diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/wireless/wavelan.c | |
download | op-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip op-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/wireless/wavelan.c')
-rw-r--r-- | drivers/net/wireless/wavelan.c | 4452 |
1 files changed, 4452 insertions, 0 deletions
diff --git a/drivers/net/wireless/wavelan.c b/drivers/net/wireless/wavelan.c new file mode 100644 index 0000000..7a5e20a --- /dev/null +++ b/drivers/net/wireless/wavelan.c @@ -0,0 +1,4452 @@ +/* + * WaveLAN ISA driver + * + * Jean II - HPLB '96 + * + * Reorganisation and extension of the driver. + * Original copyright follows (also see the end of this file). + * See wavelan.p.h for details. + * + * + * + * AT&T GIS (nee NCR) WaveLAN card: + * An Ethernet-like radio transceiver + * controlled by an Intel 82586 coprocessor. + */ + +#include "wavelan.p.h" /* Private header */ + +/************************* MISC SUBROUTINES **************************/ +/* + * Subroutines which won't fit in one of the following category + * (WaveLAN modem or i82586) + */ + +/*------------------------------------------------------------------*/ +/* + * Translate irq number to PSA irq parameter + */ +static u8 wv_irq_to_psa(int irq) +{ + if (irq < 0 || irq >= NELS(irqvals)) + return 0; + + return irqvals[irq]; +} + +/*------------------------------------------------------------------*/ +/* + * Translate PSA irq parameter to irq number + */ +static int __init wv_psa_to_irq(u8 irqval) +{ + int irq; + + for (irq = 0; irq < NELS(irqvals); irq++) + if (irqvals[irq] == irqval) + return irq; + + return -1; +} + +#ifdef STRUCT_CHECK +/*------------------------------------------------------------------*/ +/* + * Sanity routine to verify the sizes of the various WaveLAN interface + * structures. + */ +static char *wv_struct_check(void) +{ +#define SC(t,s,n) if (sizeof(t) != s) return(n); + + SC(psa_t, PSA_SIZE, "psa_t"); + SC(mmw_t, MMW_SIZE, "mmw_t"); + SC(mmr_t, MMR_SIZE, "mmr_t"); + SC(ha_t, HA_SIZE, "ha_t"); + +#undef SC + + return ((char *) NULL); +} /* wv_struct_check */ +#endif /* STRUCT_CHECK */ + +/********************* HOST ADAPTER SUBROUTINES *********************/ +/* + * Useful subroutines to manage the WaveLAN ISA interface + * + * One major difference with the PCMCIA hardware (except the port mapping) + * is that we have to keep the state of the Host Control Register + * because of the interrupt enable & bus size flags. + */ + +/*------------------------------------------------------------------*/ +/* + * Read from card's Host Adaptor Status Register. + */ +static inline u16 hasr_read(unsigned long ioaddr) +{ + return (inw(HASR(ioaddr))); +} /* hasr_read */ + +/*------------------------------------------------------------------*/ +/* + * Write to card's Host Adapter Command Register. + */ +static inline void hacr_write(unsigned long ioaddr, u16 hacr) +{ + outw(hacr, HACR(ioaddr)); +} /* hacr_write */ + +/*------------------------------------------------------------------*/ +/* + * Write to card's Host Adapter Command Register. Include a delay for + * those times when it is needed. + */ +static inline void hacr_write_slow(unsigned long ioaddr, u16 hacr) +{ + hacr_write(ioaddr, hacr); + /* delay might only be needed sometimes */ + mdelay(1); +} /* hacr_write_slow */ + +/*------------------------------------------------------------------*/ +/* + * Set the channel attention bit. + */ +static inline void set_chan_attn(unsigned long ioaddr, u16 hacr) +{ + hacr_write(ioaddr, hacr | HACR_CA); +} /* set_chan_attn */ + +/*------------------------------------------------------------------*/ +/* + * Reset, and then set host adaptor into default mode. + */ +static inline void wv_hacr_reset(unsigned long ioaddr) +{ + hacr_write_slow(ioaddr, HACR_RESET); + hacr_write(ioaddr, HACR_DEFAULT); +} /* wv_hacr_reset */ + +/*------------------------------------------------------------------*/ +/* + * Set the I/O transfer over the ISA bus to 8-bit mode + */ +static inline void wv_16_off(unsigned long ioaddr, u16 hacr) +{ + hacr &= ~HACR_16BITS; + hacr_write(ioaddr, hacr); +} /* wv_16_off */ + +/*------------------------------------------------------------------*/ +/* + * Set the I/O transfer over the ISA bus to 8-bit mode + */ +static inline void wv_16_on(unsigned long ioaddr, u16 hacr) +{ + hacr |= HACR_16BITS; + hacr_write(ioaddr, hacr); +} /* wv_16_on */ + +/*------------------------------------------------------------------*/ +/* + * Disable interrupts on the WaveLAN hardware. + * (called by wv_82586_stop()) + */ +static inline void wv_ints_off(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + + lp->hacr &= ~HACR_INTRON; + hacr_write(ioaddr, lp->hacr); +} /* wv_ints_off */ + +/*------------------------------------------------------------------*/ +/* + * Enable interrupts on the WaveLAN hardware. + * (called by wv_hw_reset()) + */ +static inline void wv_ints_on(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + + lp->hacr |= HACR_INTRON; + hacr_write(ioaddr, lp->hacr); +} /* wv_ints_on */ + +/******************* MODEM MANAGEMENT SUBROUTINES *******************/ +/* + * Useful subroutines to manage the modem of the WaveLAN + */ + +/*------------------------------------------------------------------*/ +/* + * Read the Parameter Storage Area from the WaveLAN card's memory + */ +/* + * Read bytes from the PSA. + */ +static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */ + u8 * b, /* buffer to fill */ + int n) +{ /* size to read */ + wv_16_off(ioaddr, hacr); + + while (n-- > 0) { + outw(o, PIOR2(ioaddr)); + o++; + *b++ = inb(PIOP2(ioaddr)); + } + + wv_16_on(ioaddr, hacr); +} /* psa_read */ + +/*------------------------------------------------------------------*/ +/* + * Write the Parameter Storage Area to the WaveLAN card's memory. + */ +static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */ + u8 * b, /* Buffer in memory */ + int n) +{ /* Length of buffer */ + int count = 0; + + wv_16_off(ioaddr, hacr); + + while (n-- > 0) { + outw(o, PIOR2(ioaddr)); + o++; + + outb(*b, PIOP2(ioaddr)); + b++; + + /* Wait for the memory to finish its write cycle */ + count = 0; + while ((count++ < 100) && + (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1); + } + + wv_16_on(ioaddr, hacr); +} /* psa_write */ + +#ifdef SET_PSA_CRC +/*------------------------------------------------------------------*/ +/* + * Calculate the PSA CRC + * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code + * NOTE: By specifying a length including the CRC position the + * returned value should be zero. (i.e. a correct checksum in the PSA) + * + * The Windows drivers don't use the CRC, but the AP and the PtP tool + * depend on it. + */ +static inline u16 psa_crc(u8 * psa, /* The PSA */ + int size) +{ /* Number of short for CRC */ + int byte_cnt; /* Loop on the PSA */ + u16 crc_bytes = 0; /* Data in the PSA */ + int bit_cnt; /* Loop on the bits of the short */ + + for (byte_cnt = 0; byte_cnt < size; byte_cnt++) { + crc_bytes ^= psa[byte_cnt]; /* Its an xor */ + + for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) { + if (crc_bytes & 0x0001) + crc_bytes = (crc_bytes >> 1) ^ 0xA001; + else + crc_bytes >>= 1; + } + } + + return crc_bytes; +} /* psa_crc */ +#endif /* SET_PSA_CRC */ + +/*------------------------------------------------------------------*/ +/* + * update the checksum field in the Wavelan's PSA + */ +static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr) +{ +#ifdef SET_PSA_CRC + psa_t psa; + u16 crc; + + /* read the parameter storage area */ + psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa)); + + /* update the checksum */ + crc = psa_crc((unsigned char *) &psa, + sizeof(psa) - sizeof(psa.psa_crc[0]) - + sizeof(psa.psa_crc[1]) + - sizeof(psa.psa_crc_status)); + + psa.psa_crc[0] = crc & 0xFF; + psa.psa_crc[1] = (crc & 0xFF00) >> 8; + + /* Write it ! */ + psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa, + (unsigned char *) &psa.psa_crc, 2); + +#ifdef DEBUG_IOCTL_INFO + printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n", + dev->name, psa.psa_crc[0], psa.psa_crc[1]); + + /* Check again (luxury !) */ + crc = psa_crc((unsigned char *) &psa, + sizeof(psa) - sizeof(psa.psa_crc_status)); + + if (crc != 0) + printk(KERN_WARNING + "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n", + dev->name); +#endif /* DEBUG_IOCTL_INFO */ +#endif /* SET_PSA_CRC */ +} /* update_psa_checksum */ + +/*------------------------------------------------------------------*/ +/* + * Write 1 byte to the MMC. + */ +static inline void mmc_out(unsigned long ioaddr, u16 o, u8 d) +{ + int count = 0; + + /* Wait for MMC to go idle */ + while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY)) + udelay(10); + + outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr)); +} + +/*------------------------------------------------------------------*/ +/* + * Routine to write bytes to the Modem Management Controller. + * We start at the end because it is the way it should be! + */ +static inline void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n) +{ + o += n; + b += n; + + while (n-- > 0) + mmc_out(ioaddr, --o, *(--b)); +} /* mmc_write */ + +/*------------------------------------------------------------------*/ +/* + * Read a byte from the MMC. + * Optimised version for 1 byte, avoid using memory. + */ +static inline u8 mmc_in(unsigned long ioaddr, u16 o) +{ + int count = 0; + + while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY)) + udelay(10); + outw(o << 1, MMCR(ioaddr)); + + while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY)) + udelay(10); + return (u8) (inw(MMCR(ioaddr)) >> 8); +} + +/*------------------------------------------------------------------*/ +/* + * Routine to read bytes from the Modem Management Controller. + * The implementation is complicated by a lack of address lines, + * which prevents decoding of the low-order bit. + * (code has just been moved in the above function) + * We start at the end because it is the way it should be! + */ +static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n) +{ + o += n; + b += n; + + while (n-- > 0) + *(--b) = mmc_in(ioaddr, --o); +} /* mmc_read */ + +/*------------------------------------------------------------------*/ +/* + * Get the type of encryption available. + */ +static inline int mmc_encr(unsigned long ioaddr) +{ /* I/O port of the card */ + int temp; + + temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail)); + if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES)) + return 0; + else + return temp; +} + +/*------------------------------------------------------------------*/ +/* + * Wait for the frequency EEPROM to complete a command. + * I hope this one will be optimally inlined. + */ +static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */ + int delay, /* Base delay to wait for */ + int number) +{ /* Number of time to wait */ + int count = 0; /* Wait only a limited time */ + + while ((count++ < number) && + (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & + MMR_FEE_STATUS_BUSY)) udelay(delay); +} + +/*------------------------------------------------------------------*/ +/* + * Read bytes from the Frequency EEPROM (frequency select cards). + */ +static void fee_read(unsigned long ioaddr, /* I/O port of the card */ + u16 o, /* destination offset */ + u16 * b, /* data buffer */ + int n) +{ /* number of registers */ + b += n; /* Position at the end of the area */ + + /* Write the address */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1); + + /* Loop on all buffer */ + while (n-- > 0) { + /* Write the read command */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), + MMW_FEE_CTRL_READ); + + /* Wait until EEPROM is ready (should be quick). */ + fee_wait(ioaddr, 10, 100); + + /* Read the value. */ + *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) | + mmc_in(ioaddr, mmroff(0, mmr_fee_data_l))); + } +} + +#ifdef WIRELESS_EXT /* if the wireless extension exists in the kernel */ + +/*------------------------------------------------------------------*/ +/* + * Write bytes from the Frequency EEPROM (frequency select cards). + * This is a bit complicated, because the frequency EEPROM has to + * be unprotected and the write enabled. + * Jean II + */ +static void fee_write(unsigned long ioaddr, /* I/O port of the card */ + u16 o, /* destination offset */ + u16 * b, /* data buffer */ + int n) +{ /* number of registers */ + b += n; /* Position at the end of the area. */ + +#ifdef EEPROM_IS_PROTECTED /* disabled */ +#ifdef DOESNT_SEEM_TO_WORK /* disabled */ + /* Ask to read the protected register */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD); + + fee_wait(ioaddr, 10, 100); + + /* Read the protected register. */ + printk("Protected 2: %02X-%02X\n", + mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)), + mmc_in(ioaddr, mmroff(0, mmr_fee_data_l))); +#endif /* DOESNT_SEEM_TO_WORK */ + + /* Enable protected register. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN); + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN); + + fee_wait(ioaddr, 10, 100); + + /* Unprotect area. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n); + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE); +#ifdef DOESNT_SEEM_TO_WORK /* disabled */ + /* or use: */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR); +#endif /* DOESNT_SEEM_TO_WORK */ + + fee_wait(ioaddr, 10, 100); +#endif /* EEPROM_IS_PROTECTED */ + + /* Write enable. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN); + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN); + + fee_wait(ioaddr, 10, 100); + + /* Write the EEPROM address. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1); + + /* Loop on all buffer */ + while (n-- > 0) { + /* Write the value. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8); + mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF); + + /* Write the write command. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), + MMW_FEE_CTRL_WRITE); + + /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */ + mdelay(10); + fee_wait(ioaddr, 10, 100); + } + + /* Write disable. