - */ - if (local_group && (sds->this_nr_running >= sgs->group_capacity || - !sds->this_nr_running)) - sds->power_savings_balance = 0; - - /* - * If a group is already running at full capacity or idle, - * don't include that group in power savings calculations - */ - if (!sds->power_savings_balance || - sgs->sum_nr_running >= sgs->group_capacity || - !sgs->sum_nr_running) - return; - - /* - * Calculate the group which has the least non-idle load. - * This is the group from where we need to pick up the load - * for saving power - */ - if ((sgs->sum_nr_running < sds->min_nr_running) || - (sgs->sum_nr_running == sds->min_nr_running && - group_first_cpu(group) > group_first_cpu(sds->group_min))) { - sds->group_min = group; - sds->min_nr_running = sgs->sum_nr_running; - sds->min_load_per_task = sgs->sum_weighted_load / - sgs->sum_nr_running; - } - - /* - * Calculate the group which is almost near its - * capacity but still has some space to pick up some load - * from other group and save more power - */ - if (sgs->sum_nr_running + 1 > sgs->group_capacity) - return; - - if (sgs->sum_nr_running > sds->leader_nr_running || - (sgs->sum_nr_running == sds->leader_nr_running && - group_first_cpu(group) < group_first_cpu(sds->group_leader))) { - sds->group_leader = group; - sds->leader_nr_running = sgs->sum_nr_running; - } -} - -/** - * check_power_save_busiest_group - see if there is potential for some power-savings balance - * @sds: Variable containing the statistics of the sched_domain - * under consideration. - * @this_cpu: Cpu at which we're currently performing load-balancing. - * @imbalance: Variable to store the imbalance. - * - * Description: - * Check if we have potential to perform some power-savings balance. - * If yes, set the busiest group to be the least loaded group in the - * sched_domain, so that it's CPUs can be put to idle. - * - * Returns 1 if there is potential to perform power-savings balance. - * Else returns 0. - */ -static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, - int this_cpu, unsigned long *imbalance) -{ - if (!sds->power_savings_balance) - return 0; - - if (sds->this != sds->group_leader || - sds->group_leader == sds->group_min) - return 0; - - *imbalance = sds->min_load_per_task; - sds->busiest = sds->group_min; - - return 1; - -} -#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ -static inline void init_sd_power_savings_stats(struct sched_domain *sd, - struct sd_lb_stats *sds, enum cpu_idle_type idle) -{ - return; -} - -static inline void update_sd_power_savings_stats(struct sched_group *group, - struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) -{ - return; -} - -static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, - int this_cpu, unsigned long *imbalance) -{ - return 0; -} -#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ - - -unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) -{ - return SCHED_LOAD_SCALE; -} - -unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) -{ - return default_scale_freq_power(sd, cpu); -} - -unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) -{ - unsigned long weight = cpumask_weight(sched_domain_span(sd)); - unsigned long smt_gain = sd->smt_gain; - - smt_gain /= weight; - - return smt_gain; -} - -unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) -{ - return default_scale_smt_power(sd, cpu); -} - -unsigned long scale_rt_power(int cpu) -{ - struct rq *rq = cpu_rq(cpu); - u64 total, available; - - sched_avg_update(rq); - - total = sched_avg_period() + (rq->clock - rq->age_stamp); - available = total - rq->rt_avg; - - if (unlikely((s64)total < SCHED_LOAD_SCALE)) - total = SCHED_LOAD_SCALE; - - total >>= SCHED_LOAD_SHIFT; - - return div_u64(available, total); -} - -static void update_cpu_power(struct sched_domain *sd, int cpu) -{ - unsigned long weight = cpumask_weight(sched_domain_span(sd)); - unsigned long power = SCHED_LOAD_SCALE; - struct sched_group *sdg = sd->groups; - - if (sched_feat(ARCH_POWER)) - power *= arch_scale_freq_power(sd, cpu); - else - power *= default_scale_freq_power(sd, cpu); - - power >>= SCHED_LOAD_SHIFT; - - if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { - if (sched_feat(ARCH_POWER)) - power *= arch_scale_smt_power(sd, cpu); - else - power *= default_scale_smt_power(sd, cpu); - - power >>= SCHED_LOAD_SHIFT; - } - - power *= scale_rt_power(cpu); - power >>= SCHED_LOAD_SHIFT; - - if (!power) - power = 1; - - sdg->cpu_power = power; -} - -static void update_group_power(struct sched_domain *sd, int cpu) -{ - struct sched_domain *child = sd->child; - struct sched_group *group, *sdg = sd->groups; - unsigned long power; - - if (!child) { - update_cpu_power(sd, cpu); - return; - } - - power = 0; - - group = child->groups; - do { - power += group->cpu_power; - group = group->next; - } while (group != child->groups); - - sdg->cpu_power = power; -} - -/** - * update_sg_lb_stats - Update sched_group's statistics for load balancing. - * @sd: The sched_domain whose statistics are to be updated. - * @group: sched_group whose statistics are to be updated. - * @this_cpu: Cpu for which load balance is currently performed. - * @idle: Idle status of this_cpu - * @load_idx: Load index of sched_domain of this_cpu for load calc. - * @sd_idle: Idle status of the sched_domain containing group. - * @local_group: Does group contain this_cpu. - * @cpus: Set of cpus considered for load balancing. - * @balance: Should we balance. - * @sgs: variable to hold the statistics for this group. - */ -static inline void update_sg_lb_stats(struct sched_domain *sd, - struct sched_group *group, int this_cpu, - enum cpu_idle_type idle, int load_idx, int *sd_idle, - int local_group, const struct cpumask *cpus, - int *balance, struct sg_lb_stats *sgs) -{ - unsigned long load, max_cpu_load, min_cpu_load; - int i; - unsigned int balance_cpu = -1, first_idle_cpu = 0; - unsigned long sum_avg_load_per_task; - unsigned long avg_load_per_task; - - if (local_group) { - balance_cpu = group_first_cpu(group); - if (balance_cpu == this_cpu) - update_group_power(sd, this_cpu); - } - - /* Tally up the load of all CPUs in the group */ - sum_avg_load_per_task = avg_load_per_task = 0; - max_cpu_load = 0; - min_cpu_load = ~0UL; - - for_each_cpu_and(i, sched_group_cpus(group), cpus) { - struct rq *rq = cpu_rq(i); - - if (*sd_idle && rq->nr_running) - *sd_idle = 0; - - /* Bias balancing toward cpus of our domain */ - if (local_group) { - if (idle_cpu(i) && !first_idle_cpu) { - first_idle_cpu = 1; - balance_cpu = i; - } - - load = target_load(i, load_idx); - } else { - load = source_load(i, load_idx); - if (load > max_cpu_load) - max_cpu_load = load; - if (min_cpu_load > load) - min_cpu_load = load; - } - - sgs->group_load += load; - sgs->sum_nr_running += rq->nr_running; - sgs->sum_weighted_load += weighted_cpuload(i); - - sum_avg_load_per_task += cpu_avg_load_per_task(i); - } - - /* - * First idle cpu or the first cpu(busiest) in this sched group - * is eligible for doing load balancing at this and above - * domains. In the newly idle case, we will allow all the cpu's - * to do the newly idle load balance. - */ - if (idle != CPU_NEWLY_IDLE && local_group && - balance_cpu != this_cpu && balance) { - *balance = 0; - return; - } - - /* Adjust by relative CPU power of the group */ - sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; - - - /* - * Consider the group unbalanced when the imbalance is larger - * than the average weight of two tasks. - * - * APZ: with cgroup the avg task weight can vary wildly and - * might not be a suitable number - should we keep a - * normalized nr_running number somewhere that negates - * the hierarchy? - */ - avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / - group->cpu_power; - - if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) - sgs->group_imb = 1; - - sgs->group_capacity = - DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); -} - -/** - * update_sd_lb_stats - Update sched_group's statistics for load balancing. - * @sd: sched_domain whose statistics are to be updated. - * @this_cpu: Cpu for which load balance is currently performed. - * @idle: Idle status of this_cpu - * @sd_idle: Idle status of the sched_domain containing group. - * @cpus: Set of cpus considered for load balancing. - * @balance: Should we balance. - * @sds: variable to hold the statistics for this sched_domain. - */ -static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, - enum cpu_idle_type idle, int *sd_idle, - const struct cpumask *cpus, int *balance, - struct sd_lb_stats *sds) -{ - struct sched_domain *child = sd->child; - struct sched_group *group = sd->groups; - struct sg_lb_stats sgs; - int load_idx, prefer_sibling = 0; - - if (child && child->flags & SD_PREFER_SIBLING) - prefer_sibling = 1; - - init_sd_power_savings_stats(sd, sds, idle); - load_idx = get_sd_load_idx(sd, idle); - - do { - int local_group; - - local_group = cpumask_test_cpu(this_cpu, - sched_group_cpus(group)); - memset(&sgs, 0, sizeof(sgs)); - update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, - local_group, cpus, balance, &sgs); - - if (local_group && balance && !(*balance)) - return; - - sds->total_load += sgs.group_load; - sds->total_pwr += group->cpu_power; - - /* - * In case the child domain prefers tasks go to siblings - * first, lower the group capacity to one so that we'll try - * and move all the excess tasks away. - */ - if (prefer_sibling) - sgs.group_capacity = min(sgs.group_capacity, 1UL); - - if (local_group) { - sds->this_load = sgs.avg_load; - sds->this = group; - sds->this_nr_running = sgs.sum_nr_running; - sds->this_load_per_task = sgs.sum_weighted_load; - } else if (sgs.avg_load > sds->max_load && - (sgs.sum_nr_running > sgs.group_capacity || - sgs.group_imb)) { - sds->max_load = sgs.avg_load; - sds->busiest = group; - sds->busiest_nr_running = sgs.sum_nr_running; - sds->busiest_load_per_task = sgs.sum_weighted_load; - sds->group_imb = sgs.group_imb; - } - - update_sd_power_savings_stats(group, sds, local_group, &sgs); - group = group->next; - } while (group != sd->groups); -} - -/** - * fix_small_imbalance - Calculate the minor imbalance that exists - * amongst the groups of a sched_domain, during - * load balancing. - * @sds: Statistics of the sched_domain whose imbalance is to be calculated. - * @this_cpu: The cpu at whose sched_domain we're performing load-balance. - * @imbalance: Variable to store the imbalance. - */ -static inline void fix_small_imbalance(struct sd_lb_stats *sds, - int this_cpu, unsigned long *imbalance) -{ - unsigned long tmp, pwr_now = 0, pwr_move = 0; - unsigned int imbn = 2; - - if (sds->this_nr_running) { - sds->this_load_per_task /= sds->this_nr_running; - if (sds->busiest_load_per_task > - sds->this_load_per_task) - imbn = 1; - } else - sds->this_load_per_task = - cpu_avg_load_per_task(this_cpu); - - if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= - sds->busiest_load_per_task * imbn) { - *imbalance = sds->busiest_load_per_task; - return; - } - - /* - * OK, we don't have enough imbalance to justify moving tasks, - * however we may be able to increase total CPU power used by - * moving them. - */ - - pwr_now += sds->busiest->cpu_power * - min(sds->busiest_load_per_task, sds->max_load); - pwr_now += sds->this->cpu_power * - min(sds->this_load_per_task, sds->this_load); - pwr_now /= SCHED_LOAD_SCALE; - - /* Amount of load we'd subtract */ - tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / - sds->busiest->cpu_power; - if (sds->max_load > tmp) - pwr_move += sds->busiest->cpu_power * - min(sds->busiest_load_per_task, sds->max_load - tmp); - - /* Amount of load we'd add */ - if (sds->max_load * sds->busiest->cpu_power < - sds->busiest_load_per_task * SCHED_LOAD_SCALE) - tmp = (sds->max_load * sds->busiest->cpu_power) / - sds->this->cpu_power; - else - tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / - sds->this->cpu_power; - pwr_move += sds->this->cpu_power * - min(sds->this_load_per_task, sds->this_load + tmp); - pwr_move /= SCHED_LOAD_SCALE; - - /* Move if we gain throughput */ - if (pwr_move > pwr_now) - *imbalance = sds->busiest_load_per_task; -} - -/** - * calculate_imbalance - Calculate the amount of imbalance present within the - * groups of a given sched_domain during load balance. - * @sds: statistics of the sched_domain whose imbalance is to be calculated. - * @this_cpu: Cpu for which currently load balance is being performed. - * @imbalance: The variable to store the imbalance. - */ -static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, - unsigned long *imbalance) -{ - unsigned long max_pull; - /* - * In the presence of smp nice balancing, certain scenarios can have - * max load less than avg load(as we skip the groups at or below - * its cpu_power, while calculating max_load..) - */ - if (sds->max_load < sds->avg_load) { - *imbalance = 0; - return fix_small_imbalance(sds, this_cpu, imbalance); - } - - /* Don't want to pull so many tasks that a group would go idle */ - max_pull = min(sds->max_load - sds->avg_load, - sds->max_load - sds->busiest_load_per_task); - - /* How much load to actually move to equalise the imbalance */ - *imbalance = min(max_pull * sds->busiest->cpu_power, - (sds->avg_load - sds->this_load) * sds->this->cpu_power) - / SCHED_LOAD_SCALE; - - /* - * if *imbalance is less than the average load per runnable task - * there is no gaurantee that any tasks will be moved so we'll have - * a think about bumping its value to force at least one task to be - * moved - */ - if (*imbalance < sds->busiest_load_per_task) - return fix_small_imbalance(sds, this_cpu, imbalance); - -} -/******* find_busiest_group() helpers end here *********************/ - -/** - * find_busiest_group - Returns the busiest group within the sched_domain - * if there is an imbalance. If there isn't an imbalance, and - * the user has opted for power-savings, it returns a group whose - * CPUs can be put to idle by rebalancing those tasks elsewhere, if - * such a group exists. - * - * Also calculates the amount of weighted load which should be moved - * to restore balance. - * - * @sd: The sched_domain whose busiest group is to be returned. - * @this_cpu: The cpu for which load balancing is currently being performed. - * @imbalance: Variable which stores amount of weighted load which should - * be moved to restore balance/put a group to idle. - * @idle: The idle status of this_cpu. - * @sd_idle: The idleness of sd - * @cpus: The set of CPUs under consideration for load-balancing. - * @balance: Pointer to a variable indicating if this_cpu - * is the appropriate cpu to perform load balancing at this_level. - * - * Returns: - the busiest group if imbalance exists. - * - If no imbalance and user has opted for power-savings balance, - * return the least loaded group whose CPUs can be - * put to idle by rebalancing its tasks onto our group. - */ -static struct sched_group * -find_busiest_group(struct sched_domain *sd, int this_cpu, - unsigned long *imbalance, enum cpu_idle_type idle, - int *sd_idle, const struct cpumask *cpus, int *balance) -{ - struct sd_lb_stats sds; - - memset(&sds, 0, sizeof(sds)); - - /* - * Compute the various statistics relavent for load balancing at - * this level. - */ - update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, - balance, &sds); - - /* Cases where imbalance does not exist from POV of this_cpu */ - /* 1) this_cpu is not the appropriate cpu to perform load balancing - * at this level. - * 2) There is no busy sibling group to pull from. - * 3) This group is the busiest group. - * 4) This group is more busy than the avg busieness at this - * sched_domain. - * 5) The imbalance is within the specified limit. - * 6) Any rebalance would lead to ping-pong - */ - if (balance && !(*balance)) - goto ret; - - if (!sds.busiest || sds.busiest_nr_running == 0) - goto out_balanced; - - if (sds.this_load >= sds.max_load) - goto out_balanced; - - sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; - - if (sds.this_load >= sds.avg_load) - goto out_balanced; - - if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) - goto out_balanced; - - sds.busiest_load_per_task /= sds.busiest_nr_running; - if (sds.group_imb) - sds.busiest_load_per_task = - min(sds.busiest_load_per_task, sds.avg_load); - - /* - * We're trying to get all the cpus to the average_load, so we don't - * want to push ourselves above the average load, nor do we wish to - * reduce the max loaded cpu below the average load, as either of these - * actions would just result in more rebalancing later, and ping-pong - * tasks around. Thus we look for the minimum possible imbalance. - * Negative imbalances (*we* are more loaded than anyone else) will - * be counted as no imbalance for these purposes -- we can't fix that - * by pulling tasks to us. Be careful of negative numbers as they'll - * appear as very large values with unsigned longs. - */ - if (sds.max_load <= sds.busiest_load_per_task) - goto out_balanced; - - /* Looks like there is an imbalance. Compute it */ - calculate_imbalance(&sds, this_cpu, imbalance); - return sds.busiest; - -out_balanced: - /* - * There is no obvious imbalance. But check if we can do some balancing - * to save power. - */ - if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) - return sds.busiest; -ret: - *imbalance = 0; - return NULL; -} - -/* - * find_busiest_queue - find the busiest runqueue among the cpus in group. - */ -static struct rq * -find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, - unsigned long imbalance, const struct cpumask *cpus) -{ - struct rq *busiest = NULL, *rq; - unsigned long max_load = 0; - int i; - - for_each_cpu(i, sched_group_cpus(group)) { - unsigned long power = power_of(i); - unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); - unsigned long wl; - - if (!cpumask_test_cpu(i, cpus)) - continue; - - rq = cpu_rq(i); - wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; - wl /= power; - - if (capacity && rq->nr_running == 1 && wl > imbalance) - continue; - - if (wl > max_load) { - max_load = wl; - busiest = rq; - } - } - - return busiest; -} - -/* - * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but - * so long as it is large enough. - */ -#define MAX_PINNED_INTERVAL 512 - -/* Working cpumask for load_balance and load_balance_newidle. */ -static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); - -/* - * Check this_cpu to ensure it is balanced within domain. Attempt to move - * tasks if there is an imbalance. - */ -static int load_balance(int this_cpu, struct rq *this_rq, - struct sched_domain *sd, enum cpu_idle_type idle, - int *balance) -{ - int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; - struct sched_group *group; - unsigned long imbalance; - struct rq *busiest; - unsigned long flags; - struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); - - cpumask_copy(cpus, cpu_active_mask); - - /* - * When power savings policy is enabled for the parent domain, idle - * sibling can pick up load irrespective of busy siblings. In this case, - * let the state of idle sibling percolate up as CPU_IDLE, instead of - * portraying it as CPU_NOT_IDLE. - */ - if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - sd_idle = 1; - - schedstat_inc(sd, lb_count[idle]); - -redo: - update_shares(sd); - group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, - cpus, balance); - - if (*balance == 0) - goto out_balanced; - - if (!group) { - schedstat_inc(sd, lb_nobusyg[idle]); - goto out_balanced; - } - - busiest = find_busiest_queue(group, idle, imbalance, cpus); - if (!busiest) { - schedstat_inc(sd, lb_nobusyq[idle]); - goto out_balanced; - } - - BUG_ON(busiest == this_rq); - - schedstat_add(sd, lb_imbalance[idle], imbalance); - - ld_moved = 0; - if (busiest->nr_running > 1) { - /* - * Attempt to move tasks. If find_busiest_group has found - * an imbalance but busiest->nr_running <= 1, the group is - * still unbalanced. ld_moved simply stays zero, so it is - * correctly treated as an imbalance. - */ - local_irq_save(flags); - double_rq_lock(this_rq, busiest); - ld_moved = move_tasks(this_rq, this_cpu, busiest, - imbalance, sd, idle, &all_pinned); - double_rq_unlock(this_rq, busiest); - local_irq_restore(flags); - - /* - * some other cpu did the load balance for us. - */ - if (ld_moved && this_cpu != smp_processor_id()) - resched_cpu(this_cpu); - - /* All tasks on this runqueue were pinned by CPU affinity */ - if (unlikely(all_pinned)) { - cpumask_clear_cpu(cpu_of(busiest), cpus); - if (!cpumask_empty(cpus)) - goto