diff options
author | Steven Rostedt (VMware) <rostedt@goodmis.org> | 2018-01-10 14:24:17 +0100 |
---|---|---|
committer | Petr Mladek <pmladek@suse.com> | 2018-01-16 17:21:09 +0100 |
commit | dbdda842fe96f8932bae554f0adf463c27c42bc7 (patch) | |
tree | a021144a822752ced36f244466103c50a9f9c6d9 /fs/ioctl.c | |
parent | 11ca75d2d6d18d5a7ee4d7ec1da6f864f5c8c8be (diff) | |
download | op-kernel-dev-dbdda842fe96f8932bae554f0adf463c27c42bc7.zip op-kernel-dev-dbdda842fe96f8932bae554f0adf463c27c42bc7.tar.gz |
printk: Add console owner and waiter logic to load balance console writes
This patch implements what I discussed in Kernel Summit. I added
lockdep annotation (hopefully correctly), and it hasn't had any splats
(since I fixed some bugs in the first iterations). It did catch
problems when I had the owner covering too much. But now that the owner
is only set when actively calling the consoles, lockdep has stayed
quiet.
Here's the design again:
I added a "console_owner" which is set to a task that is actively
writing to the consoles. It is *not* the same as the owner of the
console_lock. It is only set when doing the calls to the console
functions. It is protected by a console_owner_lock which is a raw spin
lock.
There is a console_waiter. This is set when there is an active console
owner that is not current, and waiter is not set. This too is protected
by console_owner_lock.
In printk() when it tries to write to the consoles, we have:
if (console_trylock())
console_unlock();
Now I added an else, which will check if there is an active owner, and
no current waiter. If that is the case, then console_waiter is set, and
the task goes into a spin until it is no longer set.
When the active console owner finishes writing the current message to
the consoles, it grabs the console_owner_lock and sees if there is a
waiter, and clears console_owner.
If there is a waiter, then it breaks out of the loop, clears the waiter
flag (because that will release the waiter from its spin), and exits.
Note, it does *not* release the console semaphore. Because it is a
semaphore, there is no owner. Another task may release it. This means
that the waiter is guaranteed to be the new console owner! Which it
becomes.
Then the waiter calls console_unlock() and continues to write to the
consoles.
If another task comes along and does a printk() it too can become the
new waiter, and we wash rinse and repeat!
By Petr Mladek about possible new deadlocks:
The thing is that we move console_sem only to printk() call
that normally calls console_unlock() as well. It means that
the transferred owner should not bring new type of dependencies.
As Steven said somewhere: "If there is a deadlock, it was
there even before."
We could look at it from this side. The possible deadlock would
look like:
CPU0 CPU1
console_unlock()
console_owner = current;
spin_lockA()
printk()
spin = true;
while (...)
call_console_drivers()
spin_lockA()
This would be a deadlock. CPU0 would wait for the lock A.
While CPU1 would own the lockA and would wait for CPU0
to finish calling the console drivers and pass the console_sem
owner.
But if the above is true than the following scenario was
already possible before:
CPU0
spin_lockA()
printk()
console_unlock()
call_console_drivers()
spin_lockA()
By other words, this deadlock was there even before. Such
deadlocks are prevented by using printk_deferred() in
the sections guarded by the lock A.
By Steven Rostedt:
To demonstrate the issue, this module has been shown to lock up a
system with 4 CPUs and a slow console (like a serial console). It is
also able to lock up a 8 CPU system with only a fast (VGA) console, by
passing in "loops=100". The changes in this commit prevent this module
from locking up the system.
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/hrtimer.h>
static bool stop_testing;
static unsigned int loops = 1;
static void preempt_printk_workfn(struct work_struct *work)
{
int i;
while (!READ_ONCE(stop_testing)) {
for (i = 0; i < loops && !READ_ONCE(stop_testing); i++) {
preempt_disable();
pr_emerg("%5d%-75s\n", smp_processor_id(),
" XXX NOPREEMPT");
preempt_enable();
}
msleep(1);
}
}
static struct work_struct __percpu *works;
static void finish(void)
{
int cpu;
WRITE_ONCE(stop_testing, true);
for_each_online_cpu(cpu)
flush_work(per_cpu_ptr(works, cpu));
free_percpu(works);
}
static int __init test_init(void)
{
int cpu;
works = alloc_percpu(struct work_struct);
if (!works)
return -ENOMEM;
/*
* This is just a test module. This will break if you
* do any CPU hot plugging between loading and
* unloading the module.
*/
for_each_online_cpu(cpu) {
struct work_struct *work = per_cpu_ptr(works, cpu);
INIT_WORK(work, &preempt_printk_workfn);
schedule_work_on(cpu, work);
}
return 0;
}
static void __exit test_exit(void)
{
finish();
}
module_param(loops, uint, 0);
module_init(test_init);
module_exit(test_exit);
MODULE_LICENSE("GPL");
Link: http://lkml.kernel.org/r/20180110132418.7080-2-pmladek@suse.com
Cc: akpm@linux-foundation.org
Cc: linux-mm@kvack.org
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
[pmladek@suse.com: Commit message about possible deadlocks]
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Diffstat (limited to 'fs/ioctl.c')
0 files changed, 0 insertions, 0 deletions