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS); + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS); + + fee_wait(ioaddr, 10, 100); + +#ifdef EEPROM_IS_PROTECTED /* disabled */ + /* Reprotect EEPROM. */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00); + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE); + + fee_wait(ioaddr, 10, 100); +#endif /* EEPROM_IS_PROTECTED */ +} +#endif /* WIRELESS_EXT */ + +/************************ I82586 SUBROUTINES *************************/ +/* + * Useful subroutines to manage the Ethernet controller + */ + +/*------------------------------------------------------------------*/ +/* + * Read bytes from the on-board RAM. + * Why does inlining this function make it fail? + */ +static /*inline */ void obram_read(unsigned long ioaddr, + u16 o, u8 * b, int n) +{ + outw(o, PIOR1(ioaddr)); + insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1); +} + +/*------------------------------------------------------------------*/ +/* + * Write bytes to the on-board RAM. + */ +static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n) +{ + outw(o, PIOR1(ioaddr)); + outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1); +} + +/*------------------------------------------------------------------*/ +/* + * Acknowledge the reading of the status issued by the i82586. + */ +static void wv_ack(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + u16 scb_cs; + int i; + + obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + scb_cs &= SCB_ST_INT; + + if (scb_cs == 0) + return; + + obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + + set_chan_attn(ioaddr, lp->hacr); + + for (i = 1000; i > 0; i--) { + obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + if (scb_cs == 0) + break; + + udelay(10); + } + udelay(100); + +#ifdef DEBUG_CONFIG_ERROR + if (i <= 0) + printk(KERN_INFO + "%s: wv_ack(): board not accepting command.\n", + dev->name); +#endif +} + +/*------------------------------------------------------------------*/ +/* + * Set channel attention bit and busy wait until command has + * completed, then acknowledge completion of the command. + */ +static inline int wv_synchronous_cmd(struct net_device * dev, const char *str) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + u16 scb_cmd; + ach_t cb; + int i; + + scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO; + obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cmd, sizeof(scb_cmd)); + + set_chan_attn(ioaddr, lp->hacr); + + for (i = 1000; i > 0; i--) { + obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, + sizeof(cb)); + if (cb.ac_status & AC_SFLD_C) + break; + + udelay(10); + } + udelay(100); + + if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO "%s: %s failed; status = 0x%x\n", + dev->name, str, cb.ac_status); +#endif +#ifdef DEBUG_I82586_SHOW + wv_scb_show(ioaddr); +#endif + return -1; + } + + /* Ack the status */ + wv_ack(dev); + + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Configuration commands completion interrupt. + * Check if done, and if OK. + */ +static inline int +wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp) +{ + unsigned short mcs_addr; + unsigned short status; + int ret; + +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name); +#endif + + mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t) + + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t); + + /* Read the status of the last command (set mc list). */ + obram_read(ioaddr, acoff(mcs_addr, ac_status), + (unsigned char *) &status, sizeof(status)); + + /* If not completed -> exit */ + if ((status & AC_SFLD_C) == 0) + ret = 0; /* Not ready to be scrapped */ + else { +#ifdef DEBUG_CONFIG_ERROR + unsigned short cfg_addr; + unsigned short ias_addr; + + /* Check mc_config command */ + if ((status & AC_SFLD_OK) != AC_SFLD_OK) + printk(KERN_INFO + "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n", + dev->name, status); + + /* check ia-config command */ + ias_addr = mcs_addr - sizeof(ac_ias_t); + obram_read(ioaddr, acoff(ias_addr, ac_status), + (unsigned char *) &status, sizeof(status)); + if ((status & AC_SFLD_OK) != AC_SFLD_OK) + printk(KERN_INFO + "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n", + dev->name, status); + + /* Check config command. */ + cfg_addr = ias_addr - sizeof(ac_cfg_t); + obram_read(ioaddr, acoff(cfg_addr, ac_status), + (unsigned char *) &status, sizeof(status)); + if ((status & AC_SFLD_OK) != AC_SFLD_OK) + printk(KERN_INFO + "%s: wv_config_complete(): configure failed; status = 0x%x\n", + dev->name, status); +#endif /* DEBUG_CONFIG_ERROR */ + + ret = 1; /* Ready to be scrapped */ + } + +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name, + ret); +#endif + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Command completion interrupt. + * Reclaim as many freed tx buffers as we can. + * (called in wavelan_interrupt()). + * Note : the spinlock is already grabbed for us. + */ +static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp) +{ + int nreaped = 0; + +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name); +#endif + + /* Loop on all the transmit buffers */ + while (lp->tx_first_in_use != I82586NULL) { + unsigned short tx_status; + + /* Read the first transmit buffer */ + obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status), + (unsigned char *) &tx_status, + sizeof(tx_status)); + + /* If not completed -> exit */ + if ((tx_status & AC_SFLD_C) == 0) + break; + + /* Hack for reconfiguration */ + if (tx_status == 0xFFFF) + if (!wv_config_complete(dev, ioaddr, lp)) + break; /* Not completed */ + + /* We now remove this buffer */ + nreaped++; + --lp->tx_n_in_use; + +/* +if (lp->tx_n_in_use > 0) + printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]); +*/ + + /* Was it the last one? */ + if (lp->tx_n_in_use <= 0) + lp->tx_first_in_use = I82586NULL; + else { + /* Next one in the chain */ + lp->tx_first_in_use += TXBLOCKZ; + if (lp->tx_first_in_use >= + OFFSET_CU + + NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -= + NTXBLOCKS * TXBLOCKZ; + } + + /* Hack for reconfiguration */ + if (tx_status == 0xFFFF) + continue; + + /* Now, check status of the finished command */ + if (tx_status & AC_SFLD_OK) { + int ncollisions; + + lp->stats.tx_packets++; + ncollisions = tx_status & AC_SFLD_MAXCOL; + lp->stats.collisions += ncollisions; +#ifdef DEBUG_TX_INFO + if (ncollisions > 0) + printk(KERN_DEBUG + "%s: wv_complete(): tx completed after %d collisions.\n", + dev->name, ncollisions); +#endif + } else { + lp->stats.tx_errors++; + if (tx_status & AC_SFLD_S10) { + lp->stats.tx_carrier_errors++; +#ifdef DEBUG_TX_FAIL + printk(KERN_DEBUG + "%s: wv_complete(): tx error: no CS.\n", + dev->name); +#endif + } + if (tx_status & AC_SFLD_S9) { + lp->stats.tx_carrier_errors++; +#ifdef DEBUG_TX_FAIL + printk(KERN_DEBUG + "%s: wv_complete(): tx error: lost CTS.\n", + dev->name); +#endif + } + if (tx_status & AC_SFLD_S8) { + lp->stats.tx_fifo_errors++; +#ifdef DEBUG_TX_FAIL + printk(KERN_DEBUG + "%s: wv_complete(): tx error: slow DMA.\n", + dev->name); +#endif + } + if (tx_status & AC_SFLD_S6) { + lp->stats.tx_heartbeat_errors++; +#ifdef DEBUG_TX_FAIL + printk(KERN_DEBUG + "%s: wv_complete(): tx error: heart beat.\n", + dev->name); +#endif + } + if (tx_status & AC_SFLD_S5) { + lp->stats.tx_aborted_errors++; +#ifdef DEBUG_TX_FAIL + printk(KERN_DEBUG + "%s: wv_complete(): tx error: too many collisions.\n", + dev->name); +#endif + } + } + +#ifdef DEBUG_TX_INFO + printk(KERN_DEBUG + "%s: wv_complete(): tx completed, tx_status 0x%04x\n", + dev->name, tx_status); +#endif + } + +#ifdef DEBUG_INTERRUPT_INFO + if (nreaped > 1) + printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n", + dev->name, nreaped); +#endif + + /* + * Inform upper layers. + */ + if (lp->tx_n_in_use < NTXBLOCKS - 1) { + netif_wake_queue(dev); + } +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name); +#endif + return nreaped; +} + +/*------------------------------------------------------------------*/ +/* + * Reconfigure the i82586, or at least ask for it. + * Because wv_82586_config uses a transmission buffer, we must do it + * when we are sure that there is one left, so we do it now + * or in wavelan_packet_xmit() (I can't find any better place, + * wavelan_interrupt is not an option), so you may experience + * delays sometimes. + */ +static inline void wv_82586_reconfig(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long flags; + + /* Arm the flag, will be cleard in wv_82586_config() */ + lp->reconfig_82586 = 1; + + /* Check if we can do it now ! */ + if((netif_running(dev)) && !(netif_queue_stopped(dev))) { + spin_lock_irqsave(&lp->spinlock, flags); + /* May fail */ + wv_82586_config(dev); + spin_unlock_irqrestore(&lp->spinlock, flags); + } + else { +#ifdef DEBUG_CONFIG_INFO + printk(KERN_DEBUG + "%s: wv_82586_reconfig(): delayed (state = %lX)\n", + dev->name, dev->state); +#endif + } +} + +/********************* DEBUG & INFO SUBROUTINES *********************/ +/* + * This routine is used in the code to show information for debugging. + * Most of the time, it dumps the contents of hardware structures. + */ + +#ifdef DEBUG_PSA_SHOW +/*------------------------------------------------------------------*/ +/* + * Print the formatted contents of the Parameter Storage Area. + */ +static void wv_psa_show(psa_t * p) +{ + printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n"); + printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n", + p->psa_io_base_addr_1, + p->psa_io_base_addr_2, + p->psa_io_base_addr_3, p->psa_io_base_addr_4); + printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n", + p->psa_rem_boot_addr_1, + p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3); + printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params); + printk("psa_int_req_no: %d\n", p->psa_int_req_no); +#ifdef DEBUG_SHOW_UNUSED + printk(KERN_DEBUG + "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n", + p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2], + p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5], + p->psa_unused0[6]); +#endif /* DEBUG_SHOW_UNUSED */ + printk(KERN_DEBUG + "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n", + p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1], + p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3], + p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]); + printk(KERN_DEBUG + "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n", + p->psa_local_mac_addr[0], p->psa_local_mac_addr[1], + p->psa_local_mac_addr[2], p->psa_local_mac_addr[3], + p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]); + printk(KERN_DEBUG "psa_univ_local_sel: %d, ", + p->psa_univ_local_sel); + printk("psa_comp_number: %d, ", p->psa_comp_number); + printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set); + printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ", + p->psa_feature_select); + printk("psa_subband/decay_update_prm: %d\n", p->psa_subband); + printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr); + printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay); + printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0], + p->psa_nwid[1]); + printk("psa_nwid_select: %d\n", p->psa_nwid_select); + printk(KERN_DEBUG "psa_encryption_select: %d, ", + p->psa_encryption_select); + printk + ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", + p->psa_encryption_key[0], p->psa_encryption_key[1], + p->psa_encryption_key[2], p->psa_encryption_key[3], + p->psa_encryption_key[4], p->psa_encryption_key[5], + p->psa_encryption_key[6], p->psa_encryption_key[7]); + printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width); + printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ", + p->psa_call_code[0]); + printk + ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", + p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2], + p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5], + p->psa_call_code[6], p->psa_call_code[7]); +#ifdef DEBUG_SHOW_UNUSED + printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n", + p->psa_reserved[0], + p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]); +#endif /* DEBUG_SHOW_UNUSED */ + printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status); + printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]); + printk("psa_crc_status: 0x%02x\n", p->psa_crc_status); +} /* wv_psa_show */ +#endif /* DEBUG_PSA_SHOW */ + +#ifdef DEBUG_MMC_SHOW +/*------------------------------------------------------------------*/ +/* + * Print the formatted status of the Modem Management Controller. + * This function needs to be completed. + */ +static void wv_mmc_show(struct net_device * dev) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; + mmr_t m; + + /* Basic check */ + if (hasr_read(ioaddr) & HASR_NO_CLK) { + printk(KERN_WARNING + "%s: wv_mmc_show: modem not connected\n", + dev->name); + return; + } + + /* Read the mmc */ + mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); + mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m)); + mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); + +#ifdef WIRELESS_EXT /* if wireless extension exists in the kernel */ + /* Don't forget to update statistics */ + lp->wstats.discard.nwid += + (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l; +#endif /* WIRELESS_EXT */ + + printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n"); +#ifdef DEBUG_SHOW_UNUSED + printk(KERN_DEBUG + "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", + m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2], + m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5], + m.mmr_unused0[6], m.mmr_unused0[7]); +#endif /* DEBUG_SHOW_UNUSED */ + printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n", + m.mmr_des_avail, m.mmr_des_status); +#ifdef DEBUG_SHOW_UNUSED + printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n", + m.mmr_unused1[0], + m.mmr_unused1[1], + m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]); +#endif /* DEBUG_SHOW_UNUSED */ + printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n", + m.mmr_dce_status, + (m. + mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ? + "energy detected," : "", + (m. + mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ? + "loop test indicated," : "", + (m. + mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ? + "transmitter on," : "", + (m. + mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ? + "jabber timer expired," : ""); + printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id); +#ifdef DEBUG_SHOW_UNUSED + printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n", + m.mmr_unused2[0], m.mmr_unused2[1]); +#endif /* DEBUG_SHOW_UNUSED */ + printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n", + (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l, + (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l); + printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n", + m.mmr_thr_pre_set & MMR_THR_PRE_SET, + (m. + mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" : + "below"); + printk(KERN_DEBUG "signal_lvl: %d [%s], ", + m.mmr_signal_lvl & MMR_SIGNAL_LVL, + (m. + mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" : + "no new msg"); + printk("silence_lvl: %d [%s], ", + m.mmr_silence_lvl & MMR_SILENCE_LVL, + (m. + mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" : + "no new update"); + printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL, + (m. + mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" : + "Antenna 0"); +#ifdef DEBUG_SHOW_UNUSED + printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l); +#endif /* DEBUG_SHOW_UNUSED */ +} /* wv_mmc_show */ +#endif /* DEBUG_MMC_SHOW */ + +#ifdef DEBUG_I82586_SHOW +/*------------------------------------------------------------------*/ +/* + * Print the last block of the i82586 memory. + */ +static void wv_scb_show(unsigned long ioaddr) +{ + scb_t scb; + + obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb, + sizeof(scb)); + + printk(KERN_DEBUG "##### WaveLAN system control block: #####\n"); + + printk(KERN_DEBUG "status: "); + printk("stat 0x%x[%s%s%s%s] ", + (scb. + scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA | + SCB_ST_RNR)) >> 12, + (scb. + scb_status & SCB_ST_CX) ? "command completion interrupt," : + "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "", + (scb. + scb_status & SCB_ST_CNA) ? "command unit not active," : "", + (scb. + scb_status & SCB_ST_RNR) ? "receiving unit not ready," : + ""); + printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8, + ((scb.scb_status & SCB_ST_CUS) == + SCB_ST_CUS_IDLE) ? "idle" : "", + ((scb.scb_status & SCB_ST_CUS) == + SCB_ST_CUS_SUSP) ? "suspended" : "", + ((scb.scb_status & SCB_ST_CUS) == + SCB_ST_CUS_ACTV) ? "active" : ""); + printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4, + ((scb.scb_status & SCB_ST_RUS) == + SCB_ST_RUS_IDLE) ? "idle" : "", + ((scb.scb_status & SCB_ST_RUS) == + SCB_ST_RUS_SUSP) ? "suspended" : "", + ((scb.scb_status & SCB_ST_RUS) == + SCB_ST_RUS_NRES) ? "no resources" : "", + ((scb.scb_status & SCB_ST_RUS) == + SCB_ST_RUS_RDY) ? "ready" : ""); + + printk(KERN_DEBUG "command: "); + printk("ack 0x%x[%s%s%s%s] ", + (scb. + scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR | + SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12, + (scb. + scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "", + (scb. + scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "", + (scb. + scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "", + (scb. + scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : ""); + printk("cuc 0x%x[%s%s%s%s%s] ", + (scb.scb_command & SCB_CMD_CUC) >> 8, + ((scb.scb_command & SCB_CMD_CUC) == + SCB_CMD_CUC_NOP) ? "nop" : "", + ((scb.scb_command & SCB_CMD_CUC) == + SCB_CMD_CUC_GO) ? "start cbl_offset" : "", + ((scb.scb_command & SCB_CMD_CUC) == + SCB_CMD_CUC_RES) ? "resume execution" : "", + ((scb.scb_command & SCB_CMD_CUC) == + SCB_CMD_CUC_SUS) ? "suspend execution" : "", + ((scb.scb_command & SCB_CMD_CUC) == + SCB_CMD_CUC_ABT) ? "abort execution" : ""); + printk("ruc 0x%x[%s%s%s%s%s]\n", + (scb.scb_command & SCB_CMD_RUC) >> 4, + ((scb.scb_command & SCB_CMD_RUC) == + SCB_CMD_RUC_NOP) ? "nop" : "", + ((scb.scb_command & SCB_CMD_RUC) == + SCB_CMD_RUC_GO) ? "start rfa_offset" : "", + ((scb.scb_command & SCB_CMD_RUC) == + SCB_CMD_RUC_RES) ? "resume reception" : "", + ((scb.scb_command & SCB_CMD_RUC) == + SCB_CMD_RUC_SUS) ? "suspend reception" : "", + ((scb.scb_command & SCB_CMD_RUC) == + SCB_CMD_RUC_ABT) ? "abort reception" : ""); + + printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset); + printk("rfa_offset 0x%x\n", scb.scb_rfa_offset); + + printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs); + printk("alnerrs %d ", scb.scb_alnerrs); + printk("rscerrs %d ", scb.scb_rscerrs); + printk("ovrnerrs %d\n", scb.scb_ovrnerrs); +} + +/*------------------------------------------------------------------*/ +/* + * Print the formatted status of the i82586's receive unit. + */ +static void wv_ru_show(struct net_device * dev) +{ + /* net_local *lp = (net_local *) dev->priv; */ + + printk(KERN_DEBUG + "##### WaveLAN i82586 receiver unit status: #####\n"); + printk(KERN_DEBUG "ru:"); + /* + * Not implemented yet + */ + printk("\n"); +} /* wv_ru_show */ + +/*------------------------------------------------------------------*/ +/* + * Display info about one control block of the i82586 memory. + */ +static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p) +{ + unsigned long ioaddr; + ac_tx_t actx; + + ioaddr = dev->base_addr; + + printk("%d: 0x%x:", i, p); + + obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx)); + printk(" status=0x%x,", actx.tx_h.ac_status); + printk(" command=0x%x,", actx.tx_h.ac_command); + + /* + { + tbd_t tbd; + + obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd)); + printk(" tbd_status=0x%x,", tbd.tbd_status); + } + */ + + printk("|"); +} + +/*------------------------------------------------------------------*/ +/* + * Print status of the command unit of the i82586. + */ +static void wv_cu_show(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned int i; + u16 p; + + printk(KERN_DEBUG + "##### WaveLAN i82586 command unit status: #####\n"); + + printk(KERN_DEBUG); + for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) { + wv_cu_show_one(dev, lp, i, p); + + p += TXBLOCKZ; + if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) + p -= NTXBLOCKS * TXBLOCKZ; + } + printk("\n"); +} +#endif /* DEBUG_I82586_SHOW */ + +#ifdef DEBUG_DEVICE_SHOW +/*------------------------------------------------------------------*/ +/* + * Print the formatted status of the WaveLAN PCMCIA device driver. + */ +static void wv_dev_show(struct net_device * dev) +{ + printk(KERN_DEBUG "dev:"); + printk(" state=%lX,", dev->state); + printk(" trans_start=%ld,", dev->trans_start); + printk(" flags=0x%x,", dev->flags); + printk("\n"); +} /* wv_dev_show */ + +/*------------------------------------------------------------------*/ +/* + * Print the formatted status of the WaveLAN PCMCIA device driver's + * private information. + */ +static void wv_local_show(struct net_device * dev) +{ + net_local *lp; + + lp = (net_local *) dev->priv; + + printk(KERN_DEBUG "local:"); + printk(" tx_n_in_use=%d,", lp->tx_n_in_use); + printk(" hacr=0x%x,", lp->hacr); + printk(" rx_head=0x%x,", lp->rx_head); + printk(" rx_last=0x%x,", lp->rx_last); + printk(" tx_first_free=0x%x,", lp->tx_first_free); + printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use); + printk("\n"); +} /* wv_local_show */ +#endif /* DEBUG_DEVICE_SHOW */ + +#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) +/*------------------------------------------------------------------*/ +/* + * Dump packet header (and content if necessary) on the screen + */ +static inline void wv_packet_info(u8 * p, /* Packet to dump */ + int length, /* Length of the packet */ + char *msg1, /* Name of the device */ + char *msg2) +{ /* Name of the function */ + int i; + int maxi; + + printk(KERN_DEBUG + "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n", + msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length); + printk(KERN_DEBUG + "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n", + msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12], + p[13]); + +#ifdef DEBUG_PACKET_DUMP + + printk(KERN_DEBUG "data=\""); + + if ((maxi = length) > DEBUG_PACKET_DUMP) + maxi = DEBUG_PACKET_DUMP; + for (i = 14; i < maxi; i++) + if (p[i] >= ' ' && p[i] <= '~') + printk(" %c", p[i]); + else + printk("%02X", p[i]); + if (maxi < length) + printk(".."); + printk("\"\n"); + printk(KERN_DEBUG "\n"); +#endif /* DEBUG_PACKET_DUMP */ +} +#endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */ + +/*------------------------------------------------------------------*/ +/* + * This is the information which is displayed by the driver at startup. + * There are lots of flags for configuring it to your liking. + */ +static inline void wv_init_info(struct net_device * dev) +{ + short ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; + psa_t psa; + int i; + + /* Read the parameter storage area */ + psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa)); + +#ifdef DEBUG_PSA_SHOW + wv_psa_show(&psa); +#endif +#ifdef DEBUG_MMC_SHOW + wv_mmc_show(dev); +#endif +#ifdef DEBUG_I82586_SHOW + wv_cu_show(dev); +#endif + +#ifdef DEBUG_BASIC_SHOW + /* Now, let's go for the basic stuff. */ + printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr); + for (i = 0; i < WAVELAN_ADDR_SIZE; i++) + printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]); + printk(", IRQ %d", dev->irq); + + /* Print current network ID. */ + if (psa.psa_nwid_select) + printk(", nwid 0x%02X-%02X", psa.psa_nwid[0], + psa.psa_nwid[1]); + else + printk(", nwid off"); + + /* If 2.00 card */ + if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & + (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { + unsigned short freq; + + /* Ask the EEPROM to read the frequency from the first area. */ + fee_read(ioaddr, 0x00, &freq, 1); + + /* Print frequency */ + printk(", 2.00, %ld", (freq >> 6) + 2400L); + + /* Hack! */ + if (freq & 0x20) + printk(".5"); + } else { + printk(", PC"); + switch (psa.psa_comp_number) { + case PSA_COMP_PC_AT_915: + case PSA_COMP_PC_AT_2400: + printk("-AT"); + break; + case PSA_COMP_PC_MC_915: + case PSA_COMP_PC_MC_2400: + printk("-MC"); + break; + case PSA_COMP_PCMCIA_915: + printk("MCIA"); + break; + default: + printk("?"); + } + printk(", "); + switch (psa.psa_subband) { + case PSA_SUBBAND_915: + printk("915"); + break; + case PSA_SUBBAND_2425: + printk("2425"); + break; + case PSA_SUBBAND_2460: + printk("2460"); + break; + case PSA_SUBBAND_2484: + printk("2484"); + break; + case PSA_SUBBAND_2430_5: + printk("2430.5"); + break; + default: + printk("?"); + } + } + + printk(" MHz\n"); +#endif /* DEBUG_BASIC_SHOW */ + +#ifdef DEBUG_VERSION_SHOW + /* Print version information */ + printk(KERN_NOTICE "%s", version); +#endif +} /* wv_init_info */ + +/********************* IOCTL, STATS & RECONFIG *********************/ +/* + * We found here routines that are called by Linux on different + * occasions after the configuration and not for transmitting data + * These may be called when the user use ifconfig, /proc/net/dev + * or wireless extensions + */ + +/*------------------------------------------------------------------*/ +/* + * Get the current Ethernet statistics. This may be called with the + * card open or closed. + * Used when the user read /proc/net/dev + */ +static en_stats *wavelan_get_stats(struct net_device * dev) +{ +#ifdef DEBUG_IOCTL_TRACE + printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name); +#endif + + return (&((net_local *) dev->priv)->stats); +} + +/*------------------------------------------------------------------*/ +/* + * Set or clear the multicast filter for this adaptor. + * num_addrs == -1 Promiscuous mode, receive all packets + * num_addrs == 0 Normal mode, clear multicast list + * num_addrs > 0 Multicast mode, receive normal and MC packets, + * and do best-effort filtering. + */ +static void wavelan_set_multicast_list(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + +#ifdef DEBUG_IOCTL_TRACE + printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n", + dev->name); +#endif + +#ifdef DEBUG_IOCTL_INFO + printk(KERN_DEBUG + "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n", + dev->name, dev->flags, dev->mc_count); +#endif + + /* Are we asking for promiscuous mode, + * or all multicast addresses (we don't have that!) + * or too many multicast addresses for the hardware filter? */ + if ((dev->flags & IFF_PROMISC) || + (dev->flags & IFF_ALLMULTI) || + (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) { + /* + * Enable promiscuous mode: receive all packets. + */ + if (!lp->promiscuous) { + lp->promiscuous = 1; + lp->mc_count = 0; + + wv_82586_reconfig(dev); + + /* Tell the kernel that we are doing a really bad job. */ + dev->flags |= IFF_PROMISC; + } + } else + /* Are there multicast addresses to send? */ + if (dev->mc_list != (struct dev_mc_list *) NULL) { + /* + * Disable promiscuous mode, but receive all packets + * in multicast list + */ +#ifdef MULTICAST_AVOID + if (lp->promiscuous || (dev->mc_count != lp->mc_count)) +#endif + { + lp->promiscuous = 0; + lp->mc_count = dev->mc_count; + + wv_82586_reconfig(dev); + } + } else { + /* + * Switch to normal mode: disable promiscuous mode and + * clear the multicast list. + */ + if (lp->promiscuous || lp->mc_count == 0) { + lp->promiscuous = 0; + lp->mc_count = 0; + + wv_82586_reconfig(dev); + } + } +#ifdef DEBUG_IOCTL_TRACE + printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n", + dev->name); +#endif +} + +/*------------------------------------------------------------------*/ +/* + * This function doesn't exist. + * (Note : it was a nice way to test the reconfigure stuff...) + */ +#ifdef SET_MAC_ADDRESS +static int wavelan_set_mac_address(struct net_device * dev, void *addr) +{ + struct sockaddr *mac = addr; + + /* Copy the address. */ + memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE); + + /* Reconfigure the beast. */ + wv_82586_reconfig(dev); + + return 0; +} +#endif /* SET_MAC_ADDRESS */ + +#ifdef WIRELESS_EXT /* if wireless extensions exist in the kernel */ + +/*------------------------------------------------------------------*/ +/* + * Frequency setting (for hardware capable of it) + * It's a bit complicated and you don't really want to look into it. + * (called in wavelan_ioctl) + */ +static inline int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */ + iw_freq * frequency) +{ + const int BAND_NUM = 10; /* Number of bands */ + long freq = 0L; /* offset to 2.4 GHz in .5 MHz */ +#ifdef DEBUG_IOCTL_INFO + int i; +#endif + + /* Setting by frequency */ + /* Theoretically, you may set any frequency between + * the two limits with a 0.5 MHz precision. In practice, + * I don't want you to have trouble with local regulations. + */ + if ((frequency->e == 1) && + (frequency->m >= (int) 2.412e8) + && (frequency->m <= (int) 2.487e8)) { + freq = ((frequency->m / 10000) - 24000L) / 5; + } + + /* Setting by channel (same as wfreqsel) */ + /* Warning: each channel is 22 MHz wide, so some of the channels + * will interfere. */ + if ((frequency->e == 0) && (frequency->m < BAND_NUM)) { + /* Get frequency offset. */ + freq = channel_bands[frequency->m] >> 1; + } + + /* Verify that the frequency is allowed. */ + if (freq != 0L) { + u16 table[10]; /* Authorized frequency table */ + + /* Read the frequency table. */ + fee_read(ioaddr, 0x71, table, 10); + +#ifdef DEBUG_IOCTL_INFO + printk(KERN_DEBUG "Frequency table: "); + for (i = 0; i < 10; i++) { + printk(" %04X", table[i]); + } + printk("\n"); +#endif + + /* Look in the table to see whether the frequency is allowed. */ + if (!