diff options
author | Tejun Heo <tj@kernel.org> | 2011-12-12 18:12:21 -0800 |
---|---|---|
committer | Tejun Heo <tj@kernel.org> | 2011-12-12 18:12:21 -0800 |
commit | 77e4ef99d1c596a31747668e5fd837f77b6349b6 (patch) | |
tree | b9dcc8d73f9febf6a18edc0b2efa3ecddc2a7a35 /include/linux/sched.h | |
parent | 257058ae2b971646b96ab3a15605ac69186e562a (diff) | |
download | op-kernel-dev-77e4ef99d1c596a31747668e5fd837f77b6349b6.zip op-kernel-dev-77e4ef99d1c596a31747668e5fd837f77b6349b6.tar.gz |
threadgroup: extend threadgroup_lock() to cover exit and exec
threadgroup_lock() protected only protected against new addition to
the threadgroup, which was inherently somewhat incomplete and
problematic for its only user cgroup. On-going migration could race
against exec and exit leading to interesting problems - the symmetry
between various attach methods, task exiting during method execution,
->exit() racing against attach methods, migrating task switching basic
properties during exec and so on.
This patch extends threadgroup_lock() such that it protects against
all three threadgroup altering operations - fork, exit and exec. For
exit, threadgroup_change_begin/end() calls are added to exit_signals
around assertion of PF_EXITING. For exec, threadgroup_[un]lock() are
updated to also grab and release cred_guard_mutex.
With this change, threadgroup_lock() guarantees that the target
threadgroup will remain stable - no new task will be added, no new
PF_EXITING will be set and exec won't happen.
The next patch will update cgroup so that it can take full advantage
of this change.
-v2: beefed up comment as suggested by Frederic.
-v3: narrowed scope of protection in exit path as suggested by
Frederic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/sched.h')
-rw-r--r-- | include/linux/sched.h | 47 |
1 files changed, 41 insertions, 6 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h index 8cd5232..c0c5876 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -635,11 +635,13 @@ struct signal_struct { #endif #ifdef CONFIG_CGROUPS /* - * The group_rwsem prevents threads from forking with - * CLONE_THREAD while held for writing. Use this for fork-sensitive - * threadgroup-wide operations. It's taken for reading in fork.c in - * copy_process(). - * Currently only needed write-side by cgroups. + * group_rwsem prevents new tasks from entering the threadgroup and + * member tasks from exiting,a more specifically, setting of + * PF_EXITING. fork and exit paths are protected with this rwsem + * using threadgroup_change_begin/end(). Users which require + * threadgroup to remain stable should use threadgroup_[un]lock() + * which also takes care of exec path. Currently, cgroup is the + * only user. */ struct rw_semaphore group_rwsem; #endif @@ -2371,7 +2373,6 @@ static inline void unlock_task_sighand(struct task_struct *tsk, spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); } -/* See the declaration of group_rwsem in signal_struct. */ #ifdef CONFIG_CGROUPS static inline void threadgroup_change_begin(struct task_struct *tsk) { @@ -2381,13 +2382,47 @@ static inline void threadgroup_change_end(struct task_struct *tsk) { up_read(&tsk->signal->group_rwsem); } + +/** + * threadgroup_lock - lock threadgroup + * @tsk: member task of the threadgroup to lock + * + * Lock the threadgroup @tsk belongs to. No new task is allowed to enter + * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or + * perform exec. This is useful for cases where the threadgroup needs to + * stay stable across blockable operations. + * + * fork and exit paths explicitly call threadgroup_change_{begin|end}() for + * synchronization. While held, no new task will be added to threadgroup + * and no existing live task will have its PF_EXITING set. + * + * During exec, a task goes and puts its thread group through unusual + * changes. After de-threading, exclusive access is assumed to resources + * which are usually shared by tasks in the same group - e.g. sighand may + * be replaced with a new one. Also, the exec'ing task takes over group + * leader role including its pid. Exclude these changes while locked by + * grabbing cred_guard_mutex which is used to synchronize exec path. + */ static inline void threadgroup_lock(struct task_struct *tsk) { + /* + * exec uses exit for de-threading nesting group_rwsem inside + * cred_guard_mutex. Grab cred_guard_mutex first. + */ + mutex_lock(&tsk->signal->cred_guard_mutex); down_write(&tsk->signal->group_rwsem); } + +/** + * threadgroup_unlock - unlock threadgroup + * @tsk: member task of the threadgroup to unlock + * + * Reverse threadgroup_lock(). + */ static inline void threadgroup_unlock(struct task_struct *tsk) { up_write(&tsk->signal->group_rwsem); + mutex_unlock(&tsk->signal->cred_guard_mutex); } #else static inline void threadgroup_change_begin(struct task_struct *tsk) {} |