diff options
author | Lucas De Marchi <lucas.demarchi@profusion.mobi> | 2011-03-30 22:57:33 -0300 |
---|---|---|
committer | Lucas De Marchi <lucas.demarchi@profusion.mobi> | 2011-03-31 11:26:23 -0300 |
commit | 25985edcedea6396277003854657b5f3cb31a628 (patch) | |
tree | f026e810210a2ee7290caeb737c23cb6472b7c38 /kernel | |
parent | 6aba74f2791287ec407e0f92487a725a25908067 (diff) | |
download | op-kernel-dev-25985edcedea6396277003854657b5f3cb31a628.zip op-kernel-dev-25985edcedea6396277003854657b5f3cb31a628.tar.gz |
Fix common misspellings
Fixes generated by 'codespell' and manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Diffstat (limited to 'kernel')
40 files changed, 55 insertions, 55 deletions
diff --git a/kernel/audit_tree.c b/kernel/audit_tree.c index 37b2bea..e99dda0 100644 --- a/kernel/audit_tree.c +++ b/kernel/audit_tree.c @@ -607,7 +607,7 @@ void audit_trim_trees(void) spin_lock(&hash_lock); list_for_each_entry(node, &tree->chunks, list) { struct audit_chunk *chunk = find_chunk(node); - /* this could be NULL if the watch is dieing else where... */ + /* this could be NULL if the watch is dying else where... */ struct inode *inode = chunk->mark.i.inode; node->index |= 1U<<31; if (iterate_mounts(compare_root, inode, root_mnt)) diff --git a/kernel/auditsc.c b/kernel/auditsc.c index f49a031..b33513a 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c @@ -1011,7 +1011,7 @@ static int audit_log_pid_context(struct audit_context *context, pid_t pid, /* * to_send and len_sent accounting are very loose estimates. We aren't * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being - * within about 500 bytes (next page boundry) + * within about 500 bytes (next page boundary) * * why snprintf? an int is up to 12 digits long. if we just assumed when * logging that a[%d]= was going to be 16 characters long we would be wasting diff --git a/kernel/cgroup.c b/kernel/cgroup.c index e31b220..25c7eb5 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c @@ -157,7 +157,7 @@ struct css_id { }; /* - * cgroup_event represents events which userspace want to recieve. + * cgroup_event represents events which userspace want to receive. */ struct cgroup_event { /* diff --git a/kernel/cpu.c b/kernel/cpu.c index c95fc4d..12b7458 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c @@ -126,7 +126,7 @@ static void cpu_hotplug_done(void) #else /* #if CONFIG_HOTPLUG_CPU */ static void cpu_hotplug_begin(void) {} static void cpu_hotplug_done(void) {} -#endif /* #esle #if CONFIG_HOTPLUG_CPU */ +#endif /* #else #if CONFIG_HOTPLUG_CPU */ /* Need to know about CPUs going up/down? */ int __ref register_cpu_notifier(struct notifier_block *nb) diff --git a/kernel/debug/debug_core.c b/kernel/debug/debug_core.c index cefd4a1..bad6786 100644 --- a/kernel/debug/debug_core.c +++ b/kernel/debug/debug_core.c @@ -538,7 +538,7 @@ return_normal: /* * For single stepping, try to only enter on the processor - * that was single stepping. To gaurd against a deadlock, the + * that was single stepping. To guard against a deadlock, the * kernel will only try for the value of sstep_tries before * giving up and continuing on. */ diff --git a/kernel/debug/kdb/kdb_main.c b/kernel/debug/kdb/kdb_main.c index 6bc6e3b..be14779 100644 --- a/kernel/debug/kdb/kdb_main.c +++ b/kernel/debug/kdb/kdb_main.c @@ -441,9 +441,9 @@ static int kdb_check_regs(void) * symbol name, and offset to the caller. * * The argument may consist of a numeric value (decimal or - * hexidecimal), a symbol name, a register name (preceeded by the + * hexidecimal), a symbol name, a register name (preceded by the * percent sign), an environment variable with a numeric value - * (preceeded by a dollar sign) or a simple arithmetic expression + * (preceded by a dollar sign) or a simple arithmetic expression * consisting of a symbol name, +/-, and a numeric constant value * (offset). * Parameters: @@ -1335,7 +1335,7 @@ void kdb_print_state(const char *text, int value) * error The hardware-defined error code * reason2 kdb's current reason code. * Initially error but can change - * acording to kdb state. + * according to kdb state. * db_result Result code from break or debug point. * regs The exception frame at time of fault/breakpoint. * should always be valid. diff --git a/kernel/debug/kdb/kdb_support.c