summaryrefslogtreecommitdiffstats
path: root/fs
diff options
context:
space:
mode:
authorJan Kara <jack@suse.cz>2009-07-13 16:16:20 -0400
committerTheodore Ts'o <tytso@mit.edu>2009-07-13 16:16:20 -0400
commitf91d1d04171026e56c7e343ee3cdcc801dd85cfb (patch)
tree282341868e06cb09ecd6c0838ea027feec514c2c /fs
parent3e03f9ca6a2599db1823bb0ea24e0845219a0e69 (diff)
downloadop-kernel-dev-f91d1d04171026e56c7e343ee3cdcc801dd85cfb.zip
op-kernel-dev-f91d1d04171026e56c7e343ee3cdcc801dd85cfb.tar.gz
jbd2: Fix a race between checkpointing code and journal_get_write_access()
The following race can happen: CPU1 CPU2 checkpointing code checks the buffer, adds it to an array for writeback do_get_write_access() ... lock_buffer() unlock_buffer() flush_batch() submits the buffer for IO __jbd2_journal_file_buffer() So a buffer under writeout is returned from do_get_write_access(). Since the filesystem code relies on the fact that journaled buffers cannot be written out, it does not take the buffer lock and so it can modify buffer while it is under writeout. That can lead to a filesystem corruption if we crash at the right moment. We fix the problem by clearing the buffer dirty bit under buffer_lock even if the buffer is on BJ_None list. Actually, we clear the dirty bit regardless the list the buffer is in and warn about the fact if the buffer is already journalled. Thanks for spotting the problem goes to dingdinghua <dingdinghua85@gmail.com>. Reported-by: dingdinghua <dingdinghua85@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Diffstat (limited to 'fs')
-rw-r--r--fs/jbd2/transaction.c68
1 files changed, 35 insertions, 33 deletions
diff --git a/fs/jbd2/transaction.c b/fs/jbd2/transaction.c
index 494501e..6213ac7 100644
--- a/fs/jbd2/transaction.c
+++ b/fs/jbd2/transaction.c
@@ -499,34 +499,15 @@ void jbd2_journal_unlock_updates (journal_t *journal)
wake_up(&journal->j_wait_transaction_locked);
}
-/*
- * Report any unexpected dirty buffers which turn up. Normally those
- * indicate an error, but they can occur if the user is running (say)
- * tune2fs to modify the live filesystem, so we need the option of
- * continuing as gracefully as possible. #
- *
- * The caller should already hold the journal lock and
- * j_list_lock spinlock: most callers will need those anyway
- * in order to probe the buffer's journaling state safely.
- */
-static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
+static void warn_dirty_buffer(struct buffer_head *bh)
{
- int jlist;
-
- /* If this buffer is one which might reasonably be dirty
- * --- ie. data, or not part of this journal --- then
- * we're OK to leave it alone, but otherwise we need to
- * move the dirty bit to the journal's own internal
- * JBDDirty bit. */
- jlist = jh->b_jlist;
+ char b[BDEVNAME_SIZE];
- if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
- jlist == BJ_Shadow || jlist == BJ_Forget) {
- struct buffer_head *bh = jh2bh(jh);
-
- if (test_clear_buffer_dirty(bh))
- set_buffer_jbddirty(bh);
- }
+ printk(KERN_WARNING
+ "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
+ "There's a risk of filesystem corruption in case of system "
+ "crash.\n",
+ bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
}
/*
@@ -593,14 +574,16 @@ repeat:
if (jh->b_next_transaction)
J_ASSERT_JH(jh, jh->b_next_transaction ==
transaction);
+ warn_dirty_buffer(bh);
}
/*
* In any case we need to clean the dirty flag and we must
* do it under the buffer lock to be sure we don't race
* with running write-out.
*/
- JBUFFER_TRACE(jh, "Unexpected dirty buffer");
- jbd_unexpected_dirty_buffer(jh);
+ JBUFFER_TRACE(jh, "Journalling dirty buffer");
+ clear_buffer_dirty(bh);
+ set_buffer_jbddirty(bh);
}
unlock_buffer(bh);
@@ -843,6 +826,15 @@ int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
if (jh->b_transaction == NULL) {
+ /*
+ * Previous jbd2_journal_forget() could have left the buffer
+ * with jbddirty bit set because it was being committed. When
+ * the commit finished, we've filed the buffer for
+ * checkpointing and marked it dirty. Now we are reallocating
+ * the buffer so the transaction freeing it must have
+ * committed and so it's safe to clear the dirty bit.
+ */
+ clear_buffer_dirty(jh2bh(jh));
jh->b_transaction = transaction;
/* first access by this transaction */
@@ -1644,8 +1636,13 @@ static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
if (jh->b_cp_transaction) {
JBUFFER_TRACE(jh, "on running+cp transaction");
+ /*
+ * We don't want to write the buffer anymore, clear the
+ * bit so that we don't confuse checks in
+ * __journal_file_buffer
+ */
+ clear_buffer_dirty(bh);
__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
- clear_buffer_jbddirty(bh);
may_free = 0;
} else {
JBUFFER_TRACE(jh, "on running transaction");
@@ -1896,12 +1893,17 @@ void __jbd2_journal_file_buffer(struct journal_head *jh,
if (jh->b_transaction && jh->b_jlist == jlist)
return;
- /* The following list of buffer states needs to be consistent
- * with __jbd_unexpected_dirty_buffer()'s handling of dirty
- * state. */
-
if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
jlist == BJ_Shadow || jlist == BJ_Forget) {
+ /*
+ * For metadata buffers, we track dirty bit in buffer_jbddirty
+ * instead of buffer_dirty. We should not see a dirty bit set
+ * here because we clear it in do_get_write_access but e.g.
+ * tune2fs can modify the sb and set the dirty bit at any time
+ * so we try to gracefully handle that.
+ */
+ if (buffer_dirty(bh))
+ warn_dirty_buffer(bh);
if (test_clear_buffer_dirty(bh) ||
test_clear_buffer_jbddirty(bh))
was_dirty = 1;
OpenPOWER on IntegriCloud