diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2014-08-04 11:50:00 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2014-08-04 11:50:00 -0700 |
commit | b8c0aa46b3e86083721b57ed2eec6bd2c29ebfba (patch) | |
tree | 45e349bf8a14aa99279d323fdc515e849fd349f3 /kernel/trace/trace_seq.c | |
parent | c7ed326fa7cafb83ced5a8b02517a61672fe9e90 (diff) | |
parent | dc6f03f26f570104a2bb03f9d1deb588026d7c75 (diff) | |
download | op-kernel-dev-b8c0aa46b3e86083721b57ed2eec6bd2c29ebfba.zip op-kernel-dev-b8c0aa46b3e86083721b57ed2eec6bd2c29ebfba.tar.gz |
Merge tag 'trace-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This pull request has a lot of work done. The main thing is the
changes to the ftrace function callback infrastructure. It's
introducing a way to allow different functions to call directly
different trampolines instead of all calling the same "mcount" one.
The only user of this for now is the function graph tracer, which
always had a different trampoline, but the function tracer trampoline
was called and did basically nothing, and then the function graph
tracer trampoline was called. The difference now, is that the
function graph tracer trampoline can be called directly if a function
is only being traced by the function graph trampoline. If function
tracing is also happening on the same function, the old way is still
done.
The accounting for this takes up more memory when function graph
tracing is activated, as it needs to keep track of which functions it
uses. I have a new way that wont take as much memory, but it's not
ready yet for this merge window, and will have to wait for the next
one.
Another big change was the removal of the ftrace_start/stop() calls
that were used by the suspend/resume code that stopped function
tracing when entering into suspend and resume paths. The stop of
ftrace was done because there was some function that would crash the
system if one called smp_processor_id()! The stop/start was a big
hammer to solve the issue at the time, which was when ftrace was first
introduced into Linux. Now ftrace has better infrastructure to debug
such issues, and I found the problem function and labeled it with
"notrace" and function tracing can now safely be activated all the way
down into the guts of suspend and resume
Other changes include clean ups of uprobe code, clean up of the
trace_seq() code, and other various small fixes and clean ups to
ftrace and tracing"
* tag 'trace-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (57 commits)
ftrace: Add warning if tramp hash does not match nr_trampolines
ftrace: Fix trampoline hash update check on rec->flags
ring-buffer: Use rb_page_size() instead of open coded head_page size
ftrace: Rename ftrace_ops field from trampolines to nr_trampolines
tracing: Convert local function_graph functions to static
ftrace: Do not copy old hash when resetting
tracing: let user specify tracing_thresh after selecting function_graph
ring-buffer: Always run per-cpu ring buffer resize with schedule_work_on()
tracing: Remove function_trace_stop and HAVE_FUNCTION_TRACE_MCOUNT_TEST
s390/ftrace: remove check of obsolete variable function_trace_stop
arm64, ftrace: Remove check of obsolete variable function_trace_stop
Blackfin: ftrace: Remove check of obsolete variable function_trace_stop
metag: ftrace: Remove check of obsolete variable function_trace_stop
microblaze: ftrace: Remove check of obsolete variable function_trace_stop
MIPS: ftrace: Remove check of obsolete variable function_trace_stop
parisc: ftrace: Remove check of obsolete variable function_trace_stop
sh: ftrace: Remove check of obsolete variable function_trace_stop
sparc64,ftrace: Remove check of obsolete variable function_trace_stop
tile: ftrace: Remove check of obsolete variable function_trace_stop
ftrace: x86: Remove check of obsolete variable function_trace_stop
...
