summaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorGeorge Joseph <george.joseph@fairview5.com>2010-03-05 22:17:25 +0100
committerJean Delvare <khali@linux-fr.org>2010-03-05 22:17:25 +0100
commitd58de038728221f780e11d50b32aa40d420c1150 (patch)
tree270bbb4ca00bed94782dee9d18846edee4db2df0 /drivers
parent232449850229deeda84194e8a3c93a49ab6a043e (diff)
downloadop-kernel-dev-d58de038728221f780e11d50b32aa40d420c1150.zip
op-kernel-dev-d58de038728221f780e11d50b32aa40d420c1150.tar.gz
hwmon: Driver for Andigilog aSC7621 family monitoring chips
Hwmon driver for Andigilog aSC7621 family monitoring chips. Signed-off-by: George Joseph <george.joseph@fairview5.com> Acked-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Jean Delvare <khali@linux-fr.org>
Diffstat (limited to 'drivers')
-rw-r--r--drivers/hwmon/Kconfig13
-rw-r--r--drivers/hwmon/Makefile1
-rw-r--r--drivers/hwmon/asc7621.c1255
3 files changed, 1269 insertions, 0 deletions
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
index 77d032f..b6d65aa 100644
--- a/drivers/hwmon/Kconfig
+++ b/drivers/hwmon/Kconfig
@@ -226,6 +226,19 @@ config SENSORS_ADT7475
This driver can also be build as a module. If so, the module
will be called adt7475.
+config SENSORS_ASC7621
+ tristate "Andigilog aSC7621"
+ depends on HWMON && I2C
+ help
+ If you say yes here you get support for the aSC7621
+ family of SMBus sensors chip found on most Intel X48, X38, 975,
+ 965 and 945 desktop boards. Currently supported chips:
+ aSC7621
+ aSC7621a
+
+ This driver can also be built as a module. If so, the module
+ will be called asc7621.
+
config SENSORS_K8TEMP
tristate "AMD Athlon64/FX or Opteron temperature sensor"
depends on X86 && PCI && EXPERIMENTAL
diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
index 5fe67bf..865da80 100644
--- a/drivers/hwmon/Makefile
+++ b/drivers/hwmon/Makefile
@@ -36,6 +36,7 @@ obj-$(CONFIG_SENSORS_ADT7473) += adt7473.o
obj-$(CONFIG_SENSORS_ADT7475) += adt7475.o
obj-$(CONFIG_SENSORS_APPLESMC) += applesmc.o
obj-$(CONFIG_SENSORS_AMS) += ams/
+obj-$(CONFIG_SENSORS_ASC7621) += asc7621.o
obj-$(CONFIG_SENSORS_ATXP1) += atxp1.o
obj-$(CONFIG_SENSORS_CORETEMP) += coretemp.o
obj-$(CONFIG_SENSORS_DME1737) += dme1737.o
diff --git a/drivers/hwmon/asc7621.c b/drivers/hwmon/asc7621.c
new file mode 100644
index 0000000..7f94810
--- /dev/null
+++ b/drivers/hwmon/asc7621.c
@@ -0,0 +1,1255 @@
+/*
+ * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
+ * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/jiffies.h>
+#include <linux/i2c.h>
+#include <linux/hwmon.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/err.h>
+#include <linux/mutex.h>
+
+/* Addresses to scan */
+static unsigned short normal_i2c[] = {
+ 0x2c, 0x2d, 0x2e, I2C_CLIENT_END
+};
+
+enum asc7621_type {
+ asc7621,
+ asc7621a
+};
+
+#define INTERVAL_HIGH (HZ + HZ / 2)
+#define INTERVAL_LOW (1 * 60 * HZ)
+#define PRI_NONE 0
+#define PRI_LOW 1
+#define PRI_HIGH 2
+#define FIRST_CHIP asc7621
+#define LAST_CHIP asc7621a
+
+struct asc7621_chip {
+ char *name;
+ enum asc7621_type chip_type;
+ u8 company_reg;
+ u8 company_id;
+ u8 verstep_reg;
+ u8 verstep_id;
+ unsigned short *addresses;
+};
+
+static struct asc7621_chip asc7621_chips[] = {
+ {
+ .name = "asc7621",
+ .chip_type = asc7621,
+ .company_reg = 0x3e,
+ .company_id = 0x61,
+ .verstep_reg = 0x3f,
+ .verstep_id = 0x6c,
+ .addresses = normal_i2c,
+ },
+ {
+ .name = "asc7621a",
+ .chip_type = asc7621a,
+ .company_reg = 0x3e,
+ .company_id = 0x61,
+ .verstep_reg = 0x3f,
+ .verstep_id = 0x6d,
+ .addresses = normal_i2c,
+ },
+};
+
+/*
+ * Defines the highest register to be used, not the count.
