summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath5k/phy.c
diff options
context:
space:
mode:
authorLuis R. Rodriguez <lrodriguez@atheros.com>2009-03-30 22:30:33 -0400
committerJohn W. Linville <linville@tuxdriver.com>2009-04-22 16:54:38 -0400
commit203c4805e91786f9a010bc7945a0fde70c9da28e (patch)
tree00415276b2fe65713f066ffe07b11ad2d8b6bea8 /drivers/net/wireless/ath5k/phy.c
parent1878f77e13b9d720b78c4f818b94bfd4a7f596e5 (diff)
downloadop-kernel-dev-203c4805e91786f9a010bc7945a0fde70c9da28e.zip
op-kernel-dev-203c4805e91786f9a010bc7945a0fde70c9da28e.tar.gz
atheros: put atheros wireless drivers into ath/
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/ath5k/phy.c')
-rw-r--r--drivers/net/wireless/ath5k/phy.c2599
1 files changed, 0 insertions, 2599 deletions
diff --git a/drivers/net/wireless/ath5k/phy.c b/drivers/net/wireless/ath5k/phy.c
deleted file mode 100644
index 9e2faae..0000000
--- a/drivers/net/wireless/ath5k/phy.c
+++ /dev/null
@@ -1,2599 +0,0 @@
-/*
- * PHY functions
- *
- * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
- * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
- * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
- * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- */
-
-#define _ATH5K_PHY
-
-#include <linux/delay.h>
-
-#include "ath5k.h"
-#include "reg.h"
-#include "base.h"
-#include "rfbuffer.h"
-#include "rfgain.h"
-
-/*
- * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
- */
-static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
- const struct ath5k_rf_reg *rf_regs,
- u32 val, u8 reg_id, bool set)
-{
- const struct ath5k_rf_reg *rfreg = NULL;
- u8 offset, bank, num_bits, col, position;
- u16 entry;
- u32 mask, data, last_bit, bits_shifted, first_bit;
- u32 *rfb;
- s32 bits_left;
- int i;
-
- data = 0;
- rfb = ah->ah_rf_banks;
-
- for (i = 0; i < ah->ah_rf_regs_count; i++) {
- if (rf_regs[i].index == reg_id) {
- rfreg = &rf_regs[i];
- break;
- }
- }
-
- if (rfb == NULL || rfreg == NULL) {
- ATH5K_PRINTF("Rf register not found!\n");
- /* should not happen */
- return 0;
- }
-
- bank = rfreg->bank;
- num_bits = rfreg->field.len;
- first_bit = rfreg->field.pos;
- col = rfreg->field.col;
-
- /* first_bit is an offset from bank's
- * start. Since we have all banks on
- * the same array, we use this offset
- * to mark each bank's start */
- offset = ah->ah_offset[bank];
-
- /* Boundary check */
- if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
- ATH5K_PRINTF("invalid values at offset %u\n", offset);
- return 0;
- }
-
- entry = ((first_bit - 1) / 8) + offset;
- position = (first_bit - 1) % 8;
-
- if (set)
- data = ath5k_hw_bitswap(val, num_bits);
-
- for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
- position = 0, entry++) {
-
- last_bit = (position + bits_left > 8) ? 8 :
- position + bits_left;
-
- mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
- (col * 8);
-
- if (set) {
- rfb[entry] &= ~mask;
- rfb[entry] |= ((data << position) << (col * 8)) & mask;
- data >>= (8 - position);
- } else {
- data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
- << bits_shifted;
- bits_shifted += last_bit - position;
- }
-
- bits_left -= 8 - position;
- }
-
- data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
-
- return data;
-}
-
-/**********************\
-* RF Gain optimization *
-\**********************/
-
-/*
- * This code is used to optimize rf gain on different environments
- * (temprature mostly) based on feedback from a power detector.
- *
- * It's only used on RF5111 and RF5112, later RF chips seem to have
- * auto adjustment on hw -notice they have a much smaller BANK 7 and
- * no gain optimization ladder-.
- *
- * For more infos check out this patent doc
- * http://www.freepatentsonline.com/7400691.html
- *
- * This paper describes power drops as seen on the receiver due to
- * probe packets
- * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
- * %20of%20Power%20Control.pdf
- *
- * And this is the MadWiFi bug entry related to the above
- * http://madwifi-project.org/ticket/1659
- * with various measurements and diagrams
- *
- * TODO: Deal with power drops due to probes by setting an apropriate
- * tx power on the probe packets ! Make this part of the calibration process.
