summaryrefslogtreecommitdiffstats
path: root/include/linux/platform_data/edma.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-07-02 13:43:38 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2013-07-02 13:43:38 -0700
commit3883cbb6c1bda013a3ce2dbdab7dc97c52e4a232 (patch)
tree5b69f83b049d24ac81123ac954ca8c9128e48443 /include/linux/platform_data/edma.h
parentd2033f2c1d1de2239ded15e478ddb4028f192a15 (diff)
parent1eb92b24e243085d242cf5ffd64829bba70972e1 (diff)
downloadop-kernel-dev-3883cbb6c1bda013a3ce2dbdab7dc97c52e4a232.zip
op-kernel-dev-3883cbb6c1bda013a3ce2dbdab7dc97c52e4a232.tar.gz
Merge tag 'soc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC specific changes from Arnd Bergmann: "These changes are all to SoC-specific code, a total of 33 branches on 17 platforms were pulled into this. Like last time, Renesas sh-mobile is now the platform with the most changes, followed by OMAP and EXYNOS. Two new platforms, TI Keystone and Rockchips RK3xxx are added in this branch, both containing almost no platform specific code at all, since they are using generic subsystem interfaces for clocks, pinctrl, interrupts etc. The device drivers are getting merged through the respective subsystem maintainer trees. One more SoC (u300) is now multiplatform capable and several others (shmobile, exynos, msm, integrator, kirkwood, clps711x) are moving towards that goal with this series but need more work. Also noteworthy is the work on PCI here, which is traditionally part of the SoC specific code. With the changes done by Thomas Petazzoni, we can now more easily have PCI host controller drivers as loadable modules and keep them separate from the platform code in drivers/pci/host. This has already led to the discovery that three platforms (exynos, spear and imx) are actually using an identical PCIe host controller and will be able to share a driver once support for spear and imx is added." * tag 'soc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (480 commits) ARM: integrator: let pciv3 use mem/premem from device tree ARM: integrator: set local side PCI addresses right ARM: dts: Add pcie controller node for exynos5440-ssdk5440 ARM: dts: Add pcie controller node for Samsung EXYNOS5440 SoC ARM: EXYNOS: Enable PCIe support for Exynos5440 pci: Add PCIe driver for Samsung Exynos ARM: OMAP5: voltagedomain data: remove temporary OMAP4 voltage data ARM: keystone: Move CPU bringup code to dedicated asm file ARM: multiplatform: always pick one CPU type ARM: imx: select syscon for IMX6SL ARM: keystone: select ARM_ERRATA_798181 only for SMP ARM: imx: Synertronixx scb9328 needs to select SOC_IMX1 ARM: OMAP2+: AM43x: resolve SMP related build error dmaengine: edma: enable build for AM33XX ARM: edma: Add EDMA crossbar event mux support ARM: edma: Add DT and runtime PM support to the private EDMA API dmaengine: edma: Add TI EDMA device tree binding arm: add basic support for Rockchip RK3066a boards arm: add debug uarts for rockchip rk29xx and rk3xxx series arm: Add basic clocks for Rockchip rk3066a SoCs ...
Diffstat (limited to 'include/linux/platform_data/edma.h')
-rw-r--r--include/linux/platform_data/edma.h183
1 files changed, 183 insertions, 0 deletions
diff --git a/include/linux/platform_data/edma.h b/include/linux/platform_data/edma.h
new file mode 100644
index 0000000..57300fd
--- /dev/null
+++ b/include/linux/platform_data/edma.h
@@ -0,0 +1,183 @@
+/*
+ * TI EDMA definitions
+ *
+ * Copyright (C) 2006-2013 Texas Instruments.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ */
+
+/*
+ * This EDMA3 programming framework exposes two basic kinds of resource:
+ *
+ * Channel Triggers transfers, usually from a hardware event but
+ * also manually or by "chaining" from DMA completions.
+ * Each channel is coupled to a Parameter RAM (PaRAM) slot.
+ *
+ * Slot Each PaRAM slot holds a DMA transfer descriptor (PaRAM
+ * "set"), source and destination addresses, a link to a
+ * next PaRAM slot (if any), options for the transfer, and
+ * instructions for updating those addresses. There are
+ * more than twice as many slots as event channels.
+ *
+ * Each PaRAM set describes a sequence of transfers, either for one large
+ * buffer or for several discontiguous smaller buffers. An EDMA transfer
+ * is driven only from a channel, which performs the transfers specified
+ * in its PaRAM slot until there are no more transfers. When that last
+ * transfer completes, the "link" field may be used to reload the channel's
+ * PaRAM slot with a new transfer descriptor.
+ *
+ * The EDMA Channel Controller (CC) maps requests from channels into physical
+ * Transfer Controller (TC) requests when the channel triggers (by hardware
+ * or software events, or by chaining). The two physical DMA channels provided
+ * by the TCs are thus shared by many logical channels.
+ *
+ * DaVinci hardware also has a "QDMA" mechanism which is not currently
+ * supported through this interface. (DSP firmware uses it though.)