+ * The actual count will probably be smaller because of gaps
+ * in the implementation (unused register locations).
+ * This define will safely set the array size of both the parameter
+ * and data arrays.
+ * This comes from the data sheet register description table.
+ */
+#define LAST_REGISTER 0xff
+
+struct asc7621_data {
+ struct i2c_client client;
+ struct device *class_dev;
+ struct mutex update_lock;
+ int valid; /* !=0 if following fields are valid */
+ unsigned long last_high_reading; /* In jiffies */
+ unsigned long last_low_reading; /* In jiffies */
+ /*
+ * Registers we care about occupy the corresponding index
+ * in the array. Registers we don't care about are left
+ * at 0.
+ */
+ u8 reg[LAST_REGISTER + 1];
+};
+
+/*
+ * Macro to get the parent asc7621_param structure
+ * from a sensor_device_attribute passed into the
+ * show/store functions.
+ */
+#define to_asc7621_param(_sda) \
+ container_of(_sda, struct asc7621_param, sda)
+
+/*
+ * Each parameter to be retrieved needs an asc7621_param structure
+ * allocated. It contains the sensor_device_attribute structure
+ * and the control info needed to retrieve the value from the register map.
+ */
+struct asc7621_param {
+ struct sensor_device_attribute sda;
+ u8 priority;
+ u8 msb[3];
+ u8 lsb[3];
+ u8 mask[3];
+ u8 shift[3];
+};
+
+/*
+ * This is the map that ultimately indicates whether we'll be
+ * retrieving a register value or not, and at what frequency.
+ */
+static u8 asc7621_register_priorities[255];
+
+static struct asc7621_data *asc7621_update_device(struct device *dev);
+
+static inline u8 read_byte(struct i2c_client *client, u8 reg)
+{
+ int res = i2c_smbus_read_byte_data(client, reg);
+ if (res < 0) {
+ dev_err(&client->dev,
+ "Unable to read from register 0x%02x.\n", reg);
+ return 0;
+ };
+ return res & 0xff;
+}
+
+static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
+{
+ int res = i2c_smbus_write_byte_data(client, reg, data);
+ if (res < 0) {
+ dev_err(&client->dev,
+ "Unable to write value 0x%02x to register 0x%02x.\n",
+ data, reg);
+ };
+ return res;
+}
+
+/*
+ * Data Handlers
+ * Each function handles the formatting, storage
+ * and retrieval of like parameters.
+ */
+
+#define SETUP_SHOW_data_param(d, a) \
+ struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
+ struct asc7621_data *data = asc7621_update_device(d); \
+ struct asc7621_param *param = to_asc7621_param(sda)
+
+#define SETUP_STORE_data_param(d, a) \
+ struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
+ struct i2c_client *client = to_i2c_client(d); \
+ struct asc7621_data *data = i2c_get_clientdata(client); \
+ struct asc7621_param *param = to_asc7621_param(sda)
+
+/*
+ * u8 is just what it sounds like...an unsigned byte with no
+ * special formatting.
+ */
+static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+
+ return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
+}
+
+static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ reqval = SENSORS_LIMIT(reqval, 0, 255);
+
+ mutex_lock(&data->update_lock);
+ data->reg[param->msb[0]] = reqval;
+ write_byte(client, param->msb[0], reqval);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+/*
+ * Many of the config values occupy only a few bits of a register.
