summaryrefslogtreecommitdiffstats
path: root/include/trace
diff options
context:
space:
mode:
authorH. Peter Anvin <hpa@linux.intel.com>2013-09-10 23:16:17 -0400
committerTheodore Ts'o <tytso@mit.edu>2013-10-10 14:32:15 -0400
commit30e37ec516ae5a6957596de7661673c615c82ea4 (patch)
treef05b433d712c0d74e2e86dea92de700b940c6a42 /include/trace
parenta283b5c459784f9762a74c312b134e9a524f5a5f (diff)
downloadop-kernel-dev-30e37ec516ae5a6957596de7661673c615c82ea4.zip
op-kernel-dev-30e37ec516ae5a6957596de7661673c615c82ea4.tar.gz
random: account for entropy loss due to overwrites
When we write entropy into a non-empty pool, we currently don't account at all for the fact that we will probabilistically overwrite some of the entropy in that pool. This means that unless the pool is fully empty, we are currently *guaranteed* to overestimate the amount of entropy in the pool! Assuming Shannon entropy with zero correlations we end up with an exponentally decaying value of new entropy added: entropy <- entropy + (pool_size - entropy) * (1 - exp(-add_entropy/pool_size)) However, calculations involving fractional exponentials are not practical in the kernel, so apply a piecewise linearization: For add_entropy <= pool_size/2 then (1 - exp(-add_entropy/pool_size)) >= (add_entropy/pool_size)*0.7869... ... so we can approximate the exponential with 3/4*add_entropy/pool_size and still be on the safe side by adding at most pool_size/2 at a time. In order for the loop not to take arbitrary amounts of time if a bad ioctl is received, terminate if we are within one bit of full. This way the loop is guaranteed to terminate after no more than log2(poolsize) iterations, no matter what the input value is. The vast majority of the time the loop will be executed exactly once. The piecewise linearization is very conservative, approaching 3/4 of the usable input value for small inputs, however, our entropy estimation is pretty weak at best, especially for small values; we have no handle on correlation; and the Shannon entropy measure (Rényi entropy of order 1) is not the correct one to use in the first place, but rather the correct entropy measure is the min-entropy, the Rényi entropy of infinite order. As such, this conservatism seems more than justified. This does introduce fractional bit values. I have left it to have 3 bits of fraction, so that with a pool of 2^12 bits the multiply in credit_entropy_bits() can still fit into an int, as 2*(3+12) < 31. It is definitely possible to allow for more fractional accounting, but that multiply then would have to be turned into a 32*32 -> 64 multiply. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: DJ Johnston <dj.johnston@intel.com>
Diffstat (limited to 'include/trace')
0 files changed, 0 insertions, 0 deletions
OpenPOWER on IntegriCloud