redo; - goto out_balanced; - } - } - - if (!ld_moved) { - schedstat_inc(sd, lb_failed[idle]); - sd->nr_balance_failed++; - - if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { - - raw_spin_lock_irqsave(&busiest->lock, flags); - - /* don't kick the migration_thread, if the curr - * task on busiest cpu can't be moved to this_cpu - */ - if (!cpumask_test_cpu(this_cpu, - &busiest->curr->cpus_allowed)) { - raw_spin_unlock_irqrestore(&busiest->lock, - flags); - all_pinned = 1; - goto out_one_pinned; - } - - if (!busiest->active_balance) { - busiest->active_balance = 1; - busiest->push_cpu = this_cpu; - active_balance = 1; - } - raw_spin_unlock_irqrestore(&busiest->lock, flags); - if (active_balance) - wake_up_process(busiest->migration_thread); - - /* - * We've kicked active balancing, reset the failure - * counter. - */ - sd->nr_balance_failed = sd->cache_nice_tries+1; - } - } else - sd->nr_balance_failed = 0; - - if (likely(!active_balance)) { - /* We were unbalanced, so reset the balancing interval */ - sd->balance_interval = sd->min_interval; - } else { - /* - * If we've begun active balancing, start to back off. This - * case may not be covered by the all_pinned logic if there - * is only 1 task on the busy runqueue (because we don't call - * move_tasks). - */ - if (sd->balance_interval < sd->max_interval) - sd->balance_interval *= 2; - } - - if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - ld_moved = -1; - - goto out; - -out_balanced: - schedstat_inc(sd, lb_balanced[idle]); - - sd->nr_balance_failed = 0; - -out_one_pinned: - /* tune up the balancing interval */ - if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || - (sd->balance_interval < sd->max_interval)) - sd->balance_interval *= 2; - - if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - ld_moved = -1; - else - ld_moved = 0; -out: - if (ld_moved) - update_shares(sd); - return ld_moved; -} - -/* - * Check this_cpu to ensure it is balanced within domain. Attempt to move - * tasks if there is an imbalance. - * - * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). - * this_rq is locked. - */ -static int -load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) -{ - struct sched_group *group; - struct rq *busiest = NULL; - unsigned long imbalance; - int ld_moved = 0; - int sd_idle = 0; - int all_pinned = 0; - struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); - - cpumask_copy(cpus, cpu_active_mask); - - /* - * When power savings policy is enabled for the parent domain, idle - * sibling can pick up load irrespective of busy siblings. In this case, - * let the state of idle sibling percolate up as IDLE, instead of - * portraying it as CPU_NOT_IDLE. - */ - if (sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - sd_idle = 1; - - schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); -redo: - update_shares_locked(this_rq, sd); - group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, - &sd_idle, cpus, NULL); - if (!group) { - schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); - goto out_balanced; - } - - busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); - if (!busiest) { - schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); - goto out_balanced; - } - - BUG_ON(busiest == this_rq); - - schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); - - ld_moved = 0; - if (busiest->nr_running > 1) { - /* Attempt to move tasks */ - double_lock_balance(this_rq, busiest); - /* this_rq->clock is already updated */ - update_rq_clock(busiest); - ld_moved = move_tasks(this_rq, this_cpu, busiest, - imbalance, sd, CPU_NEWLY_IDLE, - &all_pinned); - double_unlock_balance(this_rq, busiest); - - if (unlikely(all_pinned)) { - cpumask_clear_cpu(cpu_of(busiest), cpus); - if (!cpumask_empty(cpus)) - goto redo; - } - } - - if (!ld_moved) { - int active_balance = 0; - - schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); - if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - return -1; - - if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) - return -1; - - if (sd->nr_balance_failed++ < 2) - return -1; - - /* - * The only task running in a non-idle cpu can be moved to this - * cpu in an attempt to completely freeup the other CPU - * package. The same method used to move task in load_balance() - * have been extended for load_balance_newidle() to speedup - * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) - * - * The package power saving logic comes from - * find_busiest_group(). If there are no imbalance, then - * f_b_g() will return NULL. However when sched_mc={1,2} then - * f_b_g() will select a group from which a running task may be - * pulled to this cpu in order to make the other package idle. - * If there is no opportunity to make a package idle and if - * there are no imbalance, then f_b_g() will return NULL and no - * action will be taken in load_balance_newidle(). - * - * Under normal task pull operation due to imbalance, there - * will be more than one task in the source run queue and - * move_tasks() will succeed. ld_moved will be true and this - * active balance code will not be triggered. - */ - - /* Lock busiest in correct order while this_rq is held */ - double_lock_balance(this_rq, busiest); - - /* - * don't kick the migration_thread, if the curr - * task on busiest cpu can't be moved to this_cpu - */ - if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { - double_unlock_balance(this_rq, busiest); - all_pinned = 1; - return ld_moved; - } - - if (!busiest->active_balance) { - busiest->active_balance = 1; - busiest->push_cpu = this_cpu; - active_balance = 1; - } - - double_unlock_balance(this_rq, busiest); - /* - * Should not call ttwu while holding a rq->lock - */ - raw_spin_unlock(&this_rq->lock); - if (active_balance) - wake_up_process(busiest->migration_thread); - raw_spin_lock(&this_rq->lock); - - } else - sd->nr_balance_failed = 0; - - update_shares_locked(this_rq, sd); - return ld_moved; - -out_balanced: - schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); - if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - return -1; - sd->nr_balance_failed = 0; - - return 0; -} - -/* - * idle_balance is called by schedule() if this_cpu is about to become - * idle. Attempts to pull tasks from other CPUs. - */ -static void idle_balance(int this_cpu, struct rq *this_rq) -{ - struct sched_domain *sd; - int pulled_task = 0; - unsigned long next_balance = jiffies + HZ; - - this_rq->idle_stamp = this_rq->clock; - - if (this_rq->avg_idle < sysctl_sched_migration_cost) - return; - - for_each_domain(this_cpu, sd) { - unsigned long interval; - - if (!(sd->flags & SD_LOAD_BALANCE)) - continue; - - if (sd->flags & SD_BALANCE_NEWIDLE) - /* If we've pulled tasks over stop searching: */ - pulled_task = load_balance_newidle(this_cpu, this_rq, - sd); - - interval = msecs_to_jiffies(sd->balance_interval); - if (time_after(next_balance, sd->last_balance + interval)) - next_balance = sd->last_balance + interval; - if (pulled_task) { - this_rq->idle_stamp = 0; - break; - } - } - if (pulled_task || time_after(jiffies, this_rq->next_balance)) { - /* - * We are going idle. next_balance may be set based on - * a busy processor. So reset next_balance. - */ - this_rq->next_balance = next_balance; - } -} - -/* - * active_load_balance is run by migration threads. It pushes running tasks - * off the busiest CPU onto idle CPUs. It requires at least 1 task to be - * running on each physical CPU where possible, and avoids physical / - * logical imbalances. - * - * Called with busiest_rq locked. - */ -static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) -{ - int target_cpu = busiest_rq->push_cpu; - struct sched_domain *sd; - struct rq *target_rq; - - /* Is there any task to move? */ - if (busiest_rq->nr_running <= 1) - return; - - target_rq = cpu_rq(target_cpu); - - /* - * This condition is "impossible", if it occurs - * we need to fix it. Originally reported by - * Bjorn Helgaas on a 128-cpu setup. - */ - BUG_ON(busiest_rq == target_rq); - - /* move a task from busiest_rq to target_rq */ - double_lock_balance(busiest_rq, target_rq); - update_rq_clock(busiest_rq); - update_rq_clock(target_rq); - - /* Search for an sd spanning us and the target CPU. */ - for_each_domain(target_cpu, sd) { - if ((sd->flags & SD_LOAD_BALANCE) && - cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) - break; - } - - if (likely(sd)) { - schedstat_inc(sd, alb_count); - - if (move_one_task(target_rq, target_cpu, busiest_rq, - sd, CPU_IDLE)) - schedstat_inc(sd, alb_pushed); - else - schedstat_inc(sd, alb_failed); - } - double_unlock_balance(busiest_rq, target_rq); -} - -#ifdef CONFIG_NO_HZ -static struct { - atomic_t load_balancer; - cpumask_var_t cpu_mask; - cpumask_var_t ilb_grp_nohz_mask; -} nohz ____cacheline_aligned = { - .load_balancer = ATOMIC_INIT(-1), -}; - -int get_nohz_load_balancer(void) -{ - return atomic_read(&nohz.load_balancer); -} - -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -/** - * lowest_flag_domain - Return lowest sched_domain containing flag. - * @cpu: The cpu whose lowest level of sched domain is to - * be returned. - * @flag: The flag to check for the lowest sched_domain - * for the given cpu. - * - * Returns the lowest sched_domain of a cpu which contains the given flag. - */ -static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) -{ - struct sched_domain *sd; - - for_each_domain(cpu, sd) - if (sd && (sd->flags & flag)) - break; - - return sd; -} - -/** - * for_each_flag_domain - Iterates over sched_domains containing the flag. - * @cpu: The cpu whose domains we're iterating over. - * @sd: variable holding the value of the power_savings_sd - * for cpu. - * @flag: The flag to filter the sched_domains to be iterated. - * - * Iterates over all the scheduler domains for a given cpu that has the 'flag' - * set, starting from the lowest sched_domain to the highest. - */ -#define for_each_flag_domain(cpu, sd, flag) \ - for (sd = lowest_flag_domain(cpu, flag); \ - (sd && (sd->flags & flag)); sd = sd->parent) - -/** - * is_semi_idle_group - Checks if the given sched_group is semi-idle. - * @ilb_group: group to be checked for semi-idleness - * - * Returns: 1 if the group is semi-idle. 0 otherwise. - * - * We define a sched_group to be semi idle if it has atleast one idle-CPU - * and atleast one non-idle CPU. This helper function checks if the given - * sched_group is semi-idle or not. - */ -static inline int is_semi_idle_group(struct sched_group *ilb_group) -{ - cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, - sched_group_cpus(ilb_group)); - - /* - * A sched_group is semi-idle when it has atleast one busy cpu - * and atleast one idle cpu. - */ - if (cpumask_empty(nohz.ilb_grp_nohz_mask)) - return 0; - - if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) - return 0; - - return 1; -} -/** - * find_new_ilb - Finds the optimum idle load balancer for nomination. - * @cpu: The cpu which is nominating a new idle_load_balancer. - * - * Returns: Returns the id of the idle load balancer if it exists, - * Else, returns >= nr_cpu_ids. - * - * This algorithm picks the idle load balancer such that it belongs to a - * semi-idle powersavings sched_domain. The idea is to try and avoid - * completely idle packages/cores just for the purpose of idle load balancing - * when there are other idle cpu's which are better suited for that job. - */ -static int find_new_ilb(int cpu) -{ - struct sched_domain *sd; - struct sched_group *ilb_group; - - /* - * Have idle load balancer selection from semi-idle packages only - * when power-aware load balancing is enabled - */ - if (!(sched_smt_power_savings || sched_mc_power_savings)) - goto out_done; - - /* - * Optimize for the case when we have no idle CPUs or only one - * idle CPU. Don't walk the sched_domain hierarchy in such cases - */ - if (cpumask_weight(nohz.cpu_mask) < 2) - goto out_done; - - for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { - ilb_group = sd->groups; - - do { - if (is_semi_idle_group(ilb_group)) - return cpumask_first(nohz.ilb_grp_nohz_mask); - - ilb_group = ilb_group->next; - - } while (ilb_group != sd->groups); - } - -out_done: - return cpumask_first(nohz.cpu_mask); -} -#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ -static inline int find_new_ilb(int call_cpu) -{ - return cpumask_first(nohz.cpu_mask); -} -#endif - -/* - * This routine will try to nominate the ilb (idle load balancing) - * owner among the cpus whose ticks are stopped. ilb owner will do the idle - * load balancing on behalf of all those cpus. If all the cpus in the system - * go into this tickless mode, then there will be no ilb owner (as there is - * no need for one) and all the cpus will sleep till the next wakeup event - * arrives... - * - * For the ilb owner, tick is not stopped. And this tick will be used - * for idle load balancing. ilb owner will still be part of - * nohz.cpu_mask.. - * - * While stopping the tick, this cpu will become the ilb owner if there - * is no other owner. And will be the owner till that cpu becomes busy - * or if all cpus in the system stop their ticks at which point - * there is no need for ilb owner. - * - * When the ilb owner becomes busy, it nominates another owner, during the - * next busy scheduler_tick() - */ -int select_nohz_load_balancer(int stop_tick) -{ - int cpu = smp_processor_id(); - - if (stop_tick) { - cpu_rq(cpu)->in_nohz_recently = 1; - - if (!cpu_active(cpu)) { - if (atomic_read(&nohz.load_balancer) != cpu) - return 0; - - /* - * If we are going offline and still the leader, - * give up! - */ - if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) - BUG(); - - return 0; - } - - cpumask_set_cpu(cpu, nohz.cpu_mask); - - /* time for ilb owner also to sleep */ - if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { - if (atomic_read(&nohz.load_balancer) == cpu) - atomic_set(&nohz.load_balancer, -1); - return 0; - } - - if (atomic_read(&nohz.load_balancer) == -1) { - /* make me the ilb owner */ - if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) - return 1; - } else if (atomic_read(&nohz.load_balancer) == cpu) { - int new_ilb; - - if (!(sched_smt_power_savings || - sched_mc_power_savings)) - return 1; - /* - * Check to see if there is a more power-efficient - * ilb. - */ - new_ilb = find_new_ilb(cpu); - if (new_ilb < nr_cpu_ids && new_ilb != cpu) { - atomic_set(&nohz.load_balancer, -1); - resched_cpu(new_ilb); - return 0; - } - return 1; - } - } else { - if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) - return 0; - - cpumask_clear_cpu(cpu, nohz.cpu_mask); - - if (atomic_read(&nohz.load_balancer) == cpu) - if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) - BUG(); - } - return 0; -} -#endif - -static DEFINE_SPINLOCK(balancing); - -/* - * It checks each scheduling domain to see if it is due to be balanced, - * and initiates a balancing operation if so. - * - * Balancing parameters are set up in arch_init_sched_domains. - */ -static void rebalance_domains(int cpu, enum cpu_idle_type idle) -{ - int balance = 1; - struct rq *rq = cpu_rq(cpu); - unsigned long interval; - struct sched_domain *sd; - /* Earliest time when we have to do rebalance again */ - unsigned long next_balance = jiffies + 60*HZ; - int update_next_balance = 0; - int need_serialize; - - for_each_domain(cpu, sd) { - if (!(sd->flags & SD_LOAD_BALANCE)) - continue; - - interval = sd->balance_interval; - if (idle != CPU_IDLE) - interval *= sd->busy_factor; - - /* scale ms to jiffies */ - interval = msecs_to_jiffies(interval); - if (unlikely(!interval)) - interval = 1; - if (interval > HZ*NR_CPUS/10) - interval = HZ*NR_CPUS/10; - - need_serialize = sd->flags & SD_SERIALIZE; - - if (need_serialize) { - if (!spin_trylock(&balancing)) - goto out; - } - - if (time_after_eq(jiffies, sd->last_balance + interval)) { - if (load_balance(cpu, rq, sd, idle, &balance)) { - /* - * We've pulled tasks over so either we're no - * longer idle, or one of our SMT siblings is - * not idle. - */ - idle = CPU_NOT_IDLE; - } - sd->last_balance = jiffies; - } - if (need_serialize) - spin_unlock(&balancing); -out: - if (time_after(next_balance, sd->last_balance + interval)) { - next_balance = sd->last_balance + interval; - update_next_balance = 1; - } - - /* - * Stop the load balance at this level. There is another - * CPU in our sched group which is doing load balancing more - * actively. - */ - if (!balance) - break; - } - - /* - * next_balance will be updated only when there is a need. - * When the cpu is attached to null domain for ex, it will not be - * updated. - */ - if (likely(update_next_balance)) - rq->next_balance = next_balance; -} - -/* - * run_rebalance_domains is triggered when needed from the scheduler tick. - * In CONFIG_NO_HZ case, the idle load balance owner will do the - * rebalancing for all the cpus for whom scheduler ticks are stopped. - */ -static void run_rebalance_domains(struct softirq_action *h) -{ - int this_cpu = smp_processor_id(); - struct rq *this_rq = cpu_rq(this_cpu); - enum cpu_idle_type idle = this_rq->idle_at_tick ? - CPU_IDLE : CPU_NOT_IDLE; - - rebalance_domains(this_cpu, idle); - -#ifdef CONFIG_NO_HZ - /* - * If this cpu is the owner for idle load balancing, then do the - * balancing on behalf of the other idle cpus whose ticks are - * stopped. - */ - if (this_rq->idle_at_tick && - atomic_read(&nohz.load_balancer) == this_cpu) { - struct rq *rq; - int balance_cpu; - - for_each_cpu(balance_cpu, nohz.cpu_mask) { - if (balance_cpu == this_cpu) - continue; - - /* - * If this cpu gets work to do, stop the load balancing - * work being done for other cpus. Next load - * balancing owner will pick it up. - */ - if (need_resched()) - break; - - rebalance_domains(balance_cpu, CPU_IDLE); - - rq = cpu_rq(balance_cpu); - if (time_after(this_rq->next_balance, rq->next_balance)) - this_rq->next_balance = rq->next_balance; - } - } -#endif -} - -static inline int on_null_domain(int cpu) -{ - return !rcu_dereference(cpu_rq(cpu)->sd); -} - -/* - * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. - * - * In case of CONFIG_NO_HZ, this is the place where we nominate a new - * idle load balancing owner or decide to stop the periodic load balancing, - * if the whole system is idle. - */ -static inline void trigger_load_balance(struct rq *rq, int cpu) -{ -#ifdef CONFIG_NO_HZ - /* - * If we were in the nohz mode recently and busy at the current - * scheduler tick, then check if we need to nominate new idle - * load balancer. - */ - if (rq->in_nohz_recently && !rq->idle_at_tick) { - rq->in_nohz_recently = 0; - - if (atomic_read(&nohz.load_balancer) == cpu) { - cpumask_clear_cpu(cpu, nohz.cpu_mask); - atomic_set(&nohz.load_balancer, -1); - } - - if (atomic_read(&nohz.load_balancer) == -1) { - int ilb = find_new_ilb(cpu); - - if (ilb < nr_cpu_ids) - resched_cpu(ilb); - } - } - - /* - * If this cpu is idle and doing idle load balancing for all the - * cpus with ticks stopped, is it time for that to stop? - */ - if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && - cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { - resched_cpu(cpu); - return; - } - - /* - * If this cpu is idle and the idle load balancing is done by - * someone else, then no need raise the SCHED_SOFTIRQ - */ - if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && - cpumask_test_cpu(cpu, nohz.cpu_mask)) - return; -#endif - /* Don't need to rebalance while attached to NULL domain */ - if (time_after_eq(jiffies, rq->next_balance) && - likely(!on_null_domain(cpu))) - raise_softirq(SCHED_SOFTIRQ); -} - -#else /* CONFIG_SMP */ - -/* - * on UP we do not need to balance between CPUs: - */ -static inline void idle_balance(int cpu, struct rq *rq) -{ -} - #endif DEFINE_PER_CPU(struct kernel_stat, kstat); @@ -6060,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) unsigned long flags; int oldprio, on_rq, running; struct rq *rq; - const struct sched_class *prev_class = p->sched_class; + const struct sched_class *prev_class; BUG_ON(prio < 0 || prio > MAX_PRIO); @@ -6068,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) update_rq_clock(rq); oldprio = p->prio; + prev_class = p->sched_class; on_rq = p->se.on_rq; running = task_current(rq, p); if (on_rq) @@ -6085,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) if (running) p->sched_class->set_curr_task(rq); if (on_rq) { - enqueue_task(rq, p, 0); + enqueue_task(rq, p, 0, oldprio < prio); check_class_changed(rq, p, prev_class, oldprio, running); } @@ -6129,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice) delta = p->prio - old_prio; if (on_rq) { - enqueue_task(rq, p, 0); + enqueue_task(rq, p, 0, false); /* * If the task increased its priority or is running and * lowered its priority, then reschedule its CPU: @@ -6152,7 +4353,7 @@ int can_nice(const struct task_struct *p, const int nice) /* convert nice value [19,-20] to rlimit style value [1,40] */ int nice_rlim = 20 - nice; - return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || + return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || capable(CAP_SYS_NICE)); } @@ -6287,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy, { int retval, oldprio, oldpolicy = -1, on_rq, running; unsigned long flags; - const struct sched_class *prev_class = p->sched_class; + const struct sched_class *prev_class; struct rq *rq; int reset_on_fork; @@ -6329,7 +4530,7 @@ recheck: if (!lock_task_sighand(p, &flags)) return -ESRCH; - rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; + rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); unlock_task_sighand(p, &flags); /* can't set/change the rt policy */ @@ -6401,6 +4602,7 @@ recheck: p->sched_reset_on_fork = reset_on_fork; oldprio = p->prio; + prev_class = p->sched_class; __setscheduler(rq, p, policy, param->sched_priority); if (running) @@ -7151,27 +5353,8 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) struct rq *rq; int ret = 0; - /* - * Since we rely on wake-ups to migrate sleeping tasks, don't change - * the ->cpus_allowed mask from under waking tasks, which would be - * possible when we change rq->lock in ttwu(), so synchronize against - * TASK_WAKING to avoid that. - * - * Make an exception for freshly cloned tasks, since cpuset namespaces - * might move the task about, we have to validate the target in - * wake_up_new_task() anyway since the cpu might have gone away. - */ -again: - while (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) - cpu_relax(); - rq = task_rq_lock(p, &flags); - if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) { - task_rq_unlock(rq, &flags); - goto again; - } - if (!cpumask_intersects(new_mask, cpu_active_mask)) { ret = -EINVAL; goto out; @@ -9223,11 +7406,13 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) #ifdef CONFIG_SCHED_MC static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, + struct sysdev_class_attribute *attr, char *page) { return sprintf(page, "%u\n", sched_mc_power_savings); } static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, + struct sysdev_class_attribute *attr, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 0); @@ -9239,11 +7424,13 @@ static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, #ifdef CONFIG_SCHED_SMT static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, + struct sysdev_class_attribute *attr, char *page) { return sprintf(page, "%u\n", sched_smt_power_savings); } static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, + struct sysdev_class_attribute *attr, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 1); @@ -9458,7 +7645,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, tg->rt_rq[cpu] = rt_rq; init_rt_rq(rt_rq, rq); rt_rq->tg = tg; - rt_rq->rt_se = rt_se; rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; if (add) list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); @@ -9489,9 +7675,6 @@ void __init sched_init(void) #ifdef CONFIG_RT_GROUP_SCHED alloc_size += 2 * nr_cpu_ids * sizeof(void **); #endif -#ifdef CONFIG_USER_SCHED - alloc_size *= 2; -#endif #ifdef CONFIG_CPUMASK_OFFSTACK alloc_size += num_possible_cpus() * cpumask_size(); #endif @@ -9505,13 +7688,6 @@ void __init sched_init(void) init_task_group.cfs_rq = (struct cfs_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); -#ifdef CONFIG_USER_SCHED - root_task_group.se = (struct sched_entity **)ptr; - ptr += nr_cpu_ids * sizeof(void **); - - root_task_group.cfs_rq = (struct cfs_rq **)ptr; - ptr += nr_cpu_ids * sizeof(void **); -#endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED init_task_group.rt_se = (struct sched_rt_entity **)ptr; @@ -9520,13 +7696,6 @@ void __init sched_init(void) init_task_group.rt_rq = (struct rt_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); -#ifdef CONFIG_USER_SCHED - root_task_group.rt_se = (struct sched_rt_entity **)ptr; - ptr += nr_cpu_ids * sizeof(void **); - - root_task_group.rt_rq = (struct rt_rq **)ptr; - ptr += nr_cpu_ids * sizeof(void **); -#endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_CPUMASK_OFFSTACK for_each_possible_cpu(i) { @@ -9546,22 +7715,13 @@ void __init sched_init(void) #ifdef CONFIG_RT_GROUP_SCHED init_rt_bandwidth(&init_task_group.rt_bandwidth, global_rt_period(), global_rt_runtime()); -#ifdef CONFIG_USER_SCHED - init_rt_bandwidth(&root_task_group.rt_bandwidth, - global_rt_period(), RUNTIME_INF); -#endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */ -#ifdef CONFIG_GROUP_SCHED +#ifdef CONFIG_CGROUP_SCHED list_add(&init_task_group.list, &task_groups); INIT_LIST_HEAD(&init_task_group.children); -#ifdef CONFIG_USER_SCHED - INIT_LIST_HEAD(&root_task_group.children); - init_task_group.parent = &root_task_group; - list_add(&init_task_group.siblings, &root_task_group.children); -#endif /* CONFIG_USER_SCHED */ -#endif /* CONFIG_GROUP_SCHED */ +#endif /* CONFIG_CGROUP_SCHED */ #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), @@ -9601,25 +7761,6 @@ void __init sched_init(void) * directly in rq->cfs (i.e init_task_group->se[] = NULL). */ init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); -#elif defined CONFIG_USER_SCHED - root_task_group.shares = NICE_0_LOAD; - init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); - /* - * In case of task-groups formed thr' the user id of tasks, - * init_task_group represents tasks belonging to root user. - * Hence it forms a sibling of all subsequent groups formed. - * In this case, init_task_group gets only a fraction of overall - * system cpu resource, based on the weight assigned to root - * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished - * by letting tasks of init_task_group sit in a separate cfs_rq - * (init_tg_cfs_rq) and having one entity represent this group of - * tasks in rq->cfs (i.e init_task_group->se[] != NULL). - */ - init_tg_cfs_entry(&init_task_group, - &per_cpu(init_tg_cfs_rq, i), - &per_cpu(init_sched_entity, i), i, 1, - root_task_group.se[i]); - #endif #endif /* CONFIG_FAIR_GROUP_SCHED */ @@ -9628,12 +7769,6 @@ void __init sched_init(void) INIT_LIST_HEAD(&rq->leaf_rt_rq_list); #ifdef CONFIG_CGROUP_SCHED init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); -#elif defined CONFIG_USER_SCHED - init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); - init_tg_rt_entry(&init_task_group, - &per_cpu(init_rt_rq_var, i), - &per_cpu(init_sched_rt_entity, i), i, 1, - root_task_group.rt_se[i]); #endif #endif @@ -9718,7 +7853,7 @@ static inline int preempt_count_equals(int preempt_offset) return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); } -void __might_sleep(char *file, int line, int preempt_offset) +void __might_sleep(const char *file, int line, int preempt_offset) { #ifdef in_atomic static unsigned long prev_jiffy; /* ratelimiting */ @@ -10029,7 +8164,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) } #endif /* CONFIG_RT_GROUP_SCHED */ -#ifdef CONFIG_GROUP_SCHED +#ifdef CONFIG_CGROUP_SCHED static void free_sched_group(struct task_group *tg) { free_fair_sched_group(tg); @@ -10134,11 +8269,11 @@ void sched_move_task(struct task_struct *tsk) if (unlikely(running)) tsk->sched_class->set_curr_task(rq); if (on_rq) - enqueue_task(rq, tsk, 0); + enqueue_task(rq, tsk, 0, false); task_rq_unlock(rq, &flags); } -#endif /* CONFIG_GROUP_SCHED */ +#endif /* CONFIG_CGROUP_SCHED */ #ifdef CONFIG_FAIR_GROUP_SCHED static void __set_se_shares(struct sched_entity *se, unsigned long shares) @@ -10280,13 +8415,6 @@ static int tg_schedulable(struct task_group *tg, void *data) runtime = d->rt_runtime; } -#ifdef CONFIG_USER_SCHED - if (tg == &root_task_group) { - period = global_rt_period(); - runtime = global_rt_runtime(); - } -#endif - /* * Cannot have more runtime than the period. */ @@ -10689,7 +8817,7 @@ struct cgroup_subsys cpu_cgroup_subsys = { struct cpuacct { struct cgroup_subsys_state css; /* cpuusage holds pointer to a u64-type object on every cpu */ - u64 *cpuusage; + u64 __percpu *cpuusage; struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; struct cpuacct *parent; }; @@ -10906,12 +9034,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) } /* + * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large + * in cputime_t units. As a result, cpuacct_update_stats calls + * percpu_counter_add with values large enough to always overflow the + * per cpu batch limit causing bad SMP scalability. + * + * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we + * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled + * and enabled. We cap it at INT_MAX which is the largest allowed batch value. + */ +#ifdef CONFIG_SMP +#define CPUACCT_BATCH \ + min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) +#else +#define CPUACCT_BATCH 0 +#endif + +/* * Charge the system/user time to the task's accounting group. */ static void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val) { struct cpuacct *ca; + int batch = CPUACCT_BATCH; if (unlikely(!cpuacct_subsys.active)) return; @@ -10920,7 +9066,7 @@ static void cpuacct_update_stats(struct task_struct *tsk, ca = task_ca(tsk); do { - percpu_counter_add(&ca->cpustat[idx], val); + __percpu_counter_add(&ca->cpustat[idx], val, batch); ca = ca->parent; } while (ca); rcu_read_unlock(); diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c index 597b330..82095bf 100644 --- a/kernel/sched_cpupri.c +++ b/kernel/sched_cpupri.c @@ -47,9 +47,7 @@ static int convert_prio(int prio) } #define for_each_cpupri_active(array, idx) \ - for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \ - idx < CPUPRI_NR_PRIORITIES; \ - idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1)) + for_each_set_bit(idx, array, CPUPRI_NR_PRIORITIES) /** * cpupri_find - find the best (lowest-pri) CPU in the system diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 8fe7ee8..3e1fd96 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c @@ -1053,7 +1053,8 @@ static inline void hrtick_update(struct rq *rq) * increased. Here we update the fair scheduling stats and * then put the task into the rbtree: */ -static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) +static void +enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) { struct cfs_rq *cfs_rq; struct sched_entity *se = &p->se; @@ -1815,57 +1816,164 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) */ /* - * Load-balancing iterator. Note: while the runqueue stays locked - * during the whole iteration, the current task might be - * dequeued so the iterator has to be dequeue-safe. Here we - * achieve that by always pre-iterating before returning - * the current task: + * pull_task - move a task from a remote runqueue to the local runqueue. + * Both runqueues must be locked. */ -static struct task_struct * -__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) +static void pull_task(struct rq *src_rq, struct task_struct *p, + struct rq *this_rq, int this_cpu) { - struct task_struct *p = NULL; - struct sched_entity *se; + deactivate_task(src_rq, p, 0); + set_task_cpu(p, this_cpu); + activate_task(this_rq, p, 0); + check_preempt_curr(this_rq, p, 0); +} - if (next == &cfs_rq->tasks) - return NULL; +/* + * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? + */ +static +int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, + struct sched_domain *sd, enum cpu_idle_type idle, + int *all_pinned) +{ + int tsk_cache_hot = 0; + /* + * We do not migrate tasks that are: + * 1) running (obviously), or + * 2) cannot be migrated to this CPU due to cpus_allowed, or + * 3) are cache-hot on their current CPU. + */ + if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { + schedstat_inc(p, se.nr_failed_migrations_affine); + return 0; + } + *all_pinned = 0; - se = list_entry(next, struct sched_entity, group_node); - p = task_of(se); - cfs_rq->balance_iterator = next->next; + if (task_running(rq, p)) { + schedstat_inc(p, se.nr_failed_migrations_running); + return 0; + } - return p; -} + /* + * Aggressive migration if: + * 1) task is cache cold, or + * 2) too many balance attempts have failed. + */ -static struct task_struct *load_balance_start_fair(void *arg) -{ - struct cfs_rq *cfs_rq = arg; + tsk_cache_hot = task_hot(p, rq->clock, sd); + if (!tsk_cache_hot || + sd->nr_balance_failed > sd->cache_nice_tries) { +#ifdef CONFIG_SCHEDSTATS + if (tsk_cache_hot) { + schedstat_inc(sd, lb_hot_gained[idle]); + schedstat_inc(p, se.nr_forced_migrations); + } +#endif + return 1; + } - return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); + if (tsk_cache_hot) { + schedstat_inc(p, se.nr_failed_migrations_hot); + return 0; + } + return 1; } -static struct task_struct *load_balance_next_fair(void *arg) +/* + * move_one_task tries to move exactly one task from busiest to this_rq, as + * part of active balancing operations within "domain". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int +move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, + struct sched_domain *sd, enum cpu_idle_type idle) { - struct cfs_rq *cfs_rq = arg; + struct task_struct *p, *n; + struct cfs_rq *cfs_rq; + int pinned = 0; + + for_each_leaf_cfs_rq(busiest, cfs_rq) { + list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { + + if (!can_migrate_task(p, busiest, this_cpu, + sd, idle, &pinned)) + continue; - return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); + pull_task(busiest, p, this_rq, this_cpu); + /* + * Right now, this is only the second place pull_task() + * is called, so we can safely collect pull_task() + * stats here rather than inside pull_task(). + */ + schedstat_inc(sd, lb_gained[idle]); + return 1; + } + } + + return 0; } static unsigned long -__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, struct sched_domain *sd, - enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, - struct cfs_rq *cfs_rq) +balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, + unsigned long max_load_move, struct sched_domain *sd, + enum cpu_idle_type idle, int *all_pinned, + int *this_best_prio, struct cfs_rq *busiest_cfs_rq) { - struct rq_iterator cfs_rq_iterator; + int loops = 0, pulled = 0, pinned = 0; + long rem_load_move = max_load_move; + struct task_struct *p, *n; - cfs_rq_iterator.start = load_balance_start_fair; - cfs_rq_iterator.next = load_balance_next_fair; - cfs_rq_iterator.arg = cfs_rq; + if (max_load_move == 0) + goto out; - return balance_tasks(this_rq, this_cpu, busiest, - max_load_move, sd, idle, all_pinned, - this_best_prio, &cfs_rq_iterator); + pinned = 1; + + list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { + if (loops++ > sysctl_sched_nr_migrate) + break; + + if ((p->se.load.weight >> 1) > rem_load_move || + !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) + continue; + + pull_task(busiest, p, this_rq, this_cpu); + pulled++; + rem_load_move -= p->se.load.weight; + +#ifdef CONFIG_PREEMPT + /* + * NEWIDLE balancing is a source of latency, so preemptible + * kernels will stop after the first task is pulled to minimize + * the critical section. + */ + if (idle == CPU_NEWLY_IDLE) + break; +#endif + + /* + * We only want to steal up to the prescribed amount of + * weighted load. + */ + if (rem_load_move <= 0) + break; + + if (p->prio < *this_best_prio) + *this_best_prio = p->prio; + } +out: + /* + * Right now, this is one of only two places pull_task() is called, + * so we can safely collect pull_task() stats here rather than + * inside pull_task(). + */ + schedstat_add(sd, lb_gained[idle], pulled); + + if (all_pinned) + *all_pinned = pinned; + + return max_load_move - rem_load_move; } #ifdef CONFIG_FAIR_GROUP_SCHED @@ -1897,9 +2005,9 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, rem_load = (u64)rem_load_move * busiest_weight; rem_load = div_u64(rem_load, busiest_h_load + 1); - moved_load = __load_balance_fair(this_rq, this_cpu, busiest, + moved_load = balance_tasks(this_rq, this_cpu, busiest, rem_load, sd, idle, all_pinned, this_best_prio, - tg->cfs_rq[busiest_cpu]); + busiest_cfs_rq); if (!moved_load) continue; @@ -1922,35 +2030,1509 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned, int *this_best_prio) { - return __load_balance_fair(this_rq, this_cpu, busiest, + return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd, idle, all_pinned, this_best_prio, &busiest->cfs); } #endif -static int -move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle) +/* + * move_tasks tries to move up to max_load_move weighted load from busiest to + * this_rq, as part of a balancing operation within domain "sd". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, + unsigned long max_load_move, + struct sched_domain *sd, enum cpu_idle_type idle, + int *all_pinned) { - struct cfs_rq *busy_cfs_rq; - struct rq_iterator cfs_rq_iterator; + unsigned long total_load_moved = 0, load_moved; + int this_best_prio = this_rq->curr->prio; - cfs_rq_iterator.start = load_balance_start_fair; - cfs_rq_iterator.next = load_balance_next_fair; + do { + load_moved = load_balance_fair(this_rq, this_cpu, busiest, + max_load_move - total_load_moved, + sd, idle, all_pinned, &this_best_prio); - for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { + total_load_moved += load_moved; + +#ifdef CONFIG_PREEMPT /* - * pass busy_cfs_rq argument into - * load_balance_[start|next]_fair iterators + * NEWIDLE balancing is a source of latency, so preemptible + * kernels will stop after the first task is pulled to minimize + * the critical section. */ - cfs_rq_iterator.arg = busy_cfs_rq; - if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, - &cfs_rq_iterator)) - return 1; + if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) + break; + + if (raw_spin_is_contended(&this_rq->lock) || + raw_spin_is_contended(&busiest->lock)) + break; +#endif + } while (load_moved && max_load_move > total_load_moved); + + return total_load_moved > 0; +} + +/********** Helpers for find_busiest_group ************************/ +/* + * sd_lb_stats - Structure to store the statistics of a sched_domain + * during load balancing. + */ +struct sd_lb_stats { + struct sched_group *busiest; /* Busiest group in this sd */ + struct sched_group *this; /* Local group in this sd */ + unsigned long total_load; /* Total load of all groups in sd */ + unsigned long total_pwr; /* Total power of all groups in sd */ + unsigned long avg_load; /* Average load across all groups in sd */ + + /** Statistics of this group */ + unsigned long this_load; + unsigned long this_load_per_task; + unsigned long this_nr_running; + + /* Statistics of the busiest group */ + unsigned long max_load; + unsigned long busiest_load_per_task; + unsigned long busiest_nr_running; + unsigned long busiest_group_capacity; + + int group_imb; /* Is there imbalance in this sd */ +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + int power_savings_balance; /* Is powersave balance needed for this sd */ + struct sched_group *group_min; /* Least loaded group in sd */ + struct sched_group *group_leader; /* Group which relieves group_min */ + unsigned long min_load_per_task; /* load_per_task in group_min */ + unsigned long leader_nr_running; /* Nr running of group_leader */ + unsigned long min_nr_running; /* Nr running of group_min */ +#endif +}; + +/* + * sg_lb_stats - stats of a sched_group required for load_balancing + */ +struct sg_lb_stats { + unsigned long avg_load; /*Avg load across the CPUs of the group */ + unsigned long group_load; /* Total load over the CPUs of the group */ + unsigned long sum_nr_running; /* Nr tasks running in the group */ + unsigned long sum_weighted_load; /* Weighted load of group's tasks */ + unsigned long group_capacity; + int group_imb; /* Is there an imbalance in the group ? */ +}; + +/** + * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. + * @group: The group whose first cpu is to be returned. + */ +static inline unsigned int group_first_cpu(struct sched_group *group) +{ + return cpumask_first(sched_group_cpus(group)); +} + +/** + * get_sd_load_idx - Obtain the load index for a given sched domain. + * @sd: The sched_domain whose load_idx is to be obtained. + * @idle: The Idle status of the CPU for whose sd load_icx is obtained. + */ +static inline int get_sd_load_idx(struct sched_domain *sd, + enum cpu_idle_type idle) +{ + int load_idx; + + switch (idle) { + case CPU_NOT_IDLE: + load_idx = sd->busy_idx; + break; + + case CPU_NEWLY_IDLE: + load_idx = sd->newidle_idx; + break; + default: + load_idx = sd->idle_idx; + break; } + return load_idx; +} + + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * init_sd_power_savings_stats - Initialize power savings statistics for + * the given sched_domain, during load balancing. + * + * @sd: Sched domain whose power-savings statistics are to be initialized. + * @sds: Variable containing the statistics for sd. + * @idle: Idle status of the CPU at which we're performing load-balancing. + */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + /* + * Busy processors will not participate in power savings + * balance. + */ + if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) + sds->power_savings_balance = 0; + else { + sds->power_savings_balance = 1; + sds->min_nr_running = ULONG_MAX; + sds->leader_nr_running = 0; + } +} + +/** + * update_sd_power_savings_stats - Update the power saving stats for a + * sched_domain while performing load balancing. + * + * @group: sched_group belonging to the sched_domain under consideration. + * @sds: Variable containing the statistics of the sched_domain + * @local_group: Does group contain the CPU for which we're performing + * load balancing ? + * @sgs: Variable containing the statistics of the group. + */ +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ + + if (!sds->power_savings_balance) + return; + + /* + * If the local group is idle or completely loaded + * no need to do power savings balance at this domain + */ + if (local_group && (sds->this_nr_running >= sgs->group_capacity || + !sds->this_nr_running)) + sds->power_savings_balance = 0; + + /* + * If a group is already running at full capacity or idle, + * don't include that group in power savings calculations + */ + if (!sds->power_savings_balance || + sgs->sum_nr_running >= sgs->group_capacity || + !sgs->sum_nr_running) + return; + + /* + * Calculate the group which has the least non-idle load. + * This is the group from where we need to pick up the load + * for saving power + */ + if ((sgs->sum_nr_running < sds->min_nr_running) || + (sgs->sum_nr_running == sds->min_nr_running && + group_first_cpu(group) > group_first_cpu(sds->group_min))) { + sds->group_min = group; + sds->min_nr_running = sgs->sum_nr_running; + sds->min_load_per_task = sgs->sum_weighted_load / + sgs->sum_nr_running; + } + + /* + * Calculate the group which is almost near its + * capacity but still has some space to pick up some load + * from other group and save more power + */ + if (sgs->sum_nr_running + 1 > sgs->group_capacity) + return; + + if (sgs->sum_nr_running > sds->leader_nr_running || + (sgs->sum_nr_running == sds->leader_nr_running && + group_first_cpu(group) < group_first_cpu(sds->group_leader))) { + sds->group_leader = group; + sds->leader_nr_running = sgs->sum_nr_running; + } +} + +/** + * check_power_save_busiest_group - see if there is potential for some power-savings balance + * @sds: Variable containing the statistics of the sched_domain + * under consideration. + * @this_cpu: Cpu at which we're currently performing load-balancing. + * @imbalance: Variable to store the imbalance. + * + * Description: + * Check if we have potential to perform some power-savings balance. + * If yes, set the busiest group to be the least loaded group in the + * sched_domain, so that it's CPUs can be put to idle. + * + * Returns 1 if there is potential to perform power-savings balance. + * Else returns 0. + */ +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + if (!sds->power_savings_balance) + return 0; + + if (sds->this != sds->group_leader || + sds->group_leader == sds->group_min) + return 0; + + *imbalance = sds->min_load_per_task; + sds->busiest = sds->group_min; + + return 1; + +} +#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + return; +} + +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ + return; +} + +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ return 0; } +#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ + + +unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return SCHED_LOAD_SCALE; +} + +unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return default_scale_freq_power(sd, cpu); +} + +unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long smt_gain = sd->smt_gain; + + smt_gain /= weight; + + return smt_gain; +} + +unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) +{ + return default_scale_smt_power(sd, cpu); +} + +unsigned long scale_rt_power(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + u64 total, available; + + sched_avg_update(rq); + + total = sched_avg_period() + (rq->clock - rq->age_stamp); + available = total - rq->rt_avg; + + if (unlikely((s64)total < SCHED_LOAD_SCALE)) + total = SCHED_LOAD_SCALE; + + total >>= SCHED_LOAD_SHIFT; + + return div_u64(available, total); +} + +static void update_cpu_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long power = SCHED_LOAD_SCALE; + struct sched_group *sdg = sd->groups; + + if (sched_feat(ARCH_POWER)) + power *= arch_scale_freq_power(sd, cpu); + else + power *= default_scale_freq_power(sd, cpu); + + power >>= SCHED_LOAD_SHIFT; + + if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { + if (sched_feat(ARCH_POWER)) + power *= arch_scale_smt_power(sd, cpu); + else + power *= default_scale_smt_power(sd, cpu); + + power >>= SCHED_LOAD_SHIFT; + } + + power *= scale_rt_power(cpu); + power >>= SCHED_LOAD_SHIFT; + + if (!power) + power = 1; + + sdg->cpu_power = power; +} + +static void update_group_power(struct sched_domain *sd, int cpu) +{ + struct sched_domain *child = sd->child; + struct sched_group *group, *sdg = sd->groups; + unsigned long power; + + if (!child) { + update_cpu_power(sd, cpu); + return; + } + + power = 0; + + group = child->groups; + do { + power += group->cpu_power; + group = group->next; + } while (group != child->groups); + + sdg->cpu_power = power; +} + +/** + * update_sg_lb_stats - Update sched_group's statistics for load balancing. + * @sd: The sched_domain whose statistics are to be updated. + * @group: sched_group whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @load_idx: Load index of sched_domain of this_cpu for load calc. + * @sd_idle: Idle status of the sched_domain containing group. + * @local_group: Does group contain this_cpu. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sgs: variable to hold the statistics for this group. + */ +static inline void update_sg_lb_stats(struct sched_domain *sd, + struct sched_group *group, int this_cpu, + enum cpu_idle_type idle, int load_idx, int *sd_idle, + int local_group, const struct cpumask *cpus, + int *balance, struct sg_lb_stats *sgs) +{ + unsigned long load, max_cpu_load, min_cpu_load; + int i; + unsigned int balance_cpu = -1, first_idle_cpu = 0; + unsigned long avg_load_per_task = 0; + + if (local_group) + balance_cpu = group_first_cpu(group); + + /* Tally up the load of all CPUs in the group */ + max_cpu_load = 0; + min_cpu_load = ~0UL; + + for_each_cpu_and(i, sched_group_cpus(group), cpus) { + struct rq *rq = cpu_rq(i); + + if (*sd_idle && rq->nr_running) + *sd_idle = 0; + + /* Bias balancing toward cpus of our domain */ + if (local_group) { + if (idle_cpu(i) && !first_idle_cpu) { + first_idle_cpu = 1; + balance_cpu = i; + } + + load = target_load(i, load_idx); + } else { + load = source_load(i, load_idx); + if (load > max_cpu_load) + max_cpu_load = load; + if (min_cpu_load > load) + min_cpu_load = load; + } + + sgs->group_load += load; + sgs->sum_nr_running += rq->nr_running; + sgs->sum_weighted_load += weighted_cpuload(i); + + } + + /* + * First idle cpu or the first cpu(busiest) in this sched group + * is eligible for doing load balancing at this and above + * domains. In the newly idle case, we will allow all the cpu's + * to do the newly idle load balance. + */ + if (idle != CPU_NEWLY_IDLE && local_group && + balance_cpu != this_cpu) { + *balance = 0; + return; + } + + update_group_power(sd, this_cpu); + + /* Adjust by relative CPU power of the group */ + sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; + + /* + * Consider the group unbalanced when the imbalance is larger + * than the average weight of two tasks. + * + * APZ: with cgroup the avg task weight can vary wildly and + * might not be a suitable number - should we keep a + * normalized nr_running number somewhere that negates + * the hierarchy? + */ + if (sgs->sum_nr_running) + avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; + + if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) + sgs->group_imb = 1; + + sgs->group_capacity = + DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); +} + +/** + * update_sd_lb_stats - Update sched_group's statistics for load balancing. + * @sd: sched_domain whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @sd_idle: Idle status of the sched_domain containing group. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sds: variable to hold the statistics for this sched_domain. + */ +static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, + enum cpu_idle_type idle, int *sd_idle, + const struct cpumask *cpus, int *balance, + struct sd_lb_stats *sds) +{ + struct sched_domain *child = sd->child; + struct sched_group *group = sd->groups; + struct sg_lb_stats sgs; + int load_idx, prefer_sibling = 0; + + if (child && child->flags & SD_PREFER_SIBLING) + prefer_sibling = 1; + + init_sd_power_savings_stats(sd, sds, idle); + load_idx = get_sd_load_idx(sd, idle); + + do { + int local_group; + + local_group = cpumask_test_cpu(this_cpu, + sched_group_cpus(group)); + memset(&sgs, 0, sizeof(sgs)); + update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, + local_group, cpus, balance, &sgs); + + if (local_group && !(*balance)) + return; + + sds->total_load += sgs.group_load; + sds->total_pwr += group->cpu_power; + + /* + * In case the child domain prefers tasks go to siblings + * first, lower the group capacity to one so that we'll try + * and move all the excess tasks away. + */ + if (prefer_sibling) + sgs.group_capacity = min(sgs.group_capacity, 1UL); + + if (local_group) { + sds->this_load = sgs.avg_load; + sds->this = group; + sds->this_nr_running = sgs.sum_nr_running; + sds->this_load_per_task = sgs.sum_weighted_load; + } else if (sgs.avg_load > sds->max_load && + (sgs.sum_nr_running > sgs.group_capacity || + sgs.group_imb)) { + sds->max_load = sgs.avg_load; + sds->busiest = group; + sds->busiest_nr_running = sgs.sum_nr_running; + sds->busiest_group_capacity = sgs.group_capacity; + sds->busiest_load_per_task = sgs.sum_weighted_load; + sds->group_imb = sgs.group_imb; + } + + update_sd_power_savings_stats(group, sds, local_group, &sgs); + group = group->next; + } while (group != sd->groups); +} + +/** + * fix_small_imbalance - Calculate the minor imbalance that exists + * amongst the groups of a sched_domain, during + * load balancing. + * @sds: Statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: The cpu at whose sched_domain we're performing load-balance. + * @imbalance: Variable to store the imbalance. + */ +static inline void fix_small_imbalance(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + unsigned long tmp, pwr_now = 0, pwr_move = 0; + unsigned int imbn = 2; + unsigned long scaled_busy_load_per_task; + + if (sds->this_nr_running) { + sds->this_load_per_task /= sds->this_nr_running; + if (sds->busiest_load_per_task > + sds->this_load_per_task) + imbn = 1; + } else + sds->this_load_per_task = + cpu_avg_load_per_task(this_cpu); + + scaled_busy_load_per_task = sds->busiest_load_per_task + * SCHED_LOAD_SCALE; + scaled_busy_load_per_task /= sds->busiest->cpu_power; + + if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= + (scaled_busy_load_per_task * imbn)) { + *imbalance = sds->busiest_load_per_task; + return; + } + + /* + * OK, we don't have enough imbalance to justify moving tasks, + * however we may be able to increase total CPU power used by + * moving them. + */ + + pwr_now += sds->busiest->cpu_power * + min(sds->busiest_load_per_task, sds->max_load); + pwr_now += sds->this->cpu_power * + min(sds->this_load_per_task, sds->this_load); + pwr_now /= SCHED_LOAD_SCALE; + + /* Amount of load we'd subtract */ + tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / + sds->busiest->cpu_power; + if (sds->max_load > tmp) + pwr_move += sds->busiest->cpu_power * + min(sds->busiest_load_per_task, sds->max_load - tmp); + + /* Amount of load we'd add */ + if (sds->max_load * sds->busiest->cpu_power < + sds->busiest_load_per_task * SCHED_LOAD_SCALE) + tmp = (sds->max_load * sds->busiest->cpu_power) / + sds->this->cpu_power; + else + tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / + sds->this->cpu_power; + pwr_move += sds->this->cpu_power * + min(sds->this_load_per_task, sds->this_load + tmp); + pwr_move /= SCHED_LOAD_SCALE; + + /* Move if we gain throughput */ + if (pwr_move > pwr_now) + *imbalance = sds->busiest_load_per_task; +} + +/** + * calculate_imbalance - Calculate the amount of imbalance present within the + * groups of a given sched_domain during load balance. + * @sds: statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: Cpu for which currently load balance is being performed. + * @imbalance: The variable to store the imbalance. + */ +static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, + unsigned long *imbalance) +{ + unsigned long max_pull, load_above_capacity = ~0UL; + + sds->busiest_load_per_task /= sds->busiest_nr_running; + if (sds->group_imb) { + sds->busiest_load_per_task = + min(sds->busiest_load_per_task, sds->avg_load); + } + + /* + * In the presence of smp nice balancing, certain scenarios can have + * max load less than avg load(as we skip the groups at or below + * its cpu_power, while calculating max_load..) + */ + if (sds->max_load < sds->avg_load) { + *imbalance = 0; + return fix_small_imbalance(sds, this_cpu, imbalance); + } + + if (!sds->group_imb) { + /* + * Don't want to pull so many tasks that a group would go idle. + */ + load_above_capacity = (sds->busiest_nr_running - + sds->busiest_group_capacity); + + load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE); + + load_above_capacity /= sds->busiest->cpu_power; + } + + /* + * We're trying to get all the cpus to the average_load, so we don't + * want to push ourselves above the average load, nor do we wish to + * reduce the max loaded cpu below the average load. At the same time, + * we also don't want to reduce the group load below the group capacity + * (so that we can implement power-savings policies etc). Thus we look + * for the minimum possible imbalance. + * Be careful of negative numbers as they'll appear as very large values + * with unsigned longs. + */ + max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); + + /* How much load to actually move to equalise the imbalance */ + *imbalance = min(max_pull * sds->busiest->cpu_power, + (sds->avg_load - sds->this_load) * sds->this->cpu_power) + / SCHED_LOAD_SCALE; + + /* + * if *imbalance is less than the average load per runnable task + * there is no gaurantee that any tasks will be moved so we'll have + * a think about bumping its value to force at least one task to be + * moved + */ + if (*imbalance < sds->busiest_load_per_task) + return fix_small_imbalance(sds, this_cpu, imbalance); + +} +/******* find_busiest_group() helpers end here *********************/ + +/** + * find_busiest_group - Returns the busiest group within the sched_domain + * if there is an imbalance. If there isn't an imbalance, and + * the user has opted for power-savings, it returns a group whose + * CPUs can be put to idle by rebalancing those tasks elsewhere, if + * such a group exists. + * + * Also calculates the amount of weighted load which should be moved + * to restore balance. + * + * @sd: The sched_domain whose busiest group is to be returned. + * @this_cpu: The cpu for which load balancing is currently being performed. + * @imbalance: Variable which stores amount of weighted load which should + * be moved to restore balance/put a group to idle. + * @idle: The idle status of this_cpu. + * @sd_idle: The idleness of sd + * @cpus: The set of CPUs under consideration for load-balancing. + * @balance: Pointer to a variable indicating if this_cpu + * is the appropriate cpu to perform load balancing at this_level. + * + * Returns: - the busiest group if imbalance exists. + * - If no imbalance and user has opted for power-savings balance, + * return the least loaded group whose CPUs can be + * put to idle by rebalancing its tasks onto our group. + */ +static struct sched_group * +find_busiest_group(struct sched_domain *sd, int this_cpu, + unsigned long *imbalance, enum cpu_idle_type idle, + int *sd_idle, const struct cpumask *cpus, int *balance) +{ + struct sd_lb_stats sds; + + memset(&sds, 0, sizeof(sds)); + + /* + * Compute the various statistics relavent for load balancing at + * this level. + */ + update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, + balance, &sds); + + /* Cases where imbalance does not exist from POV of this_cpu */ + /* 1) this_cpu is not the appropriate cpu to perform load balancing + * at this level. + * 2) There is no busy sibling group to pull from. + * 3) This group is the busiest group. + * 4) This group is more busy than the avg busieness at this + * sched_domain. + * 5) The imbalance is within the specified limit. + */ + if (!(*balance)) + goto ret; + + if (!sds.busiest || sds.busiest_nr_running == 0) + goto out_balanced; + + if (sds.this_load >= sds.max_load) + goto out_balanced; + + sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; + + if (sds.this_load >= sds.avg_load) + goto out_balanced; + + if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) + goto out_balanced; + + /* Looks like there is an imbalance. Compute it */ + calculate_imbalance(&sds, this_cpu, imbalance); + return sds.busiest; + +out_balanced: + /* + * There is no obvious imbalance. But check if we can do some balancing + * to save power. + */ + if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) + return sds.busiest; +ret: + *imbalance = 0; + return NULL; +} + +/* + * find_busiest_queue - find the busiest runqueue among the cpus in group. + */ +static struct rq * +find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, + unsigned long imbalance, const struct cpumask *cpus) +{ + struct rq *busiest = NULL, *rq; + unsigned long max_load = 0; + int i; + + for_each_cpu(i, sched_group_cpus(group)) { + unsigned long power = power_of(i); + unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); + unsigned long wl; + + if (!cpumask_test_cpu(i, cpus)) + continue; + + rq = cpu_rq(i); + wl = weighted_cpuload(i); + + /* + * When comparing with imbalance, use weighted_cpuload() + * which is not scaled with the cpu power. + */ + if (capacity && rq->nr_running == 1 && wl > imbalance) + continue; + + /* + * For the load comparisons with the other cpu's, consider + * the weighted_cpuload() scaled with the cpu power, so that + * the load can be moved away from the cpu that is potentially + * running at a lower capacity. + */ + wl = (wl * SCHED_LOAD_SCALE) / power; + + if (wl > max_load) { + max_load = wl; + busiest = rq; + } + } + + return busiest; +} + +/* + * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but + * so long as it is large enough. + */ +#define MAX_PINNED_INTERVAL 512 + +/* Working cpumask for load_balance and load_balance_newidle. */ +static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); + +static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle) +{ + if (idle == CPU_NEWLY_IDLE) { + /* + * The only task running in a non-idle cpu can be moved to this + * cpu in an attempt to completely freeup the other CPU + * package. + * + * The package power saving logic comes from + * find_busiest_group(). If there are no imbalance, then + * f_b_g() will return NULL. However when sched_mc={1,2} then + * f_b_g() will select a group from which a running task may be + * pulled to this cpu in order to make the other package idle. + * If there is no opportunity to make a package idle and if + * there are no imbalance, then f_b_g() will return NULL and no + * action will be taken in load_balance_newidle(). + * + * Under normal task pull operation due to imbalance, there + * will be more than one task in the source run queue and + * move_tasks() will succeed. ld_moved will be true and this + * active balance code will not be triggered. + */ + if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && + !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) + return 0; + + if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) + return 0; + } + + return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); +} + +/* + * Check this_cpu to ensure it is balanced within domain. Attempt to move + * tasks if there is an imbalance. + */ +static int load_balance(int this_cpu, struct rq *this_rq, + struct sched_domain *sd, enum cpu_idle_type idle, + int *balance) +{ + int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; + struct sched_group *group; + unsigned long imbalance; + struct rq *busiest; + unsigned long flags; + struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); + + cpumask_copy(cpus, cpu_active_mask); + + /* + * When power savings policy is enabled for the parent domain, idle + * sibling can pick up load irrespective of busy siblings. In this case, + * let the state of idle sibling percolate up as CPU_IDLE, instead of + * portraying it as CPU_NOT_IDLE. + */ + if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && + !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) + sd_idle = 1; + + schedstat_inc(sd, lb_count[idle]); + +redo: + update_shares(sd); + group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, + cpus, balance); + + if (*balance == 0) + goto out_balanced; + + if (!group) { + schedstat_inc(sd, lb_nobusyg[idle]); + goto out_balanced; + } + + busiest = find_busiest_queue(group, idle, imbalance, cpus); + if (!busiest) { + schedstat_inc(sd, lb_nobusyq[idle]); + goto out_balanced; + } + + BUG_ON(busiest == this_rq); + + schedstat_add(sd, lb_imbalance[idle], imbalance); + + ld_moved = 0; + if (busiest->nr_running > 1) { + /* + * Attempt to move tasks. If find_busiest_group has found + * an imbalance but busiest->nr_running <= 1, the group is + * still unbalanced. ld_moved simply stays zero, so it is + * correctly treated as an imbalance. + */ + local_irq_save(flags); + double_rq_lock(this_rq, busiest); + ld_moved = move_tasks(this_rq, this_cpu, busiest, + imbalance, sd, idle, &all_pinned); + double_rq_unlock(this_rq, busiest); + local_irq_restore(flags); + + /* + * some other cpu did the load balance for us. + */ + if (ld_moved && this_cpu != smp_processor_id()) + resched_cpu(this_cpu); + + /* All tasks on this runqueue were pinned by CPU affinity */ + if (unlikely(all_pinned)) { + cpumask_clear_cpu(cpu_of(busiest), cpus); + if (!cpumask_empty(cpus)) + goto redo; + goto out_balanced; + } + } + + if (!ld_moved) { + schedstat_inc(sd, lb_failed[idle]); + sd->nr_balance_failed++; + + if (need_active_balance(sd, sd_idle, idle)) { + raw_spin_lock_irqsave(&busiest->lock, flags); + + /* don't kick the migration_thread, if the curr + * task on busiest cpu can't be moved to this_cpu + */ + if (!cpumask_test_cpu(this_cpu, + &busiest->curr->cpus_allowed)) { + raw_spin_unlock_irqrestore(&busiest->lock, + flags); + all_pinned = 1; + goto out_one_pinned; + } + + if (!busiest->active_balance) { + busiest->active_balance = 1; + busiest->push_cpu = this_cpu; + active_balance = 1; + } + raw_spin_unlock_irqrestore(&busiest->lock, flags); + if (active_balance) + wake_up_process(busiest->migration_thread); + + /* + * We've kicked active balancing, reset the failure + * counter. + */ + sd->nr_balance_failed = sd->cache_nice_tries+1; + } + } else + sd->nr_balance_failed = 0; + + if (likely(!active_balance)) { + /* We were unbalanced, so reset the balancing interval */ + sd->balance_interval = sd->min_interval; + } else { + /* + * If we've begun active balancing, start to back off. This + * case may not be covered by the all_pinned logic if there + * is only 1 task on the busy runqueue (because we don't call + * move_tasks). + */ + if (sd->balance_interval < sd->max_interval) + sd->balance_interval *= 2; + } + + if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && + !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) + ld_moved = -1; + + goto out; + +out_balanced: + schedstat_inc(sd, lb_balanced[idle]); + + sd->nr_balance_failed = 0; + +out_one_pinned: + /* tune up the balancing interval */ + if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || + (sd->balance_interval < sd->max_interval)) + sd->balance_interval *= 2; + + if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && + !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) + ld_moved = -1; + else + ld_moved = 0; +out: + if (ld_moved) + update_shares(sd); + return ld_moved; +} + +/* + * idle_balance is called by schedule() if this_cpu is about to become + * idle. Attempts to pull tasks from other CPUs. + */ +static void idle_balance(int this_cpu, struct rq *this_rq) +{ + struct sched_domain *sd; + int pulled_task = 0; + unsigned long next_balance = jiffies + HZ; + + this_rq->idle_stamp = this_rq->clock; + + if (this_rq->avg_idle < sysctl_sched_migration_cost) + return; + + /* + * Drop the rq->lock, but keep IRQ/preempt disabled. + */ + raw_spin_unlock(&this_rq->lock); + + for_each_domain(this_cpu, sd) { + unsigned long interval; + int balance = 1; + + if (!(sd->flags & SD_LOAD_BALANCE)) + continue; + + if (sd->flags & SD_BALANCE_NEWIDLE) { + /* If we've pulled tasks over stop searching: */ + pulled_task = load_balance(this_cpu, this_rq, + sd, CPU_NEWLY_IDLE, &balance); + } + + interval = msecs_to_jiffies(sd->balance_interval); + if (time_after(next_balance, sd->last_balance + interval)) + next_balance = sd->last_balance + interval; + if (pulled_task) { + this_rq->idle_stamp = 0; + break; + } + } + + raw_spin_lock(&this_rq->lock); + + if (pulled_task || time_after(jiffies, this_rq->next_balance)) { + /* + * We are going idle. next_balance may be set based on + * a busy processor. So reset next_balance. + */ + this_rq->next_balance = next_balance; + } +} + +/* + * active_load_balance is run by migration threads. It pushes running tasks + * off the busiest CPU onto idle CPUs. It requires at least 1 task to be + * running on each physical CPU where possible, and avoids physical / + * logical imbalances. + * + * Called with busiest_rq locked. + */ +static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) +{ + int target_cpu = busiest_rq->push_cpu; + struct sched_domain *sd; + struct rq *target_rq; + + /* Is there any task to move? */ + if (busiest_rq->nr_running <= 1) + return; + + target_rq = cpu_rq(target_cpu); + + /* + * This condition is "impossible", if it occurs + * we need to fix it. Originally reported by + * Bjorn Helgaas on a 128-cpu setup. + */ + BUG_ON(busiest_rq == target_rq); + + /* move a task from busiest_rq to target_rq */ + double_lock_balance(busiest_rq, target_rq); + update_rq_clock(busiest_rq); + update_rq_clock(target_rq); + + /* Search for an sd spanning us and the target CPU. */ + for_each_domain(target_cpu, sd) { + if ((sd->flags & SD_LOAD_BALANCE) && + cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) + break; + } + + if (likely(sd)) { + schedstat_inc(sd, alb_count); + + if (move_one_task(target_rq, target_cpu, busiest_rq, + sd, CPU_IDLE)) + schedstat_inc(sd, alb_pushed); + else + schedstat_inc(sd, alb_failed); + } + double_unlock_balance(busiest_rq, target_rq); +} + +#ifdef CONFIG_NO_HZ +static struct { + atomic_t load_balancer; + cpumask_var_t cpu_mask; + cpumask_var_t ilb_grp_nohz_mask; +} nohz ____cacheline_aligned = { + .load_balancer = ATOMIC_INIT(-1), +}; + +int get_nohz_load_balancer(void) +{ + return atomic_read(&nohz.load_balancer); +} + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * lowest_flag_domain - Return lowest sched_domain containing flag. + * @cpu: The cpu whose lowest level of sched domain is to + * be returned. + * @flag: The flag to check for the lowest sched_domain + * for the given cpu. + * + * Returns the lowest sched_domain of a cpu which contains the given flag. + */ +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd; + + for_each_domain(cpu, sd) + if (sd && (sd->flags & flag)) + break; + + return sd; +} + +/** + * for_each_flag_domain - Iterates over sched_domains containing the flag. + * @cpu: The cpu whose domains we're iterating over. + * @sd: variable holding the value of the power_savings_sd + * for cpu. + * @flag: The flag to filter the sched_domains to be iterated. + * + * Iterates over all the scheduler domains for a given cpu that has the 'flag' + * set, starting from the lowest sched_domain to the highest. + */ +#define for_each_flag_domain(cpu, sd, flag) \ + for (sd = lowest_flag_domain(cpu, flag); \ + (sd && (sd->flags & flag)); sd = sd->parent) + +/** + * is_semi_idle_group - Checks if the given sched_group is semi-idle. + * @ilb_group: group to be checked for semi-idleness + * + * Returns: 1 if the group is semi-idle. 0 otherwise. + * + * We define a sched_group to be semi idle if it has atleast one idle-CPU + * and atleast one non-idle CPU. This helper function checks if the given + * sched_group is semi-idle or not. + */ +static inline int is_semi_idle_group(struct sched_group *ilb_group) +{ + cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, + sched_group_cpus(ilb_group)); + + /* + * A sched_group is semi-idle when it has atleast one busy cpu + * and atleast one idle cpu. + */ + if (cpumask_empty(nohz.ilb_grp_nohz_mask)) + return 0; + + if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) + return 0; + + return 1; +} +/** + * find_new_ilb - Finds the optimum idle load balancer for nomination. + * @cpu: The cpu which is nominating a new idle_load_balancer. + * + * Returns: Returns the id of the idle load balancer if it exists, + * Else, returns >= nr_cpu_ids. + * + * This algorithm picks the idle load balancer such that it belongs to a + * semi-idle powersavings sched_domain. The idea is to try and avoid + * completely idle packages/cores just for the purpose of idle load balancing + * when there are other idle cpu's which are better suited for that job. + */ +static int find_new_ilb(int cpu) +{ + struct sched_domain *sd; + struct sched_group *ilb_group; + + /* + * Have idle load balancer selection from semi-idle packages only + * when power-aware load balancing is enabled + */ + if (!(sched_smt_power_savings || sched_mc_power_savings)) + goto out_done; + + /* + * Optimize for the case when we have no idle CPUs or only one + * idle CPU. Don't walk the sched_domain hierarchy in such cases + */ + if (cpumask_weight(nohz.cpu_mask) < 2) + goto out_done; + + for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { + ilb_group = sd->groups; + + do { + if (is_semi_idle_group(ilb_group)) + return cpumask_first(nohz.ilb_grp_nohz_mask); + + ilb_group = ilb_group->next; + + } while (ilb_group != sd->groups); + } + +out_done: + return cpumask_first(nohz.cpu_mask); +} +#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ +static inline int find_new_ilb(int call_cpu) +{ + return cpumask_first(nohz.cpu_mask); +} +#endif + +/* + * This routine will try to nominate the ilb (idle load balancing) + * owner among the cpus whose ticks are stopped. ilb owner will do the idle + * load balancing on behalf of all those cpus. If all the cpus in the system + * go into this tickless mode, then there will be no ilb owner (as there is + * no need for one) and all the cpus will sleep till the next wakeup event + * arrives... + * + * For the ilb owner, tick is not stopped. And this tick will be used + * for idle load balancing. ilb owner will still be part of + * nohz.cpu_mask.. + * + * While stopping the tick, this cpu will become the ilb owner if there + * is no other owner. And will be the owner till that cpu becomes busy + * or if all cpus in the system stop their ticks at which point + * there is no need for ilb owner. + * + * When the ilb owner becomes busy, it nominates another owner, during the + * next busy scheduler_tick() + */ +int select_nohz_load_balancer(int stop_tick) +{ + int cpu = smp_processor_id(); + + if (stop_tick) { + cpu_rq(cpu)->in_nohz_recently = 1; + + if (!cpu_active(cpu)) { + if (atomic_read(&nohz.load_balancer) != cpu) + return 0; + + /* + * If we are going offline and still the leader, + * give up! + */ + if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) + BUG(); + + return 0; + } + + cpumask_set_cpu(cpu, nohz.cpu_mask); + + /* time for ilb owner also to sleep */ + if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { + if (atomic_read(&nohz.load_balancer) == cpu) + atomic_set(&nohz.load_balancer, -1); + return 0; + } + + if (atomic_read(&nohz.load_balancer) == -1) { + /* make me the ilb owner */ + if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) + return 1; + } else if (atomic_read(&nohz.load_balancer) == cpu) { + int new_ilb; + + if (!(sched_smt_power_savings || + sched_mc_power_savings)) + return 1; + /* + * Check to see if there is a more power-efficient + * ilb. + */ + new_ilb = find_new_ilb(cpu); + if (new_ilb < nr_cpu_ids && new_ilb != cpu) { + atomic_set(&nohz.load_balancer, -1); + resched_cpu(new_ilb); + return 0; + } + return 1; + } + } else { + if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) + return 0; + + cpumask_clear_cpu(cpu, nohz.cpu_mask); + + if (atomic_read(&nohz.load_balancer) == cpu) + if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) + BUG(); + } + return 0; +} +#endif + +static DEFINE_SPINLOCK(balancing); + +/* + * It checks each scheduling domain to see if it is due to be balanced, + * and initiates a balancing operation if so. + * + * Balancing parameters are set up in arch_init_sched_domains. + */ +static void rebalance_domains(int cpu, enum cpu_idle_type idle) +{ + int balance = 1; + struct rq *rq = cpu_rq(cpu); + unsigned long interval; + struct sched_domain *sd; + /* Earliest time when we have to do rebalance again */ + unsigned long next_balance = jiffies + 60*HZ; + int update_next_balance = 0; + int need_serialize; + + for_each_domain(cpu, sd) { + if (!(sd->flags & SD_LOAD_BALANCE)) + continue; + + interval = sd->balance_interval; + if (idle != CPU_IDLE) + interval *= sd->busy_factor; + + /* scale ms to jiffies */ + interval = msecs_to_jiffies(interval); + if (unlikely(!interval)) + interval = 1; + if (interval > HZ*NR_CPUS/10) + interval = HZ*NR_CPUS/10; + + need_serialize = sd->flags & SD_SERIALIZE; + + if (need_serialize) { + if (!spin_trylock(&balancing)) + goto out; + } + + if (time_after_eq(jiffies, sd->last_balance + interval)) { + if (load_balance(cpu, rq, sd, idle, &balance)) { + /* + * We've pulled tasks over so either we're no + * longer idle, or one of our SMT siblings is + * not idle. + */ + idle = CPU_NOT_IDLE; + } + sd->last_balance = jiffies; + } + if (need_serialize) + spin_unlock(&balancing); +out: + if (time_after(next_balance, sd->last_balance + interval)) { + next_balance = sd->last_balance + interval; + update_next_balance = 1; + } + + /* + * Stop the load balance at this level. There is another + * CPU in our sched group which is doing load balancing more + * actively. + */ + if (!balance) + break; + } + + /* + * next_balance will be updated only when there is a need. + * When the cpu is attached to null domain for ex, it will not be + * updated. + */ + if (likely(update_next_balance)) + rq->next_balance = next_balance; +} + +/* + * run_rebalance_domains is triggered when needed from the scheduler tick. + * In CONFIG_NO_HZ case, the idle load balance owner will do the + * rebalancing for all the cpus for whom scheduler ticks are stopped. + */ +static void run_rebalance_domains(struct softirq_action *h) +{ + int this_cpu = smp_processor_id(); + struct rq *this_rq = cpu_rq(this_cpu); + enum cpu_idle_type idle = this_rq->idle_at_tick ? + CPU_IDLE : CPU_NOT_IDLE; + + rebalance_domains(this_cpu, idle); + +#ifdef CONFIG_NO_HZ + /* + * If this cpu is the owner for idle load balancing, then do the + * balancing on behalf of the other idle cpus whose ticks are + * stopped. + */ + if (this_rq->idle_at_tick && + atomic_read(&nohz.load_balancer) == this_cpu) { + struct rq *rq; + int balance_cpu; + + for_each_cpu(balance_cpu, nohz.cpu_mask) { + if (balance_cpu == this_cpu) + continue; + + /* + * If this cpu gets work to do, stop the load balancing + * work being done for other cpus. Next load + * balancing owner will pick it up. + */ + if (need_resched()) + break; + + rebalance_domains(balance_cpu, CPU_IDLE); + + rq = cpu_rq(balance_cpu); + if (time_after(this_rq->next_balance, rq->next_balance)) + this_rq->next_balance = rq->next_balance; + } + } +#endif +} + +static inline int on_null_domain(int cpu) +{ + return !rcu_dereference(cpu_rq(cpu)->sd); +} + +/* + * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. + * + * In case of CONFIG_NO_HZ, this is the place where we nominate a new + * idle load balancing owner or decide to stop the periodic load balancing, + * if the whole system is idle. + */ +static inline void trigger_load_balance(struct rq *rq, int cpu) +{ +#ifdef CONFIG_NO_HZ + /* + * If we were in the nohz mode recently and busy at the current + * scheduler tick, then check if we need to nominate new idle + * load balancer. + */ + if (rq->in_nohz_recently && !rq->idle_at_tick) { + rq->in_nohz_recently = 0; + + if (atomic_read(&nohz.load_balancer) == cpu) { + cpumask_clear_cpu(cpu, nohz.cpu_mask); + atomic_set(&nohz.load_balancer, -1); + } + + if (atomic_read(&nohz.load_balancer) == -1) { + int ilb = find_new_ilb(cpu); + + if (ilb < nr_cpu_ids) + resched_cpu(ilb); + } + } + + /* + * If this cpu is idle and doing idle load balancing for all the + * cpus with ticks stopped, is it time for that to stop? + */ + if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && + cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { + resched_cpu(cpu); + return; + } + + /* + * If this cpu is idle and the idle load balancing is done by + * someone else, then no need raise the SCHED_SOFTIRQ + */ + if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && + cpumask_test_cpu(cpu, nohz.cpu_mask)) + return; +#endif + /* Don't need to rebalance while attached to NULL domain */ + if (time_after_eq(jiffies, rq->next_balance) && + likely(!on_null_domain(cpu))) + raise_softirq(SCHED_SOFTIRQ); +} static void rq_online_fair(struct rq *rq) { @@ -1962,6 +3544,15 @@ static void rq_offline_fair(struct rq *rq) update_sysctl(); } +#else /* CONFIG_SMP */ + +/* + * on UP we do not need to balance between CPUs: + */ +static inline void idle_balance(int cpu, struct rq *rq) +{ +} + #endif /* CONFIG_SMP */ /* @@ -2076,7 +3667,7 @@ static void moved_group_fair(struct task_struct *p, int on_rq) } #endif -unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) +static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) { struct sched_entity *se = &task->se; unsigned int rr_interval = 0; @@ -2108,8 +3699,6 @@ static const struct sched_class fair_sched_class = { #ifdef CONFIG_SMP .select_task_rq = select_task_rq_fair, - .load_balance = load_balance_fair, - .move_one_task = move_one_task_fair, .rq_online = rq_online_fair, .rq_offline = rq_offline_fair, diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index 5f93b57..a8a6d8a 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c @@ -44,24 +44,6 @@ static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) { } -#ifdef CONFIG_SMP -static unsigned long -load_balance_idle(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, - struct sched_domain *sd, enum cpu_idle_type idle, - int *all_pinned, int *this_best_prio) -{ - return 0; -} - -static int -move_one_task_idle(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle) -{ - return 0; -} -#endif - static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) { } @@ -97,7 +79,7 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p, check_preempt_curr(rq, p, 0); } -unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task) +static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task) { return 0; } @@ -119,9 +101,6 @@ static const struct sched_class idle_sched_class = { #ifdef CONFIG_SMP .select_task_rq = select_task_rq_idle, - - .load_balance = load_balance_idle, - .move_one_task = move_one_task_idle, #endif .set_curr_task = set_curr_task_idle, diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index f48328a..5a6ed1f 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -194,17 +194,20 @@ static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) return rt_se->my_q; } -static void enqueue_rt_entity(struct sched_rt_entity *rt_se); +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); static void dequeue_rt_entity(struct sched_rt_entity *rt_se); static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) { + int this_cpu = smp_processor_id(); struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; - struct