+ */
+static ssize_t show_bitmask(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+
+ return sprintf(buf, "%u\n",
+ (data->reg[param->msb[0]] >> param->
+ shift[0]) & param->mask[0]);
+}
+
+static ssize_t store_bitmask(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+ u8 currval;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]);
+
+ reqval = (reqval & param->mask[0]) << param->shift[0];
+
+ mutex_lock(&data->update_lock);
+ currval = read_byte(client, param->msb[0]);
+ reqval |= (currval & ~(param->mask[0] << param->shift[0]));
+ data->reg[param->msb[0]] = reqval;
+ write_byte(client, param->msb[0], reqval);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+/*
+ * 16 bit fan rpm values
+ * reported by the device as the number of 11.111us periods (90khz)
+ * between full fan rotations. Therefore...
+ * RPM = (90000 * 60) / register value
+ */
+static ssize_t show_fan16(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u16 regval;
+
+ mutex_lock(&data->update_lock);
+ regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
+ mutex_unlock(&data->update_lock);
+
+ return sprintf(buf, "%u\n",
+ (regval == 0 ? -1 : (regval) ==
+ 0xffff ? 0 : 5400000 / regval));
+}
+
+static ssize_t store_fan16(struct device *dev,
+ struct device_attribute *attr, const char *buf,
+ size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ reqval =
+ (SENSORS_LIMIT((reqval) <= 0 ? 0 : 5400000 / (reqval), 0, 65534));
+
+ mutex_lock(&data->update_lock);
+ data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
+ data->reg[param->lsb[0]] = reqval & 0xff;
+ write_byte(client, param->msb[0], data->reg[param->msb[0]]);
+ write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
+ mutex_unlock(&data->update_lock);
+
+ return count;
+}
+
+/*
+ * Voltages are scaled in the device so that the nominal voltage
+ * is 3/4ths of the 0-255 range (i.e. 192).
+ * If all voltages are 'normal' then all voltage registers will
+ * read 0xC0. This doesn't help us if we don't have a point of refernce.
+ * The data sheet however provides us with the full scale value for each
+ * which is stored in in_scaling. The sda->index parameter value provides
+ * the index into in_scaling.
+ *
+ * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
+ * respectively. That doesn't mean that's what the motherboard provides. :)
+ */
+
+static int asc7621_in_scaling[] = {
+ 3320, 3000, 4380, 6640, 16000
+};
+
+static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u16 regval;
+ u8 nr = sda->index;
+
+ mutex_lock(&data->update_lock);
+ regval = (data->reg[param->msb[0]] * asc7621_in_scaling[nr]) / 256;
+
+ /* The LSB value is a 2-bit scaling of the MSB's LSbit value.
+ * I.E. If the maximim voltage for this input is 6640 millivolts then
+ * a MSB register value of 0 = 0mv and 255 = 6640mv.
+ * A 1 step change therefore represents 25.9mv (6640 / 256).
+ * The extra 2-bits therefore represent increments of 6.48mv.
+ */
+ regval += ((asc7621_in_scaling[nr] / 256) / 4) *
+ (data->reg[param->lsb[0]] >> 6);
+
+ mutex_unlock(&data->update_lock);
+
+ return sprintf(buf, "%u\n", regval);
+}
+
+/* 8 bit voltage values (the mins and maxs) */
+static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 nr = sda->index;
+
+ return sprintf(buf, "%u\n",
+ ((data->reg[param->msb[0]] *
+ asc7621_in_scaling[nr]) / 256));
+}
+
+static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+ u8 nr = sda->index;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ reqval = SENSORS_LIMIT(reqval, 0, asc7621_in_scaling[nr]);
+
+ reqval = (reqval * 255 + 128) / asc7621_in_scaling[nr];
+
+ mutex_lock(&data->update_lock);
+ data->reg[param->msb[0]] = reqval;
+ write_byte(client, param->msb[0], reqval);
+ mutex_unlock(&data->update_lock);
+
+ return count;
+}
+
+static ssize_t show_temp8(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+
+ return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
+}
+
+static ssize_t store_temp8(struct device *dev,
+ struct device_attribute *attr, const char *buf,
+ size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+ s8 temp;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ reqval = SENSORS_LIMIT(reqval, -127000, 127000);
+
+ temp = reqval / 1000;
+
+ mutex_lock(&data->update_lock);
+ data->reg[param->msb[0]] = temp;
+ write_byte(client, param->msb[0], temp);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+/*
+ * Temperatures that occupy 2 bytes always have the whole
+ * number of degrees in the MSB with some part of the LSB
+ * indicating fractional degrees.