b/kernel/debug/kdb/kdb_support.c index 6b2485d..5532dd3 100644 --- a/kernel/debug/kdb/kdb_support.c +++ b/kernel/debug/kdb/kdb_support.c @@ -545,7 +545,7 @@ int kdb_putword(unsigned long addr, unsigned long word, size_t size) * Mask for process state. * Notes: * The mask folds data from several sources into a single long value, so - * be carefull not to overlap the bits. TASK_* bits are in the LSB, + * be careful not to overlap the bits. TASK_* bits are in the LSB, * special cases like UNRUNNABLE are in the MSB. As of 2.6.10-rc1 there * is no overlap between TASK_* and EXIT_* but that may not always be * true, so EXIT_* bits are shifted left 16 bits before being stored in diff --git a/kernel/exit.c b/kernel/exit.c index 6a488ad..f5d2f63 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -841,7 +841,7 @@ static void exit_notify(struct task_struct *tsk, int group_dead) /* Let father know we died * * Thread signals are configurable, but you aren't going to use - * that to send signals to arbitary processes. + * that to send signals to arbitrary processes. * That stops right now. * * If the parent exec id doesn't match the exec id we saved diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c index 1dafc86..4af1e2b 100644 --- a/kernel/irq/chip.c +++ b/kernel/irq/chip.c @@ -415,7 +415,7 @@ out: * @desc: the interrupt description structure for this irq * * Interrupt occures on the falling and/or rising edge of a hardware - * signal. The occurence is latched into the irq controller hardware + * signal. The occurrence is latched into the irq controller hardware * and must be acked in order to be reenabled. After the ack another * interrupt can happen on the same source even before the first one * is handled by the associated event handler. If this happens it diff --git a/kernel/irq/migration.c b/kernel/irq/migration.c index bc61946..4742090 100644 --- a/kernel/irq/migration.c +++ b/kernel/irq/migration.c @@ -35,7 +35,7 @@ void irq_move_masked_irq(struct irq_data *idata) * do the disable, re-program, enable sequence. * This is *not* particularly important for level triggered * but in a edge trigger case, we might be setting rte - * when an active trigger is comming in. This could + * when an active trigger is coming in. This could * cause some ioapics to mal-function. * Being paranoid i guess! * diff --git a/kernel/kexec.c b/kernel/kexec.c index ec19b92..e7e3d97 100644 --- a/kernel/kexec.c +++ b/kernel/kexec.c @@ -144,7 +144,7 @@ static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, /* Initialize the list of destination pages */ INIT_LIST_HEAD(&image->dest_pages); - /* Initialize the list of unuseable pages */ + /* Initialize the list of unusable pages */ INIT_LIST_HEAD(&image->unuseable_pages); /* Read in the segments */ @@ -454,7 +454,7 @@ static struct page *kimage_alloc_normal_control_pages(struct kimage *image, /* Deal with the destination pages I have inadvertently allocated. * * Ideally I would convert multi-page allocations into single - * page allocations, and add everyting to image->dest_pages. + * page allocations, and add everything to image->dest_pages. * * For now it is simpler to just free the pages. */ @@ -602,7 +602,7 @@ static void kimage_free_extra_pages(struct kimage *image) /* Walk through and free any extra destination pages I may have */ kimage_free_page_list(&image->dest_pages); - /* Walk through and free any unuseable pages I have cached */ + /* Walk through and free any unusable pages I have cached */ kimage_free_page_list(&image->unuseable_pages); } diff --git a/kernel/kthread.c b/kernel/kthread.c index 684ab3f..3b34d27 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -139,7 +139,7 @@ static void create_kthread(struct kthread_create_info *create) * in @node, to get NUMA affinity for kthread stack, or else give -1. * When woken, the thread will run @threadfn() with @data as its * argument. @threadfn() can either call do_exit() directly if it is a - * standalone thread for which noone will call kthread_stop(), or + * standalone thread for which no one will call kthread_stop(), or * return when 'kthread_should_stop()' is true (which means * kthread_stop() has been called). The return value should be zero * or a negative error number; it will be passed to kthread_stop(). diff --git