sched_rt_entity *rt_se = rt_rq->rt_se; + struct sched_rt_entity *rt_se; + + rt_se = rt_rq->tg->rt_se[this_cpu]; if (rt_rq->rt_nr_running) { if (rt_se && !on_rt_rq(rt_se)) - enqueue_rt_entity(rt_se); + enqueue_rt_entity(rt_se, false); if (rt_rq->highest_prio.curr < curr->prio) resched_task(curr); } @@ -212,7 +215,10 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) { - struct sched_rt_entity *rt_se = rt_rq->rt_se; + int this_cpu = smp_processor_id(); + struct sched_rt_entity *rt_se; + + rt_se = rt_rq->tg->rt_se[this_cpu]; if (rt_se && on_rt_rq(rt_se)) dequeue_rt_entity(rt_se); @@ -803,7 +809,7 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) dec_rt_group(rt_se, rt_rq); } -static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) +static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) { struct rt_rq *rt_rq = rt_rq_of_se(rt_se); struct rt_prio_array *array = &rt_rq->active; @@ -819,7 +825,10 @@ static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) return; - list_add_tail(&rt_se->run_list, queue); + if (head) + list_add(&rt_se->run_list, queue); + else + list_add_tail(&rt_se->run_list, queue); __set_bit(rt_se_prio(rt_se), array->bitmap); inc_rt_tasks(rt_se, rt_rq); @@ -856,11 +865,11 @@ static void dequeue_rt_stack(struct sched_rt_entity *rt_se) } } -static void enqueue_rt_entity(struct sched_rt_entity *rt_se) +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) { dequeue_rt_stack(rt_se); for_each_sched_rt_entity(rt_se) - __enqueue_rt_entity(rt_se); + __enqueue_rt_entity(rt_se, head); } static void dequeue_rt_entity(struct sched_rt_entity *rt_se) @@ -871,21 +880,22 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se) struct rt_rq *rt_rq = group_rt_rq(rt_se); if (rt_rq && rt_rq->rt_nr_running) - __enqueue_rt_entity(rt_se); + __enqueue_rt_entity(rt_se, false); } } /* * Adding/removing a task to/from a priority array: */ -static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) +static void +enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head) { struct sched_rt_entity *rt_se = &p->rt; if (wakeup) rt_se->timeout = 0; - enqueue_rt_entity(rt_se); + enqueue_rt_entity(rt_se, head); if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) enqueue_pushable_task(rq, p); @@ -1481,24 +1491,6 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p) push_rt_tasks(rq); } -static unsigned long -load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, - struct sched_domain *sd, enum cpu_idle_type idle, - int *all_pinned, int *this_best_prio) -{ - /* don't touch RT tasks */ - return 0; -} - -static int -move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle) -{ - /* don't touch RT tasks */ - return 0; -} - static void set_cpus_allowed_rt(struct task_struct *p, const struct cpumask *new_mask) { @@ -1670,8 +1662,9 @@ static void watchdog(struct rq *rq, struct task_struct *p) if (!p->signal) return; - soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur; - hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max; + /* max may change after cur was read, this will be fixed next tick */ + soft = task_rlimit(p, RLIMIT_RTTIME); + hard = task_rlimit_max(p, RLIMIT_RTTIME); if (soft != RLIM_INFINITY) { unsigned long next; @@ -1721,7 +1714,7 @@ static void set_curr_task_rt(struct rq *rq) dequeue_pushable_task(rq, p); } -unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) +static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) { /* * Time slice is 0 for SCHED_FIFO tasks @@ -1746,8 +1739,6 @@ static const struct sched_class rt_sched_class = { #ifdef CONFIG_SMP .select_task_rq = select_task_rq_rt, - .load_balance = load_balance_rt, - .move_one_task = move_one_task_rt, .set_cpus_allowed = set_cpus_allowed_rt, .rq_online = rq_online_rt, .rq_offline = rq_offline_rt, diff --git a/kernel/signal.c b/kernel/signal.c index 934ae5e..dbd7fe0 100644 --- a/kernel/signal.c +++ b/kernel/signal.c @@ -159,6 +159,10 @@ void recalc_sigpending(void) /* Given the mask, find the first available signal that should be serviced. */ +#define SYNCHRONOUS_MASK \ + (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ + sigmask(SIGTRAP) | sigmask(SIGFPE)) + int next_signal(struct sigpending *pending, sigset_t *mask) { unsigned long i, *s, *m, x; @@ -166,26 +170,39 @@ int next_signal(struct sigpending *pending, sigset_t *mask) s = pending->signal.sig; m = mask->sig; + + /* + * Handle the first word specially: it contains the + * synchronous signals that need to be dequeued first. + */ + x = *s &~ *m; + if (x) { + if (x & SYNCHRONOUS_MASK) + x &= SYNCHRONOUS_MASK; + sig = ffz(~x) + 1; + return sig; + } + switch (_NSIG_WORDS) { default: - for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) - if ((x = *s &~ *m) != 0) { - sig = ffz(~x) + i*_NSIG_BPW + 1; - break; - } + for (i = 1; i < _NSIG_WORDS; ++i) { + x = *++s &~ *++m; + if (!x) + continue; + sig = ffz(~x) + i*_NSIG_BPW + 1; + break; + } break; - case 2: if ((x = s[0] &~ m[0]) != 0) - sig = 1; - else if ((x = s[1] &~ m[1]) != 0) - sig = _NSIG_BPW + 1; - else + case 2: + x = s[1] &~ m[1]; + if (!x) break; - sig += ffz(~x); + sig = ffz(~x) + _NSIG_BPW + 1; break; - case 1: if ((x = *s &~ *m) != 0) - sig = ffz(~x) + 1; + case 1: + /* Nothing to do */ break; } @@ -228,7 +245,7 @@ __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimi if (override_rlimit || atomic_read(&user->sigpending) <= - t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) { + task_rlimit(t, RLIMIT_SIGPENDING)) { q = kmem_cache_alloc(sigqueue_cachep, flags); } else { print_dropped_signal(sig); diff --git a/kernel/smp.c b/kernel/smp.c index f104084..9867b6b 100644 --- a/kernel/smp.c +++ b/kernel/smp.c @@ -12,8 +12,6 @@ #include <linux/smp.h> #include <linux/cpu.h> -static DEFINE_PER_CPU(struct call_single_queue, call_single_queue); - static struct { struct list_head queue; raw_spinlock_t lock; @@ -33,12 +31,14 @@ struct call_function_data { cpumask_var_t cpumask; }; +static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data); + struct call_single_queue { struct list_head list; raw_spinlock_t lock; }; -static DEFINE_PER_CPU(struct call_function_data, cfd_data); +static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_queue, call_single_queue); static int hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) @@ -256,7 +256,7 @@ void generic_smp_call_function_single_interrupt(void) } } -static DEFINE_PER_CPU(struct call_single_data, csd_data); +static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_data, csd_data); /* * smp_call_function_single - Run a function on a specific CPU diff --git a/kernel/srcu.c b/kernel/srcu.c index 818d7d9..bde4295 100644 --- a/kernel/srcu.c +++ b/kernel/srcu.c @@ -34,6 +34,30 @@ #include <linux/smp.h> #include <linux/srcu.h> +static int init_srcu_struct_fields(struct srcu_struct *sp) +{ + sp->completed = 0; + mutex_init(&sp->mutex); + sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); + return sp->per_cpu_ref ? 0 : -ENOMEM; +} + +#ifdef CONFIG_DEBUG_LOCK_ALLOC + +int __init_srcu_struct(struct srcu_struct *sp, const char *name, + struct lock_class_key *key) +{ +#ifdef CONFIG_DEBUG_LOCK_ALLOC + /* Don't re-initialize a lock while it is held. */ + debug_check_no_locks_freed((void *)sp, sizeof(*sp)); + lockdep_init_map(&sp->dep_map, name, key, 0); +#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ + return init_srcu_struct_fields(sp); +} +EXPORT_SYMBOL_GPL(__init_srcu_struct); + +#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ + /** * init_srcu_struct - initialize a sleep-RCU structure * @sp: structure to initialize. @@ -44,13 +68,12 @@ */ int init_srcu_struct(struct srcu_struct *sp) { - sp->completed = 0; - mutex_init(&sp->mutex); - sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); - return (sp->per_cpu_ref ? 0 : -ENOMEM); + return init_srcu_struct_fields(sp); } EXPORT_SYMBOL_GPL(init_srcu_struct); +#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ + /* * srcu_readers_active_idx -- returns approximate number of readers * active on the specified rank of per-CPU counters. @@ -100,15 +123,12 @@ void cleanup_srcu_struct(struct srcu_struct *sp) } EXPORT_SYMBOL_GPL(cleanup_srcu_struct); -/** - * srcu_read_lock - register a new reader for an SRCU-protected structure. - * @sp: srcu_struct in which to register the new reader. - * +/* * Counts the new reader in the appropriate per-CPU element of the * srcu_struct. Must be called from process context. * Returns an index that must be passed to the matching srcu_read_unlock(). */ -int srcu_read_lock(struct srcu_struct *sp) +int __srcu_read_lock(struct srcu_struct *sp) { int idx; @@ -120,31 +140,27 @@ int srcu_read_lock(struct srcu_struct *sp) preempt_enable(); return idx; } -EXPORT_SYMBOL_GPL(srcu_read_lock); +EXPORT_SYMBOL_GPL(__srcu_read_lock); -/** - * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. - * @sp: srcu_struct in which to unregister the old reader. - * @idx: return value from corresponding srcu_read_lock(). - * +/* * Removes the count for the old reader from the appropriate per-CPU * element of the srcu_struct. Note that this may well be a different * CPU than that which was incremented by the corresponding srcu_read_lock(). * Must be called from process context. */ -void srcu_read_unlock(struct srcu_struct *sp, int idx) +void __srcu_read_unlock(struct srcu_struct *sp, int idx) { preempt_disable(); srcu_barrier(); /* ensure compiler won't misorder critical section. */ per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--; preempt_enable(); } -EXPORT_SYMBOL_GPL(srcu_read_unlock); +EXPORT_SYMBOL_GPL(__srcu_read_unlock); /* * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). */ -void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)) +static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)) { int idx; diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 912823e..9bb9fb1 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c @@ -45,7 +45,7 @@ static int refcount; static struct workqueue_struct *stop_machine_wq; static struct stop_machine_data active, idle; static const struct cpumask *active_cpus; -static void *stop_machine_work; +static void __percpu *stop_machine_work; static void set_state(enum stopmachine_state newstate) { diff --git a/kernel/sys.c b/kernel/sys.c index 18bde97..9814e43 100644 --- a/kernel/sys.c +++ b/kernel/sys.c @@ -571,13 +571,7 @@ static int set_user(struct cred *new) if (!new_user) return -EAGAIN; - if (!task_can_switch_user(new_user, current)) { - free_uid(new_user); - return -EINVAL; - } - - if (atomic_read(&new_user->processes) >= - current->signal->rlim[RLIMIT_NPROC].rlim_cur && + if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && new_user != INIT_USER) { free_uid(new_user); return -EAGAIN; diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 8a68b24..0ef19c6 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c @@ -50,6 +50,7 @@ #include <linux/ftrace.h> #include <linux/slow-work.h> #include <linux/perf_event.h> +#include <linux/kprobes.h> #include <asm/uaccess.h> #include <asm/processor.h> @@ -1441,7 +1442,7 @@ static struct ctl_table fs_table[] = { }; static struct ctl_table debug_table[] = { -#if defined(CONFIG_X86) || defined(CONFIG_PPC) +#if defined(CONFIG_X86) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) { .procname = "exception-trace", .data = &show_unhandled_signals, @@ -1450,6 +1451,17 @@ static struct ctl_table debug_table[] = { .proc_handler = proc_dointvec }, #endif +#if defined(CONFIG_OPTPROBES) + { + .procname = "kprobes-optimization", + .data = &sysctl_kprobes_optimization, + .maxlen = sizeof(int), + .mode = 0644, + .proc_handler = proc_kprobes_optimization_handler, + .extra1 = &zero, + .extra2 = &one, + }, +#endif { } }; diff --git a/kernel/sysctl_binary.c b/kernel/sysctl_binary.c index 8f5d16e..8cd50d8 100644 --- a/kernel/sysctl_binary.c +++ b/kernel/sysctl_binary.c @@ -1331,7 +1331,7 @@ static ssize_t binary_sysctl(const int *name, int nlen, ssize_t result; char *pathname; int flags; - int acc_mode, fmode; + int acc_mode; pathname = sysctl_getname(name, nlen, &table); result = PTR_ERR(pathname); @@ -1342,15 +1342,12 @@ static ssize_t binary_sysctl(const int *name, int nlen, if (oldval && oldlen && newval && newlen) { flags = O_RDWR; acc_mode = MAY_READ | MAY_WRITE; - fmode = FMODE_READ | FMODE_WRITE; } else if (newval && newlen) { flags = O_WRONLY; acc_mode = MAY_WRITE; - fmode = FMODE_WRITE; } else if (oldval && oldlen) { flags = O_RDONLY; acc_mode = MAY_READ; - fmode = FMODE_READ; } else { result = 0; goto out_putname; @@ -1361,7 +1358,7 @@ static ssize_t binary_sysctl(const int *name, int nlen, if (result) goto out_putname; - result = may_open(&nd.path, acc_mode, fmode); + result = may_open(&nd.path, acc_mode, flags); if (result) goto out_putpath; diff --git a/kernel/taskstats.c b/kernel/taskstats.c index ea8384d..899ca51 100644 --- a/kernel/taskstats.c +++ b/kernel/taskstats.c @@ -46,15 +46,13 @@ static struct genl_family family = { .maxattr = TASKSTATS_CMD_ATTR_MAX, }; -static struct nla_policy taskstats_cmd_get_policy[TASKSTATS_CMD_ATTR_MAX+1] -__read_mostly = { +static const struct nla_policy taskstats_cmd_get_policy[TASKSTATS_CMD_ATTR_MAX+1] = { [TASKSTATS_CMD_ATTR_PID] = { .type = NLA_U32 }, [TASKSTATS_CMD_ATTR_TGID] = { .type = NLA_U32 }, [TASKSTATS_CMD_ATTR_REGISTER_CPUMASK] = { .type = NLA_STRING }, [TASKSTATS_CMD_ATTR_DEREGISTER_CPUMASK] = { .type = NLA_STRING },}; -static struct nla_policy -cgroupstats_cmd_get_policy[CGROUPSTATS_CMD_ATTR_MAX+1] __read_mostly = { +static const struct nla_policy cgroupstats_cmd_get_policy[CGROUPSTATS_CMD_ATTR_MAX+1] = { [CGROUPSTATS_CMD_ATTR_FD] = { .type = NLA_U32 }, }; diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 1370083..1f663d2 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c @@ -453,6 +453,18 @@ static inline int clocksource_watchdog_kthread(void *data) { return 0; } #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ /** + * clocksource_suspend - suspend the clocksource(s) + */ +void clocksource_suspend(void) +{ + struct clocksource *cs; + + list_for_each_entry_reverse(cs, &clocksource_list, list) + if (cs->suspend) + cs->suspend(cs); +} + +/** * clocksource_resume - resume the clocksource(s) */ void clocksource_resume(void) @@ -461,7 +473,7 @@ void clocksource_resume(void) list_for_each_entry(cs, &clocksource_list, list) if (cs->resume) - cs->resume(); + cs->resume(cs); clocksource_resume_watchdog(); } diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 4800f93..7c0f180 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c @@ -58,10 +58,10 @@ static s64 time_offset; static long time_constant = 2; /* maximum error (usecs): */ -long time_maxerror = NTP_PHASE_LIMIT; +static long time_maxerror = NTP_PHASE_LIMIT; /* estimated error (usecs): */ -long time_esterror = NTP_PHASE_LIMIT; +static long time_esterror = NTP_PHASE_LIMIT; /* frequency offset (scaled nsecs/secs): */ static s64 time_freq; @@ -142,11 +142,11 @@ static void ntp_update_offset(long offset) * Select how the frequency is to be controlled * and in which mode (PLL or FLL). */ - secs = xtime.tv_sec - time_reftime; + secs = get_seconds() - time_reftime; if (unlikely(time_status & STA_FREQHOLD)) secs = 0; - time_reftime = xtime.tv_sec; + time_reftime = get_seconds(); offset64 = offset; freq_adj = (offset64 * secs) << @@ -368,7 +368,7 @@ static inline void process_adj_status(struct timex *txc, struct timespec *ts) * reference time to current time. */ if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) - time_reftime = xtime.tv_sec; + time_reftime = get_seconds(); /* only set allowed bits */ time_status &= STA_RONLY; diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index e2ab064..1673637 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c @@ -622,6 +622,7 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) write_sequnlock_irqrestore(&xtime_lock, flags); clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); + clocksource_suspend(); return 0; } diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index 60e2ce0..13e13d4 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig @@ -328,15 +328,6 @@ config BRANCH_TRACER Say N if unsure. -config POWER_TRACER - bool "Trace power consumption behavior" - depends on X86 - select GENERIC_TRACER - help - This tracer helps developers to analyze and optimize the kernel's - power management decisions, specifically the C-state and P-state - behavior. - config KSYM_TRACER bool "Trace read and write access on kernel memory locations" depends on HAVE_HW_BREAKPOINT @@ -449,7 +440,7 @@ config BLK_DEV_IO_TRACE config KPROBE_EVENT depends on KPROBES - depends on X86 + depends on HAVE_REGS_AND_STACK_ACCESS_API bool "Enable kprobes-based dynamic events" select TRACING default y diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c index d9d6206..07f945a9 100644 --- a/kernel/trace/blktrace.c +++ b/kernel/trace/blktrace.c @@ -540,9 +540,10 @@ int blk_trace_setup(struct request_queue *q, char *name, dev_t dev, if (ret) return ret; - if (copy_to_user(arg, &buts, sizeof(buts))) + if (copy_to_user(arg, &buts, sizeof(buts))) { + blk_trace_remove(q); return -EFAULT; - + } return 0; } EXPORT_SYMBOL_GPL(blk_trace_setup); diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index 1904797..8378357 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c @@ -2402,6 +2402,7 @@ static const struct file_operations ftrace_notrace_fops = { static DEFINE_MUTEX(graph_lock); int ftrace_graph_count; +int ftrace_graph_filter_enabled; unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; static void * @@ -2424,7 +2425,7 @@ static void *g_start(struct seq_file *m, loff_t *pos) mutex_lock(&graph_lock); /* Nothing, tell g_show to print all functions are enabled */ - if (!ftrace_graph_count && !*pos) + if (!ftrace_graph_filter_enabled && !*pos) return (void *)1; return __g_next(m, pos); @@ -2470,6 +2471,7 @@ ftrace_graph_open(struct inode *inode, struct file *file) mutex_lock(&graph_lock); if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) { + ftrace_graph_filter_enabled = 0; ftrace_graph_count = 0; memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); } @@ -2495,7 +2497,7 @@ ftrace_set_func(unsigned long *array, int *idx, char *buffer) struct dyn_ftrace *rec; struct ftrace_page *pg; int search_len; - int found = 0; + int fail = 1; int type, not; char *search; bool exists; @@ -2506,37 +2508,51 @@ ftrace_set_func(unsigned long *array, int *idx, char *buffer) /* decode regex */ type = filter_parse_regex(buffer, strlen(buffer), &search, ¬); - if (not) - return -EINVAL; + if (!not && *idx >= FTRACE_GRAPH_MAX_FUNCS) + return -EBUSY; search_len = strlen(search); mutex_lock(&ftrace_lock); do_for_each_ftrace_rec(pg, rec) { - if (*idx >= FTRACE_GRAPH_MAX_FUNCS) - break; - if (rec->flags & (FTRACE_FL_FAILED | FTRACE_FL_FREE)) continue; if (ftrace_match_record(rec, search, search_len, type)) { - /* ensure it is not already in the array */ + /* if it is in the array */ exists = false; - for (i = 0; i < *idx; i++) + for (i = 0; i < *idx; i++) { if (array[i] == rec->ip) { exists = true; break; } - if (!exists) - array[(*idx)++] = rec->ip; - found = 1; + } + + if (!not) { + fail = 0; + if (!exists) { + array[(*idx)++] = rec->ip; + if (*idx >= FTRACE_GRAPH_MAX_FUNCS) + goto out; + } + } else { + if (exists) { + array[i] = array[--(*idx)]; + array[*idx] = 0; + fail = 0; + } + } } } while_for_each_ftrace_rec(); - +out: mutex_unlock(&ftrace_lock); - return found ? 