+ */
+
+/* mmmmmmmm.llxxxxxx */
+static ssize_t show_temp10(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 msb, lsb;
+ int temp;
+
+ mutex_lock(&data->update_lock);
+ msb = data->reg[param->msb[0]];
+ lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
+ temp = (((s8) msb) * 1000) + (lsb * 250);
+ mutex_unlock(&data->update_lock);
+
+ return sprintf(buf, "%d\n", temp);
+}
+
+/* mmmmmm.ll */
+static ssize_t show_temp62(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 regval = data->reg[param->msb[0]];
+ int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
+
+ return sprintf(buf, "%d\n", temp);
+}
+
+static ssize_t store_temp62(struct device *dev,
+ struct device_attribute *attr, const char *buf,
+ size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval, i, f;
+ s8 temp;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ reqval = SENSORS_LIMIT(reqval, -32000, 31750);
+ i = reqval / 1000;
+ f = reqval - (i * 1000);
+ temp = i << 2;
+ temp |= f / 250;
+
+ mutex_lock(&data->update_lock);
+ data->reg[param->msb[0]] = temp;
+ write_byte(client, param->msb[0], temp);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+/*
+ * The aSC7621 doesn't provide an "auto_point2". Instead, you
+ * specify the auto_point1 and a range. To keep with the sysfs
+ * hwmon specs, we synthesize the auto_point_2 from them.
+ */
+
+static u32 asc7621_range_map[] = {
+ 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
+ 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
+};
+
+static ssize_t show_ap2_temp(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ long auto_point1;
+ u8 regval;
+ int temp;
+
+ mutex_lock(&data->update_lock);
+ auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
+ regval =
+ ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
+ temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)];
+ mutex_unlock(&data->update_lock);
+
+ return sprintf(buf, "%d\n", temp);
+
+}
+
+static ssize_t store_ap2_temp(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval, auto_point1;
+ int i;
+ u8 currval, newval = 0;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ mutex_lock(&data->update_lock);
+ auto_point1 = data->reg[param->msb[1]] * 1000;
+ reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000);
+
+ for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
+ if (reqval >= auto_point1 + asc7621_range_map[i]) {
+ newval = i;
+ break;
+ }
+ }
+
+ newval = (newval & param->mask[0]) << param->shift[0];
+ currval = read_byte(client, param->msb[0]);
+ newval |= (currval & ~(param->mask[0] << param->shift[0]));
+ data->reg[param->msb[0]] = newval;
+ write_byte(client, param->msb[0], newval);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+static ssize_t show_pwm_ac(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 config, altbit, regval;
+ u8 map[] = {
+ 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
+ 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
+ };
+
+ mutex_lock(&data->update_lock);
+ config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+ altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
+ regval = config | (altbit << 3);
+ mutex_unlock(&data->update_lock);
+
+ return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]);
+}
+
+static ssize_t store_pwm_ac(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ unsigned long reqval;
+ u8 currval, config, altbit, newval;
+ u16 map[] = {
+ 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
+ 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
+ 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
+ };
+
+ if (strict_strtoul(buf, 10, &reqval))
+ return -EINVAL;
+
+ if (reqval > 31)
+ return -EINVAL;
+
+ reqval = map[reqval];
+ if (reqval == 0xff)
+ return -EINVAL;
+
+ config = reqval & 0x07;
+ altbit = (reqval >> 3) & 0x01;
+
+ config = (config & param->mask[0]) << param->shift[0];
+ altbit = (altbit & param->mask[1]) << param->shift[1];
+
+ mutex_lock(&data->update_lock);
+ currval = read_byte(client, param->msb[0]);
+ newval = config | (currval & ~(param->mask[0] << param->shift[0]));
+ newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
+ data->reg[param->msb[0]] = newval;
+ write_byte(client, param->msb[0], newval);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+static ssize_t show_pwm_enable(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 config, altbit, minoff, val, newval;
+
+ mutex_lock(&data->update_lock);
+ config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+ altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
+ minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
+ mutex_unlock(&data->update_lock);
+
+ val = config | (altbit << 3);
+ newval = 0;
+
+ if (val == 3 || val >= 10)
+ newval = 255;
+ else if (val == 4)
+ newval = 0;
+ else if (val == 7)
+ newval = 1;
+ else if (minoff == 1)
+ newval = 2;
+ else
+ newval = 3;
+
+ return sprintf(buf, "%u\n", newval);
+}
+