(table[9 - ((freq - 24) / 16)] & + (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */ + } else + return -EINVAL; + + /* if we get a usable frequency */ + if (freq != 0L) { + unsigned short area[16]; + unsigned short dac[2]; + unsigned short area_verify[16]; + unsigned short dac_verify[2]; + /* Corresponding gain (in the power adjust value table) + * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8 + * and WCIN062D.DOC, page 6.2.9. */ + unsigned short power_limit[] = { 40, 80, 120, 160, 0 }; + int power_band = 0; /* Selected band */ + unsigned short power_adjust; /* Correct value */ + + /* Search for the gain. */ + power_band = 0; + while ((freq > power_limit[power_band]) && + (power_limit[++power_band] != 0)); + + /* Read the first area. */ + fee_read(ioaddr, 0x00, area, 16); + + /* Read the DAC. */ + fee_read(ioaddr, 0x60, dac, 2); + + /* Read the new power adjust value. */ + fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust, + 1); + if (power_band & 0x1) + power_adjust >>= 8; + else + power_adjust &= 0xFF; + +#ifdef DEBUG_IOCTL_INFO + printk(KERN_DEBUG "WaveLAN EEPROM Area 1: "); + for (i = 0; i < 16; i++) { + printk(" %04X", area[i]); + } + printk("\n"); + + printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n", + dac[0], dac[1]); +#endif + + /* Frequency offset (for info only) */ + area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F); + + /* Receiver Principle main divider coefficient */ + area[3] = (freq >> 1) + 2400L - 352L; + area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF); + + /* Transmitter Main divider coefficient */ + area[13] = (freq >> 1) + 2400L; + area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF); + + /* Other parts of the area are flags, bit streams or unused. */ + + /* Set the value in the DAC. */ + dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80); + dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF); + + /* Write the first area. */ + fee_write(ioaddr, 0x00, area, 16); + + /* Write the DAC. */ + fee_write(ioaddr, 0x60, dac, 2); + + /* We now should verify here that the writing of the EEPROM went OK. */ + + /* Reread the first area. */ + fee_read(ioaddr, 0x00, area_verify, 16); + + /* Reread the DAC. */ + fee_read(ioaddr, 0x60, dac_verify, 2); + + /* Compare. */ + if (memcmp(area, area_verify, 16 * 2) || + memcmp(dac, dac_verify, 2 * 2)) { +#ifdef DEBUG_IOCTL_ERROR + printk(KERN_INFO + "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n"); +#endif + return -EOPNOTSUPP; + } + + /* We must download the frequency parameters to the + * synthesizers (from the EEPROM - area 1) + * Note: as the EEPROM is automatically decremented, we set the end + * if the area... */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F); + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), + MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD); + + /* Wait until the download is finished. */ + fee_wait(ioaddr, 100, 100); + + /* We must now download the power adjust value (gain) to + * the synthesizers (from the EEPROM - area 7 - DAC). */ + mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61); + mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), + MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD); + + /* Wait for the download to finish. */ + fee_wait(ioaddr, 100, 100); + +#ifdef DEBUG_IOCTL_INFO + /* Verification of what we have done */ + + printk(KERN_DEBUG "WaveLAN EEPROM Area 1: "); + for (i = 0; i < 16; i++) { + printk(" %04X", area_verify[i]); + } + printk("\n"); + + printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n", + dac_verify[0], dac_verify[1]); +#endif + + return 0; + } else + return -EINVAL; /* Bah, never get there... */ +} + +/*------------------------------------------------------------------*/ +/* + * Give the list of available frequencies. + */ +static inline int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */ + iw_freq * list, /* List of frequencies to fill */ + int max) +{ /* Maximum number of frequencies */ + u16 table[10]; /* Authorized frequency table */ + long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */ + int i; /* index in the table */ + int c = 0; /* Channel number */ + + /* Read the frequency table. */ + fee_read(ioaddr, 0x71 /* frequency table */ , table, 10); + + /* Check all frequencies. */ + i = 0; + for (freq = 0; freq < 150; freq++) + /* Look in the table if the frequency is allowed */ + if (table[9 - (freq / 16)] & (1 << (freq % 16))) { + /* Compute approximate channel number */ + while ((((channel_bands[c] >> 1) - 24) < freq) && + (c < NELS(channel_bands))) + c++; + list[i].i = c; /* Set the list index */ + + /* put in the list */ + list[i].m = (((freq + 24) * 5) + 24000L) * 10000; + list[i++].e = 1; + + /* Check number. */ + if (i >= max) + return (i); + } + + return (i); +} + +#ifdef IW_WIRELESS_SPY +/*------------------------------------------------------------------*/ +/* + * Gather wireless spy statistics: for each packet, compare the source + * address with our list, and if they match, get the statistics. + * Sorry, but this function really needs the wireless extensions. + */ +static inline void wl_spy_gather(struct net_device * dev, + u8 * mac, /* MAC address */ + u8 * stats) /* Statistics to gather */ +{ + struct iw_quality wstats; + + wstats.qual = stats[2] & MMR_SGNL_QUAL; + wstats.level = stats[0] & MMR_SIGNAL_LVL; + wstats.noise = stats[1] & MMR_SILENCE_LVL; + wstats.updated = 0x7; + + /* Update spy records */ + wireless_spy_update(dev, mac, &wstats); +} +#endif /* IW_WIRELESS_SPY */ + +#ifdef HISTOGRAM +/*------------------------------------------------------------------*/ +/* + * This function calculates a histogram of the signal level. + * As the noise is quite constant, it's like doing it on the SNR. + * We have defined a set of interval (lp->his_range), and each time + * the level goes in that interval, we increment the count (lp->his_sum). + * With this histogram you may detect if one WaveLAN is really weak, + * or you may also calculate the mean and standard deviation of the level. + */ +static inline void wl_his_gather(struct net_device * dev, u8 * stats) +{ /* Statistics to gather */ + net_local *lp = (net_local *) dev->priv; + u8 level = stats[0] & MMR_SIGNAL_LVL; + int i; + + /* Find the correct interval. */ + i = 0; + while ((i < (lp->his_number - 1)) + && (level >= lp->his_range[i++])); + + /* Increment interval counter. */ + (lp->his_sum[i])++; +} +#endif /* HISTOGRAM */ + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : get protocol name + */ +static int wavelan_get_name(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + strcpy(wrqu->name, "WaveLAN"); + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : set NWID + */ +static int wavelan_set_nwid(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + mm_t m; + unsigned long flags; + int ret = 0; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Set NWID in WaveLAN. */ + if (!wrqu->nwid.disabled) { + /* Set NWID in psa */ + psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8; + psa.psa_nwid[1] = wrqu->nwid.value & 0xFF; + psa.psa_nwid_select = 0x01; + psa_write(ioaddr, lp->hacr, + (char *) psa.psa_nwid - (char *) &psa, + (unsigned char *) psa.psa_nwid, 3); + + /* Set NWID in mmc. */ + m.w.mmw_netw_id_l = psa.psa_nwid[1]; + m.w.mmw_netw_id_h = psa.psa_nwid[0]; + mmc_write(ioaddr, + (char *) &m.w.mmw_netw_id_l - + (char *) &m, + (unsigned char *) &m.w.mmw_netw_id_l, 2); + mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00); + } else { + /* Disable NWID in the psa. */ + psa.psa_nwid_select = 0x00; + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_nwid_select - + (char *) &psa, + (unsigned char *) &psa.psa_nwid_select, + 1); + + /* Disable NWID in the mmc (no filtering). */ + mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), + MMW_LOOPT_SEL_DIS_NWID); + } + /* update the Wavelan checksum */ + update_psa_checksum(dev, ioaddr, lp->hacr); + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : get NWID + */ +static int wavelan_get_nwid(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + unsigned long flags; + int ret = 0; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Read the NWID. */ + psa_read(ioaddr, lp->hacr, + (char *) psa.psa_nwid - (char *) &psa, + (unsigned char *) psa.psa_nwid, 3); + wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1]; + wrqu->nwid.disabled = !(psa.psa_nwid_select); + wrqu->nwid.fixed = 1; /* Superfluous */ + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : set frequency + */ +static int wavelan_set_freq(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + unsigned long flags; + int ret; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */ + if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & + (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) + ret = wv_set_frequency(ioaddr, &(wrqu->freq)); + else + ret = -EOPNOTSUPP; + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : get frequency + */ +static int wavelan_get_freq(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + unsigned long flags; + int ret = 0; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). + * Does it work for everybody, especially old cards? */ + if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & + (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { + unsigned short freq; + + /* Ask the EEPROM to read the frequency from the first area. */ + fee_read(ioaddr, 0x00, &freq, 1); + wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000; + wrqu->freq.e = 1; + } else { + psa_read(ioaddr, lp->hacr, + (char *) &psa.psa_subband - (char *) &psa, + (unsigned char *) &psa.psa_subband, 1); + + if (psa.psa_subband <= 4) { + wrqu->freq.m = fixed_bands[psa.psa_subband]; + wrqu->freq.e = (psa.psa_subband != 0); + } else + ret = -EOPNOTSUPP; + } + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : set level threshold + */ +static int wavelan_set_sens(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + unsigned long flags; + int ret = 0; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Set the level threshold. */ + /* We should complain loudly if wrqu->sens.fixed = 0, because we + * can't set auto mode... */ + psa.psa_thr_pre_set = wrqu->sens.value & 0x3F; + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_thr_pre_set - (char *) &psa, + (unsigned char *) &psa.psa_thr_pre_set, 1); + /* update the Wavelan checksum */ + update_psa_checksum(dev, ioaddr, lp->hacr); + mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set), + psa.psa_thr_pre_set); + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : get level threshold + */ +static int wavelan_get_sens(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + unsigned long flags; + int ret = 0; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Read the level threshold. */ + psa_read(ioaddr, lp->hacr, + (char *) &psa.psa_thr_pre_set - (char *) &psa, + (unsigned char *) &psa.psa_thr_pre_set, 1); + wrqu->sens.value = psa.psa_thr_pre_set & 0x3F; + wrqu->sens.fixed = 1; + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : set encryption key + */ +static int wavelan_set_encode(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + unsigned long flags; + psa_t psa; + int ret = 0; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Check if capable of encryption */ + if (!mmc_encr(ioaddr)) { + ret = -EOPNOTSUPP; + } + + /* Check the size of the key */ + if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) { + ret = -EINVAL; + } + + if(!ret) { + /* Basic checking... */ + if (wrqu->encoding.length == 8) { + /* Copy the key in the driver */ + memcpy(psa.psa_encryption_key, extra, + wrqu->encoding.length); + psa.psa_encryption_select = 1; + + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_encryption_select - + (char *) &psa, + (unsigned char *) &psa. + psa_encryption_select, 8 + 1); + + mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), + MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE); + mmc_write(ioaddr, mmwoff(0, mmw_encr_key), + (unsigned char *) &psa. + psa_encryption_key, 8); + } + + /* disable encryption */ + if (wrqu->encoding.flags & IW_ENCODE_DISABLED) { + psa.psa_encryption_select = 0; + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_encryption_select - + (char *) &psa, + (unsigned char *) &psa. + psa_encryption_select, 1); + + mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0); + } + /* update the Wavelan checksum */ + update_psa_checksum(dev, ioaddr, lp->hacr); + } + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : get encryption key + */ +static int wavelan_get_encode(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + unsigned long flags; + int ret = 0; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Check if encryption is available */ + if (!mmc_encr(ioaddr)) { + ret = -EOPNOTSUPP; + } else { + /* Read the encryption key */ + psa_read(ioaddr, lp->hacr, + (char *) &psa.psa_encryption_select - + (char *) &psa, + (unsigned char *) &psa. + psa_encryption_select, 1 + 8); + + /* encryption is enabled ? */ + if (psa.psa_encryption_select) + wrqu->encoding.flags = IW_ENCODE_ENABLED; + else + wrqu->encoding.flags = IW_ENCODE_DISABLED; + wrqu->encoding.flags |= mmc_encr(ioaddr); + + /* Copy the key to the user buffer */ + wrqu->encoding.length = 8; + memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length); + } + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Handler : get range info + */ +static int wavelan_get_range(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + struct iw_range *range = (struct iw_range *) extra; + unsigned long flags; + int ret = 0; + + /* Set the length (very important for backward compatibility) */ + wrqu->data.length = sizeof(struct iw_range); + + /* Set all the info we don't care or don't know about to zero */ + memset(range, 0, sizeof(struct iw_range)); + + /* Set the Wireless Extension versions */ + range->we_version_compiled = WIRELESS_EXT; + range->we_version_source = 9; + + /* Set information in the range struct. */ + range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */ + range->min_nwid = 0x0000; + range->max_nwid = 0xFFFF; + + range->sensitivity = 0x3F; + range->max_qual.qual = MMR_SGNL_QUAL; + range->max_qual.level = MMR_SIGNAL_LVL; + range->max_qual.noise = MMR_SILENCE_LVL; + range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */ + /* Need to get better values for those two */ + range->avg_qual.level = 30; + range->avg_qual.noise = 8; + + range->num_bitrates = 1; + range->bitrate[0] = 2000000; /* 2 Mb/s */ + + /* Event capability (kernel + driver) */ + range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) | + IW_EVENT_CAPA_MASK(0x8B04)); + range->event_capa[1] = IW_EVENT_CAPA_K_1; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */ + if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & + (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { + range->num_channels = 10; + range->num_frequency = wv_frequency_list(ioaddr, range->freq, + IW_MAX_FREQUENCIES); + } else + range->num_channels = range->num_frequency = 0; + + /* Encryption supported ? */ + if (mmc_encr(ioaddr)) { + range->encoding_size[0] = 8; /* DES = 64 bits key */ + range->num_encoding_sizes = 1; + range->max_encoding_tokens = 1; /* Only one key possible */ + } else { + range->num_encoding_sizes = 0; + range->max_encoding_tokens = 0; + } + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Private Handler : set quality threshold + */ +static int