0 : -EINVAL; + if (fail) + return -EINVAL; + + ftrace_graph_filter_enabled = 1; + return 0; } static ssize_t @@ -2546,16 +2562,11 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, struct trace_parser parser; ssize_t read, ret; - if (!cnt || cnt < 0) + if (!cnt) return 0; mutex_lock(&graph_lock); - if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { - ret = -EBUSY; - goto out_unlock; - } - if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { ret = -ENOMEM; goto out_unlock; diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 8c1b2d2..0287f9f 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c @@ -20,6 +20,7 @@ #include <linux/cpu.h> #include <linux/fs.h> +#include <asm/local.h> #include "trace.h" /* diff --git a/kernel/trace/ring_buffer_benchmark.c b/kernel/trace/ring_buffer_benchmark.c index b2477ca..df74c79 100644 --- a/kernel/trace/ring_buffer_benchmark.c +++ b/kernel/trace/ring_buffer_benchmark.c @@ -8,6 +8,7 @@ #include <linux/kthread.h> #include <linux/module.h> #include <linux/time.h> +#include <asm/local.h> struct rb_page { u64 ts; diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index eac6875..ed01fdb 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c @@ -32,6 +32,7 @@ #include <linux/splice.h> #include <linux/kdebug.h> #include <linux/string.h> +#include <linux/rwsem.h> #include <linux/ctype.h> #include <linux/init.h> #include <linux/poll.h> @@ -91,20 +92,17 @@ DEFINE_PER_CPU(int, ftrace_cpu_disabled); static inline void ftrace_disable_cpu(void) { preempt_disable(); - __this_cpu_inc(per_cpu_var(ftrace_cpu_disabled)); + __this_cpu_inc(ftrace_cpu_disabled); } static inline void ftrace_enable_cpu(void) { - __this_cpu_dec(per_cpu_var(ftrace_cpu_disabled)); + __this_cpu_dec(ftrace_cpu_disabled); preempt_enable(); } static cpumask_var_t __read_mostly tracing_buffer_mask; -/* Define which cpu buffers are currently read in trace_pipe */ -static cpumask_var_t tracing_reader_cpumask; - #define for_each_tracing_cpu(cpu) \ for_each_cpu(cpu, tracing_buffer_mask) @@ -243,12 +241,91 @@ static struct tracer *current_trace __read_mostly; /* * trace_types_lock is used to protect the trace_types list. - * This lock is also used to keep user access serialized. - * Accesses from userspace will grab this lock while userspace - * activities happen inside the kernel. */ static DEFINE_MUTEX(trace_types_lock); +/* + * serialize the access of the ring buffer + * + * ring buffer serializes readers, but it is low level protection. + * The validity of the events (which returns by ring_buffer_peek() ..etc) + * are not protected by ring buffer. + * + * The content of events may become garbage if we allow other process consumes + * these events concurrently: + * A) the page of the consumed events may become a normal page + * (not reader page) in ring buffer, and this page will be rewrited + * by events producer. + * B) The page of the consumed events may become a page for splice_read, + * and this page will be returned to system. + * + * These primitives allow multi process access to different cpu ring buffer + * concurrently. + * + * These primitives don't distinguish read-only and read-consume access. + * Multi read-only access are also serialized. + */ + +#ifdef CONFIG_SMP +static DECLARE_RWSEM(all_cpu_access_lock); +static DEFINE_PER_CPU(struct mutex, cpu_access_lock); + +static inline void trace_access_lock(int cpu) +{ + if (cpu == TRACE_PIPE_ALL_CPU) { + /* gain it for accessing the whole ring buffer. */ + down_write(&all_cpu_access_lock); + } else { + /* gain it for accessing a cpu ring buffer. */ + + /* Firstly block other trace_access_lock(TRACE_PIPE_ALL_CPU). */ + down_read(&all_cpu_access_lock); + + /* Secondly block other access to this @cpu ring buffer. */ + mutex_lock(&per_cpu(cpu_access_lock, cpu)); + } +} + +static inline void trace_access_unlock(int cpu) +{ + if (cpu == TRACE_PIPE_ALL_CPU) { + up_write(&all_cpu_access_lock); + } else { + mutex_unlock(&per_cpu(cpu_access_lock, cpu)); + up_read(&all_cpu_access_lock); + } +} + +static inline void trace_access_lock_init(void) +{ + int cpu; + + for_each_possible_cpu(cpu) + mutex_init(&per_cpu(cpu_access_lock, cpu)); +} + +#else + +static DEFINE_MUTEX(access_lock); + +static inline void trace_access_lock(int cpu) +{ + (void)cpu; + mutex_lock(&access_lock); +} + +static inline void trace_access_unlock(int cpu) +{ + (void)cpu; + mutex_unlock(&access_lock); +} + +static inline void trace_access_lock_init(void) +{ +} + +#endif + /* trace_wait is a waitqueue for tasks blocked on trace_poll */ static DECLARE_WAIT_QUEUE_HEAD(trace_wait); @@ -1089,7 +1166,7 @@ trace_function(struct trace_array *tr, struct ftrace_entry *entry; /* If we are reading the ring buffer, don't trace */ - if (unlikely(__this_cpu_read(per_cpu_var(ftrace_cpu_disabled)))) + if (unlikely(__this_cpu_read(ftrace_cpu_disabled))) return; event = trace_buffer_lock_reserve(buffer, TRACE_FN, sizeof(*entry), @@ -1320,8 +1397,10 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) entry->fmt = fmt; memcpy(entry->buf, trace_buf, sizeof(u32) * len); - if (!filter_check_discard(call, entry, buffer, event)) + if (!filter_check_discard(call, entry, buffer, event)) { ring_buffer_unlock_commit(buffer, event); + ftrace_trace_stack(buffer, flags, 6, pc); + } out_unlock: arch_spin_unlock(&trace_buf_lock); @@ -1394,8 +1473,10 @@ int trace_array_vprintk(struct trace_array *tr, memcpy(&entry->buf, trace_buf, len); entry->buf[len] = '\0'; - if (!filter_check_discard(call, entry, buffer, event)) + if (!filter_check_discard(call, entry, buffer, event)) { ring_buffer_unlock_commit(buffer, event); + ftrace_trace_stack(buffer, irq_flags, 6, pc); + } out_unlock: arch_spin_unlock(&trace_buf_lock); @@ -1585,12 +1666,6 @@ static void tracing_iter_reset(struct trace_iterator *iter, int cpu) } /* - * No necessary locking here. The worst thing which can - * happen is loosing events consumed at the same time - * by a trace_pipe reader. - * Other than that, we don't risk to crash the ring buffer - * because it serializes the readers. - * * The current tracer is copied to avoid a global locking * all around. */ @@ -1645,12 +1720,16 @@ static void *s_start(struct seq_file *m, loff_t *pos) } trace_event_read_lock(); + trace_access_lock(cpu_file); return p; } static void s_stop(struct seq_file *m, void *p) { + struct trace_iterator *iter = m->private; + atomic_dec(&trace_record_cmdline_disabled); + trace_access_unlock(iter->cpu_file); trace_event_read_unlock(); } @@ -2841,22 +2920,6 @@ static int tracing_open_pipe(struct inode *inode, struct file *filp) mutex_lock(&trace_types_lock); - /* We only allow one reader per cpu */ - if (cpu_file == TRACE_PIPE_ALL_CPU) { - if (!cpumask_empty(tracing_reader_cpumask)) { - ret = -EBUSY; - goto out; - } - cpumask_setall(tracing_reader_cpumask); - } else { - if (!cpumask_test_cpu(cpu_file, tracing_reader_cpumask)) - cpumask_set_cpu(cpu_file, tracing_reader_cpumask); - else { - ret = -EBUSY; - goto out; - } - } - /* create a buffer to store the information to pass to userspace */ iter = kzalloc(sizeof(*iter), GFP_KERNEL); if (!iter) { @@ -2912,12 +2975,6 @@ static int tracing_release_pipe(struct inode *inode, struct file *file) mutex_lock(&trace_types_lock); - if (iter->cpu_file == TRACE_PIPE_ALL_CPU) - cpumask_clear(tracing_reader_cpumask); - else - cpumask_clear_cpu(iter->cpu_file, tracing_reader_cpumask); - - if (iter->trace->pipe_close) iter->trace->pipe_close(iter); @@ -3079,6 +3136,7 @@ waitagain: iter->pos = -1; trace_event_read_lock(); + trace_access_lock(iter->cpu_file); while (find_next_entry_inc(iter) != NULL) { enum print_line_t ret; int len = iter->seq.len; @@ -3095,6 +3153,7 @@ waitagain: if (iter->seq.len >= cnt) break; } + trace_access_unlock(iter->cpu_file); trace_event_read_unlock(); /* Now copy what we have to the user */ @@ -3220,6 +3279,7 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, } trace_event_read_lock(); + trace_access_lock(iter->cpu_file); /* Fill as many pages as possible. */ for (i = 0, rem = len; i < PIPE_BUFFERS && rem; i++) { @@ -3243,6 +3303,7 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, trace_seq_init(&iter->seq); } + trace_access_unlock(iter->cpu_file); trace_event_read_unlock(); mutex_unlock(&iter->mutex); @@ -3544,10 +3605,12 @@ tracing_buffers_read(struct file *filp, char __user *ubuf, info->read = 0; + trace_access_lock(info->cpu); ret = ring_buffer_read_page(info->tr->buffer, &info->spare, count, info->cpu, 0); + trace_access_unlock(info->cpu); if (ret < 0) return 0; @@ -3675,6 +3738,7 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, len &= PAGE_MASK; } + trace_access_lock(info->cpu); entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); for (i = 0; i < PIPE_BUFFERS && len && entries; i++, len -= PAGE_SIZE) { @@ -3722,6 +3786,7 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); } + trace_access_unlock(info->cpu); spd.nr_pages = i; /* did we read anything? */ @@ -4158,6 +4223,8 @@ static __init int tracer_init_debugfs(void) struct dentry *d_tracer; int cpu; + trace_access_lock_init(); + d_tracer = tracing_init_dentry(); trace_create_file("tracing_enabled", 0644, d_tracer, @@ -4392,9 +4459,6 @@ __init static int tracer_alloc_buffers(void) if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) goto out_free_buffer_mask; - if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) - goto out_free_tracing_cpumask; - /* To save memory, keep the ring buffer size to its minimum */ if (ring_buffer_expanded) ring_buf_size = trace_buf_size; @@ -4452,8 +4516,6 @@ __init static int tracer_alloc_buffers(void) return 0; out_free_cpumask: - free_cpumask_var(tracing_reader_cpumask); -out_free_tracing_cpumask: free_cpumask_var(tracing_cpumask); out_free_buffer_mask: free_cpumask_var(tracing_buffer_mask); diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index 4df6a77..fd05bca 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h @@ -497,6 +497,7 @@ trace_print_graph_duration(unsigned long long duration, struct trace_seq *s); #ifdef CONFIG_DYNAMIC_FTRACE /* TODO: make this variable */ #define FTRACE_GRAPH_MAX_FUNCS 32 +extern int ftrace_graph_filter_enabled; extern int ftrace_graph_count; extern unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS]; @@ -504,7 +505,7 @@ static inline int ftrace_graph_addr(unsigned long addr) { int i; - if (!ftrace_graph_count || test_tsk_trace_graph(current)) + if (!ftrace_graph_filter_enabled) return 1; for (i = 0; i < ftrace_graph_count; i++) { @@ -791,7 +792,8 @@ extern const char *__stop___trace_bprintk_fmt[]; #undef FTRACE_ENTRY #define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \ - extern struct ftrace_event_call event_##call; + extern struct ftrace_event_call \ + __attribute__((__aligned__(4))) event_##call; #undef FTRACE_ENTRY_DUP #define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \ FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) diff --git a/kernel/trace/trace_branch.c b/kernel/trace/trace_branch.c index 4a194f0..b9bc4d4 100644 --- a/kernel/trace/trace_branch.c +++ b/kernel/trace/trace_branch.c @@ -307,8 +307,23 @@ static int annotated_branch_stat_cmp(void *p1, void *p2) return -1; if (percent_a > percent_b) return 1; - else - return 0; + + if (a->incorrect < b->incorrect) + return -1; + if (a->incorrect > b->incorrect) + return 1; + + /* + * Since the above shows worse (incorrect) cases + * first, we continue that by showing best (correct) + * cases last. + */ + if (a->correct > b->correct) + return -1; + if (a->correct < b->correct) + return 1; + + return 0; } static struct tracer_stat annotated_branch_stats = { diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index 189b09b..3f972ad9 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c @@ -60,10 +60,8 @@ int trace_define_field(struct ftrace_event_call *call, const char *type, return 0; err: - if (field) { + if (field) kfree(field->name); - kfree(field->type); - } kfree(field); return -ENOMEM; @@ -520,41 +518,16 @@ out: return ret; } -extern char *__bad_type_size(void); - -#undef FIELD -#define FIELD(type, name) \ - sizeof(type) != sizeof(field.name) ? __bad_type_size() : \ - #type, "common_" #name, offsetof(typeof(field), name), \ - sizeof(field.name), is_signed_type(type) - -static int trace_write_header(struct trace_seq *s) -{ - struct trace_entry field; - - /* struct trace_entry */ - return trace_seq_printf(s, - "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" - "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" - "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" - "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" - "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" - "\n", - FIELD(unsigned short, type), - FIELD(unsigned char, flags), - FIELD(unsigned char, preempt_count), - FIELD(int, pid), - FIELD(int, lock_depth)); -} - static ssize_t event_format_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct ftrace_event_call *call = filp->private_data; + struct ftrace_event_field *field; struct trace_seq *s; + int common_field_count = 5; char *buf; - int r; + int r = 0; if (*ppos) return 0; @@ -565,14 +538,48 @@ event_format_read(struct file *filp, char __user *ubuf, size_t cnt, trace_seq_init(s); - /* If any of the first writes fail, so will the show_format. */ - trace_seq_printf(s, "name: %s\n", call->name); trace_seq_printf(s, "ID: %d\n", call->id); trace_seq_printf(s, "format:\n"); - trace_write_header(s); - r = call->show_format(call, s); + list_for_each_entry_reverse(field, &call->fields, link) { + /* + * Smartly shows the array type(except dynamic array). + * Normal: + * field:TYPE VAR + * If TYPE := TYPE[LEN], it is shown: + * field:TYPE VAR[LEN] + */ + const char *array_descriptor = strchr(field->type, '['); + + if (!strncmp(field->type, "__data_loc", 10)) + array_descriptor = NULL; + + if (!array_descriptor) { + r = trace_seq_printf(s, "\tfield:%s %s;\toffset:%u;" + "\tsize:%u;\tsigned:%d;\n", + field->type, field->name, field->offset, + field->size, !!field->is_signed); + } else { + r = trace_seq_printf(s, "\tfield:%.*s %s%s;\toffset:%u;" + "\tsize:%u;\tsigned:%d;\n", + (int)(array_descriptor - field->type), + field->type, field->name, + array_descriptor, field->offset, + field->size, !!field->is_signed); + } + + if (--common_field_count == 0) + r = trace_seq_printf(s, "\n"); + + if (!r) + break; + } + + if (r) + r = trace_seq_printf(s, "\nprint fmt: %s\n", + call->print_fmt); + if (!r) { /* * ug! The format output is bigger than a PAGE!! @@ -948,10 +955,6 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, filter); } - /* A trace may not want to export its format */ - if (!call->show_format) - return 0; - trace_create_file("format", 0444, call->dir, call, format); diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c index d4fa5dc..e091f64 100644 --- a/kernel/trace/trace_export.c +++ b/kernel/trace/trace_export.c @@ -62,78 +62,6 @@ static void __always_unused ____ftrace_check_##name(void) \ #include "trace_entries.h" - -#undef __field -#define __field(type, item) \ - ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ - "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ - offsetof(typeof(field), item), \ - sizeof(field.item), is_signed_type(type)); \ - if (!ret) \ - return 0; - -#undef __field_desc -#define __field_desc(type, container, item) \ - ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ - "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ - offsetof(typeof(field), container.item), \ - sizeof(field.container.item), \ - is_signed_type(type)); \ - if (!ret) \ - return 0; - -#undef __array -#define __array(type, item, len) \ - ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ - "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ - offsetof(typeof(field), item), \ - sizeof(field.item), is_signed_type(type)); \ - if (!ret) \ - return 0; - -#undef __array_desc -#define __array_desc(type, container, item, len) \ - ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ - "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ - offsetof(typeof(field), container.item), \ - sizeof(field.container.item), \ - is_signed_type(type)); \ - if (!ret) \ - return 0; - -#undef __dynamic_array -#define __dynamic_array(type, item) \ - ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ - "offset:%zu;\tsize:0;\tsigned:%u;\n", \ - offsetof(typeof(field), item), \ - is_signed_type(type)); \ - if (!ret) \ - return 0; - -#undef F_printk -#define F_printk(fmt, args...) "%s, %s\n", #fmt, __stringify(args) - -#undef __entry -#define __entry REC - -#undef FTRACE_ENTRY -#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ -static int \ -ftrace_format_##name(struct ftrace_event_call *unused, \ - struct trace_seq *s) \ -{ \ - struct struct_name field __attribute__((unused)); \ - int ret = 0; \ - \ - tstruct; \ - \ - trace_seq_printf(s, "\nprint fmt: " print); \ - \ - return ret; \ -} - -#include "trace_entries.h" - #undef __field #define __field(type, item) \ ret = trace_define_field(event_call, #type, #item, \ @@ -175,7 +103,12 @@ ftrace_format_##name(struct ftrace_event_call *unused, \ return ret; #undef __dynamic_array -#define __dynamic_array(type, item) +#define __dynamic_array(type, item) \ + ret = trace_define_field(event_call, #type, #item, \ + offsetof(typeof(field), item), \ + 0, is_signed_type(type), FILTER_OTHER);\ + if (ret) \ + return ret; #undef FTRACE_ENTRY #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ @@ -198,6 +131,9 @@ static int ftrace_raw_init_event(struct ftrace_event_call *call) return 0; } +#undef __entry +#define __entry REC + #undef __field #define __field(type, item) @@ -213,6 +149,9 @@ static int ftrace_raw_init_event(struct ftrace_event_call *call) #undef __dynamic_array #define __dynamic_array(type, item) +#undef F_printk +#define F_printk(fmt, args...) #fmt ", " __stringify(args) + #undef FTRACE_ENTRY #define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \ \ @@ -223,7 +162,7 @@ __attribute__((section("_ftrace_events"))) event_##call = { \ .id = type, \ .system = __stringify(TRACE_SYSTEM), \ .raw_init = ftrace_raw_init_event, \ - .show_format = ftrace_format_##call, \ + .print_fmt = print, \ .define_fields = ftrace_define_fields_##call, \ }; \ diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index b1342c5..3fc2a57 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c @@ -18,6 +18,7 @@ struct fgraph_cpu_data { pid_t last_pid; int depth; int ignore; + unsigned long enter_funcs[FTRACE_RETFUNC_DEPTH]; }; struct fgraph_data { @@ -187,7 +188,7 @@ static int __trace_graph_entry(struct trace_array *tr, struct ring_buffer *buffer = tr->buffer; struct ftrace_graph_ent_entry *entry; - if (unlikely(__this_cpu_read(per_cpu_var(ftrace_cpu_disabled)))) + if (unlikely(__this_cpu_read(ftrace_cpu_disabled))) return 0; event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_ENT, @@ -212,13 +213,11 @@ int trace_graph_entry(struct ftrace_graph_ent *trace) int cpu; int pc; - if (unlikely(!tr)) - return 0; - if (!ftrace_trace_task(current)) return 0; - if (!ftrace_graph_addr(trace->func)) + /* trace it when it is-nested-in or is a function enabled. */ + if (!