+static ssize_t store_pwm_enable(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+ u8 currval, config, altbit, newval, minoff = 255;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ switch (reqval) {
+ case 0:
+ newval = 0x04;
+ break;
+ case 1:
+ newval = 0x07;
+ break;
+ case 2:
+ newval = 0x00;
+ minoff = 1;
+ break;
+ case 3:
+ newval = 0x00;
+ minoff = 0;
+ break;
+ case 255:
+ newval = 0x03;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ config = newval & 0x07;
+ altbit = (newval >> 3) & 0x01;
+
+ mutex_lock(&data->update_lock);
+ config = (config & param->mask[0]) << param->shift[0];
+ altbit = (altbit & param->mask[1]) << param->shift[1];
+ currval = read_byte(client, param->msb[0]);
+ newval = config | (currval & ~(param->mask[0] << param->shift[0]));
+ newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
+ data->reg[param->msb[0]] = newval;
+ write_byte(client, param->msb[0], newval);
+ if (minoff < 255) {
+ minoff = (minoff & param->mask[2]) << param->shift[2];
+ currval = read_byte(client, param->msb[2]);
+ newval =
+ minoff | (currval & ~(param->mask[2] << param->shift[2]));
+ data->reg[param->msb[2]] = newval;
+ write_byte(client, param->msb[2], newval);
+ }
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+static u32 asc7621_pwm_freq_map[] = {
+ 10, 15, 23, 30, 38, 47, 62, 94,
+ 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
+};
+
+static ssize_t show_pwm_freq(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 regval =
+ (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+
+ regval = SENSORS_LIMIT(regval, 0, 15);
+
+ return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
+}
+
+static ssize_t store_pwm_freq(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ unsigned long reqval;
+ u8 currval, newval = 255;
+ int i;
+
+ if (strict_strtoul(buf, 10, &reqval))
+ return -EINVAL;
+
+ for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
+ if (reqval == asc7621_pwm_freq_map[i]) {
+ newval = i;
+ break;
+ }
+ }
+ if (newval == 255)
+ return -EINVAL;
+
+ newval = (newval & param->mask[0]) << param->shift[0];
+
+ mutex_lock(&data->update_lock);
+ currval = read_byte(client, param->msb[0]);
+ newval |= (currval & ~(param->mask[0] << param->shift[0]));
+ data->reg[param->msb[0]] = newval;
+ write_byte(client, param->msb[0], newval);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+static u32 asc7621_pwm_auto_spinup_map[] = {
+ 0, 100, 250, 400, 700, 1000, 2000, 4000
+};
+
+static ssize_t show_pwm_ast(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 regval =
+ (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+
+ regval = SENSORS_LIMIT(regval, 0, 7);
+
+ return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
+
+}
+
+static ssize_t store_pwm_ast(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+ u8 currval, newval = 255;
+ u32 i;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
+ if (reqval == asc7621_pwm_auto_spinup_map[i]) {
+ newval = i;
+ break;
+ }
+ }
+ if (newval == 255)
+ return -EINVAL;
+
+ newval = (newval & param->mask[0]) << param->shift[0];
+
+ mutex_lock(&data->update_lock);
+ currval = read_byte(client, param->msb[0]);
+ newval |= (currval & ~(param->mask[0] << param->shift[0]));
+ data->reg[param->msb[0]] = newval;
+ write_byte(client, param->msb[0], newval);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+static u32 asc7621_temp_smoothing_time_map[] = {
+ 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
+};
+
+static ssize_t show_temp_st(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ SETUP_SHOW_data_param(dev, attr);
+ u8 regval =
+ (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+ regval = SENSORS_LIMIT(regval, 0, 7);
+
+ return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
+}
+
+static ssize_t store_temp_st(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ SETUP_STORE_data_param(dev, attr);
+ long reqval;
+ u8 currval, newval = 255;
+ u32 i;
+
+ if (strict_strtol(buf, 10, &reqval))
+ return -EINVAL;
+
+ for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
+ if (reqval == asc7621_temp_smoothing_time_map[i]) {
+ newval = i;
+ break;
+ }
+ }
+
+ if (newval == 255)
+ return -EINVAL;
+
+ newval = (newval & param->mask[0]) << param->shift[0];
+
+ mutex_lock(&data->update_lock);
+ currval = read_byte(client, param->msb[0]);
+ newval |= (currval & ~(param->mask[0] << param->shift[0]));
+ data->reg[param->msb[0]] = newval;
+ write_byte(client, param->msb[0], newval);
+ mutex_unlock(&data->update_lock);
+ return count;
+}
+
+/*
+ * End of data handlers
+ *
+ * These defines do nothing more than make the table easier
+ * to read when wrapped at column 80.
+ */
+
+/*
+ * Creates a variable length array inititalizer.
+ * VAA(1,3,5,7) would produce {1,3,5,7}
+ */
+#define VAA(args...) {args}
+
+#define PREAD(name, n, pri, rm, rl, m, s, r) \
+ {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
