diff options
author | Davide Libenzi <davidel@xmailserver.org> | 2007-05-08 00:25:41 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@woody.linux-foundation.org> | 2007-05-08 11:15:01 -0700 |
commit | 6192bd536f96c6a0d969081bc71ae24f9319bfdc (patch) | |
tree | 07056ed061df4070d22198b5b6692d102aeacc00 /fs/nls | |
parent | 44171df8e944f0bc8f7fa3f6d080f3e671431989 (diff) | |
download | op-kernel-dev-6192bd536f96c6a0d969081bc71ae24f9319bfdc.zip op-kernel-dev-6192bd536f96c6a0d969081bc71ae24f9319bfdc.tar.gz |
epoll: optimizations and cleanups
Epoll is doing multiple passes over the ready set at the moment, because of
the constraints over the f_op->poll() call. Looking at the code again, I
noticed that we already hold the epoll semaphore in read, and this
(together with other locking conditions that hold while doing an
epoll_wait()) can lead to a smarter way [1] to "ship" events to userspace
(in a single pass).
This is a stress application that can be used to test the new code. It
spwans multiple thread and call epoll_wait() and epoll_ctl() from many
threads. Stress tested on my dual Opteron 254 w/out any problems.
http://www.xmailserver.org/totalmess.c
This is not a benchmark, just something that tries to stress and exploit
possible problems with the new code.
Also, I made a stupid micro-benchmark:
http://www.xmailserver.org/epwbench.c
[1] Considering that epoll must be thread-safe, there are five ways we can
be hit during an epoll_wait() transfer loop (ep_send_events()):
1) The epoll fd going away and calling ep_free
This just can't happen, since we did an fget() in sys_epoll_wait
2) An epoll_ctl(EPOLL_CTL_DEL)
This can't happen because epoll_ctl() gets ep->sem in write, and
we're holding it in read during ep_send_events()
3) An fd stored inside the epoll fd going away
This can't happen because in eventpoll_release_file() we get
ep->sem in write, and we're holding it in read during
ep_send_events()
4) Another epoll_wait() happening on another thread
They both can be inside ep_send_events() at the same time, we get
(splice) the ready-list under the spinlock, so each one will get
its own ready list. Note that an fd cannot be at the same time
inside more than one ready list, because ep_poll_callback() will
not re-queue it if it sees it already linked:
if (ep_is_linked(&epi->rdllink))
goto is_linked;
Another case that can happen, is two concurrent epoll_wait(),
coming in with a userspace event buffer of size, say, ten.
Suppose there are 50 event ready in the list. The first
epoll_wait() will "steal" the whole list, while the second, seeing
no events, will go to sleep. But at the end of ep_send_events() in
the first epoll_wait(), we will re-inject surplus ready fds, and we
will trigger the proper wake_up to the second epoll_wait().
5) ep_poll_callback() hitting us asyncronously
This is the tricky part. As I said above, the ep_is_linked() test
done inside ep_poll_callback(), will guarantee us that until the
item will result linked to a list, ep_poll_callback() will not try
to re-queue it again (read, write data on any of its members). When
we do a list_del() in ep_send_events(), the item will still satisfy
the ep_is_linked() test (whatever data is written in prev/next,
it'll never be its own pointer), so ep_poll_callback() will still
leave us alone. It's only after the eventual smp_mb()+INIT_LIST_HEAD(&epi->rdllink)
that it'll become visible to ep_poll_callback(), but at the point
we're already past it.
[akpm@osdl.org: 80 cols]
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'fs/nls')
0 files changed, 0 insertions, 0 deletions