diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-04-10 10:01:49 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-04-10 10:01:49 -0700 |
commit | d848223808c5d21e1b3cea090047e34722c6254b (patch) | |
tree | a869974378be9c20f311ad3d934eb3946e813a1a /include/asm-mn10300/pgtable.h | |
parent | 5de4c51d2a859a1556b7d20ae1278c3e2d70a79b (diff) | |
parent | 2f2a2132ff056bb45697dc855eb4fd95b70b38cb (diff) | |
download | op-kernel-dev-d848223808c5d21e1b3cea090047e34722c6254b.zip op-kernel-dev-d848223808c5d21e1b3cea090047e34722c6254b.tar.gz |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-mn10300
* git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-mn10300:
Separate out the proc- and unit-specific header directories from the general
Move arch headers from include/asm-mn10300/ to arch/mn10300/include/asm/.
Diffstat (limited to 'include/asm-mn10300/pgtable.h')
-rw-r--r-- | include/asm-mn10300/pgtable.h | 492 |
1 files changed, 0 insertions, 492 deletions
diff --git a/include/asm-mn10300/pgtable.h b/include/asm-mn10300/pgtable.h deleted file mode 100644 index 6dc30fc..0000000 --- a/include/asm-mn10300/pgtable.h +++ /dev/null @@ -1,492 +0,0 @@ -/* MN10300 Page table manipulators and constants - * - * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. - * Written by David Howells (dhowells@redhat.com) - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public Licence - * as published by the Free Software Foundation; either version - * 2 of the Licence, or (at your option) any later version. - * - * - * The Linux memory management assumes a three-level page table setup. On - * the i386, we use that, but "fold" the mid level into the top-level page - * table, so that we physically have the same two-level page table as the - * i386 mmu expects. - * - * This file contains the functions and defines necessary to modify and use - * the i386 page table tree for the purposes of the MN10300 TLB handler - * functions. - */ -#ifndef _ASM_PGTABLE_H -#define _ASM_PGTABLE_H - -#include <asm/cpu-regs.h> - -#ifndef __ASSEMBLY__ -#include <asm/processor.h> -#include <asm/cache.h> -#include <linux/threads.h> - -#include <asm/bitops.h> - -#include <linux/slab.h> -#include <linux/list.h> -#include <linux/spinlock.h> - -/* - * ZERO_PAGE is a global shared page that is always zero: used - * for zero-mapped memory areas etc.. - */ -#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) -extern unsigned long empty_zero_page[1024]; -extern spinlock_t pgd_lock; -extern struct page *pgd_list; - -extern void pmd_ctor(void *, struct kmem_cache *, unsigned long); -extern void pgtable_cache_init(void); -extern void paging_init(void); - -#endif /* !__ASSEMBLY__ */ - -/* - * The Linux mn10300 paging architecture only implements both the traditional - * 2-level page tables - */ -#define PGDIR_SHIFT 22 -#define PTRS_PER_PGD 1024 -#define PTRS_PER_PUD 1 /* we don't really have any PUD physically */ -#define PTRS_PER_PMD 1 /* we don't really have any PMD physically */ -#define PTRS_PER_PTE 1024 - -#define PGD_SIZE PAGE_SIZE -#define PMD_SIZE (1UL << PMD_SHIFT) -#define PGDIR_SIZE (1UL << PGDIR_SHIFT) -#define PGDIR_MASK (~(PGDIR_SIZE - 1)) - -#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) -#define FIRST_USER_ADDRESS 0 - -#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) -#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS) - -#define TWOLEVEL_PGDIR_SHIFT 22 -#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) -#define BOOT_KERNEL_PGD_PTRS (1024 - BOOT_USER_PGD_PTRS) - -#ifndef __ASSEMBLY__ -extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; -#endif - -/* - * Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM - * area has to be in the lower half of the virtual address range (the upper - * half is not translated through the TLB). - * - * So in this case, the vmalloc area goes at the bottom of the address map - * (leaving a hole at the very bottom to catch addressing errors), and - * userspace starts immediately above. - * - * The vmalloc() routines also leaves a hole of 4kB between each vmalloced - * area to catch addressing errors. - */ -#define VMALLOC_OFFSET (8 * 1024 * 1024) -#define VMALLOC_START (0x70000000) -#define VMALLOC_END (0x7C000000) - -#ifndef __ASSEMBLY__ -extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE]; -#endif - -/* IPTEL/DPTEL bit assignments */ -#define _PAGE_BIT_VALID xPTEL_V_BIT -#define _PAGE_BIT_ACCESSED xPTEL_UNUSED1_BIT /* mustn't be loaded into IPTEL/DPTEL */ -#define _PAGE_BIT_NX xPTEL_UNUSED2_BIT /* mustn't be loaded into IPTEL/DPTEL */ -#define _PAGE_BIT_CACHE xPTEL_C_BIT -#define _PAGE_BIT_PRESENT xPTEL_PV_BIT -#define _PAGE_BIT_DIRTY xPTEL_D_BIT -#define _PAGE_BIT_GLOBAL xPTEL_G_BIT - -#define _PAGE_VALID xPTEL_V -#define _PAGE_ACCESSED xPTEL_UNUSED1 -#define _PAGE_NX xPTEL_UNUSED2 /* no-execute bit */ -#define _PAGE_CACHE xPTEL_C -#define _PAGE_PRESENT xPTEL_PV -#define _PAGE_DIRTY xPTEL_D -#define _PAGE_PROT xPTEL_PR -#define _PAGE_PROT_RKNU xPTEL_PR_ROK -#define _PAGE_PROT_WKNU xPTEL_PR_RWK -#define _PAGE_PROT_RKRU xPTEL_PR_ROK_ROU -#define _PAGE_PROT_WKRU xPTEL_PR_RWK_ROU -#define _PAGE_PROT_WKWU xPTEL_PR_RWK_RWU -#define _PAGE_GLOBAL xPTEL_G -#define _PAGE_PSE xPTEL_PS_4Mb /* 4MB page */ - -#define _PAGE_FILE xPTEL_UNUSED1_BIT /* set:pagecache unset:swap */ - -#define __PAGE_PROT_UWAUX 0x040 -#define __PAGE_PROT_USER 0x080 -#define __PAGE_PROT_WRITE 0x100 - -#define _PAGE_PRESENTV (_PAGE_PRESENT|_PAGE_VALID) -#define _PAGE_PROTNONE 0x000 /* If not present */ - -#ifndef __ASSEMBLY__ - -#define VMALLOC_VMADDR(x) ((unsigned long)(x)) - -#define _PAGE_TABLE (_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY) -#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) - -#define __PAGE_NONE (_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE) -#define __PAGE_SHARED (_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE) -#define __PAGE_COPY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE) -#define __PAGE_READONLY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE) - -#define PAGE_NONE __pgprot(__PAGE_NONE | _PAGE_NX) -#define PAGE_SHARED_NOEXEC __pgprot(__PAGE_SHARED | _PAGE_NX) -#define PAGE_COPY_NOEXEC __pgprot(__PAGE_COPY | _PAGE_NX) -#define PAGE_READONLY_NOEXEC __pgprot(__PAGE_READONLY | _PAGE_NX) -#define PAGE_SHARED_EXEC __pgprot(__PAGE_SHARED) -#define PAGE_COPY_EXEC __pgprot(__PAGE_COPY) -#define PAGE_READONLY_EXEC __pgprot(__PAGE_READONLY) -#define PAGE_COPY PAGE_COPY_NOEXEC -#define PAGE_READONLY PAGE_READONLY_NOEXEC -#define PAGE_SHARED PAGE_SHARED_EXEC - -#define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL) - -#define __PAGE_KERNEL (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX) -#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX) -#define __PAGE_KERNEL_EXEC (__PAGE_KERNEL & ~_PAGE_NX) -#define __PAGE_KERNEL_RO (__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX) -#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) -#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) - -#define PAGE_KERNEL __pgprot(__PAGE_KERNEL) -#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) -#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) -#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) -#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) -#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC) - -/* - * Whilst the MN10300 can do page protection for execute (given separate data - * and insn TLBs), we are not supporting it at the moment. Write permission, - * however, always implies read permission (but not execute permission). - */ -#define __P000 PAGE_NONE -#define __P001 PAGE_READONLY_NOEXEC -#define __P010 PAGE_COPY_NOEXEC -#define __P011 PAGE_COPY_NOEXEC -#define __P100 PAGE_READONLY_EXEC -#define __P101 PAGE_READONLY_EXEC -#define __P110 PAGE_COPY_EXEC -#define __P111 PAGE_COPY_EXEC - -#define __S000 PAGE_NONE -#define __S001 PAGE_READONLY_NOEXEC -#define __S010 PAGE_SHARED_NOEXEC -#define __S011 PAGE_SHARED_NOEXEC -#define __S100 PAGE_READONLY_EXEC -#define __S101 PAGE_READONLY_EXEC -#define __S110 PAGE_SHARED_EXEC -#define __S111 PAGE_SHARED_EXEC - -/* - * Define this to warn about kernel memory accesses that are - * done without a 'verify_area(VERIFY_WRITE,..)' - */ -#undef TEST_VERIFY_AREA - -#define pte_present(x) (pte_val(x) & _PAGE_VALID) -#define pte_clear(mm, addr, xp) \ -do { \ - set_pte_at((mm), (addr), (xp), __pte(0)); \ -} while (0) - -#define pmd_none(x) (!pmd_val(x)) -#define