+ .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
+ .shift[0] = s,}
+
+#define PWRITE(name, n, pri, rm, rl, m, s, r) \
+ {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
+ .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
+ .shift[0] = s,}
+
+/*
+ * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
+ * were created using the VAA macro.
+ */
+#define PWRITEM(name, n, pri, rm, rl, m, s, r) \
+ {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
+ .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
+
+static struct asc7621_param asc7621_params[] = {
+ PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
+ PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
+ PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
+ PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
+ PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
+
+ PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
+ PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
+ PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
+ PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
+ PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
+
+ PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
+ PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
+ PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
+ PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
+ PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
+
+ PREAD(in0_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 0, bitmask),
+ PREAD(in1_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 1, bitmask),
+ PREAD(in2_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 2, bitmask),
+ PREAD(in3_alarm, 3, PRI_LOW, 0x41, 0, 0x01, 3, bitmask),
+ PREAD(in4_alarm, 4, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
+
+ PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
+ PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
+ PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
+ PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
+
+ PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
+ PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
+ PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
+ PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
+
+ PREAD(fan1_alarm, 0, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
+ PREAD(fan2_alarm, 1, PRI_LOW, 0x42, 0, 0x01, 1, bitmask),
+ PREAD(fan3_alarm, 2, PRI_LOW, 0x42, 0, 0x01, 2, bitmask),
+ PREAD(fan4_alarm, 3, PRI_LOW, 0x42, 0, 0x01, 3, bitmask),
+
+ PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
+ PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
+ PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
+ PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
+ PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
+ PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
+ PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
+ PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
+
+ PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
+ PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
+ PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
+ PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
+
+ PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
+ PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
+ PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
+ PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
+
+ PREAD(temp1_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 4, bitmask),
+ PREAD(temp2_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 5, bitmask),
+ PREAD(temp3_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 6, bitmask),
+ PREAD(temp4_alarm, 3, PRI_LOW, 0x43, 0, 0x01, 0, bitmask),
+
+ PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
+ PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
+ PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
+ PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
+
+ PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
+ PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
+ PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x64, 0, 0x01, 3, bitmask),
+ PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
+
+ PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
+ PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
+ PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
+ PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
+
+ PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
+ bitmask),
+ PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
+ bitmask),
+ PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
+ bitmask),
+ PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
+ bitmask),
+
+ PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
+ bitmask),
+ PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
+ bitmask),
+ PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