- */
-
-/* Initialize ah_gain durring attach */
-int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
-{
- /* Initialize the gain optimization values */
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
- ah->ah_gain.g_low = 20;
- ah->ah_gain.g_high = 35;
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- break;
- case AR5K_RF5112:
- ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
- ah->ah_gain.g_low = 20;
- ah->ah_gain.g_high = 85;
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- break;
- default:
- return -EINVAL;
- }
-
- return 0;
-}
-
-/* Schedule a gain probe check on the next transmited packet.
- * That means our next packet is going to be sent with lower
- * tx power and a Peak to Average Power Detector (PAPD) will try
- * to measure the gain.
- *
- * TODO: Use propper tx power setting for the probe packet so
- * that we don't observe a serious power drop on the receiver
- *
- * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
- * just after we enable the probe so that we don't mess with
- * standard traffic ? Maybe it's time to use sw interrupts and
- * a probe tasklet !!!
- */
-static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
-{
-
- /* Skip if gain calibration is inactive or
- * we already handle a probe request */
- if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
- return;
-
- /* Send the packet with 2dB below max power as
- * patent doc suggest */
- ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
- AR5K_PHY_PAPD_PROBE_TXPOWER) |
- AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
-
- ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
-
-}
-
-/* Calculate gain_F measurement correction
- * based on the current step for RF5112 rev. 2 */
-static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
-{
- u32 mix, step;
- u32 *rf;
- const struct ath5k_gain_opt *go;
- const struct ath5k_gain_opt_step *g_step;
- const struct ath5k_rf_reg *rf_regs;
-
- /* Only RF5112 Rev. 2 supports it */
- if ((ah->ah_radio != AR5K_RF5112) ||
- (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
- return 0;
-
- go = &rfgain_opt_5112;
- rf_regs = rf_regs_5112a;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
-
- g_step = &go->go_step[ah->ah_gain.g_step_idx];
-
- if (ah->ah_rf_banks == NULL)
- return 0;
-
- rf = ah->ah_rf_banks;
- ah->ah_gain.g_f_corr = 0;
-
- /* No VGA (Variable Gain Amplifier) override, skip */
- if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
- return 0;
-
- /* Mix gain stepping */
- step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
-
- /* Mix gain override */
- mix = g_step->gos_param[0];
-
- switch (mix) {
- case 3:
- ah->ah_gain.g_f_corr = step * 2;
- break;
- case 2:
- ah->ah_gain.g_f_corr = (step - 5) * 2;
- break;
- case 1:
- ah->ah_gain.g_f_corr = step;
- break;
- default:
- ah->ah_gain.g_f_corr = 0;
- break;
- }
-
- return ah->ah_gain.g_f_corr;
-}
-
-/* Check if current gain_F measurement is in the range of our
- * power detector windows. If we get a measurement outside range
- * we know it's not accurate (detectors can't measure anything outside
- * their detection window) so we must ignore it */
-static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
-{
- const struct ath5k_rf_reg *rf_regs;
- u32 step, mix_ovr, level[4];
- u32 *rf;
-
- if (ah->ah_rf_banks == NULL)
- return false;
-
- rf = ah->ah_rf_banks;
-
- if (ah->ah_radio == AR5K_RF5111) {
-
- rf_regs = rf_regs_5111;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
-
- step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
- false);
-
- level[0] = 0;
- level[1] = (step == 63) ? 50 : step + 4;
- level[2] = (step != 63) ? 64 : level[0];
- level[3] = level[2] + 50 ;
-
- ah->ah_gain.g_high = level[3] -
- (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
- ah->ah_gain.g_low = level[0] +
- (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
- } else {
-
- rf_regs = rf_regs_5112;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
-
- mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
- false);
-
- level[0] = level[2] = 0;
-
- if (mix_ovr == 1) {
- level[1] = level[3] = 83;
- } else {
- level[1] = level[3] = 107;
- ah->ah_gain.g_high = 55;
- }
- }
-
- return (ah->ah_gain.g_current >= level[0] &&
- ah->ah_gain.g_current <= level[1]) ||
- (ah->ah_gain.g_current >= level[2] &&
- ah->ah_gain.g_current <= level[3]);
-}
-
-/* Perform gain_F adjustment by choosing the right set
- * of parameters from rf gain optimization ladder */
-static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
-{
- const struct ath5k_gain_opt *go;
- const struct ath5k_gain_opt_step *g_step;
