diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2011-11-28 08:43:52 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2011-11-28 08:43:52 -0800 |
commit | c28800a9c3caaf387d85ac665a25ebe99e480295 (patch) | |
tree | 401ba805709a65a9f5c1919b3dc763c70b64b38f /kernel/time | |
parent | ce8f55c2a0ff652480c12a4f1f22ff5ce15e3a22 (diff) | |
parent | 27c9cd7e601632b3794e1c3344d37b86917ffb43 (diff) | |
download | op-kernel-dev-c28800a9c3caaf387d85ac665a25ebe99e480295.zip op-kernel-dev-c28800a9c3caaf387d85ac665a25ebe99e480295.tar.gz |
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hrtimer: Fix extra wakeups from __remove_hrtimer()
timekeeping: add arch_offset hook to ktime_get functions
clocksource: Avoid selecting mult values that might overflow when adjusted
time: Improve documentation of timekeeeping_adjust()
Diffstat (limited to 'kernel/time')
-rw-r--r-- | kernel/time/clocksource.c | 58 | ||||
-rw-r--r-- | kernel/time/timekeeping.c | 92 |
2 files changed, 139 insertions, 11 deletions
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index cf52fda..cfc65e1 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c @@ -492,6 +492,22 @@ void clocksource_touch_watchdog(void) } /** + * clocksource_max_adjustment- Returns max adjustment amount + * @cs: Pointer to clocksource + * + */ +static u32 clocksource_max_adjustment(struct clocksource *cs) +{ + u64 ret; + /* + * We won't try to correct for more then 11% adjustments (110,000 ppm), + */ + ret = (u64)cs->mult * 11; + do_div(ret,100); + return (u32)ret; +} + +/** * clocksource_max_deferment - Returns max time the clocksource can be deferred * @cs: Pointer to clocksource * @@ -503,25 +519,28 @@ static u64 clocksource_max_deferment(struct clocksource *cs) /* * Calculate the maximum number of cycles that we can pass to the * cyc2ns function without overflowing a 64-bit signed result. The - * maximum number of cycles is equal to ULLONG_MAX/cs->mult which - * is equivalent to the below. - * max_cycles < (2^63)/cs->mult - * max_cycles < 2^(log2((2^63)/cs->mult)) - * max_cycles < 2^(log2(2^63) - log2(cs->mult)) - * max_cycles < 2^(63 - log2(cs->mult)) - * max_cycles < 1 << (63 - log2(cs->mult)) + * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj) + * which is equivalent to the below. + * max_cycles < (2^63)/(cs->mult + cs->maxadj) + * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj))) + * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj)) + * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj)) + * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj)) * Please note that we add 1 to the result of the log2 to account for * any rounding errors, ensure the above inequality is satisfied and * no overflow will occur. */ - max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1)); + max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1)); /* * The actual maximum number of cycles we can defer the clocksource is * determined by the minimum of max_cycles and cs->mask. + * Note: Here we subtract the maxadj to make sure we don't sleep for + * too long if there's a large negative adjustment. */ max_cycles = min_t(u64, max_cycles, (u64) cs->mask); - max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift); + max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj, + cs->shift); /* * To ensure that the clocksource does not wrap whilst we are idle, @@ -640,7 +659,6 @@ static void clocksource_enqueue(struct clocksource *cs) void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq) { u64 sec; - /* * Calc the maximum number of seconds which we can run before * wrapping around. For clocksources which have a mask > 32bit @@ -661,6 +679,20 @@ void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq) clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, NSEC_PER_SEC / scale, sec * scale); + + /* + * for clocksources that have large mults, to avoid overflow. + * Since mult may be adjusted by ntp, add an safety extra margin + * + */ + cs->maxadj = clocksource_max_adjustment(cs); + while ((cs->mult + cs->maxadj < cs->mult) + || (cs->mult - cs->maxadj > cs->mult)) { + cs->mult >>= 1; + cs->shift--; + cs->maxadj = clocksource_max_adjustment(cs); + } + cs->max_idle_ns = clocksource_max_deferment(cs); } EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale); @@ -701,6 +733,12 @@ EXPORT_SYMBOL_GPL(__clocksource_register_scale); */ int clocksource_register(struct clocksource *cs) { + /* calculate max adjustment for given mult/shift */ + cs->maxadj = clocksource_max_adjustment(cs); + WARN_ONCE(cs->mult + cs->maxadj < cs->mult, + "Clocksource %s might overflow on 11%% adjustment\n", + cs->name); + /* calculate