+ bitmask),
+ PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
+ bitmask),
+
+ PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
+ PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
+ PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
+ PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
+
+ PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
+ VAA(0x0f), VAA(4), ap2_temp),
+ PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
+ VAA(0x0f), VAA(4), ap2_temp),
+ PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
+ VAA(0x0f), VAA(4), ap2_temp),
+ PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
+ VAA(0x0f), VAA(4), ap2_temp),
+
+ PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
+ PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
+ PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
+ PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
+
+ PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
+ PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
+ PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
+ PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
+
+ PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
+ PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
+
+ PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
+ PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
+ PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
+
+ PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
+ PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
+ PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
+
+ PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
+ VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
+ PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
+ VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
+ PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
+ VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
+
+ PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
+ VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
+ PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
+ VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
+ PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
+ VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
+
+ PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
+ PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
+ PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
+
+ PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
+ PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
+ PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
+
+ PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
+ PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
+ PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
+
+ PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
+ PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
+ PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
+
+ PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
+ PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
+ PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
+
+ PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
+ PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
+ PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
+ PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
+ PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
+ PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
+
+};
+
+static struct asc7621_data *asc7621_update_device(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct asc7621_data *data = i2c_get_clientdata(client);
+ int i;
+
+/*
+ * The asc7621 chips guarantee consistent reads of multi-byte values
+ * regardless of the order of the reads. No special logic is needed
+ * so we can just read the registers in whatever order they appear
+ * in the asc7621_params array.
+ */
+
+ mutex_lock(&data->update_lock);
+
+ /* Read all the high priority registers */
+
+ if (!data->valid ||
+ time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
+
+ for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
+ if (asc7621_register_priorities[i] == PRI_HIGH) {
+ data->reg[i] =
+ i2c_smbus_read_byte_data(client, i) & 0xff;
+ }
+ }
+ data->last_high_reading = jiffies;
+ }; /* last_reading */
+
+ /* Read all the low priority registers. */
+
+ if (!data->valid ||
+ time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
+
+ for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+ if (asc7621_register_priorities[i] == PRI_LOW) {
+ data->reg[i] =
+ i2c_smbus_read_byte_data(client, i) & 0xff;
+ }
+ }
+ data->last_low_reading = jiffies;
+ }; /* last_reading */
+
+ data->valid = 1;
+
+ mutex_unlock(&data->update_lock);
+
+ return data;
+}
+
+/*
+ * Standard detection and initialization below
+ *
+ * Helper function that checks if an address is valid
+ * for a particular chip.