- int ret = 0;
-
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- go = &rfgain_opt_5111;
- break;
- case AR5K_RF5112:
- go = &rfgain_opt_5112;
- break;
- default:
- return 0;
- }
-
- g_step = &go->go_step[ah->ah_gain.g_step_idx];
-
- if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
-
- /* Reached maximum */
- if (ah->ah_gain.g_step_idx == 0)
- return -1;
-
- for (ah->ah_gain.g_target = ah->ah_gain.g_current;
- ah->ah_gain.g_target >= ah->ah_gain.g_high &&
- ah->ah_gain.g_step_idx > 0;
- g_step = &go->go_step[ah->ah_gain.g_step_idx])
- ah->ah_gain.g_target -= 2 *
- (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
- g_step->gos_gain);
-
- ret = 1;
- goto done;
- }
-
- if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
-
- /* Reached minimum */
- if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
- return -2;
-
- for (ah->ah_gain.g_target = ah->ah_gain.g_current;
- ah->ah_gain.g_target <= ah->ah_gain.g_low &&
- ah->ah_gain.g_step_idx < go->go_steps_count-1;
- g_step = &go->go_step[ah->ah_gain.g_step_idx])
- ah->ah_gain.g_target -= 2 *
- (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
- g_step->gos_gain);
-
- ret = 2;
- goto done;
- }
-
-done:
- ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
- "ret %d, gain step %u, current gain %u, target gain %u\n",
- ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
- ah->ah_gain.g_target);
-
- return ret;
-}
-
-/* Main callback for thermal rf gain calibration engine
- * Check for a new gain reading and schedule an adjustment
- * if needed.
- *
- * TODO: Use sw interrupt to schedule reset if gain_F needs
- * adjustment */
-enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
-{
- u32 data, type;
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
-
- ATH5K_TRACE(ah->ah_sc);
-
- if (ah->ah_rf_banks == NULL ||
- ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
- return AR5K_RFGAIN_INACTIVE;
-
- /* No check requested, either engine is inactive
- * or an adjustment is already requested */
- if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
- goto done;
-
- /* Read the PAPD (Peak to Average Power Detector)
- * register */
- data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
-
- /* No probe is scheduled, read gain_F measurement */
- if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
- ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
- type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
-
- /* If tx packet is CCK correct the gain_F measurement
- * by cck ofdm gain delta */
- if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
- if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
- ah->ah_gain.g_current +=
- ee->ee_cck_ofdm_gain_delta;
- else
- ah->ah_gain.g_current +=
- AR5K_GAIN_CCK_PROBE_CORR;
- }
-
- /* Further correct gain_F measurement for
- * RF5112A radios */
- if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
- ath5k_hw_rf_gainf_corr(ah);
- ah->ah_gain.g_current =
- ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
- (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
- 0;
- }
-
- /* Check if measurement is ok and if we need
- * to adjust gain, schedule a gain adjustment,
- * else switch back to the acive state */
- if (ath5k_hw_rf_check_gainf_readback(ah) &&
- AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
- ath5k_hw_rf_gainf_adjust(ah)) {
- ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
- } else {
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- }
- }
-
-done:
- return ah->ah_gain.g_state;
-}
-
-/* Write initial rf gain table to set the RF sensitivity
- * this one works on all RF chips and has nothing to do
- * with gain_F calibration */
-int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
-{
- const struct ath5k_ini_rfgain *ath5k_rfg;
- unsigned int i, size;
-
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- ath5k_rfg = rfgain_5111;
- size = ARRAY_SIZE(rfgain_5111);
- break;
- case AR5K_RF5112:
- ath5k_rfg = rfgain_5112;
- size = ARRAY_SIZE(rfgain_5112);
- break;
- case AR5K_RF2413:
- ath5k_rfg = rfgain_2413;
- size = ARRAY_SIZE(rfgain_2413);
- break;
- case AR5K_RF2316:
- ath5k_rfg = rfgain_2316;
- size = ARRAY_SIZE(rfgain_2316);
- break;
- case AR5K_RF5413:
- ath5k_rfg = rfgain_5413;
- size = ARRAY_SIZE(rfgain_5413);
- break;
- case AR5K_RF2317:
- case AR5K_RF2425:
- ath5k_rfg = rfgain_2425;
- size = ARRAY_SIZE(rfgain_2425);
- break;
- default:
- return -EINVAL;
- }
-
- switch (freq) {
- case AR5K_INI_RFGAIN_2GHZ:
- case AR5K_INI_RFGAIN_5GHZ:
- break;
- default:
- return -EINVAL;
- }
-
- for (i = 0; i < size; i++) {
- AR5K_REG_WAIT(i);
- ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
- (u32)ath5k_rfg[i].rfg_register);
- }
-
- return 0;
-}
-
-
-
-/********************\
-* RF Registers setup *
-\********************/
-
-
-/*
- * Setup RF registers by writing rf buffer on hw
- */
-int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
- unsigned int mode)
-{
- const struct ath5k_rf_reg *rf_regs;
- const struct ath5k_ini_rfbuffer *ini_rfb;
- const struct ath5k_gain_opt *go = NULL;
- const struct ath5k_gain_opt_step *g_step;
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- u8 ee_mode = 0;
- u32 *rfb;
- int i, obdb = -1, bank = -1;
-
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- rf_regs = rf_regs_5111;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
- ini_rfb = rfb_5111;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
- go = &rfgain_opt_5111;
- break;
- case AR5K_RF5112:
- if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
- rf_regs = rf_regs_5112a;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
- ini_rfb = rfb_5112a;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
- } else {
- rf_regs = rf_regs_5112;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
- ini_rfb = rfb_5112;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
- }
- go = &rfgain_opt_5112;
- break;
- case AR5K_RF2413:
- rf_regs = rf_regs_2413;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
- ini_rfb = rfb_2413;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
- break;
- case AR5K_RF2316:
- rf_regs = rf_regs_2316;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
- ini_rfb = rfb_2316;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
- break;
- case AR5K_RF5413:
- rf_regs = rf_regs_5413;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
- ini_rfb = rfb_5413;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
- break;
- case AR5K_RF2317:
- rf_regs = rf_regs_2425;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
- ini_rfb = rfb_2317;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
- break;
- case AR5K_RF2425:
- rf_regs = rf_regs_2425;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
- if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
- ini_rfb = rfb_2425;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
- } else {
- ini_rfb = rfb_2417;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
- }
- break;
- default:
- return -EINVAL;
- }
-
- /* If it's the first time we set rf buffer, allocate
- * ah->ah_rf_banks based on ah->ah_rf_banks_size
- * we set above */
- if (ah->ah_rf_banks == NULL) {
- ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
- GFP_KERNEL);
- if (ah->ah_rf_banks == NULL) {
- ATH5K_ERR(ah->ah_sc, "out of memory\n");
- return -ENOMEM;
- }
- }
-
- /* Copy values to modify them */
- rfb = ah->ah_rf_banks;
-
- for (i = 0; i < ah->ah_rf_banks_size; i++) {
- if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
- ATH5K_ERR(ah->ah_sc, "invalid bank\n");
- return -EINVAL;
- }
-
- /* Bank changed, write down the offset */
- if (bank != ini_rfb[i].rfb_bank) {
- bank = ini_rfb[i].rfb_bank;
- ah->ah_offset[bank] = i;
- }
-
- rfb[i] = ini_rfb[i].rfb_mode_data[mode];
- }
-
- /* Set Output and Driver bias current (OB/DB) */
- if (channel->hw_value & CHANNEL_2GHZ) {
-
- if (channel->hw_value & CHANNEL_CCK)
- ee_mode = AR5K_EEPROM_MODE_11B;
- else
- ee_mode = AR5K_EEPROM_MODE_11G;
-
- /* For RF511X/RF211X combination we
- * use b_OB and b_DB parameters stored
- * in eeprom on ee->ee_ob[ee_mode][0]
- *
- * For all other chips we use OB/DB for 2Ghz
- * stored in the b/g modal section just like
- * 802.11a on ee->ee_ob[ee_mode][1] */
- if ((ah->ah_radio == AR5K_RF5111) ||
- (ah->ah_radio == AR5K_RF5112))
- obdb = 0;
- else
- obdb = 1;
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
- AR5K_RF_OB_2GHZ, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
- AR5K_RF_DB_2GHZ, true);
-
- /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
- } else if ((channel->hw_value & CHANNEL_5GHZ) ||
- (ah->ah_radio == AR5K_RF5111)) {
-
- /* For 11a, Turbo and XR we need to choose
- * OB/DB based on frequency range */
- ee_mode = AR5K_EEPROM_MODE_11A;
- obdb = channel->center_freq >= 5725 ? 3 :
- (channel->center_freq >= 5500 ? 2 :
- (channel->center_freq >= 5260 ? 1 :
- (channel->center_freq > 4000 ? 0 : -1)));
-
- if (obdb < 0)
- return -EINVAL;
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
- AR5K_RF_OB_5GHZ, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
- AR5K_RF_DB_5GHZ, true);
- }
-
- g_step = &go->go_step[ah->ah_gain.g_step_idx];
-
- /* Bank Modifications (chip-specific) */
