diff options
author | Oleg Nesterov <oleg@redhat.com> | 2016-05-18 19:02:18 +0200 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2016-06-03 09:18:57 +0200 |
commit | 150593bf869393d10a79f6bd3df2585ecc20a9bb (patch) | |
tree | cbe9c8bbf903315c0b07397f18a6a97294bab0e7 /kernel/exit.c | |
parent | df55f462b905f3b2d40ec3fb865891382a6ebfb1 (diff) | |
download | op-kernel-dev-150593bf869393d10a79f6bd3df2585ecc20a9bb.zip op-kernel-dev-150593bf869393d10a79f6bd3df2585ecc20a9bb.tar.gz |
sched/api: Introduce task_rcu_dereference() and try_get_task_struct()
Generally task_struct is only protected by RCU if it was found on a
RCU protected list (say, for_each_process() or find_task_by_vpid()).
As Kirill pointed out rq->curr isn't protected by RCU, the scheduler
drops the (potentially) last reference without RCU gp, this means
that we need to fix the code which uses foreign_rq->curr under
rcu_read_lock().
Add a new helper which can be used to dereference rq->curr or any
other pointer to task_struct assuming that it should be cleared or
updated before the final put_task_struct(). It returns non-NULL
only if this task can't go away before rcu_read_unlock().
( Also add try_get_task_struct() to make it easier to use this API
correctly. )
Suggested-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
[ Updated comments; added try_get_task_struct()]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Link: http://lkml.kernel.org/r/20160518170218.GY3192@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/exit.c')
-rw-r--r-- | kernel/exit.c | 76 |
1 files changed, 76 insertions, 0 deletions
diff --git a/kernel/exit.c b/kernel/exit.c index 9e6e135..2fb4d44 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -211,6 +211,82 @@ repeat: } /* + * Note that if this function returns a valid task_struct pointer (!NULL) + * task->usage must remain >0 for the duration of the RCU critical section. + */ +struct task_struct *task_rcu_dereference(struct task_struct **ptask) +{ + struct sighand_struct *sighand; + struct task_struct *task; + + /* + * We need to verify that release_task() was not called and thus + * delayed_put_task_struct() can't run and drop the last reference + * before rcu_read_unlock(). We check task->sighand != NULL, + * but we can read the already freed and reused memory. + */ +retry: + task = rcu_dereference(*ptask); + if (!task) + return NULL; + + probe_kernel_address(&task->sighand, sighand); + + /* + * Pairs with atomic_dec_and_test() in put_task_struct(). If this task + * was already freed we can not miss the preceding update of this + * pointer. + */ + smp_rmb(); + if (unlikely(task != READ_ONCE(*ptask))) + goto retry; + + /* + * We've re-checked that "task == *ptask", now we have two different + * cases: + * + * 1. This is actually the same task/task_struct. In this case + * sighand != NULL tells us it is still alive. + * + * 2. This is another task which got the same memory for task_struct. + * We can't know this of course, and we can not trust + * sighand != NULL. + * + * In this case we actually return a random value, but this is + * correct. + * + * If we return NULL - we can pretend that we actually noticed that + * *ptask was updated when the previous task has exited. Or pretend + * that probe_slab_address(&sighand) reads NULL. + * + * If we return the new task (because sighand is not NULL for any + * reason) - this is fine too. This (new) task can't go away before + * another gp pass. + * + * And note: We could even eliminate the false positive if re-read + * task->sighand once again to avoid the falsely NULL. But this case + * is very unlikely so we don't care. + */ + if (!sighand) + return NULL; + + return task; +} + +struct task_struct *try_get_task_struct(struct task_struct **ptask) +{ + struct task_struct *task; + + rcu_read_lock(); + task = task_rcu_dereference(ptask); + if (task) + get_task_struct(task); + rcu_read_unlock(); + + return task; +} + +/* * Determine if a process group is "orphaned", according to the POSIX * definition in 2.2.2.52. Orphaned process groups are not to be affected * by terminal-generated stop signals. Newly orphaned process groups are |