Diffstat (limited to 'kernel/trace/trace_seq.c')
-rw-r--r-- | kernel/trace/trace_seq.c | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/kernel/trace/trace_seq.c b/kernel/trace/trace_seq.c new file mode 100644 index 0000000..1f24ed9 --- /dev/null +++ b/kernel/trace/trace_seq.c @@ -0,0 +1,428 @@ +/* + * trace_seq.c + * + * Copyright (C) 2008-2014 Red Hat Inc, Steven Rostedt <srostedt@redhat.com> + * + * The trace_seq is a handy tool that allows you to pass a descriptor around + * to a buffer that other functions can write to. It is similar to the + * seq_file functionality but has some differences. + * + * To use it, the trace_seq must be initialized with trace_seq_init(). + * This will set up the counters within the descriptor. You can call + * trace_seq_init() more than once to reset the trace_seq to start + * from scratch. + * + * The buffer size is currently PAGE_SIZE, although it may become dynamic + * in the future. + * + * A write to the buffer will either succed or fail. That is, unlike + * sprintf() there will not be a partial write (well it may write into + * the buffer but it wont update the pointers). This allows users to + * try to write something into the trace_seq buffer and if it fails + * they can flush it and try again. + * + */ +#include <linux/uaccess.h> +#include <linux/seq_file.h> +#include <linux/trace_seq.h> + +/* How much buffer is left on the trace_seq? */ +#define TRACE_SEQ_BUF_LEFT(s) ((PAGE_SIZE - 1) - (s)->len) + +/* How much buffer is written? */ +#define TRACE_SEQ_BUF_USED(s) min((s)->len, (unsigned int)(PAGE_SIZE - 1)) + +/** + * trace_print_seq - move the contents of trace_seq into a seq_file + * @m: the seq_file descriptor that is the destination + * @s: the trace_seq descriptor that is the source. + * + * Returns 0 on success and non zero on error. If it succeeds to + * write to the seq_file it will reset the trace_seq, otherwise + * it does not modify the trace_seq to let the caller try again. + */ +int trace_print_seq(struct seq_file *m, struct trace_seq *s) +{ + unsigned int len = TRACE_SEQ_BUF_USED(s); + int ret; + + ret = seq_write(m, s->buffer, len); + + /* + * Only reset this buffer if we successfully wrote to the + * seq_file buffer. This lets the caller try again or + * do something else with the contents. + */ + if (!ret) + trace_seq_init(s); + + return ret; +} + +/** + * trace_seq_printf - sequence printing of trace information + * @s: trace sequence descriptor + * @fmt: printf format string + * + * The tracer may use either sequence operations or its own + * copy to user routines. To simplify formating of a trace + * trace_seq_printf() is used to store strings into a special + * buffer (@s). Then the output may be either used by + * the sequencer or pulled into another buffer. + * + * Returns 1 if we successfully written all the contents to + * the buffer. + * Returns 0 if we the length to write is bigger than the + * reserved buffer space. In this case, nothing gets written. + */ +int trace_seq_printf(struct trace_seq *s, const char *fmt, ...) +{ + unsigned int len = TRACE_SEQ_BUF_LEFT(s); + va_list ap; + int ret; + + if (s->full || !len) + return 0; + + va_start(ap, fmt); + ret = vsnprintf(s->buffer + s->len, len, fmt, ap); + va_end(ap); + + /* If we can't write it all, don't bother writing anything */ + if (ret >= len) { + s->full = 1; + return 0; + } + + s->len += ret; + + return 1; +} +EXPORT_SYMBOL_GPL(trace_seq_printf); + +/** + * trace_seq_bitmask - write a bitmask array in its ASCII representation + * @s: trace sequence descriptor + * @maskp: points to an array of unsigned longs that represent a bitmask + * @nmaskbits: The number of bits that are valid in @maskp + * + * Writes a ASCII representation of a bitmask string into @s. + * + * Returns 1 if we successfully written all the contents to + * the buffer. + * Returns 0 if we the length to write is bigger than the + * reserved buffer space. In this