a/kernel/latencytop.c b/kernel/latencytop.c index ee74b35..376066e 100644 --- a/kernel/latencytop.c +++ b/kernel/latencytop.c @@ -153,7 +153,7 @@ static inline void store_stacktrace(struct task_struct *tsk, } /** - * __account_scheduler_latency - record an occured latency + * __account_scheduler_latency - record an occurred latency * @tsk - the task struct of the task hitting the latency * @usecs - the duration of the latency in microseconds * @inter - 1 if the sleep was interruptible, 0 if uninterruptible diff --git a/kernel/lockdep.c b/kernel/lockdep.c index 0d2058d..53a6895 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c @@ -2309,7 +2309,7 @@ void trace_hardirqs_on_caller(unsigned long ip) if (unlikely(curr->hardirqs_enabled)) { /* * Neither irq nor preemption are disabled here - * so this is racy by nature but loosing one hit + * so this is racy by nature but losing one hit * in a stat is not a big deal. */ __debug_atomic_inc(redundant_hardirqs_on); @@ -2620,7 +2620,7 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this, if (!graph_lock()) return 0; /* - * Make sure we didnt race: + * Make sure we didn't race: */ if (unlikely(hlock_class(this)->usage_mask & new_mask)) { graph_unlock(); diff --git a/kernel/module.c b/kernel/module.c index 1f9f7bc..d5938a5 100644 --- a/kernel/module.c +++ b/kernel/module.c @@ -809,7 +809,7 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, wait_for_zero_refcount(mod); mutex_unlock(&module_mutex); - /* Final destruction now noone is using it. */ + /* Final destruction now no one is using it. */ if (mod->exit != NULL) mod->exit(); blocking_notifier_call_chain(&module_notify_list, @@ -2777,7 +2777,7 @@ static struct module *load_module(void __user *umod, mod->state = MODULE_STATE_COMING; /* Now sew it into the lists so we can get lockdep and oops - * info during argument parsing. Noone should access us, since + * info during argument parsing. No one should access us, since * strong_try_module_get() will fail. * lockdep/oops can run asynchronous, so use the RCU list insertion * function to insert in a way safe to concurrent readers. @@ -2971,7 +2971,7 @@ static const char *get_ksymbol(struct module *mod, else nextval = (unsigned long)mod->module_core+mod->core_text_size; - /* Scan for closest preceeding symbol, and next symbol. (ELF + /* Scan for closest preceding symbol, and next symbol. (ELF starts real symbols at 1). */ for (i = 1; i < mod->num_symtab; i++) { if (mod->symtab[i].st_shndx == SHN_UNDEF) diff --git a/kernel/mutex.c b/kernel/mutex.c index a5889fb..c4195fa 100644 --- a/kernel/mutex.c +++ b/kernel/mutex.c @@ -245,7 +245,7 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, } __set_task_state(task, state); - /* didnt get the lock, go to sleep: */ + /* didn't get the lock, go to sleep: */ spin_unlock_mutex(&lock->wait_lock, flags); preempt_enable_no_resched(); schedule(); diff --git a/kernel/padata.c b/kernel/padata.c index 7510194..b91941d 100644 --- a/kernel/padata.c +++ b/kernel/padata.c @@ -262,7 +262,7 @@ static void padata_reorder(struct parallel_data *pd) /* * This cpu has to do the parallel processing of the next * object. It's waiting in the cpu's parallelization queue, - * so exit imediately. + * so exit immediately. */ if (PTR_ERR(padata) == -ENODATA) { del_timer(&pd->timer); @@ -284,7 +284,7 @@ static void padata_reorder(struct parallel_data *pd) /* * The next object that needs serialization might have arrived to * the reorder queues in the meantime, we will be called again - * from the timer function if noone else cares for it. + * from the timer function if no one else cares for it. */ if (atomic_read(&pd->reorder_objects) && !