+ */
+
+#ifndef EDMA_H_
+#define EDMA_H_
+
+/* PaRAM slots are laid out like this */
+struct edmacc_param {
+ unsigned int opt;
+ unsigned int src;
+ unsigned int a_b_cnt;
+ unsigned int dst;
+ unsigned int src_dst_bidx;
+ unsigned int link_bcntrld;
+ unsigned int src_dst_cidx;
+ unsigned int ccnt;
+};
+
+/* fields in edmacc_param.opt */
+#define SAM BIT(0)
+#define DAM BIT(1)
+#define SYNCDIM BIT(2)
+#define STATIC BIT(3)
+#define EDMA_FWID (0x07 << 8)
+#define TCCMODE BIT(11)
+#define EDMA_TCC(t) ((t) << 12)
+#define TCINTEN BIT(20)
+#define ITCINTEN BIT(21)
+#define TCCHEN BIT(22)
+#define ITCCHEN BIT(23)
+
+/*ch_status paramater of callback function possible values*/
+#define DMA_COMPLETE 1
+#define DMA_CC_ERROR 2
+#define DMA_TC1_ERROR 3
+#define DMA_TC2_ERROR 4
+
+enum address_mode {
+ INCR = 0,
+ FIFO = 1
+};
+
+enum fifo_width {
+ W8BIT = 0,
+ W16BIT = 1,
+ W32BIT = 2,
+ W64BIT = 3,
+ W128BIT = 4,
+ W256BIT = 5
+};
+
+enum dma_event_q {
+ EVENTQ_0 = 0,
+ EVENTQ_1 = 1,
+ EVENTQ_2 = 2,
+ EVENTQ_3 = 3,
+ EVENTQ_DEFAULT = -1
+};
+
+enum sync_dimension {
+ ASYNC = 0,
+ ABSYNC = 1
+};
+
+#define EDMA_CTLR_CHAN(ctlr, chan) (((ctlr) << 16) | (chan))
+#define EDMA_CTLR(i) ((i) >> 16)
+#define EDMA_CHAN_SLOT(i) ((i) & 0xffff)
+
+#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
+#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
+#define EDMA_CONT_PARAMS_ANY 1001
+#define EDMA_CONT_PARAMS_FIXED_EXACT 1002
+#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
+
+#define EDMA_MAX_CC 2
+
+/* alloc/free DMA channels and their dedicated parameter RAM slots */
+int edma_alloc_channel(int channel,
+ void (*callback)(unsigned channel, u16 ch_status, void *data),
+ void *data, enum dma_event_q);
+void edma_free_channel(unsigned channel);
+
+/* alloc/free parameter RAM slots */
+int edma_alloc_slot(unsigned ctlr, int slot);
+void edma_free_slot(unsigned slot);
+
+/* alloc/free a set of contiguous parameter RAM slots */
+int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count);
+int edma_free_cont_slots(unsigned slot, int count);
+
+/* calls that operate on part of a parameter RAM slot */
+void edma_set_src(unsigned slot, dma_addr_t src_port,
+ enum address_mode mode, enum fifo_width);
+void edma_set_dest(unsigned slot, dma_addr_t dest_port,
+ enum address_mode mode, enum fifo_width);
+void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst);
+void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx);
+void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx);
+void edma_set_transfer_params(unsigned slot, u16 acnt, u16 bcnt, u16 ccnt,
+ u16 bcnt_rld, enum sync_dimension sync_mode);
+void edma_link(unsigned from, unsigned to);
+void edma_unlink(unsigned from);
+
+/* calls that operate on an entire parameter RAM slot */
+void edma_write_slot(unsigned slot, const struct edmacc_param *params);
+void edma_read_slot(unsigned slot, struct edmacc_param *params);
+
+/* channel control operations */
+int edma_start(unsigned channel);
+void edma_stop(unsigned channel);
+void edma_clean_channel(unsigned channel);
+void edma_clear_event(unsigned channel);
+void edma_pause(unsigned channel);
+void edma_resume(unsigned channel);
+
+struct edma_rsv_info {
+
+ const s16 (*rsv_chans)[2];
+ const s16 (*rsv_slots)[2];
+};
+
+/* platform_data for EDMA driver */
+struct edma_soc_info {
+
+ /* how many dma resources of each type */
+ unsigned n_channel;
+ unsigned n_region;
+ unsigned n_slot;
+ unsigned n_tc;
+ unsigned n_cc;
+ /*
+ * Default queue is expected to be a low-priority queue.
+ * This way, long transfers on the default queue started
+ * by the codec engine will not cause audio defects.
+ */
+ enum dma_event_q default_queue;
+
+ /* Resource reservation for other cores */
+ struct edma_rsv_info *rsv;
+
+ s8 (*queue_tc_mapping)[2];
+ s8 (*queue_priority_mapping)[2];
+ const s16 (*xbar_chans)[2];
+};
+
+#endif
OpenPOWER on IntegriCloud