max idle time permitted for this clocksource */ cs->max_idle_ns = clocksource_max_deferment(cs); diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index 2b021b0e..2378413 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c @@ -249,6 +249,8 @@ ktime_t ktime_get(void) secs = xtime.tv_sec + wall_to_monotonic.tv_sec; nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; nsecs += timekeeping_get_ns(); + /* If arch requires, add in gettimeoffset() */ + nsecs += arch_gettimeoffset(); } while (read_seqretry(&xtime_lock, seq)); /* @@ -280,6 +282,8 @@ void ktime_get_ts(struct timespec *ts) *ts = xtime; tomono = wall_to_monotonic; nsecs = timekeeping_get_ns(); + /* If arch requires, add in gettimeoffset() */ + nsecs += arch_gettimeoffset(); } while (read_seqretry(&xtime_lock, seq)); @@ -802,14 +806,44 @@ static void timekeeping_adjust(s64 offset) s64 error, interval = timekeeper.cycle_interval; int adj; + /* + * The point of this is to check if the error is greater then half + * an interval. + * + * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. + * + * Note we subtract one in the shift, so that error is really error*2. + * This "saves" dividing(shifting) intererval twice, but keeps the + * (error > interval) comparision as still measuring if error is + * larger then half an interval. + * + * Note: It does not "save" on aggrivation when reading the code. + */ error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); if (error > interval) { + /* + * We now divide error by 4(via shift), which checks if + * the error is greater then twice the interval. + * If it is greater, we need a bigadjust, if its smaller, + * we can adjust by 1. + */ error >>= 2; + /* + * XXX - In update_wall_time, we round up to the next + * nanosecond, and store the amount rounded up into + * the error. This causes the likely below to be unlikely. + * + * The properfix is to avoid rounding up by using + * the high precision timekeeper.xtime_nsec instead of + * xtime.tv_nsec everywhere. Fixing this will take some + * time. + */ if (likely(error <= interval)) adj = 1; else adj = timekeeping_bigadjust(error, &interval, &offset); } else if (error < -interval) { + /* See comment above, this is just switched for the negative */ error >>= 2; if (likely(error >= -interval)) { adj = -1; @@ -817,9 +851,65 @@ static void timekeeping_adjust(s64 offset) offset = -offset; } else adj = timekeeping_bigadjust(error, &interval, &offset); - } else + } else /* No adjustment needed */ return; + WARN_ONCE(timekeeper.clock->maxadj && + (timekeeper.mult + adj > timekeeper.clock->mult + + timekeeper.clock->maxadj), + "Adjusting %s more then 11%% (%ld vs %ld)\n", + timekeeper.clock->name, (long)timekeeper.mult + adj, + (long)timekeeper.clock->mult + + timekeeper.clock->maxadj); + /* + * So the following can be confusing. + * + * To keep things simple, lets assume adj == 1 for now. + * + * When adj != 1, remember that the interval and offset values + * have been appropriately scaled so the math is the same. + * + * The basic idea here is that we're increasing the multiplier + * by one, this causes the xtime_interval to be incremented by + * one cycle_interval. This is because: + * xtime_interval = cycle_interval * mult + * So if mult is being incremented by one: + * xtime_interval = cycle_interval * (mult + 1) + * Its the same as: + * xtime_interval = (cycle_interval * mult) + cycle_interval + * Which can be shortened to: + * xtime_interval += cycle_interval + * + * So offset stores the non-accumulated cycles. Thus the current + * time (in shifted nanoseconds) is: + * now = (offset * adj) + xtime_nsec + * Now, even though we're adjusting the clock frequency, we have + * to keep time consistent. In other words, we can't jump back + * in time, and we also want to avoid jumping forward in time. + * + * So given the same offset value, we need the time to be the same + * both before and after the freq adjustment. + * now = (offset * adj_1) + xtime_nsec_1 + * now = (offset * adj_2) + xtime_nsec_2 + * So: + * (offset * adj_1) + xtime_nsec_1 = + * (offset * adj_2) + xtime_nsec_2 + * And we know: + * adj_2 = adj_1 + 1 + * So: + * (offset * adj_1) + xtime_nsec_1 = + * (offset * (adj_1+1)) + xtime_nsec_2 + * (offset * adj_1) + xtime_nsec_1 = + * (offset * adj_1) + offset + xtime_nsec_2 + * Canceling the sides: + * xtime_nsec_1 = offset + xtime_nsec_2 + * Which gives us: + * xtime_nsec_2 = xtime_nsec_1 - offset + * Which simplfies to: + * xtime_nsec -= offset + * + * XXX - TODO: Doc ntp_error calculation. + */ timekeeper.mult += adj; timekeeper.xtime_interval += interval; timekeeper.xtime_nsec -= offset; |