wavelan_set_qthr(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + unsigned long flags; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + psa.psa_quality_thr = *(extra) & 0x0F; + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_quality_thr - (char *) &psa, + (unsigned char *) &psa.psa_quality_thr, 1); + /* update the Wavelan checksum */ + update_psa_checksum(dev, ioaddr, lp->hacr); + mmc_out(ioaddr, mmwoff(0, mmw_quality_thr), + psa.psa_quality_thr); + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Private Handler : get quality threshold + */ +static int wavelan_get_qthr(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + psa_t psa; + unsigned long flags; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + psa_read(ioaddr, lp->hacr, + (char *) &psa.psa_quality_thr - (char *) &psa, + (unsigned char *) &psa.psa_quality_thr, 1); + *(extra) = psa.psa_quality_thr & 0x0F; + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + + return 0; +} + +#ifdef HISTOGRAM +/*------------------------------------------------------------------*/ +/* + * Wireless Private Handler : set histogram + */ +static int wavelan_set_histo(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + + /* Check the number of intervals. */ + if (wrqu->data.length > 16) { + return(-E2BIG); + } + + /* Disable histo while we copy the addresses. + * As we don't disable interrupts, we need to do this */ + lp->his_number = 0; + + /* Are there ranges to copy? */ + if (wrqu->data.length > 0) { + /* Copy interval ranges to the driver */ + memcpy(lp->his_range, extra, wrqu->data.length); + + { + int i; + printk(KERN_DEBUG "Histo :"); + for(i = 0; i < wrqu->data.length; i++) + printk(" %d", lp->his_range[i]); + printk("\n"); + } + + /* Reset result structure. */ + memset(lp->his_sum, 0x00, sizeof(long) * 16); + } + + /* Now we can set the number of ranges */ + lp->his_number = wrqu->data.length; + + return(0); +} + +/*------------------------------------------------------------------*/ +/* + * Wireless Private Handler : get histogram + */ +static int wavelan_get_histo(struct net_device *dev, + struct iw_request_info *info, + union iwreq_data *wrqu, + char *extra) +{ + net_local *lp = (net_local *) dev->priv; /* lp is not unused */ + + /* Set the number of intervals. */ + wrqu->data.length = lp->his_number; + + /* Give back the distribution statistics */ + if(lp->his_number > 0) + memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number); + + return(0); +} +#endif /* HISTOGRAM */ + +/*------------------------------------------------------------------*/ +/* + * Structures to export the Wireless Handlers + */ + +static const iw_handler wavelan_handler[] = +{ + NULL, /* SIOCSIWNAME */ + wavelan_get_name, /* SIOCGIWNAME */ + wavelan_set_nwid, /* SIOCSIWNWID */ + wavelan_get_nwid, /* SIOCGIWNWID */ + wavelan_set_freq, /* SIOCSIWFREQ */ + wavelan_get_freq, /* SIOCGIWFREQ */ + NULL, /* SIOCSIWMODE */ + NULL, /* SIOCGIWMODE */ + wavelan_set_sens, /* SIOCSIWSENS */ + wavelan_get_sens, /* SIOCGIWSENS */ + NULL, /* SIOCSIWRANGE */ + wavelan_get_range, /* SIOCGIWRANGE */ + NULL, /* SIOCSIWPRIV */ + NULL, /* SIOCGIWPRIV */ + NULL, /* SIOCSIWSTATS */ + NULL, /* SIOCGIWSTATS */ + iw_handler_set_spy, /* SIOCSIWSPY */ + iw_handler_get_spy, /* SIOCGIWSPY */ + iw_handler_set_thrspy, /* SIOCSIWTHRSPY */ + iw_handler_get_thrspy, /* SIOCGIWTHRSPY */ + NULL, /* SIOCSIWAP */ + NULL, /* SIOCGIWAP */ + NULL, /* -- hole -- */ + NULL, /* SIOCGIWAPLIST */ + NULL, /* -- hole -- */ + NULL, /* -- hole -- */ + NULL, /* SIOCSIWESSID */ + NULL, /* SIOCGIWESSID */ + NULL, /* SIOCSIWNICKN */ + NULL, /* SIOCGIWNICKN */ + NULL, /* -- hole -- */ + NULL, /* -- hole -- */ + NULL, /* SIOCSIWRATE */ + NULL, /* SIOCGIWRATE */ + NULL, /* SIOCSIWRTS */ + NULL, /* SIOCGIWRTS */ + NULL, /* SIOCSIWFRAG */ + NULL, /* SIOCGIWFRAG */ + NULL, /* SIOCSIWTXPOW */ + NULL, /* SIOCGIWTXPOW */ + NULL, /* SIOCSIWRETRY */ + NULL, /* SIOCGIWRETRY */ + /* Bummer ! Why those are only at the end ??? */ + wavelan_set_encode, /* SIOCSIWENCODE */ + wavelan_get_encode, /* SIOCGIWENCODE */ +}; + +static const iw_handler wavelan_private_handler[] = +{ + wavelan_set_qthr, /* SIOCIWFIRSTPRIV */ + wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */ +#ifdef HISTOGRAM + wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */ + wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */ +#endif /* HISTOGRAM */ +}; + +static const struct iw_priv_args wavelan_private_args[] = { +/*{ cmd, set_args, get_args, name } */ + { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" }, + { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" }, + { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" }, + { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" }, +}; + +static const struct iw_handler_def wavelan_handler_def = +{ + .num_standard = sizeof(wavelan_handler)/sizeof(iw_handler), + .num_private = sizeof(wavelan_private_handler)/sizeof(iw_handler), + .num_private_args = sizeof(wavelan_private_args)/sizeof(struct iw_priv_args), + .standard = wavelan_handler, + .private = wavelan_private_handler, + .private_args = wavelan_private_args, + .get_wireless_stats = wavelan_get_wireless_stats, +}; + +/*------------------------------------------------------------------*/ +/* + * Get wireless statistics. + * Called by /proc/net/wireless + */ +static iw_stats *wavelan_get_wireless_stats(struct net_device * dev) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; + mmr_t m; + iw_stats *wstats; + unsigned long flags; + +#ifdef DEBUG_IOCTL_TRACE + printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n", + dev->name); +#endif + + /* Check */ + if (lp == (net_local *) NULL) + return (iw_stats *) NULL; + + /* Disable interrupts and save flags. */ + spin_lock_irqsave(&lp->spinlock, flags); + + wstats = &lp->wstats; + + /* Get data from the mmc. */ + mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); + + mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1); + mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l, + 2); + mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set, + 4); + + mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); + + /* Copy data to wireless stuff. */ + wstats->status = m.mmr_dce_status & MMR_DCE_STATUS; + wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL; + wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL; + wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL; + wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) + | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) + | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5)); + wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l; + wstats->discard.code = 0L; + wstats->discard.misc = 0L; + + /* Enable interrupts and restore flags. */ + spin_unlock_irqrestore(&lp->spinlock, flags); + +#ifdef DEBUG_IOCTL_TRACE + printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n", + dev->name); +#endif + return &lp->wstats; +} +#endif /* WIRELESS_EXT */ + +/************************* PACKET RECEPTION *************************/ +/* + * This part deals with receiving the packets. + * The interrupt handler gets an interrupt when a packet has been + * successfully received and calls this part. + */ + +/*------------------------------------------------------------------*/ +/* + * This routine does the actual copying of data (including the Ethernet + * header structure) from the WaveLAN card to an sk_buff chain that + * will be passed up to the network interface layer. NOTE: we + * currently don't handle trailer protocols (neither does the rest of + * the network interface), so if that is needed, it will (at least in + * part) be added here. The contents of the receive ring buffer are + * copied to a message chain that is then passed to the kernel. + * + * Note: if any errors occur, the packet is "dropped on the floor". + * (called by wv_packet_rcv()) + */ +static inline void +wv_packet_read(struct net_device * dev, u16 buf_off, int sksize) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + struct sk_buff *skb; + +#ifdef DEBUG_RX_TRACE + printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n", + dev->name, buf_off, sksize); +#endif + + /* Allocate buffer for the data */ + if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) { +#ifdef DEBUG_RX_ERROR + printk(KERN_INFO + "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n", + dev->name, sksize); +#endif + lp->stats.rx_dropped++; + return; + } + + skb->dev = dev; + + /* Copy the packet to the buffer. */ + obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize); + skb->protocol = eth_type_trans(skb, dev); + +#ifdef DEBUG_RX_INFO + wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read"); +#endif /* DEBUG_RX_INFO */ + + /* Statistics-gathering and associated stuff. + * It seem a bit messy with all the define, but it's really + * simple... */ + if ( +#ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */ + (lp->spy_data.spy_number > 0) || +#endif /* IW_WIRELESS_SPY */ +#ifdef HISTOGRAM + (lp->his_number > 0) || +#endif /* HISTOGRAM */ + 0) { + u8 stats[3]; /* signal level, noise level, signal quality */ + + /* Read signal level, silence level and signal quality bytes */ + /* Note: in the PCMCIA hardware, these are part of the frame. + * It seems that for the ISA hardware, it's nowhere to be + * found in the frame, so I'm obliged to do this (it has a + * side effect on /proc/net/wireless). + * Any ideas? + */ + mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); + mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3); + mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); + +#ifdef DEBUG_RX_INFO + printk(KERN_DEBUG + "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n", + dev->name, stats[0] & 0x3F, stats[1] & 0x3F, + stats[2] & 0x0F); +#endif + + /* Spying stuff */ +#ifdef IW_WIRELESS_SPY + wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE, + stats); +#endif /* IW_WIRELESS_SPY */ +#ifdef HISTOGRAM + wl_his_gather(dev, stats); +#endif /* HISTOGRAM */ + } + + /* + * Hand the packet to the network module. + */ + netif_rx(skb); + + /* Keep statistics up to date */ + dev->last_rx = jiffies; + lp->stats.rx_packets++; + lp->stats.rx_bytes += sksize; + +#ifdef DEBUG_RX_TRACE + printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name); +#endif +} + +/*------------------------------------------------------------------*/ +/* + * Transfer as many packets as we can + * from the device RAM. + * (called in wavelan_interrupt()). + * Note : the spinlock is already grabbed for us. + */ +static inline void wv_receive(struct net_device * dev) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; + fd_t fd; + rbd_t rbd; + int nreaped = 0; + +#ifdef DEBUG_RX_TRACE + printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name); +#endif + + /* Loop on each received packet. */ + for (;;) { + obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd, + sizeof(fd)); + + /* Note about the status : + * It start up to be 0 (the value we set). Then, when the RU + * grab the buffer to prepare for reception, it sets the + * FD_STATUS_B flag. When the RU has finished receiving the + * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate + * completion and set the other flags to indicate the eventual + * errors. FD_STATUS_OK indicates that the reception was OK. + */ + + /* If the current frame is not complete, we have reached the end. */ + if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C) + break; /* This is how we exit the loop. */ + + nreaped++; + + /* Check whether frame was correctly received. */ + if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) { + /* Does the frame contain a pointer to the data? Let's check. */ + if (fd.fd_rbd_offset != I82586NULL) { + /* Read the receive buffer descriptor */ + obram_read(ioaddr, fd.fd_rbd_offset, + (unsigned char *) &rbd, + sizeof(rbd)); + +#ifdef DEBUG_RX_ERROR + if ((rbd.rbd_status & RBD_STATUS_EOF) != + RBD_STATUS_EOF) printk(KERN_INFO + "%s: wv_receive(): missing EOF flag.\n", + dev->name); + + if ((rbd.rbd_status & RBD_STATUS_F) != + RBD_STATUS_F) printk(KERN_INFO + "%s: wv_receive(): missing F flag.\n", + dev->name); +#endif /* DEBUG_RX_ERROR */ + + /* Read the packet and transmit to Linux */ + wv_packet_read(dev, rbd.rbd_bufl, + rbd. + rbd_status & + RBD_STATUS_ACNT); + } +#ifdef DEBUG_RX_ERROR + else /* if frame has no data */ + printk(KERN_INFO + "%s: wv_receive(): frame has no data.\n", + dev->name); +#endif + } else { /* If reception was no successful */ + + lp->stats.rx_errors++; + +#ifdef DEBUG_RX_INFO + printk(KERN_DEBUG + "%s: wv_receive(): frame not received successfully (%X).\n", + dev->name, fd.fd_status); +#endif + +#ifdef DEBUG_RX_ERROR + if ((fd.fd_status & FD_STATUS_S6) != 0) + printk(KERN_INFO + "%s: wv_receive(): no EOF flag.\n", + dev->name); +#endif + + if ((fd.fd_status & FD_STATUS_S7) != 0) { + lp->stats.rx_length_errors++; +#ifdef DEBUG_RX_FAIL + printk(KERN_DEBUG + "%s: wv_receive(): frame too short.\n", + dev->name); +#endif + } + + if ((fd.fd_status & FD_STATUS_S8) != 0) { + lp->stats.rx_over_errors++; +#ifdef DEBUG_RX_FAIL + printk(KERN_DEBUG + "%s: wv_receive(): rx DMA overrun.\n", + dev->name); +#endif + } + + if ((fd.fd_status & FD_STATUS_S9) != 0) { + lp->stats.rx_fifo_errors++; +#ifdef DEBUG_RX_FAIL + printk(KERN_DEBUG + "%s: wv_receive(): ran out of resources.\n", + dev->name); +#endif + } + + if ((fd.fd_status & FD_STATUS_S10) != 0) { + lp->stats.rx_frame_errors++; +#ifdef DEBUG_RX_FAIL + printk(KERN_DEBUG + "%s: wv_receive(): alignment error.\n", + dev->name); +#endif + } + + if ((fd.fd_status & FD_STATUS_S11) != 0) { + lp->stats.rx_crc_errors++; +#ifdef DEBUG_RX_FAIL + printk(KERN_DEBUG + "%s: wv_receive(): CRC error.