+ */
+
+static inline int valid_address_for_chip(int chip_type, int address)
+{
+ int i;
+
+ for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
+ i++) {
+ if (asc7621_chips[chip_type].addresses[i] == address)
+ return 1;
+ }
+ return 0;
+}
+
+static void asc7621_init_client(struct i2c_client *client)
+{
+ int value;
+
+ /* Warn if part was not "READY" */
+
+ value = read_byte(client, 0x40);
+
+ if (value & 0x02) {
+ dev_err(&client->dev,
+ "Client (%d,0x%02x) config is locked.\n",
+ i2c_adapter_id(client->adapter), client->addr);
+ };
+ if (!(value & 0x04)) {
+ dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
+ i2c_adapter_id(client->adapter), client->addr);
+ };
+
+/*
+ * Start monitoring
+ *
+ * Try to clear LOCK, Set START, save everything else
+ */
+ value = (value & ~0x02) | 0x01;
+ write_byte(client, 0x40, value & 0xff);
+
+}
+
+static int
+asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id)
+{
+ struct asc7621_data *data;
+ int i, err;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
+ return -EIO;
+
+ data = kzalloc(sizeof(struct asc7621_data), GFP_KERNEL);
+ if (data == NULL)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, data);
+ data->valid = 0;
+ mutex_init(&data->update_lock);
+
+ /* Initialize the asc7621 chip */
+ asc7621_init_client(client);
+
+ /* Create the sysfs entries */
+ for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+ err =
+ device_create_file(&client->dev,
+ &(asc7621_params[i].sda.dev_attr));
+ if (err)
+ goto exit_remove;
+ }
+
+ data->class_dev = hwmon_device_register(&client->dev);
+ if (IS_ERR(data->class_dev)) {
+ err = PTR_ERR(data->class_dev);
+ goto exit_remove;
+ }
+
+ return 0;
+
+exit_remove:
+ for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+ device_remove_file(&client->dev,
+ &(asc7621_params[i].sda.dev_attr));
+ }
+
+ i2c_set_clientdata(client, NULL);
+ kfree(data);
+ return err;
+}
+
+static int asc7621_detect(struct i2c_client *client,
+ struct i2c_board_info *info)
+{
+ struct i2c_adapter *adapter = client->adapter;
+ int company, verstep, chip_index;
+ struct device *dev;
+
+ dev = &client->dev;
+
+ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
+ return -ENODEV;
+
+ for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
+
+ if (!valid_address_for_chip(chip_index, client->addr))
+ continue;
+
+ company = read_byte(client,
+ asc7621_chips[chip_index].company_reg);
+ verstep = read_byte(client,
+ asc7621_chips[chip_index].verstep_reg);
+
+ if (company == asc7621_chips[chip_index].company_id &&
+ verstep == asc7621_chips[chip_index].verstep_id) {
+ strlcpy(client->name, asc7621_chips[chip_index].name,
+ I2C_NAME_SIZE);
+ strlcpy(info->type, asc7621_chips[chip_index].name,
+ I2C_NAME_SIZE);
+
+ dev_info(&adapter->dev, "Matched %s\n",
+ asc7621_chips[chip_index].name);
+ return 0;
+ }
+ }
+
+ return -ENODEV;
+}
+
+static int asc7621_remove(struct i2c_client *client)
+{
+ struct asc7621_data *data = i2c_get_clientdata(client);
+ int i;
+
+ hwmon_device_unregister(data->class_dev);
+
+ for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+ device_remove_file(&client->dev,
+ &(asc7621_params[i].sda.dev_attr));
+ }
+
+ i2c_set_clientdata(client, NULL);
+ kfree(data);
+ return 0;
+}
+
+static const struct i2c_device_id asc7621_id[] = {
+ {"asc7621", asc7621},
+ {"asc7621a", asc7621a},
+ {},
+};
+
+MODULE_DEVICE_TABLE(i2c, asc7621_id);
+
+static struct i2c_driver asc7621_driver = {
+ .class = I2C_CLASS_HWMON,
+ .driver = {
+ .name = "asc7621",
+ },
+ .probe = asc7621_probe,
+ .remove = asc7621_remove,
+ .id_table = asc7621_id,
+ .detect = asc7621_detect,
+ .address_list = normal_i2c,
+};
+
+static int __init sm_asc7621_init(void)
+{
+ int i, j;
+/*
+ * Collect all the registers needed into a single array.
+ * This way, if a register isn't actually used for anything,
+ * we don't retrieve it.
+ */
+
+ for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+ for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
+ asc7621_register_priorities[asc7621_params[i].msb[j]] =
+ asc7621_params[i].priority;
+ for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
+ asc7621_register_priorities[asc7621_params[i].lsb[j]] =
+ asc7621_params[i].priority;
+ }
+ return i2c_add_driver(&asc7621_driver);
+}
+
+static void __exit sm_asc7621_exit(void)
+{
+ i2c_del_driver(&asc7621_driver);
+}
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("George Joseph");
+MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
+
+module_init(sm_asc7621_init);
+module_exit(sm_asc7621_exit);
OpenPOWER on IntegriCloud