pmd_present(x) (!pmd_none(x)) -#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) -#define pmd_bad(x) 0 - - -#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) - -#ifndef __ASSEMBLY__ - -/* - * The following only work if pte_present() is true. - * Undefined behaviour if not.. - */ -static inline int pte_user(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; } -static inline int pte_read(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; } -static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } -static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } -static inline int pte_write(pte_t pte) { return pte_val(pte) & __PAGE_PROT_WRITE; } -static inline int pte_special(pte_t pte){ return 0; } - -/* - * The following only works if pte_present() is not true. - */ -static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } - -static inline pte_t pte_rdprotect(pte_t pte) -{ - pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte; -} -static inline pte_t pte_exprotect(pte_t pte) -{ - pte_val(pte) |= _PAGE_NX; return pte; -} - -static inline pte_t pte_wrprotect(pte_t pte) -{ - pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte; -} - -static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } -static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } -static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } -static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } -static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_NX; return pte; } - -static inline pte_t pte_mkread(pte_t pte) -{ - pte_val(pte) |= __PAGE_PROT_USER; - if (pte_write(pte)) - pte_val(pte) |= __PAGE_PROT_UWAUX; - return pte; -} -static inline pte_t pte_mkwrite(pte_t pte) -{ - pte_val(pte) |= __PAGE_PROT_WRITE; - if (pte_val(pte) & __PAGE_PROT_USER) - pte_val(pte) |= __PAGE_PROT_UWAUX; - return pte; -} - -static inline pte_t pte_mkspecial(pte_t pte) { return pte; } - -#define pte_ERROR(e) \ - printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \ - __FILE__, __LINE__, pte_val(e)) -#define pgd_ERROR(e) \ - printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ - __FILE__, __LINE__, pgd_val(e)) - -/* - * The "pgd_xxx()" functions here are trivial for a folded two-level - * setup: the pgd is never bad, and a pmd always exists (as it's folded - * into the pgd entry) - */ -#define pgd_clear(xp) do { } while (0) - -/* - * Certain architectures need to do special things when PTEs - * within a page table are directly modified. Thus, the following - * hook is made available. - */ -#define set_pte(pteptr, pteval) (*(pteptr) = pteval) -#define set_pte_at(mm, addr, ptep, pteval) set_pte((ptep), (pteval)) -#define set_pte_atomic(pteptr, pteval) set_pte((pteptr), (pteval)) - -/* - * (pmds are folded into pgds so this doesn't get actually called, - * but the define is needed for a generic inline function.) - */ -#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) - -#define ptep_get_and_clear(mm, addr, ptep) \ - __pte(xchg(&(ptep)->pte, 0)) -#define pte_same(a, b) (pte_val(a) == pte_val(b)) -#define pte_page(x) pfn_to_page(pte_pfn(x)) -#define pte_none(x) (!pte_val(x)) -#define pte_pfn(x) ((unsigned long) (pte_val(x) >> PAGE_SHIFT)) -#define __pfn_addr(pfn) ((pfn) << PAGE_SHIFT) -#define pfn_pte(pfn, prot) __pte(__pfn_addr(pfn) | pgprot_val(prot)) -#define pfn_pmd(pfn, prot) __pmd(__pfn_addr(pfn) | pgprot_val(prot)) - -/* - * All present user pages are user-executable: - */ -static inline int pte_exec(pte_t pte) -{ - return pte_user(pte); -} - -/* - * All present pages are kernel-executable: - */ -static inline int pte_exec_kernel(pte_t pte) -{ - return 1; -} - -/* - * Bits 0 and 1 are taken, split up the 29 bits of offset - * into this range: - */ -#define PTE_FILE_MAX_BITS 29 - -#define pte_to_pgoff(pte) (pte_val(pte) >> 2) -#define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE) - -/* Encode and de-code a swap entry */ -#define __swp_type(x) (((x).val >> 2) & 0x3f) -#define __swp_offset(x) ((x).val >> 8) -#define __swp_entry(type, offset) \ - ((swp_entry_t) { ((type) << 2) | ((offset) << 8) }) -#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) -#define __swp_entry_to_pte(x) __pte((x).val) - -static inline -int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, - pte_t *ptep) -{ - if (!pte_dirty(*ptep)) - return 0; - return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte); -} - -static inline -int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, - pte_t *ptep) -{ - if (!pte_young(*ptep)) - return 0; - return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte); -} - -static inline -void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) -{ - pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); -} - -static inline void ptep_mkdirty(pte_t *ptep) -{ - set_bit(_PAGE_BIT_DIRTY, &ptep->pte); -} - -/* - * Macro to mark a page protection value as "uncacheable". On processors which - * do not support it, this is a no-op. - */ -#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_CACHE) - - -/* - * Conversion functions: convert a page and protection to a page entry, - * and a page entry and page directory to the page they refer to. - */ - -#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) -#define mk_pte_huge(entry) \ - ((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID) - -static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) -{ - pte_val(pte) &= _PAGE_CHG_MASK; - pte_val(pte) |= pgprot_val(newprot); - return pte; -} - -#define page_pte(page) page_pte_prot((page), __pgprot(0)) - -#define pmd_page_kernel(pmd) \ - ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) - -#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) - -#define pmd_large(pmd) \ - ((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \ - (_PAGE_PSE | _PAGE_PRESENT)) - -/* - * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] - * - * this macro returns the index of the entry in the pgd page which would - * control the given virtual address - */ -#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) - -/* - * pgd_offset() returns a (pgd_t *) - * pgd_index() is used get the offset into the pgd page's array of pgd_t's; - */ -#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) - -/* - * a shortcut which implies the use of the kernel's pgd, instead - * of a process's - */ -#define pgd_offset_k(address) pgd_offset(&init_mm, address) - -/* - * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] - * - * this macro returns the index of the entry in the pmd page which would - * control the given virtual address - */ -#define pmd_index(address) \ - (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) - -/* - * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] - * - * this macro returns the index of the entry in the pte page which would - * control the given virtual address - */ -#define pte_index(address) \ - (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) - -#define pte_offset_kernel(dir, address) \ - ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address)) - -/* - * Make a given kernel text page executable/non-executable. - * Returns the previous executability setting of that page (which - * is used to restore the previous state). Used by the SMP bootup code. - * NOTE: this is an __init function for security reasons. - */ -static inline int set_kernel_exec(unsigned long vaddr, int enable) -{ - return 0; -} - -#define pte_offset_map(dir, address) \ - ((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address)) -#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) -#define pte_unmap(pte) do {} while (0) -#define pte_unmap_nested(pte) do {} while (0) - -/* - * The MN10300 has external MMU info in the form of a TLB: this is adapted from - * the kernel page tables containing the necessary information by tlb-mn10300.S - */ -extern void update_mmu_cache(struct vm_area_struct *vma, - unsigned long address, pte_t pte); - -#endif /* !__ASSEMBLY__ */ - -#define kern_addr_valid(addr) (1) - -#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ - remap_pfn_range((vma), (vaddr), (pfn), (size), (prot)) - -#define MK_IOSPACE_PFN(space, pfn) (pfn) -#define GET_IOSPACE(pfn) 0 -#define GET_PFN(pfn) (pfn) - -#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG -#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY -#define __HAVE_ARCH_PTEP_GET_AND_CLEAR -#define __HAVE_ARCH_PTEP_SET_WRPROTECT -#define __HAVE_ARCH_PTEP_MKDIRTY -#define __HAVE_ARCH_PTE_SAME -#include <asm-generic/pgtable.h> - -#endif /* !__ASSEMBLY__ */ - -#endif /* _ASM_PGTABLE_H */ |