case, nothing gets written. + */ +int trace_seq_bitmask(struct trace_seq *s, const unsigned long *maskp, + int nmaskbits) +{ + unsigned int len = TRACE_SEQ_BUF_LEFT(s); + int ret; + + if (s->full || !len) + return 0; + + ret = bitmap_scnprintf(s->buffer, len, maskp, nmaskbits); + s->len += ret; + + return 1; +} +EXPORT_SYMBOL_GPL(trace_seq_bitmask); + +/** + * trace_seq_vprintf - sequence printing of trace information + * @s: trace sequence descriptor + * @fmt: printf format string + * + * The tracer may use either sequence operations or its own + * copy to user routines. To simplify formating of a trace + * trace_seq_printf is used to store strings into a special + * buffer (@s). Then the output may be either used by + * the sequencer or pulled into another buffer. + * + * Returns how much it wrote to the buffer. + */ +int trace_seq_vprintf(struct trace_seq *s, const char *fmt, va_list args) +{ + unsigned int len = TRACE_SEQ_BUF_LEFT(s); + int ret; + + if (s->full || !len) + return 0; + + ret = vsnprintf(s->buffer + s->len, len, fmt, args); + + /* If we can't write it all, don't bother writing anything */ + if (ret >= len) { + s->full = 1; + return 0; + } + + s->len += ret; + + return len; +} +EXPORT_SYMBOL_GPL(trace_seq_vprintf); + +/** + * trace_seq_bprintf - Write the printf string from binary arguments + * @s: trace sequence descriptor + * @fmt: The format string for the @binary arguments + * @binary: The binary arguments for @fmt. + * + * When recording in a fast path, a printf may be recorded with just + * saving the format and the arguments as they were passed to the + * function, instead of wasting cycles converting the arguments into + * ASCII characters. Instead, the arguments are saved in a 32 bit + * word array that is defined by the format string constraints. + * + * This function will take the format and the binary array and finish + * the conversion into the ASCII string within the buffer. + * + * Returns how much it wrote to the buffer. + */ +int trace_seq_bprintf(struct trace_seq *s, const char *fmt, const u32 *binary) +{ + unsigned int len = TRACE_SEQ_BUF_LEFT(s); + int ret; + + if (s->full || !len) + return 0; + + ret = bstr_printf(s->buffer + s->len, len, fmt, binary); + + /* If we can't write it all, don't bother writing anything */ + if (ret >= len) { + s->full = 1; + return 0; + } + + s->len += ret; + + return len; +} +EXPORT_SYMBOL_GPL(trace_seq_bprintf); + +/** + * trace_seq_puts - trace sequence printing of simple string + * @s: trace sequence descriptor + * @str: simple string to record + * + * The tracer may use either the sequence operations or its own + * copy to user routines. This function records a simple string + * into a special buffer (@s) for later retrieval by a sequencer + * or other mechanism. + * + * Returns how much it wrote to the buffer. + */ +int trace_seq_puts(struct trace_seq *s, const char *str) +{ + unsigned int len = strlen(str); + + if (s->full) + return 0; + + if (len > TRACE_SEQ_BUF_LEFT(s)) { + s->full = 1; + return 0; + } + + memcpy(s->buffer + s->len, str, len); + s->len += len; + + return len; +} +EXPORT_SYMBOL_GPL(trace_seq_puts); + +/** + * trace_seq_putc - trace sequence printing of simple character + * @s: trace sequence descriptor + * @c: simple character to record + * + * The tracer may use either the sequence operations or its own + * copy to user routines. This function records a simple charater + * into a special buffer (@s) for later retrieval by a sequencer + * or other mechanism. + * + * Returns how much it wrote to the buffer. + */ +int trace_seq_putc(struct trace_seq *s, unsigned char c) +{ + if (s->full) + return 0; + + if (TRACE_SEQ_BUF_LEFT(s) < 1) { + s->full = 1; + return 0; + } + + s->buffer[s->len++] = c; + + return 1; +} +EXPORT_SYMBOL_GPL(trace_seq_putc); + +/** + * trace_seq_putmem - write raw data into the trace_seq buffer + * @s: trace sequence descriptor + * @mem: The raw memory to copy