- if (ah->ah_radio == AR5K_RF5111) {
-
- /* Set gain_F settings according to current step */
- if (channel->hw_value & CHANNEL_OFDM) {
-
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
- AR5K_PHY_FRAME_CTL_TX_CLIP,
- g_step->gos_param[0]);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
- AR5K_RF_PWD_90, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
- AR5K_RF_PWD_84, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
- AR5K_RF_RFGAIN_SEL, true);
-
- /* We programmed gain_F parameters, switch back
- * to active state */
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
-
- }
-
- /* Bank 6/7 setup */
-
- ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
- AR5K_RF_PWD_XPD, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
- AR5K_RF_XPD_GAIN, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
- AR5K_RF_GAIN_I, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
- AR5K_RF_PLO_SEL, true);
-
- /* TODO: Half/quarter channel support */
- }
-
- if (ah->ah_radio == AR5K_RF5112) {
-
- /* Set gain_F settings according to current step */
- if (channel->hw_value & CHANNEL_OFDM) {
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
- AR5K_RF_MIXGAIN_OVR, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
- AR5K_RF_PWD_138, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
- AR5K_RF_PWD_137, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
- AR5K_RF_PWD_136, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
- AR5K_RF_PWD_132, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
- AR5K_RF_PWD_131, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
- AR5K_RF_PWD_130, true);
-
- /* We programmed gain_F parameters, switch back
- * to active state */
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- }
-
- /* Bank 6/7 setup */
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
- AR5K_RF_XPD_SEL, true);
-
- if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
- /* Rev. 1 supports only one xpd */
- ath5k_hw_rfb_op(ah, rf_regs,
- ee->ee_x_gain[ee_mode],
- AR5K_RF_XPD_GAIN, true);
-
- } else {
- /* TODO: Set high and low gain bits */
- ath5k_hw_rfb_op(ah, rf_regs,
- ee->ee_x_gain[ee_mode],
- AR5K_RF_PD_GAIN_LO, true);
- ath5k_hw_rfb_op(ah, rf_regs,
- ee->ee_x_gain[ee_mode],
- AR5K_RF_PD_GAIN_HI, true);
-
- /* Lower synth voltage on Rev 2 */
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_HIGH_VC_CP, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_MID_VC_CP, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_LOW_VC_CP, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_PUSH_UP, true);
-
- /* Decrease power consumption on 5213+ BaseBand */
- if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_PAD2GND, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_XB2_LVL, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_XB5_LVL, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_PWD_167, true);
-
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_PWD_166, true);
- }
- }
-
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
- AR5K_RF_GAIN_I, true);
-
- /* TODO: Half/quarter channel support */
-
- }
-
- if (ah->ah_radio == AR5K_RF5413 &&
- channel->hw_value & CHANNEL_2GHZ) {
-
- ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
- true);
-
- /* Set optimum value for early revisions (on pci-e chips) */
- if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
- ah->ah_mac_srev < AR5K_SREV_AR5413)
- ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
- AR5K_RF_PWD_ICLOBUF_2G, true);
-
- }
-
- /* Write RF banks on hw */
- for (i = 0; i < ah->ah_rf_banks_size; i++) {
- AR5K_REG_WAIT(i);
- ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
- }
-
- return 0;
-}
-
-
-/**************************\
- PHY/RF channel functions
-\**************************/
-
-/*
- * Check if a channel is supported
- */
-bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
-{
- /* Check if the channel is in our supported range */
- if (flags & CHANNEL_2GHZ) {
- if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
- (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
- return true;
- } else if (flags & CHANNEL_5GHZ)
- if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
- (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
- return true;
-
- return false;
-}
-
-/*
- * Convertion needed for RF5110
- */
-static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
-{
- u32 athchan;
-
- /*
- * Convert IEEE channel/MHz to an internal channel value used
- * by the AR5210 chipset. This has not been verified with
- * newer chipsets like the AR5212A who have a completely
- * different RF/PHY part.