(pinst->flags & PADATA_RESET)) @@ -515,7 +515,7 @@ static void __padata_stop(struct padata_instance *pinst) put_online_cpus(); } -/* Replace the internal control stucture with a new one. */ +/* Replace the internal control structure with a new one. */ static void padata_replace(struct padata_instance *pinst, struct parallel_data *pd_new) { @@ -768,7 +768,7 @@ static int __padata_remove_cpu(struct padata_instance *pinst, int cpu) } /** - * padata_remove_cpu - remove a cpu from the one or both(serial and paralell) + * padata_remove_cpu - remove a cpu from the one or both(serial and parallel) * padata cpumasks. * * @pinst: padata instance diff --git a/kernel/params.c b/kernel/params.c index 0da1411..7ab388a 100644 --- a/kernel/params.c +++ b/kernel/params.c @@ -95,7 +95,7 @@ static int parse_one(char *param, /* Find parameter */ for (i = 0; i < num_params; i++) { if (parameq(param, params[i].name)) { - /* Noone handled NULL, so do it here. */ + /* No one handled NULL, so do it here. */ if (!val && params[i].ops->set != param_set_bool) return -EINVAL; DEBUGP("They are equal! Calling %p\n", diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index 67fea9d..0791b13 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c @@ -1347,7 +1347,7 @@ void run_posix_cpu_timers(struct task_struct *tsk) /* * Now that all the timers on our list have the firing flag, - * noone will touch their list entries but us. We'll take + * no one will touch their list entries but us. We'll take * each timer's lock before clearing its firing flag, so no * timer call will interfere. */ diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index 4c01249..e5498d7 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c @@ -313,7 +313,7 @@ static void schedule_next_timer(struct k_itimer *timr) * restarted (i.e. we have flagged this in the sys_private entry of the * info block). * - * To protect aginst the timer going away while the interrupt is queued, + * To protect against the timer going away while the interrupt is queued, * we require that the it_requeue_pending flag be set. */ void do_schedule_next_timer(struct siginfo *info) diff --git a/kernel/power/main.c b/kernel/power/main.c index 8eaba5f..de9aef8 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c @@ -224,7 +224,7 @@ power_attr(state); * writing to 'state'. It first should read from 'wakeup_count' and store * the read value. Then, after carrying out its own preparations for the system * transition to a sleep state, it should write the stored value to - * 'wakeup_count'. If that fails, at least one wakeup event has occured since + * 'wakeup_count'. If that fails, at least one wakeup event has occurred since * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it * is allowed to write to 'state', but the transition will be aborted if there * are any wakeup events detected after 'wakeup_count' was written to. diff --git a/kernel/sched.c b/kernel/sched.c index f592ce6..865b433 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -2309,7 +2309,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) * Cause a process which is running on another CPU to enter * kernel-mode, without any delay. (to get signals handled.) * - * NOTE: this function doesnt have to take the runqueue lock, + * NOTE: this function doesn't have to take the runqueue lock, * because all it wants to ensure is that the remote task enters * the kernel. If the IPI races and the task has been migrated * to another CPU then no harm is done and the purpose has been @@ -4997,7 +4997,7 @@ recheck: */ raw_spin_lock_irqsave(&p->pi_lock, flags); /* - * To be able to change p->policy safely, the apropriate + * To be able to change p->policy safely, the appropriate * runqueue lock must be held. */ rq = __task_rq_lock(p); @@ -5705,7 +5705,7 @@ void show_state_filter(unsigned long state_filter) do_each_thread(g, p) { /* * reset the NMI-timeout, listing all files on a slow - * console might take alot of time: + * console might take a lot of time: */ touch_nmi_watchdog(); if (!state_filter || (p->state & state_filter)) diff --git a/kernel/sched_autogroup.c b/kernel/sched_autogroup.c index 5946ac5..429242f 100644 --- a/kernel/sched_autogroup.c +++ b/kernel/sched_autogroup.c @@ -179,7 +179,7 @@ void sched_autogroup_create_attach(struct task_struct *p) struct autogroup *ag = autogroup_create(); autogroup_move_group(p, ag); - /* drop extra refrence added by autogroup_create() */ + /* drop extra reference added by autogroup_create() */ autogroup_kref_put(ag); } EXPORT_SYMBOL(sched_autogroup_create_attach); diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 3f7ec9e..3cb7f07 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c @@ -3061,7 +3061,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, /* * if *imbalance is less than the average load per runnable task - * there is no gaurantee that any tasks will be moved so we'll have + * there is no guarantee that