(trace->depth || ftrace_graph_addr(trace->func))) return 0; local_irq_save(flags); @@ -231,9 +230,6 @@ int trace_graph_entry(struct ftrace_graph_ent *trace) } else { ret = 0; } - /* Only do the atomic if it is not already set */ - if (!test_tsk_trace_graph(current)) - set_tsk_trace_graph(current); atomic_dec(&data->disabled); local_irq_restore(flags); @@ -251,7 +247,7 @@ static void __trace_graph_return(struct trace_array *tr, struct ring_buffer *buffer = tr->buffer; struct ftrace_graph_ret_entry *entry; - if (unlikely(__this_cpu_read(per_cpu_var(ftrace_cpu_disabled)))) + if (unlikely(__this_cpu_read(ftrace_cpu_disabled))) return; event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_RET, @@ -281,17 +277,24 @@ void trace_graph_return(struct ftrace_graph_ret *trace) pc = preempt_count(); __trace_graph_return(tr, trace, flags, pc); } - if (!trace->depth) - clear_tsk_trace_graph(current); atomic_dec(&data->disabled); local_irq_restore(flags); } +void set_graph_array(struct trace_array *tr) +{ + graph_array = tr; + + /* Make graph_array visible before we start tracing */ + + smp_mb(); +} + static int graph_trace_init(struct trace_array *tr) { int ret; - graph_array = tr; + set_graph_array(tr); ret = register_ftrace_graph(&trace_graph_return, &trace_graph_entry); if (ret) @@ -301,11 +304,6 @@ static int graph_trace_init(struct trace_array *tr) return 0; } -void set_graph_array(struct trace_array *tr) -{ - graph_array = tr; -} - static void graph_trace_reset(struct trace_array *tr) { tracing_stop_cmdline_record(); @@ -673,15 +671,21 @@ print_graph_entry_leaf(struct trace_iterator *iter, duration = graph_ret->rettime - graph_ret->calltime; if (data) { + struct fgraph_cpu_data *cpu_data; int cpu = iter->cpu; - int *depth = &(per_cpu_ptr(data->cpu_data, cpu)->depth); + + cpu_data = per_cpu_ptr(data->cpu_data, cpu); /* * Comments display at + 1 to depth. Since * this is a leaf function, keep the comments * equal to this depth. */ - *depth = call->depth - 1; + cpu_data->depth = call->depth - 1; + + /* No need to keep this function around for this depth */ + if (call->depth < FTRACE_RETFUNC_DEPTH) + cpu_data->enter_funcs[call->depth] = 0; } /* Overhead */ @@ -721,10 +725,15 @@ print_graph_entry_nested(struct trace_iterator *iter, int i; if (data) { + struct fgraph_cpu_data *cpu_data; int cpu = iter->cpu; - int *depth = &(per_cpu_ptr(data->cpu_data, cpu)->depth); - *depth = call->depth; + cpu_data = per_cpu_ptr(data->cpu_data, cpu); + cpu_data->depth = call->depth; + + /* Save this function pointer to see if the exit matches */ + if (call->depth < FTRACE_RETFUNC_DEPTH) + cpu_data->enter_funcs[call->depth] = call->func; } /* No overhead */ @@ -854,19 +863,28 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, struct fgraph_data *data = iter->private; pid_t pid = ent->pid; int cpu = iter->cpu; + int func_match = 1; int ret; int i; if (data) { + struct fgraph_cpu_data *cpu_data; int cpu = iter->cpu; - int *depth = &(per_cpu_ptr(data->cpu_data, cpu)->depth); + + cpu_data = per_cpu_ptr(data->cpu_data, cpu); /* * Comments display at + 1 to depth. This is the * return from a function, we now want the comments * to display at the same level of the bracket. */ - *depth = trace->depth - 1; + cpu_data->depth = trace->depth - 1; + + if (trace->depth < FTRACE_RETFUNC_DEPTH) { + if (cpu_data->enter_funcs[trace->depth] != trace->func) + func_match = 0; + cpu_data->enter_funcs[trace->depth] = 0; + } } if (print_graph_prologue(iter, s, 0, 0)) @@ -891,9 +909,21 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, return TRACE_TYPE_PARTIAL_LINE; } - ret = trace_seq_printf(s, "}\n"); - if (!ret) - return TRACE_TYPE_PARTIAL_LINE; + /* + * If the return function does not have a matching entry, + * then the entry was lost. Instead of just printing + * the '}' and letting the user guess what function this + * belongs to, write out the function name. + */ + if (func_match) { + ret = trace_seq_printf(s, "}\n"); + if (!ret) + return TRACE_TYPE_PARTIAL_LINE; + } else { + ret = trace_seq_printf(s, "} (%ps)\n", (void *)trace->func); + if (!ret) + return TRACE_TYPE_PARTIAL_LINE; + } /* Overrun */ if (tracer_flags.val & TRACE_GRAPH_PRINT_OVERRUN) { diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c index 356c102..505c922 100644 --- a/kernel/trace/trace_kprobe.c +++ b/kernel/trace/trace_kprobe.c @@ -635,12 +635,12 @@ static int create_trace_probe(int argc, char **argv) event = strchr(group, '/') + 1; event[-1] = '\0'; if (strlen(group) == 0) { - pr_info("Group name is not specifiled\n"); + pr_info("Group name is not specified\n"); return -EINVAL; } } if (strlen(event) == 0) { - pr_info("Event name is not specifiled\n"); + pr_info("Event name is not specified\n"); return -EINVAL; } } @@ -1155,80 +1155,60 @@ static int kretprobe_event_define_fields(struct ftrace_event_call *event_call) return 0; } -static int __probe_event_show_format(struct trace_seq *s, - struct trace_probe *tp, const char *fmt, - const char *arg) +static int __set_print_fmt(struct trace_probe *tp, char *buf, int len) { int i; + int pos = 0; - /* Show format */ - if (!trace_seq_printf(s, "\nprint fmt: \"%s", fmt)) - return 0; + const char *fmt, *arg; - for (i = 0; i < tp->nr_args; i++) - if (!trace_seq_printf(s, " %s=%%lx", tp->args[i].name)) - return 0; + if (!probe_is_return(tp)) { + fmt = "(%lx)"; + arg = "REC->" FIELD_STRING_IP; + } else { + fmt = "(%lx <- %lx)"; + arg = "REC->" FIELD_STRING_FUNC ", REC->" FIELD_STRING_RETIP; + } - if (!trace_seq_printf(s, "\", %s", arg)) - return 0; + /* When len=0, we just calculate the needed length */ +#define LEN_OR_ZERO (len ? len - pos : 0) - for (i = 0; i < tp->nr_args; i++) - if (!trace_seq_printf(s, ", REC->%s", tp->args[i].name)) - return 0; + pos += snprintf(buf + pos, LEN_OR_ZERO, "\"%s", fmt); - return trace_seq_puts(s, "\n"); -} + for (i = 0; i < tp->nr_args; i++) { + pos += snprintf(buf + pos, LEN_OR_ZERO, " %s=%%lx", + tp->args[i].name); + } -#undef SHOW_FIELD -#define SHOW_FIELD(type, item, name) \ - do { \ - ret = trace_seq_printf(s, "\tfield:" #type " %s;\t" \ - "offset:%u;\tsize:%u;\tsigned:%d;\n", name,\ - (unsigned int)offsetof(typeof(field), item),\ - (unsigned int)sizeof(type), \ - is_signed_type(type)); \ - if (!ret) \ - return 0; \ - } while (0) + pos += snprintf(buf + pos, LEN_OR_ZERO, "\", %s", arg); -static int kprobe_event_show_format(struct ftrace_event_call *call, - struct trace_seq *s) -{ - struct kprobe_trace_entry field __attribute__((unused)); - int ret, i; - struct trace_probe *tp = (struct trace_probe *)call->data; - - SHOW_FIELD(unsigned long, ip, FIELD_STRING_IP); - SHOW_FIELD(int, nargs, FIELD_STRING_NARGS); + for (i = 0; i < tp->nr_args; i++) { + pos += snprintf(buf + pos, LEN_OR_ZERO, ", REC->%s", + tp->args[i].name); + } - /* Show fields */ - for (i = 0; i < tp->nr_args; i++) - SHOW_FIELD(unsigned long, args[i], tp->args[i].name); - trace_seq_puts(s, "\n"); +#undef LEN_OR_ZERO - return __probe_event_show_format(s, tp, "(%lx)", - "REC->" FIELD_STRING_IP); + /* return the length of print_fmt */ + return pos; } -static int kretprobe_event_show_format(struct ftrace_event_call *call, - struct trace_seq *s) +static int set_print_fmt(struct trace_probe *tp) { - struct kretprobe_trace_entry field __attribute__((unused)); - int ret, i; - struct trace_probe *tp = (struct trace_probe *)call->data; + int len; + char *print_fmt; - SHOW_FIELD(unsigned long, func, FIELD_STRING_FUNC); - SHOW_FIELD(unsigned long, ret_ip, FIELD_STRING_RETIP); - SHOW_FIELD(int, nargs, FIELD_STRING_NARGS); + /* First: called with 0 length to calculate the needed length */ + len = __set_print_fmt(tp, NULL, 0); + print_fmt = kmalloc(len + 1, GFP_KERNEL); + if (!print_fmt) + return -ENOMEM; - /* Show fields */ - for (i = 0; i < tp->nr_args; i++) - SHOW_FIELD(unsigned long, args[i], tp->args[i].name); - trace_seq_puts(s, "\n"); + /* Second: actually write the @print_fmt */ + __set_print_fmt(tp, print_fmt, len + 1); + tp->call.print_fmt = print_fmt; - return __probe_event_show_format(s, tp, "(%lx <- %lx)", - "REC->" FIELD_STRING_FUNC - ", REC->" FIELD_STRING_RETIP); + return 0; } #ifdef CONFIG_PERF_EVENTS @@ -1359,18 +1339,20 @@ static int register_probe_event(struct trace_probe *tp) if (probe_is_return(tp)) { tp->event.trace = print_kretprobe_event; call->raw_init = probe_event_raw_init; - call->show_format = kretprobe_event_show_format; call->define_fields = kretprobe_event_define_fields; } else { tp->event.trace = print_kprobe_event; call->raw_init = probe_event_raw_init; - call->show_format = kprobe_event_show_format; call->define_fields = kprobe_event_define_fields; } + if (set_print_fmt(tp) < 0) + return -ENOMEM; call->event = &tp->event; call->id = register_ftrace_event(&tp->event); - if (!call->id) + if (!call->id) { + kfree(call->print_fmt); return -ENODEV; + } call->enabled = 0; call->regfunc = probe_event_enable; call->unregfunc = probe_event_disable; @@ -1383,6 +1365,7 @@ static int register_probe_event(struct trace_probe *tp) ret = trace_add_event_call(call); if (ret) { pr_info("Failed to register kprobe event: %s\n", call->name); + kfree(call->print_fmt); unregister_ftrace_event(&tp->event); } return ret; @@ -1392,6 +1375,7 @@ static void unregister_probe_event(struct trace_probe *tp) { /* tp->event is unregistered in trace_remove_event_call() */ trace_remove_event_call(&tp->call); + kfree(tp->call.print_fmt); } /* Make a debugfs interface for controling probe points */ diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 4e332b9..cba47d7 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c @@ -143,70 +143,65 @@ extern char *__bad_type_size(void); #type, #name, offsetof(typeof(trace), name), \ sizeof(trace.name), is_signed_type(type) -int syscall_enter_format(struct ftrace_event_call *call, struct trace_seq *s) +static +int __set_enter_print_fmt(struct syscall_metadata *entry, char *buf, int len) { int i; - int ret; - struct syscall_metadata *entry = call->data; - struct syscall_trace_enter trace; - int offset = offsetof(struct syscall_trace_enter, args); + int pos = 0; - ret = trace_seq_printf(s, "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" - "\tsigned:%u;\n", - SYSCALL_FIELD(int, nr)); - if (!ret) - return 0; + /* When len=0, we just calculate the needed length */ +#define LEN_OR_ZERO (len ? len - pos : 0) + pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); for (i = 0; i < entry->nb_args; i++) { - ret = trace_seq_printf(s, "\tfield:%s %s;", entry->types[i], - entry->args[i]); - if (!ret) - return 0; - ret = trace_seq_printf(s, "\toffset:%d;\tsize:%zu;" - "\tsigned:%u;\n", offset, - sizeof(unsigned long), - is_signed_type(unsigned long)); - if (!ret) - return 0; - offset += sizeof(unsigned long); + pos += snprintf(buf + pos, LEN_OR_ZERO, "%s: 0x%%0%zulx%s", + entry->args[i], sizeof(unsigned long), + i == entry->nb_args - 1 ? "" : ", "); } + pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); - trace_seq_puts(s, "\nprint fmt: \""); for (i = 0; i < entry->nb_args; i++) { - ret = trace_seq_printf(s, "%s: 0x%%0%zulx%s", entry->args[i], - sizeof(unsigned long), - i == entry->nb_args - 1 ? "" : ", "); - if (!ret) - return 0; + pos += snprintf(buf + pos, LEN_OR_ZERO, + ", ((unsigned long)(REC->%s))", entry->args[i]); } - trace_seq_putc(s, '"'); - for (i = 0; i < entry->nb_args; i++) { - ret = trace_seq_printf(s, ", ((unsigned long)(REC->%s))", - entry->args[i]); - if (!ret) - return 0; - } +#undef LEN_OR_ZERO - return trace_seq_putc(s, '\n'); + /* return the length of print_fmt */ + return pos; } -int syscall_exit_format(struct ftrace_event_call *call, struct trace_seq *s) +static int set_syscall_print_fmt(struct ftrace_event_call *call) { - int ret; - struct syscall_trace_exit trace; + char *print_fmt; + int len; + struct syscall_metadata *entry = call->data; - ret = trace_seq_printf(s, - "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" - "\tsigned:%u;\n" - "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" - "\tsigned:%u;\n", - SYSCALL_FIELD(int, nr), - SYSCALL_FIELD(long, ret)); - if (!ret) + if (entry->enter_event != call) { + call->print_fmt = "\"0x%lx\", REC->ret"; return 0; + } - return trace_seq_printf(s, "\nprint fmt: \"0x%%lx\", REC->ret\n"); + /* First: called with 0 length to calculate the needed length */ + len = __set_enter_print_fmt(entry, NULL, 0); + + print_fmt = kmalloc(len + 1, GFP_KERNEL); + if (!print_fmt) + return -ENOMEM; + + /* Second: actually write the @print_fmt */ + __set_enter_print_fmt(entry, print_fmt, len + 1); + call->print_fmt = print_fmt; + + return 0; +} + +static void free_syscall_print_fmt(struct ftrace_event_call *call) +{ + struct syscall_metadata *entry = call->data; + + if (entry->enter_event == call) + kfree(call->print_fmt); } int syscall_enter_define_fields(struct ftrace_event_call *call) @@ -386,12 +381,22 @@ int init_syscall_trace(struct ftrace_event_call *call) { int id; - id = register_ftrace_event(call->event); - if (!id) - return -ENODEV; - call->id = id; - INIT_LIST_HEAD(&call->fields); - return 0; + if (set_syscall_print_fmt(call) < 0) + return -ENOMEM; + + id = trace_event_raw_init(call); + + if (id < 0) { + free_syscall_print_fmt(call); + return id; + } + + return id; +} + +unsigned long __init arch_syscall_addr(int nr) +{ + return (unsigned long)sys_call_table[nr]; } int __init init_ftrace_syscalls(void) @@ -552,7 +557,7 @@ int prof_sysexit_enable(struct ftrace_event_call *call) ret = register_trace_sys_exit(prof_syscall_exit); if (ret) { pr_info("event trace: Could not activate" - "syscall entry trace point"); + "syscall exit trace point"); } else { set_bit(num, enabled_prof_exit_syscalls); sys_prof_refcount_exit++; diff --git a/kernel/tsacct.c b/kernel/tsacct.c index 00d59d0..0a67e041 100644 --- a/kernel/tsacct.c +++ b/kernel/tsacct.c @@ -21,6 +21,7 @@ #include <linux/tsacct_kern.h> #include <linux/acct.h> #include <linux/jiffies.h> +#include <linux/mm.h> /* * fill in basic accounting fields diff --git a/kernel/user.c b/kernel/user.c index 46d0165..766467b 100644 --- a/kernel/user.c +++ b/kernel/user.c @@ -56,9 +56,6 @@ struct user_struct root_user = { .sigpending = ATOMIC_INIT(0), .locked_shm = 0, .user_ns = &init_user_ns, -#ifdef CONFIG_USER_SCHED - .tg = &init_task_group, -#endif }; /* @@ -75,268 +72,6 @@ static void uid_hash_remove(struct user_struct *up) put_user_ns(up->user_ns); } -#ifdef CONFIG_USER_SCHED - -static void sched_destroy_user(struct user_struct *up) -{ - sched_destroy_group(up->tg); -} - -static int sched_create_user(struct user_struct *up) -{ - int rc = 0; - - up->tg = sched_create_group(&root_task_group); - if (IS_ERR(up->tg)) - rc = -ENOMEM; - - set_tg_uid(up); - - return rc; -} - -#else /* CONFIG_USER_SCHED */ - -static void sched_destroy_user(struct user_struct *up) { } -static int sched_create_user(struct user_struct *up) { return 0; } - -#endif /* CONFIG_USER_SCHED */ - -#if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS) - -static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) -{ - struct user_struct *user; - struct hlist_node *h; - - hlist_for_each_entry(user, h, hashent, uidhash_node) { - if (user->uid == uid) { - /* possibly resurrect an "almost deleted" object */ - if (atomic_inc_return(&user->__count) == 1) - cancel_delayed_work(&user->work); - return user; - } - } - - return NULL; -} - -static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */ -static DEFINE_MUTEX(uids_mutex); - -static inline void uids_mutex_lock(void) -{ - mutex_lock(&uids_mutex); -} - -static inline void uids_mutex_unlock(void) -{ - mutex_unlock(&uids_mutex); -} - -/* uid directory attributes */ -#ifdef CONFIG_FAIR_GROUP_SCHED -static ssize_t cpu_shares_show(struct kobject *kobj, - struct kobj_attribute *attr, - char *buf) -{ - struct user_struct *up = container_of(kobj, struct user_struct, kobj); - - return sprintf(buf, "%lu\n", sched_group_shares(up->tg)); -} - -static ssize_t cpu_shares_store(struct kobject *kobj, - struct kobj_attribute *attr, - const char *buf, size_t size) -{ - struct user_struct *up = container_of(kobj, struct user_struct, kobj); - unsigned long shares; - int rc; - - sscanf(buf, "%lu", &shares); - - rc = sched_group_set_shares(up->tg, shares); - - return (rc ? rc : size); -} - -static struct kobj_attribute cpu_share_attr = - __ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store); -#endif - -#ifdef CONFIG_RT_GROUP_SCHED -static ssize_t cpu_rt_runtime_show(struct kobject *kobj, - struct kobj_attribute *attr, - char *buf) -{ - struct user_struct *up = container_of(kobj, struct user_struct, kobj); - - return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg)); -} - -static ssize_t cpu_rt_runtime_store(struct kobject *kobj, - struct kobj_attribute *attr, - const char *buf, size_t size) -{ - struct user_struct *up = container_of(kobj, struct user_struct, kobj); - unsigned long rt_runtime; - int rc; - - sscanf(buf, "%ld", &rt_runtime); - - rc = sched_group_set_rt_runtime(up->tg, rt_runtime); - - return (rc ? rc : size); -} - -static struct kobj_attribute cpu_rt_runtime_attr = - __ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store); - -static ssize_t cpu_rt_period_show(struct kobject *kobj, - struct kobj_attribute *attr, - char *buf) -{ - struct user_struct *up = container_of(kobj, struct user_struct, kobj); - - return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg)); -} - -static ssize_t cpu_rt_period_store(struct kobject *kobj, - struct kobj_attribute *attr, - const char *buf, size_t size) -{ - struct user_struct *up = container_of(kobj, struct user_struct, kobj); - unsigned long rt_period; - int rc; - - sscanf(buf, "%lu", &rt_period); - - rc = sched_group_set_rt_period(up->tg, rt_period); - - return (rc ? rc : size); -} - -static struct kobj_attribute cpu_rt_period_attr = - __ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store); -#endif - -/* default attributes per uid directory */ -static struct attribute *uids_attributes[] = { -#ifdef CONFIG_FAIR_GROUP_SCHED - &cpu_share_attr.attr, -#endif -#ifdef CONFIG_RT_GROUP_SCHED - &cpu_rt_runtime_attr.attr, - &cpu_rt_period_attr.attr, -#endif - NULL -}; - -/* the lifetime of user_struct is not managed by the core (now) */ -static void uids_release(struct kobject *kobj) -{ - return; -} - -static struct kobj_type uids_ktype = { - .sysfs_ops = &kobj_sysfs_ops, - .default_attrs = uids_attributes, - .release = uids_release, -}; - -/* - * Create /sys/kernel/uids/<uid>/cpu_share file for this user - * We do not create this file for users in a user namespace (until - * sysfs tagging is implemented). - * - * See Documentation/scheduler/sched-design-CFS.txt for ramifications. - */ -static int uids_user_create(struct user_struct *up) -{ - struct kobject *kobj = &up->kobj; - int error; - - memset(kobj, 0, sizeof(struct kobject)); - if (up->user_ns != &init_user_ns) - return 0; - kobj->kset = uids_kset; - error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid); - if (error) { - kobject_put(kobj); - goto done; - } - - kobject_uevent(kobj, KOBJ_ADD); -done: - return error; -} - -/* create these entries in sysfs: - * "/sys/kernel/uids" directory - * "/sys/kernel/uids/0" directory (for root user) - * "/sys/kernel/uids/0/cpu_share" file (for root user) - */ -int __init uids_sysfs_init(void) -{ - uids_kset = kset_create_and_add("uids", NULL, kernel_kobj); - if (!uids_kset) - return -ENOMEM; - - return uids_user_create(&root_user); -} - -/* delayed work function to remove sysfs directory for a user and free up - * corresponding structures. - */ -static void cleanup_user_struct(struct work_struct *w) -{ - struct user_struct *up = container_of(w, struct user_struct, work.work); - unsigned long flags; - int remove_user = 0; - - /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del() - * atomic. - */ - uids_mutex_lock(); - - spin_lock_irqsave(&uidhash_lock, flags); - if (atomic_read(&up->__count) == 0) { - uid_hash_remove(up); - remove_user = 1; - } - spin_unlock_irqrestore(&uidhash_lock, flags); - - if (!remove_user) - goto done; - - if (up->user_ns == &init_user_ns) { - kobject_uevent(&up->kobj, KOBJ_REMOVE); - kobject_del(&up->kobj); - kobject_put(&up->kobj); - } - - sched_destroy_user(up); - key_put(up->uid_keyring); - key_put(up->session_keyring); - kmem_cache_free(uid_cachep, up); - -done: - uids_mutex_unlock(); -} - -/* IRQs are disabled and uidhash_lock is held upon function entry. - * IRQ state (as stored in flags) is restored and uidhash_lock released - * upon function exit. - */ -static void free_user(struct user_struct *up, unsigned long flags) -{ - INIT_DELAYED_WORK(&up->work, cleanup_user_struct); - schedule_delayed_work(&up->work, msecs_to_jiffies(1000)); - spin_unlock_irqrestore(&uidhash_lock, flags); -} - -#else /* CONFIG_USER_SCHED && CONFIG_SYSFS */ - static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) { struct user_struct *user; @@ -352,11 +87,6 @@ static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) return NULL; } -int uids_sysfs_init(void) { return 0; } -static inline int uids_user_create(struct user_struct *up) { return 0; } -static inline void uids_mutex_lock(void) { } -static inline void uids_mutex_unlock(void) { } - /* IRQs are disabled and uidhash_lock is held upon function entry. * IRQ state (as stored in flags) is restored and uidhash_lock released * upon function exit. @@ -365,32 +95,11 @@ static void free_user(struct user_struct *up, unsigned long flags) { uid_hash_remove(up); spin_unlock_irqrestore(&uidhash_lock, flags); - sched_destroy_user(up); key_put(up->uid_keyring); key_put(up->session_keyring); kmem_cache_free(uid_cachep, up); } -#endif - -#if defined(CONFIG_RT_GROUP_SCHED) && defined(CONFIG_USER_SCHED) -/* - * We need to check if a setuid can take place. This function should be called - * before successfully completing the setuid. - */ -int task_can_switch_user(struct user_struct *up, struct task_struct *tsk) -{ - - return sched_rt_can_attach(up->tg, tsk); - -} -#else -int task_can_switch_user(struct user_struct *up, struct task_struct *tsk) -{ - return 1; -} -#endif - /* * Locate the user_struct for the passed UID. If found, take a ref on it. The * caller must undo that ref with free_uid(). @@ -431,8 +140,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() * atomic. */ - uids_mutex_lock(); - spin_lock_irq(&uidhash_lock); up = uid_hash_find(uid, hashent); spin_unlock_irq(&uidhash_lock); @@ -445,14 +152,8 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) new->uid = uid; atomic_set(&new->__count, 1); - if (sched_create_user(new) < 0) - goto out_free_user; - new->user_ns = get_user_ns(ns); - if (uids_user_create(new)) - goto out_destoy_sched; - /* * Before adding this, check whether we raced * on adding the same user already.. @@ -475,17 +176,11 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) spin_unlock_irq(&uidhash_lock); } - uids_mutex_unlock(); - return up; -out_destoy_sched: - sched_destroy_user(new); put_user_ns(new->user_ns); -out_free_user: kmem_cache_free(uid_cachep, new); out_unlock: - uids_mutex_unlock(); return NULL; } |