\n", + dev->name); +#endif + } + } + + fd.fd_status = 0; + obram_write(ioaddr, fdoff(lp->rx_head, fd_status), + (unsigned char *) &fd.fd_status, + sizeof(fd.fd_status)); + + fd.fd_command = FD_COMMAND_EL; + obram_write(ioaddr, fdoff(lp->rx_head, fd_command), + (unsigned char *) &fd.fd_command, + sizeof(fd.fd_command)); + + fd.fd_command = 0; + obram_write(ioaddr, fdoff(lp->rx_last, fd_command), + (unsigned char *) &fd.fd_command, + sizeof(fd.fd_command)); + + lp->rx_last = lp->rx_head; + lp->rx_head = fd.fd_link_offset; + } /* for(;;) -> loop on all frames */ + +#ifdef DEBUG_RX_INFO + if (nreaped > 1) + printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n", + dev->name, nreaped); +#endif +#ifdef DEBUG_RX_TRACE + printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name); +#endif +} + +/*********************** PACKET TRANSMISSION ***********************/ +/* + * This part deals with sending packets through the WaveLAN. + * + */ + +/*------------------------------------------------------------------*/ +/* + * This routine fills in the appropriate registers and memory + * locations on the WaveLAN card and starts the card off on + * the transmit. + * + * The principle: + * Each block contains a transmit command, a NOP command, + * a transmit block descriptor and a buffer. + * The CU read the transmit block which point to the tbd, + * read the tbd and the content of the buffer. + * When it has finish with it, it goes to the next command + * which in our case is the NOP. The NOP points on itself, + * so the CU stop here. + * When we add the next block, we modify the previous nop + * to make it point on the new tx command. + * Simple, isn't it ? + * + * (called in wavelan_packet_xmit()) + */ +static inline int wv_packet_write(struct net_device * dev, void *buf, short length) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + unsigned short txblock; + unsigned short txpred; + unsigned short tx_addr; + unsigned short nop_addr; + unsigned short tbd_addr; + unsigned short buf_addr; + ac_tx_t tx; + ac_nop_t nop; + tbd_t tbd; + int clen = length; + unsigned long flags; + +#ifdef DEBUG_TX_TRACE + printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name, + length); +#endif + + spin_lock_irqsave(&lp->spinlock, flags); + + /* Check nothing bad has happened */ + if (lp->tx_n_in_use == (NTXBLOCKS - 1)) { +#ifdef DEBUG_TX_ERROR + printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n", + dev->name); +#endif + spin_unlock_irqrestore(&lp->spinlock, flags); + return 1; + } + + /* Calculate addresses of next block and previous block. */ + txblock = lp->tx_first_free; + txpred = txblock - TXBLOCKZ; + if (txpred < OFFSET_CU) + txpred += NTXBLOCKS * TXBLOCKZ; + lp->tx_first_free += TXBLOCKZ; + if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) + lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ; + + lp->tx_n_in_use++; + + /* Calculate addresses of the different parts of the block. */ + tx_addr = txblock; + nop_addr = tx_addr + sizeof(tx); + tbd_addr = nop_addr + sizeof(nop); + buf_addr = tbd_addr + sizeof(tbd); + + /* + * Transmit command + */ + tx.tx_h.ac_status = 0; + obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status), + (unsigned char *) &tx.tx_h.ac_status, + sizeof(tx.tx_h.ac_status)); + + /* + * NOP command + */ + nop.nop_h.ac_status = 0; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), + (unsigned char *) &nop.nop_h.ac_status, + sizeof(nop.nop_h.ac_status)); + nop.nop_h.ac_link = nop_addr; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), + (unsigned char *) &nop.nop_h.ac_link, + sizeof(nop.nop_h.ac_link)); + + /* + * Transmit buffer descriptor + */ + tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen); + tbd.tbd_next_bd_offset = I82586NULL; + tbd.tbd_bufl = buf_addr; + tbd.tbd_bufh = 0; + obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd)); + + /* + * Data + */ + obram_write(ioaddr, buf_addr, buf, length); + + /* + * Overwrite the predecessor NOP link + * so that it points to this txblock. + */ + nop_addr = txpred + sizeof(tx); + nop.nop_h.ac_status = 0; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), + (unsigned char *) &nop.nop_h.ac_status, + sizeof(nop.nop_h.ac_status)); + nop.nop_h.ac_link = txblock; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), + (unsigned char *) &nop.nop_h.ac_link, + sizeof(nop.nop_h.ac_link)); + + /* Make sure the watchdog will keep quiet for a while */ + dev->trans_start = jiffies; + + /* Keep stats up to date. */ + lp->stats.tx_bytes += length; + + if (lp->tx_first_in_use == I82586NULL) + lp->tx_first_in_use = txblock; + + if (lp->tx_n_in_use < NTXBLOCKS - 1) + netif_wake_queue(dev); + + spin_unlock_irqrestore(&lp->spinlock, flags); + +#ifdef DEBUG_TX_INFO + wv_packet_info((u8 *) buf, length, dev->name, + "wv_packet_write"); +#endif /* DEBUG_TX_INFO */ + +#ifdef DEBUG_TX_TRACE + printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name); +#endif + + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * This routine is called when we want to send a packet (NET3 callback) + * In this routine, we check if the harware is ready to accept + * the packet. We also prevent reentrance. Then we call the function + * to send the packet. + */ +static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long flags; + +#ifdef DEBUG_TX_TRACE + printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name, + (unsigned) skb); +#endif + + /* + * Block a timer-based transmit from overlapping. + * In other words, prevent reentering this routine. + */ + netif_stop_queue(dev); + + /* If somebody has asked to reconfigure the controller, + * we can do it now. + */ + if (lp->reconfig_82586) { + spin_lock_irqsave(&lp->spinlock, flags); + wv_82586_config(dev); + spin_unlock_irqrestore(&lp->spinlock, flags); + /* Check that we can continue */ + if (lp->tx_n_in_use == (NTXBLOCKS - 1)) + return 1; + } +#ifdef DEBUG_TX_ERROR + if (skb->next) + printk(KERN_INFO "skb has next\n"); +#endif + + /* Do we need some padding? */ + /* Note : on wireless the propagation time is in the order of 1us, + * and we don't have the Ethernet specific requirement of beeing + * able to detect collisions, therefore in theory we don't really + * need to pad. Jean II */ + if (skb->len < ETH_ZLEN) { + skb = skb_padto(skb, ETH_ZLEN); + if (skb == NULL) + return 0; + } + + /* Write packet on the card */ + if(wv_packet_write(dev, skb->data, skb->len)) + return 1; /* We failed */ + + dev_kfree_skb(skb); + +#ifdef DEBUG_TX_TRACE + printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name); +#endif + return 0; +} + +/*********************** HARDWARE CONFIGURATION ***********************/ +/* + * This part does the real job of starting and configuring the hardware. + */ + +/*--------------------------------------------------------------------*/ +/* + * Routine to initialize the Modem Management Controller. + * (called by wv_hw_reset()) + */ +static inline int wv_mmc_init(struct net_device * dev) +{ + unsigned long ioaddr = dev->base_addr; + net_local *lp = (net_local *) dev->priv; + psa_t psa; + mmw_t m; + int configured; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name); +#endif + + /* Read the parameter storage area. */ + psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa)); + +#ifdef USE_PSA_CONFIG + configured = psa.psa_conf_status & 1; +#else + configured = 0; +#endif + + /* Is the PSA is not configured */ + if (!configured) { + /* User will be able to configure NWID later (with iwconfig). */ + psa.psa_nwid[0] = 0; + psa.psa_nwid[1] = 0; + + /* no NWID checking since NWID is not set */ + psa.psa_nwid_select = 0; + + /* Disable encryption */ + psa.psa_encryption_select = 0; + + /* Set to standard values: + * 0x04 for AT, + * 0x01 for MCA, + * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document) + */ + if (psa.psa_comp_number & 1) + psa.psa_thr_pre_set = 0x01; + else + psa.psa_thr_pre_set = 0x04; + psa.psa_quality_thr = 0x03; + + /* It is configured */ + psa.psa_conf_status |= 1; + +#ifdef USE_PSA_CONFIG + /* Write the psa. */ + psa_write(ioaddr, lp->hacr, + (char *) psa.psa_nwid - (char *) &psa, + (unsigned char *) psa.psa_nwid, 4); + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_thr_pre_set - (char *) &psa, + (unsigned char *) &psa.psa_thr_pre_set, 1); + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_quality_thr - (char *) &psa, + (unsigned char *) &psa.psa_quality_thr, 1); + psa_write(ioaddr, lp->hacr, + (char *) &psa.psa_conf_status - (char *) &psa, + (unsigned char *) &psa.psa_conf_status, 1); + /* update the Wavelan checksum */ + update_psa_checksum(dev, ioaddr, lp->hacr); +#endif + } + + /* Zero the mmc structure. */ + memset(&m, 0x00, sizeof(m)); + + /* Copy PSA info to the mmc. */ + m.mmw_netw_id_l = psa.psa_nwid[1]; + m.mmw_netw_id_h = psa.psa_nwid[0]; + + if (psa.psa_nwid_select & 1) + m.mmw_loopt_sel = 0x00; + else + m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID; + + memcpy(&m.mmw_encr_key, &psa.psa_encryption_key, + sizeof(m.mmw_encr_key)); + + if (psa.psa_encryption_select) + m.mmw_encr_enable = + MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE; + else + m.mmw_encr_enable = 0; + + m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F; + m.mmw_quality_thr = psa.psa_quality_thr & 0x0F; + + /* + * Set default modem control parameters. + * See NCR document 407-0024326 Rev. A. + */ + m.mmw_jabber_enable = 0x01; + m.mmw_freeze = 0; + m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN; + m.mmw_ifs = 0x20; + m.mmw_mod_delay = 0x04; + m.mmw_jam_time = 0x38; + + m.mmw_des_io_invert = 0; + m.mmw_decay_prm = 0; + m.mmw_decay_updat_prm = 0; + + /* Write all info to MMC. */ + mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m)); + + /* The following code starts the modem of the 2.00 frequency + * selectable cards at power on. It's not strictly needed for the + * following boots. + * The original patch was by Joe Finney for the PCMCIA driver, but + * I've cleaned it up a bit and added documentation. + * Thanks to Loeke Brederveld from Lucent for the info. + */ + + /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable) + * Does it work for everybody, especially old cards? */ + /* Note: WFREQSEL verifies that it is able to read a sensible + * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID + * is 0xA (Xilinx version) or 0xB (Ariadne version). + * My test is more crude but does work. */ + if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & + (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { + /* We must download the frequency parameters to the + * synthesizers (from the EEPROM - area 1) + * Note: as the EEPROM is automatically decremented, we set the end + * if the area... */ + m.mmw_fee_addr = 0x0F; + m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD; + mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m, + (unsigned char *) &m.mmw_fee_ctrl, 2); + + /* Wait until the download is finished. */ + fee_wait(ioaddr, 100, 100); + +#ifdef DEBUG_CONFIG_INFO + /* The frequency was in the last word downloaded. */ + mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m, + (unsigned char *) &m.mmw_fee_data_l, 2); + + /* Print some info for the user. */ + printk(KERN_DEBUG + "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n", + dev->name, + ((m. + mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) * + 5 / 2 + 24000L); +#endif + + /* We must now download the power adjust value (gain) to + * the synthesizers (from the EEPROM - area 7 - DAC). */ + m.mmw_fee_addr = 0x61; + m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD; + mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m, + (unsigned char *) &m.mmw_fee_ctrl, 2); + + /* Wait until the download is finished. */ + } + /* if 2.00 card */ +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name); +#endif + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Construct the fd and rbd structures. + * Start the receive unit. + * (called by wv_hw_reset()) + */ +static inline int wv_ru_start(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + u16 scb_cs; + fd_t fd; + rbd_t rbd; + u16 rx; + u16 rx_next; + int i; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name); +#endif + + obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY) + return 0; + + lp->rx_head = OFFSET_RU; + + for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) { + rx_next = + (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ; + + fd.fd_status = 0; + fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0; + fd.fd_link_offset = rx_next; + fd.fd_rbd_offset = rx + sizeof(fd); + obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd)); + + rbd.rbd_status = 0; + rbd.rbd_next_rbd_offset = I82586NULL; + rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd); + rbd.rbd_bufh = 0; + rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ); + obram_write(ioaddr, rx + sizeof(fd), + (unsigned char *) &rbd, sizeof(rbd)); + + lp->rx_last = rx; + } + + obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset), + (unsigned char *) &lp->rx_head, sizeof(lp->rx_head)); + + scb_cs = SCB_CMD_RUC_GO; + obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + + set_chan_attn(ioaddr, lp->hacr); + + for (i = 1000; i > 0; i--) { + obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + if (scb_cs == 0) + break; + + udelay(10); + } + + if (i <= 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO + "%s: wavelan_ru_start(): board not accepting command.\n", + dev->name); +#endif + return -1; + } +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name); +#endif + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Initialise the transmit blocks. + * Start the command unit executing the NOP + * self-loop of the first transmit block. + * + * Here we create the list of send buffers used to transmit packets + * between the PC and the command unit. For each buffer, we create a + * buffer descriptor (pointing on the buffer), a transmit command + * (pointing to the buffer descriptor) and a NOP command. + * The transmit command is linked to the NOP, and the NOP to itself. + * When we will have finished executing the transmit command, we will + * then loop on the NOP. By releasing the NOP link to a new command, + * we may send another buffer. + * + * (called by wv_hw_reset()) + */ +static inline int wv_cu_start(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + int i; + u16 txblock; + u16 first_nop; + u16 scb_cs; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name); +#endif + + lp->tx_first_free = OFFSET_CU; + lp->tx_first_in_use = I82586NULL; + + for (i = 0, txblock = OFFSET_CU; + i < NTXBLOCKS; i++, txblock += TXBLOCKZ) { + ac_tx_t tx; + ac_nop_t nop; + tbd_t tbd; + unsigned short tx_addr; + unsigned short nop_addr; + unsigned short tbd_addr; + unsigned short buf_addr; + + tx_addr = txblock; + nop_addr = tx_addr + sizeof(tx); + tbd_addr = nop_addr + sizeof(nop); + buf_addr = tbd_addr + sizeof(tbd); + + tx.tx_h.ac_status = 0; + tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I; + tx.tx_h.ac_link = nop_addr; + tx.tx_tbd_offset = tbd_addr; + obram_write(ioaddr, tx_addr, (unsigned char *) &tx, + sizeof(tx)); + + nop.nop_h.ac_status = 0; + nop.nop_h.ac_command = acmd_nop; + nop.nop_h.ac_link = nop_addr; + obram_write(ioaddr, nop_addr, (unsigned char *) &nop, + sizeof(nop)); + + tbd.tbd_status = TBD_STATUS_EOF; + tbd.tbd_next_bd_offset = I82586NULL; + tbd.tbd_bufl = buf_addr; + tbd.tbd_bufh = 0; + obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, + sizeof(tbd)); + } + + first_nop = + OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t); + obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset), + (unsigned char *) &first_nop, sizeof(first_nop)); + + scb_cs = SCB_CMD_CUC_GO; + obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + + set_chan_attn(ioaddr, lp->hacr); + + for (i = 1000; i > 0; i--) { + obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cs, sizeof(scb_cs)); + if (scb_cs == 0) + break; + + udelay(10); + } + + if (i <= 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO + "%s: wavelan_cu_start(): board not accepting command.