into the buffer + * @len: The length of the raw memory to copy (in bytes) + * + * There may be cases where raw memory needs to be written into the + * buffer and a strcpy() would not work. Using this function allows + * for such cases. + * + * Returns how much it wrote to the buffer. + */ +int trace_seq_putmem(struct trace_seq *s, const void *mem, unsigned int len) +{ + if (s->full) + return 0; + + if (len > TRACE_SEQ_BUF_LEFT(s)) { + s->full = 1; + return 0; + } + + memcpy(s->buffer + s->len, mem, len); + s->len += len; + + return len; +} +EXPORT_SYMBOL_GPL(trace_seq_putmem); + +#define MAX_MEMHEX_BYTES 8U +#define HEX_CHARS (MAX_MEMHEX_BYTES*2 + 1) + +/** + * trace_seq_putmem_hex - write raw memory into the buffer in ASCII hex + * @s: trace sequence descriptor + * @mem: The raw memory to write its hex ASCII representation of + * @len: The length of the raw memory to copy (in bytes) + * + * This is similar to trace_seq_putmem() except instead of just copying the + * raw memory into the buffer it writes its ASCII representation of it + * in hex characters. + * + * Returns how much it wrote to the buffer. + */ +int trace_seq_putmem_hex(struct trace_seq *s, const void *mem, + unsigned int len) +{ + unsigned char hex[HEX_CHARS]; + const unsigned char *data = mem; + unsigned int start_len; + int i, j; + int cnt = 0; + + if (s->full) + return 0; + + while (len) { + start_len = min(len, HEX_CHARS - 1); +#ifdef __BIG_ENDIAN + for (i = 0, j = 0; i < start_len; i++) { +#else + for (i = start_len-1, j = 0; i >= 0; i--) { +#endif + hex[j++] = hex_asc_hi(data[i]); + hex[j++] = hex_asc_lo(data[i]); + } + if (WARN_ON_ONCE(j == 0 || j/2 > len)) + break; + + /* j increments twice per loop */ + len -= j / 2; + hex[j++] = ' '; + + cnt += trace_seq_putmem(s, hex, j); + } + return cnt; +} +EXPORT_SYMBOL_GPL(trace_seq_putmem_hex); + +/** + * trace_seq_path - copy a path into the sequence buffer + * @s: trace sequence descriptor + * @path: path to write into the sequence buffer. + * + * Write a path name into the sequence buffer. + * + * Returns 1 if we successfully written all the contents to + * the buffer. + * Returns 0 if we the length to write is bigger than the + * reserved buffer space. In this case, nothing gets written. + */ +int trace_seq_path(struct trace_seq *s, const struct path *path) +{ + unsigned char *p; + + if (s->full) + return 0; + + if (TRACE_SEQ_BUF_LEFT(s) < 1) { + s->full = 1; + return 0; + } + + p = d_path(path, s->buffer + s->len, PAGE_SIZE - s->len); + if (!IS_ERR(p)) { + p = mangle_path(s->buffer + s->len, p, "\n"); + if (p) { + s->len = p - s->buffer; + return 1; + } + } else { + s->buffer[s->len++] = '?'; + return 1; + } + + s->full = 1; + return 0; +} +EXPORT_SYMBOL_GPL(trace_seq_path); + +/** + * trace_seq_to_user - copy the squence buffer to user space + * @s: trace sequence descriptor + * @ubuf: The userspace memory location to copy to + * @cnt: The amount to copy + * + * Copies the sequence buffer into the userspace memory pointed to + * by @ubuf. It starts from the last read position (@s->readpos) + * and writes up to @cnt characters or till it reaches the end of + * the content in the buffer (@s->len), which ever comes first. + * + * On success, it returns a positive number of the number of bytes + * it copied. + * + * On failure it returns -EBUSY if all of the content in the + * sequence has been already read, which includes nothing in the + * sequenc (@s->len == @s->readpos). + * + * Returns -EFAULT if the copy to userspace fails. + */ +int trace_seq_to_user(struct trace_seq *s, char __user *ubuf, int cnt) +{ + int len; + int ret; + + if (!cnt) + return 0; + + if (s->len <= s->readpos) + return -EBUSY; + + len = s->len - s->readpos; + if (cnt > len) + cnt = len; + ret = copy_to_user(ubuf, s->buffer + s->readpos, cnt); + if (ret == cnt) + return -EFAULT; + + cnt -= ret; + + s->readpos += cnt; + return cnt; +} +EXPORT_SYMBOL_GPL(trace_seq_to_user); |