any tasks will be moved so we'll have * a think about bumping its value to force at least one task to be * moved */ diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index db308cb..e7cebdc 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -1378,7 +1378,7 @@ retry: task = pick_next_pushable_task(rq); if (task_cpu(next_task) == rq->cpu && task == next_task) { /* - * If we get here, the task hasnt moved at all, but + * If we get here, the task hasn't moved at all, but * it has failed to push. We will not try again, * since the other cpus will pull from us when they * are ready. @@ -1488,7 +1488,7 @@ static int pull_rt_task(struct rq *this_rq) /* * We continue with the search, just in * case there's an even higher prio task - * in another runqueue. (low likelyhood + * in another runqueue. (low likelihood * but possible) */ } diff --git a/kernel/signal.c b/kernel/signal.c index 1186cf7..f486d10 100644 --- a/kernel/signal.c +++ b/kernel/signal.c @@ -1885,7 +1885,7 @@ relock: for (;;) { struct k_sigaction *ka; /* - * Tracing can induce an artifical signal and choose sigaction. + * Tracing can induce an artificial signal and choose sigaction. * The return value in @signr determines the default action, * but @info->si_signo is the signal number we will report. */ diff --git a/kernel/softirq.c b/kernel/softirq.c index 735d870..174f976 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c @@ -567,7 +567,7 @@ static void __tasklet_hrtimer_trampoline(unsigned long data) /** * tasklet_hrtimer_init - Init a tasklet/hrtimer combo for softirq callbacks * @ttimer: tasklet_hrtimer which is initialized - * @function: hrtimer callback funtion which gets called from softirq context + * @function: hrtimer callback function which gets called from softirq context * @which_clock: clock id (CLOCK_MONOTONIC/CLOCK_REALTIME) * @mode: hrtimer mode (HRTIMER_MODE_ABS/HRTIMER_MODE_REL) */ diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c index b2fa506..a470154 100644 --- a/kernel/time/jiffies.c +++ b/kernel/time/jiffies.c @@ -34,7 +34,7 @@ * inaccuracies caused by missed or lost timer * interrupts and the inability for the timer * interrupt hardware to accuratly tick at the - * requested HZ value. It is also not reccomended + * requested HZ value. It is also not recommended * for "tick-less" systems. */ #define NSEC_PER_JIFFY ((u32)((((u64)NSEC_PER_SEC)<<8)/ACTHZ)) diff --git a/kernel/time/timer_stats.c b/kernel/time/timer_stats.c index 2f3b585..a5d0a3a 100644 --- a/kernel/time/timer_stats.c +++ b/kernel/time/timer_stats.c @@ -236,7 +236,7 @@ void timer_stats_update_stats(void *timer, pid_t pid, void *startf, unsigned int timer_flag) { /* - * It doesnt matter which lock we take: + * It doesn't matter which lock we take: */ raw_spinlock_t *lock; struct entry *entry, input; diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index c075f4e..ee24fa1 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c @@ -1268,7 +1268,7 @@ static int ftrace_update_code(struct module *mod) p->flags = 0L; /* - * Do the initial record convertion from mcount jump + * Do the initial record conversion from mcount jump * to the NOP instructions. */ if (!ftrace_code_disable(mod, p)) { @@ -3425,7 +3425,7 @@ graph_init_task(struct task_struct *t, struct ftrace_ret_stack *ret_stack) atomic_set(&t->tracing_graph_pause, 0); atomic_set(&t->trace_overrun, 0); t->ftrace_timestamp = 0; - /* make curr_ret_stack visable before we add the ret_stack */ + /* make curr_ret_stack visible before we add the ret_stack */ smp_wmb(); t->ret_stack = ret_stack; } diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index d9c8bca..0ef7b4b 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c @@ -1478,7 +1478,7 @@ static inline unsigned long rb_page_entries(struct buffer_page *bpage) return local_read(&bpage->entries) & RB_WRITE_MASK; } -/* Size is determined by what has been commited */ +/* Size is determined by what has been committed */ static inline unsigned rb_page_size(struct buffer_page *bpage) { return rb_page_commit(bpage); @@ -2932,7 +2932,7 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) /* * cpu_buffer->pages just needs to point to the buffer, it * has no specific buffer page to point to. Lets move it out - * of our way so we don't accidently swap it. + * of our