\n", + dev->name); +#endif + return -1; + } + + lp->tx_n_in_use = 0; + netif_start_queue(dev); +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name); +#endif + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * This routine does a standard configuration of the WaveLAN + * controller (i82586). + * + * It initialises the scp, iscp and scb structure + * The first two are just pointers to the next. + * The last one is used for basic configuration and for basic + * communication (interrupt status). + * + * (called by wv_hw_reset()) + */ +static inline int wv_82586_start(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + scp_t scp; /* system configuration pointer */ + iscp_t iscp; /* intermediate scp */ + scb_t scb; /* system control block */ + ach_t cb; /* Action command header */ + u8 zeroes[512]; + int i; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name); +#endif + + /* + * Clear the onboard RAM. + */ + memset(&zeroes[0], 0x00, sizeof(zeroes)); + for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes)) + obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes)); + + /* + * Construct the command unit structures: + * scp, iscp, scb, cb. + */ + memset(&scp, 0x00, sizeof(scp)); + scp.scp_sysbus = SCP_SY_16BBUS; + scp.scp_iscpl = OFFSET_ISCP; + obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp, + sizeof(scp)); + + memset(&iscp, 0x00, sizeof(iscp)); + iscp.iscp_busy = 1; + iscp.iscp_offset = OFFSET_SCB; + obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp, + sizeof(iscp)); + + /* Our first command is to reset the i82586. */ + memset(&scb, 0x00, sizeof(scb)); + scb.scb_command = SCB_CMD_RESET; + scb.scb_cbl_offset = OFFSET_CU; + scb.scb_rfa_offset = OFFSET_RU; + obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb, + sizeof(scb)); + + set_chan_attn(ioaddr, lp->hacr); + + /* Wait for command to finish. */ + for (i = 1000; i > 0; i--) { + obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp, + sizeof(iscp)); + + if (iscp.iscp_busy == (unsigned short) 0) + break; + + udelay(10); + } + + if (i <= 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO + "%s: wv_82586_start(): iscp_busy timeout.\n", + dev->name); +#endif + return -1; + } + + /* Check command completion. */ + for (i = 15; i > 0; i--) { + obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb, + sizeof(scb)); + + if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA)) + break; + + udelay(10); + } + + if (i <= 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO + "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n", + dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status); +#endif + return -1; + } + + wv_ack(dev); + + /* Set the action command header. */ + memset(&cb, 0x00, sizeof(cb)); + cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose); + cb.ac_link = OFFSET_CU; + obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb)); + + if (wv_synchronous_cmd(dev, "diag()") == -1) + return -1; + + obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb)); + if (cb.ac_status & AC_SFLD_FAIL) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO + "%s: wv_82586_start(): i82586 Self Test failed.\n", + dev->name); +#endif + return -1; + } +#ifdef DEBUG_I82586_SHOW + wv_scb_show(ioaddr); +#endif + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name); +#endif + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * This routine does a standard configuration of the WaveLAN + * controller (i82586). + * + * This routine is a violent hack. We use the first free transmit block + * to make our configuration. In the buffer area, we create the three + * configuration commands (linked). We make the previous NOP point to + * the beginning of the buffer instead of the tx command. After, we go + * as usual to the NOP command. + * Note that only the last command (mc_set) will generate an interrupt. + * + * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit()) + */ +static void wv_82586_config(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + unsigned short txblock; + unsigned short txpred; + unsigned short tx_addr; + unsigned short nop_addr; + unsigned short tbd_addr; + unsigned short cfg_addr; + unsigned short ias_addr; + unsigned short mcs_addr; + ac_tx_t tx; + ac_nop_t nop; + ac_cfg_t cfg; /* Configure action */ + ac_ias_t ias; /* IA-setup action */ + ac_mcs_t mcs; /* Multicast setup */ + struct dev_mc_list *dmi; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name); +#endif + + /* Check nothing bad has happened */ + if (lp->tx_n_in_use == (NTXBLOCKS - 1)) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n", + dev->name); +#endif + return; + } + + /* Calculate addresses of next block and previous block. */ + txblock = lp->tx_first_free; + txpred = txblock - TXBLOCKZ; + if (txpred < OFFSET_CU) + txpred += NTXBLOCKS * TXBLOCKZ; + lp->tx_first_free += TXBLOCKZ; + if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) + lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ; + + lp->tx_n_in_use++; + + /* Calculate addresses of the different parts of the block. */ + tx_addr = txblock; + nop_addr = tx_addr + sizeof(tx); + tbd_addr = nop_addr + sizeof(nop); + cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */ + ias_addr = cfg_addr + sizeof(cfg); + mcs_addr = ias_addr + sizeof(ias); + + /* + * Transmit command + */ + tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */ + obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status), + (unsigned char *) &tx.tx_h.ac_status, + sizeof(tx.tx_h.ac_status)); + + /* + * NOP command + */ + nop.nop_h.ac_status = 0; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), + (unsigned char *) &nop.nop_h.ac_status, + sizeof(nop.nop_h.ac_status)); + nop.nop_h.ac_link = nop_addr; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), + (unsigned char *) &nop.nop_h.ac_link, + sizeof(nop.nop_h.ac_link)); + + /* Create a configure action. */ + memset(&cfg, 0x00, sizeof(cfg)); + + /* + * For Linux we invert AC_CFG_ALOC() so as to conform + * to the way that net packets reach us from above. + * (See also ac_tx_t.) + * + * Updated from Wavelan Manual WCIN085B + */ + cfg.cfg_byte_cnt = + AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t)); + cfg.cfg_fifolim = AC_CFG_FIFOLIM(4); + cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0); + cfg.cfg_byte9 = AC_CFG_ELPBCK(0) | + AC_CFG_ILPBCK(0) | + AC_CFG_PRELEN(AC_CFG_PLEN_2) | + AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE); + cfg.cfg_byte10 = AC_CFG_BOFMET(1) | + AC_CFG_ACR(6) | AC_CFG_LINPRIO(0); + cfg.cfg_ifs = 0x20; + cfg.cfg_slotl = 0x0C; + cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0); + cfg.cfg_byte14 = AC_CFG_FLGPAD(0) | + AC_CFG_BTSTF(0) | + AC_CFG_CRC16(0) | + AC_CFG_NCRC(0) | + AC_CFG_TNCRS(1) | + AC_CFG_MANCH(0) | + AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous); + cfg.cfg_byte15 = AC_CFG_ICDS(0) | + AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0); +/* + cfg.cfg_min_frm_len = AC_CFG_MNFRM(64); +*/ + cfg.cfg_min_frm_len = AC_CFG_MNFRM(8); + + cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure); + cfg.cfg_h.ac_link = ias_addr; + obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg)); + + /* Set up the MAC address */ + memset(&ias, 0x00, sizeof(ias)); + ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup); + ias.ias_h.ac_link = mcs_addr; + memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0], + sizeof(ias.ias_addr)); + obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias)); + + /* Initialize adapter's Ethernet multicast addresses */ + memset(&mcs, 0x00, sizeof(mcs)); + mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup); + mcs.mcs_h.ac_link = nop_addr; + mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count; + obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs)); + + /* Any address to set? */ + if (lp->mc_count) { + for (dmi = dev->mc_list; dmi; dmi = dmi->next) + outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr, + WAVELAN_ADDR_SIZE >> 1); + +#ifdef DEBUG_CONFIG_INFO + printk(KERN_DEBUG + "%s: wv_82586_config(): set %d multicast addresses:\n", + dev->name, lp->mc_count); + for (dmi = dev->mc_list; dmi; dmi = dmi->next) + printk(KERN_DEBUG + " %02x:%02x:%02x:%02x:%02x:%02x\n", + dmi->dmi_addr[0], dmi->dmi_addr[1], + dmi->dmi_addr[2], dmi->dmi_addr[3], + dmi->dmi_addr[4], dmi->dmi_addr[5]); +#endif + } + + /* + * Overwrite the predecessor NOP link + * so that it points to the configure action. + */ + nop_addr = txpred + sizeof(tx); + nop.nop_h.ac_status = 0; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), + (unsigned char *) &nop.nop_h.ac_status, + sizeof(nop.nop_h.ac_status)); + nop.nop_h.ac_link = cfg_addr; + obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), + (unsigned char *) &nop.nop_h.ac_link, + sizeof(nop.nop_h.ac_link)); + + /* Job done, clear the flag */ + lp->reconfig_82586 = 0; + + if (lp->tx_first_in_use == I82586NULL) + lp->tx_first_in_use = txblock; + + if (lp->tx_n_in_use == (NTXBLOCKS - 1)) + netif_stop_queue(dev); + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name); +#endif +} + +/*------------------------------------------------------------------*/ +/* + * This routine, called by wavelan_close(), gracefully stops the + * WaveLAN controller (i82586). + * (called by wavelan_close()) + */ +static inline void wv_82586_stop(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + u16 scb_cmd; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name); +#endif + + /* Suspend both command unit and receive unit. */ + scb_cmd = + (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC & + SCB_CMD_RUC_SUS); + obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &scb_cmd, sizeof(scb_cmd)); + set_chan_attn(ioaddr, lp->hacr); + + /* No more interrupts */ + wv_ints_off(dev); + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name); +#endif +} + +/*------------------------------------------------------------------*/ +/* + * Totally reset the WaveLAN and restart it. + * Performs the following actions: + * 1. A power reset (reset DMA) + * 2. Initialize the radio modem (using wv_mmc_init) + * 3. Reset & Configure LAN controller (using wv_82586_start) + * 4. Start the LAN controller's command unit + * 5. Start the LAN controller's receive unit + * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open()) + */ +static int wv_hw_reset(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long ioaddr = dev->base_addr; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name, + (unsigned int) dev); +#endif + + /* Increase the number of resets done. */ + lp->nresets++; + + wv_hacr_reset(ioaddr); + lp->hacr = HACR_DEFAULT; + + if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0)) + return -1; + + /* Enable the card to send interrupts. */ + wv_ints_on(dev); + + /* Start card functions */ + if (wv_cu_start(dev) < 0) + return -1; + + /* Setup the controller and parameters */ + wv_82586_config(dev); + + /* Finish configuration with the receive unit */ + if (wv_ru_start(dev) < 0) + return -1; + +#ifdef DEBUG_CONFIG_TRACE + printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name); +#endif + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Check if there is a WaveLAN at the specific base address. + * As a side effect, this reads the MAC address. + * (called in wavelan_probe() and init_module()) + */ +static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac) +{ + int i; /* Loop counter */ + + /* Check if the base address if available. */ + if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe")) + return -EBUSY; /* ioaddr already used */ + + /* Reset host interface */ + wv_hacr_reset(ioaddr); + + /* Read the MAC address from the parameter storage area. */ + psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr), + mac, 6); + + release_region(ioaddr, sizeof(ha_t)); + + /* + * Check the first three octets of the address for the manufacturer's code. + * Note: if this can't find your WaveLAN card, you've got a + * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on + * how to configure your card. + */ + for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++) + if ((mac[0] == MAC_ADDRESSES[i][0]) && + (mac[1] == MAC_ADDRESSES[i][1]) && + (mac[2] == MAC_ADDRESSES[i][2])) + return 0; + +#ifdef DEBUG_CONFIG_INFO + printk(KERN_WARNING + "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n", + ioaddr, mac[0], mac[1], mac[2]); +#endif + return -ENODEV; +} + +/************************ INTERRUPT HANDLING ************************/ + +/* + * This function is the interrupt handler for the WaveLAN card. This + * routine will be called whenever: + */ +static irqreturn_t wavelan_interrupt(int irq, void *dev_id, struct pt_regs *regs) +{ + struct net_device *dev; + unsigned long ioaddr; + net_local *lp; + u16 hasr; + u16 status; + u16 ack_cmd; + + dev = dev_id; + +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name); +#endif + + lp = (net_local *) dev->priv; + ioaddr = dev->base_addr; + +#ifdef DEBUG_INTERRUPT_INFO + /* Check state of our spinlock */ + if(spin_is_locked(&lp->spinlock)) + printk(KERN_DEBUG + "%s: wavelan_interrupt(): spinlock is already locked !!!\n", + dev->name); +#endif + + /* Prevent reentrancy. We need to do that because we may have + * multiple interrupt handler running concurrently. + * It is safe because interrupts are disabled before acquiring + * the spinlock. */ + spin_lock(&lp->spinlock); + + /* We always had spurious interrupts at startup, but lately I + * saw them comming *between* the request_irq() and the + * spin_lock_irqsave() in wavelan_open(), so the spinlock + * protection is no enough. + * So, we also check lp->hacr that will tell us is we enabled + * irqs or not (see wv_ints_on()). + * We can't use netif_running(dev) because we depend on the + * proper processing of the irq generated during the config. */ + + /* Which interrupt it is ? */ + hasr = hasr_read(ioaddr); + +#ifdef DEBUG_INTERRUPT_INFO + printk(KERN_INFO + "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n", + dev->name, hasr, lp->hacr); +#endif + + /* Check modem interrupt */ + if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) { + u8 dce_status; + + /* + * Interrupt from the modem management controller. + * This will clear it -- ignored for now. + */ + mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status, + sizeof(dce_status)); + +#ifdef DEBUG_INTERRUPT_ERROR + printk(KERN_INFO + "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n", + dev->name, dce_status); +#endif + } + + /* Check if not controller interrupt */ + if (((hasr & HASR_82586_INTR) == 0) || + ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) { +#ifdef DEBUG_INTERRUPT_ERROR + printk(KERN_INFO + "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n", + dev->name, hasr); +#endif + spin_unlock (&lp->spinlock); + return IRQ_NONE; + } + + /* Read interrupt data. */ + obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), + (unsigned char *) &status, sizeof(status)); + + /* + * Acknowledge the interrupt(s). + */ + ack_cmd = status & SCB_ST_INT; + obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), + (unsigned char *) &ack_cmd, sizeof(ack_cmd)); + set_chan_attn(ioaddr, lp->hacr); + +#ifdef DEBUG_INTERRUPT_INFO + printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n", + dev->name, status); +#endif + + /* Command completed. */ + if ((status & SCB_ST_CX) == SCB_ST_CX) { +#ifdef DEBUG_INTERRUPT_INFO + printk(KERN_DEBUG + "%s: wavelan_interrupt(): command completed.\n", + dev->name); +#endif + wv_complete(dev, ioaddr, lp); + } + + /* Frame received. */ + if ((status & SCB_ST_FR) == SCB_ST_FR) { +#ifdef DEBUG_INTERRUPT_INFO + printk(KERN_DEBUG + "%s: wavelan_interrupt(): received packet.\n", + dev->name); +#endif + wv_receive(dev); + } + + /* Check the state of the command unit. */ + if (((status & SCB_ST_CNA) == SCB_ST_CNA) || + (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) && + (netif_running(dev)))) { +#ifdef DEBUG_INTERRUPT_ERROR + printk(KERN_INFO + "%s: wavelan_interrupt(): CU inactive -- restarting\n", + dev->name); +#endif + wv_hw_reset(dev); + } + + /* Check the state of the command unit. */ + if (((status & SCB_ST_RNR) == SCB_ST_RNR) || + (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) && + (netif_running(dev)))) { +#ifdef DEBUG_INTERRUPT_ERROR + printk(KERN_INFO + "%s: wavelan_interrupt(): RU not ready -- restarting\n", + dev->name); +#endif + wv_hw_reset(dev); + } + + /* Release spinlock */ + spin_unlock (&lp->spinlock); + +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name); +#endif + return IRQ_HANDLED; +} + +/*------------------------------------------------------------------*/ +/* + * Watchdog: when we start a transmission, a timer is set for us in the + * kernel. If the transmission completes, this timer is disabled. If + * the timer expires, we are called and we try to unlock the hardware. + */ +static void wavelan_watchdog(struct net_device * dev) +{ + net_local * lp = (net_local *)dev->priv; + u_long ioaddr = dev->base_addr; + unsigned long flags; + unsigned int nreaped; + +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name); +#endif + +#ifdef DEBUG_INTERRUPT_ERROR + printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n", + dev->name); +#endif + + /* Check that we came here for something */ + if (lp->tx_n_in_use <= 0) { + return; + } + + spin_lock_irqsave(&lp->spinlock, flags); + + /* Try to see if some buffers are not free (in case we missed + * an interrupt */ + nreaped = wv_complete(dev, ioaddr, lp); + +#ifdef DEBUG_INTERRUPT_INFO + printk(KERN_DEBUG + "%s: wavelan_watchdog(): %d reaped, %d remain.\n", + dev->name, nreaped, lp->tx_n_in_use); +#endif + +#ifdef DEBUG_PSA_SHOW + { + psa_t psa; + psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa)); + wv_psa_show(&psa); + } +#endif +#ifdef DEBUG_MMC_SHOW + wv_mmc_show(dev); +#endif +#ifdef DEBUG_I82586_SHOW + wv_cu_show(dev); +#endif + + /* If no buffer has been freed */ + if (nreaped == 0) { +#ifdef DEBUG_INTERRUPT_ERROR + printk(KERN_INFO + "%s: wavelan_watchdog(): cleanup failed, trying reset\n", + dev->name); +#endif + wv_hw_reset(dev); + } + + /* At this point, we should have some free Tx buffer ;-) */ + if (lp->tx_n_in_use < NTXBLOCKS - 1) + netif_wake_queue(dev); + + spin_unlock_irqrestore(&lp->spinlock, flags); + +#ifdef DEBUG_INTERRUPT_TRACE + printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name); +#endif +} + +/********************* CONFIGURATION CALLBACKS *********************/ +/* + * Here are the functions called by the Linux networking code (NET3) + * for initialization, configuration and deinstallations of the + * WaveLAN ISA hardware. + */ + +/*------------------------------------------------------------------*/ +/* + * Configure and start up the WaveLAN PCMCIA adaptor. + * Called by NET3 when it "opens" the device. + */ +static int wavelan_open(struct net_device * dev) +{ + net_local * lp = (net_local *)dev->priv; + unsigned long flags; + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name, + (unsigned int) dev); +#endif + + /* Check irq */ + if (dev->irq == 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n", + dev->name); +#endif + return -ENXIO; + } + + if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) + { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n", + dev->name); +#endif + return -EAGAIN; + } + + spin_lock_irqsave(&lp->spinlock, flags); + + if (wv_hw_reset(dev) != -1) { + netif_start_queue(dev); + } else { + free_irq(dev->irq, dev); +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO + "%s: wavelan_open(): impossible to start the card\n", + dev->name); +#endif + spin_unlock_irqrestore(&lp->spinlock, flags); + return -EAGAIN; + } + spin_unlock_irqrestore(&lp->spinlock, flags); + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name); +#endif + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Shut down the WaveLAN ISA card. + * Called by NET3 when it "closes" the device. + */ +static int wavelan_close(struct net_device * dev) +{ + net_local *lp = (net_local *) dev->priv; + unsigned long flags; + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name, + (unsigned int) dev); +#endif + + netif_stop_queue(dev); + + /* + * Flush the Tx and disable Rx. + */ + spin_lock_irqsave(&lp->spinlock, flags); + wv_82586_stop(dev); + spin_unlock_irqrestore(&lp->spinlock, flags); + + free_irq(dev->irq, dev); + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name); +#endif + return 0; +} + +/*------------------------------------------------------------------*/ +/* + * Probe an I/O address, and if the WaveLAN is there configure the + * device structure + * (called by wavelan_probe() and via init_module()). + */ +static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr) +{ + u8 irq_mask; + int irq; + net_local *lp; + mac_addr mac; + int err; + + if (!request_region(ioaddr, sizeof(ha_t), "wavelan")) + return -EADDRINUSE; + + err = wv_check_ioaddr(ioaddr, mac); + if (err) + goto out; + + memcpy(dev->dev_addr, mac, 6); + + dev->base_addr = ioaddr; + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n", + dev->name, (unsigned int) dev, ioaddr); +#endif + + /* Check IRQ argument on command line. */ + if (dev->irq != 0) { + irq_mask = wv_irq_to_psa(dev->irq); + + if (irq_mask == 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_WARNING + "%s: wavelan_config(): invalid IRQ %d ignored.\n", + dev->name, dev->irq); +#endif + dev->irq = 0; + } else { +#ifdef DEBUG_CONFIG_INFO + printk(KERN_DEBUG + "%s: wavelan_config(): changing IRQ to %d\n", + dev->name, dev->irq); +#endif + psa_write(ioaddr, HACR_DEFAULT, + psaoff(0, psa_int_req_no), &irq_mask, 1); + /* update the Wavelan checksum */ + update_psa_checksum(dev, ioaddr, HACR_DEFAULT); + wv_hacr_reset(ioaddr); + } + } + + psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no), + &irq_mask, 1); + if ((irq = wv_psa_to_irq(irq_mask)) == -1) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_INFO + "%s: wavelan_config(): could not wavelan_map_irq(%d).\n", + dev->name, irq_mask); +#endif + err = -EAGAIN; + goto out; + } + + dev->irq = irq; + + dev->mem_start = 0x0000; + dev->mem_end = 0x0000; + dev->if_port = 0; + + /* Initialize device structures */ + memset(dev->priv, 0, sizeof(net_local)); + lp = (net_local *) dev->priv; + + /* Back link to the device structure. */ + lp->dev = dev; + /* Add the device at the beginning of the linked list. */ + lp->next = wavelan_list; + wavelan_list = lp; + + lp->hacr = HACR_DEFAULT; + + /* Multicast stuff */ + lp->promiscuous = 0; + lp->mc_count = 0; + + /* Init spinlock */ + spin_lock_init(&lp->spinlock); + + SET_MODULE_OWNER(dev); + dev->open = wavelan_open; + dev->stop = wavelan_close; + dev->hard_start_xmit = wavelan_packet_xmit; + dev->get_stats = wavelan_get_stats; + dev->set_multicast_list = &wavelan_set_multicast_list; + dev->tx_timeout = &wavelan_watchdog; + dev->watchdog_timeo = WATCHDOG_JIFFIES; +#ifdef SET_MAC_ADDRESS + dev->set_mac_address = &wavelan_set_mac_address; +#endif /* SET_MAC_ADDRESS */ + +#ifdef WIRELESS_EXT /* if wireless extension exists in the kernel */ + dev->wireless_handlers = &wavelan_handler_def; + lp->wireless_data.spy_data = &lp->spy_data; + dev->wireless_data = &lp->wireless_data; +#endif + + dev->mtu = WAVELAN_MTU; + + /* Display nice information. */ + wv_init_info(dev); + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name); +#endif + return 0; +out: + release_region(ioaddr, sizeof(ha_t)); + return err; +} + +/*------------------------------------------------------------------*/ +/* + * Check for a network adaptor of this type. Return '0' iff one + * exists. There seem to be different interpretations of + * the initial value of dev->base_addr. + * We follow the example in drivers/net/ne.c. + * (called in "Space.c") + */ +struct net_device * __init wavelan_probe(int unit) +{ + struct net_device *dev; + short base_addr; + int def_irq; + int i; + int r = 0; + +#ifdef STRUCT_CHECK + if (wv_struct_check() != (char *) NULL) { + printk(KERN_WARNING + "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n", + dev->name, wv_struct_check()); + return -ENODEV; + } +#endif /* STRUCT_CHECK */ + + dev = alloc_etherdev(sizeof(net_local)); + if (!dev) + return ERR_PTR(-ENOMEM); + + sprintf(dev->name, "eth%d", unit); + netdev_boot_setup_check(dev); + base_addr = dev->base_addr; + def_irq = dev->irq; + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG + "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n", + dev->name, dev, (unsigned int) dev->base_addr); +#endif + + /* Don't probe at all. */ + if (base_addr < 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_WARNING + "%s: wavelan_probe(): invalid base address\n", + dev->name); +#endif + r = -ENXIO; + } else if (base_addr > 0x100) { /* Check a single specified location. */ + r = wavelan_config(dev, base_addr); +#ifdef DEBUG_CONFIG_INFO + if (r != 0) + printk(KERN_DEBUG + "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n", + dev->name, base_addr); +#endif + +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name); +#endif + } else { /* Scan all possible addresses of the WaveLAN hardware. */ + for (i = 0; i < NELS(iobase); i++) { + dev->irq = def_irq; + if (wavelan_config(dev, iobase[i]) == 0) { +#ifdef DEBUG_CALLBACK_TRACE + printk(KERN_DEBUG + "%s: <-wavelan_probe()\n", + dev->name); +#endif + break; + } + } + if (i == NELS(iobase)) + r = -ENODEV; + } + if (r) + goto out; + r = register_netdev(dev); + if (r) + goto out1; + return dev; +out1: + release_region(dev->base_addr, sizeof(ha_t)); + wavelan_list = wavelan_list->next; +out: + free_netdev(dev); + return ERR_PTR(r); +} + +/****************************** MODULE ******************************/ +/* + * Module entry point: insertion and removal + */ + +#ifdef MODULE +/*------------------------------------------------------------------*/ +/* + * Insertion of the module + * I'm now quite proud of the multi-device support. + */ +int init_module(void) +{ + int ret = -EIO; /* Return error if no cards found */ + int i; + +#ifdef DEBUG_MODULE_TRACE + printk(KERN_DEBUG "-> init_module()\n"); +#endif + + /* If probing is asked */ + if (io[0] == 0) { +#ifdef DEBUG_CONFIG_ERROR + printk(KERN_WARNING + "WaveLAN init_module(): doing device probing (bad !)\n"); + printk(KERN_WARNING + "Specify base addresses while loading module to correct the problem\n"); +#endif + + /* Copy the basic set of address to be probed. */ + for (i = 0; i < NELS(iobase); i++) + io[i] = iobase[i]; + } + + + /* Loop on all possible base addresses. */ + i = -1; + while ((io[++i] != 0) && (i < NELS(io))) { + struct net_device *dev = alloc_etherdev(sizeof(net_local)); + if (!dev) + break; + if (name[i]) + strcpy(dev->name, name[i]); /* Copy name */ + dev->base_addr = io[i]; + dev->irq = irq[i]; + + /* Check if there is something at this base address. */ + if (wavelan_config(dev, io[i]) == 0) { + if (register_netdev(dev) != 0) { + release_region(dev->base_addr, sizeof(ha_t)); + wavelan_list = wavelan_list->next; + } else { + ret = 0; + continue; + } + } + free_netdev(dev); + } + +#ifdef DEBUG_CONFIG_ERROR + if (!wavelan_list) + printk(KERN_WARNING + "WaveLAN init_module(): no device found\n"); +#endif + +#ifdef DEBUG_MODULE_TRACE + printk(KERN_DEBUG "<- init_module()\n"); +#endif + return ret; +} + +/*------------------------------------------------------------------*/ +/* + * Removal of the module + */ +void cleanup_module(void) +{ +#ifdef DEBUG_MODULE_TRACE + printk(KERN_DEBUG "-> cleanup_module()\n"); +#endif + + /* Loop on all devices and release them. */ + while (wavelan_list) { + struct net_device *dev = wavelan_list->dev; + +#ifdef DEBUG_CONFIG_INFO + printk(KERN_DEBUG + "%s: cleanup_module(): removing device at 0x%x\n", + dev->name, (unsigned int) dev); +#endif + unregister_netdev(dev); + + release_region(dev->base_addr, sizeof(ha_t)); + wavelan_list = wavelan_list->next; + + free_netdev(dev); + } + +#ifdef DEBUG_MODULE_TRACE + printk(KERN_DEBUG "<- cleanup_module()\n"); +#endif +} +#endif /* MODULE */ +MODULE_LICENSE("GPL"); + +/* + * This software may only be used and distributed + * according to the terms of the GNU General Public License. + * + * This software was developed as a component of the + * Linux operating system. + * It is based on other device drivers and information + * either written or supplied by: + * Ajay Bakre (bakre@paul.rutgers.edu), + * Donald Becker (becker@scyld.com), + * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com), + * Anders Klemets (klemets@it.kth.se), + * Vladimir V. Kolpakov (w@stier.koenig.ru), + * Marc Meertens (Marc.Meertens@Utrecht.NCR.com), + * Pauline Middelink (middelin@polyware.iaf.nl), + * Robert Morris (rtm@das.harvard.edu), + * Jean Tourrilhes (jt@hplb.hpl.hp.com), + * Girish Welling (welling@paul.rutgers.edu), + * + * Thanks go also to: + * James Ashton (jaa101@syseng.anu.edu.au), + * Alan Cox (alan@redhat.com), + * Allan Creighton (allanc@cs.usyd.edu.au), + * Matthew Geier (matthew@cs.usyd.edu.au), + * Remo di Giovanni (remo@cs.usyd.edu.au), + * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de), + * Vipul Gupta (vgupta@cs.binghamton.edu), + * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM), + * Tim Nicholson (tim@cs.usyd.edu.au), + * Ian Parkin (ian@cs.usyd.edu.au), + * John Rosenberg (johnr@cs.usyd.edu.au), + * George Rossi (george@phm.gov.au), + * Arthur Scott (arthur@cs.usyd.edu.au), + * Peter Storey, + * for their assistance and advice. + * + * Please send bug reports, updates, comments to: + * + * Bruce Janson Email: bruce@cs.usyd.edu.au + * Basser Department of Computer Science Phone: +61-2-9351-3423 + * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838 + */ |