way so we don't accidentally swap it. */ cpu_buffer->pages = reader->list.prev; diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index 9541c27..d38c16a 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c @@ -3239,7 +3239,7 @@ waitagain: trace_seq_init(&iter->seq); /* - * If there was nothing to send to user, inspite of consuming trace + * If there was nothing to send to user, in spite of consuming trace * entries, go back to wait for more entries. */ if (sret == -EBUSY) diff --git a/kernel/trace/trace_clock.c b/kernel/trace/trace_clock.c index 685a67d..6302747 100644 --- a/kernel/trace/trace_clock.c +++ b/kernel/trace/trace_clock.c @@ -46,7 +46,7 @@ u64 notrace trace_clock_local(void) } /* - * trace_clock(): 'inbetween' trace clock. Not completely serialized, + * trace_clock(): 'between' trace clock. Not completely serialized, * but not completely incorrect when crossing CPUs either. * * This is based on cpu_clock(), which will allow at most ~1 jiffy of diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h index 1516cb3..e32744c 100644 --- a/kernel/trace/trace_entries.h +++ b/kernel/trace/trace_entries.h @@ -27,7 +27,7 @@ * in the structure. * * * for structures within structures, the format of the internal - * structure is layed out. This allows the internal structure + * structure is laid out. This allows the internal structure * to be deciphered for the format file. Although these macros * may become out of sync with the internal structure, they * will create a compile error if it happens. Since the diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index 76b0598..962cdb2 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c @@ -905,7 +905,7 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, * * returns 1 if * - we are inside irq code - * - we just extered irq code + * - we just entered irq code * * retunns 0 if * - funcgraph-interrupts option is set diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c index 92b6e1e..a4969b4 100644 --- a/kernel/trace/trace_irqsoff.c +++ b/kernel/trace/trace_irqsoff.c @@ -80,7 +80,7 @@ static struct tracer_flags tracer_flags = { * skip the latency if the sequence has changed - some other section * did a maximum and could disturb our measurement with serial console * printouts, etc. Truly coinciding maximum latencies should be rare - * and what happens together happens separately as well, so this doesnt + * and what happens together happens separately as well, so this doesn't * decrease the validity of the maximum found: */ static __cacheline_aligned_in_smp unsigned long max_sequence; diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c index 8435b43..35d55a3 100644 --- a/kernel/trace/trace_kprobe.c +++ b/kernel/trace/trace_kprobe.c @@ -1839,7 +1839,7 @@ static void unregister_probe_event(struct trace_probe *tp) kfree(tp->call.print_fmt); } -/* Make a debugfs interface for controling probe points */ +/* Make a debugfs interface for controlling probe points */ static __init int init_kprobe_trace(void) { struct dentry *d_tracer; diff --git a/kernel/user-return-notifier.c b/kernel/user-return-notifier.c index eb27fd3..92cb706 100644 --- a/kernel/user-return-notifier.c +++ b/kernel/user-return-notifier.c @@ -20,7 +20,7 @@ EXPORT_SYMBOL_GPL(user_return_notifier_register); /* * Removes a registered user return notifier. Must be called from atomic - * context, and from the same cpu registration occured in. + * context, and from the same cpu registration occurred in. */ void user_return_notifier_unregister(struct user_return_notifier *urn) { diff --git a/kernel/wait.c b/kernel/wait.c index b0310eb..f45ea8d 100644 --- a/kernel/wait.c +++ b/kernel/wait.c @@ -142,7 +142,7 @@ EXPORT_SYMBOL(finish_wait); * woken up through the queue. * * This prevents waiter starvation where an exclusive waiter - * aborts and is woken up concurrently and noone wakes up + * aborts and is woken up concurrently and no one wakes up * the next waiter. */ void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 04ef830..8859a41 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c @@ -1291,7 +1291,7 @@ __acquires(&gcwq->lock) return true; spin_unlock_irq(&gcwq->lock); - /* CPU has come up inbetween, retry migration */ + /* CPU has come up in between, retry migration */ cpu_relax(); } } |