- */
- athchan = (ath5k_hw_bitswap(
- (ieee80211_frequency_to_channel(
- channel->center_freq) - 24) / 2, 5)
- << 1) | (1 << 6) | 0x1;
- return athchan;
-}
-
-/*
- * Set channel on RF5110
- */
-static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- u32 data;
-
- /*
- * Set the channel and wait
- */
- data = ath5k_hw_rf5110_chan2athchan(channel);
- ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
- mdelay(1);
-
- return 0;
-}
-
-/*
- * Convertion needed for 5111
- */
-static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
- struct ath5k_athchan_2ghz *athchan)
-{
- int channel;
-
- /* Cast this value to catch negative channel numbers (>= -19) */
- channel = (int)ieee;
-
- /*
- * Map 2GHz IEEE channel to 5GHz Atheros channel
- */
- if (channel <= 13) {
- athchan->a2_athchan = 115 + channel;
- athchan->a2_flags = 0x46;
- } else if (channel == 14) {
- athchan->a2_athchan = 124;
- athchan->a2_flags = 0x44;
- } else if (channel >= 15 && channel <= 26) {
- athchan->a2_athchan = ((channel - 14) * 4) + 132;
- athchan->a2_flags = 0x46;
- } else
- return -EINVAL;
-
- return 0;
-}
-
-/*
- * Set channel on 5111
- */
-static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- struct ath5k_athchan_2ghz ath5k_channel_2ghz;
- unsigned int ath5k_channel =
- ieee80211_frequency_to_channel(channel->center_freq);
- u32 data0, data1, clock;
- int ret;
-
- /*
- * Set the channel on the RF5111 radio
- */
- data0 = data1 = 0;
-
- if (channel->hw_value & CHANNEL_2GHZ) {
- /* Map 2GHz channel to 5GHz Atheros channel ID */
- ret = ath5k_hw_rf5111_chan2athchan(
- ieee80211_frequency_to_channel(channel->center_freq),
- &ath5k_channel_2ghz);
- if (ret)
- return ret;
-
- ath5k_channel = ath5k_channel_2ghz.a2_athchan;
- data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
- << 5) | (1 << 4);
- }
-
- if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
- clock = 1;
- data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
- (clock << 1) | (1 << 10) | 1;
- } else {
- clock = 0;
- data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
- << 2) | (clock << 1) | (1 << 10) | 1;
- }
-
- ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
- AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
- AR5K_RF_BUFFER_CONTROL_3);
-
- return 0;
-}
-
-/*
- * Set channel on 5112 and newer
- */
-static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- u32 data, data0, data1, data2;
- u16 c;
-
- data = data0 = data1 = data2 = 0;
- c = channel->center_freq;
-
- if (c < 4800) {
- if (!((c - 2224) % 5)) {
- data0 = ((2 * (c - 704)) - 3040) / 10;
- data1 = 1;
- } else if (!((c - 2192) % 5)) {
- data0 = ((2 * (c - 672)) - 3040) / 10;
- data1 = 0;
- } else
- return -EINVAL;
-
- data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
- } else if ((c - (c % 5)) != 2 || c > 5435) {
- if (!(c % 20) && c >= 5120) {
- data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
- data2 = ath5k_hw_bitswap(3, 2);
- } else if (!(c % 10)) {
- data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
- data2 = ath5k_hw_bitswap(2, 2);
- } else if (!(c % 5)) {
- data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
- data2 = ath5k_hw_bitswap(1, 2);
- } else
- return -EINVAL;
- } else {
- data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
- data2 = ath5k_hw_bitswap(0, 2);
- }
-
- data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
-
- ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
-
- return 0;
-}
-
-/*
- * Set the channel on the RF2425
- */
-static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- u32 data, data0, data2;
- u16 c;
-
- data = data0 = data2 = 0;
- c = channel->center_freq;
-
- if (c < 4800) {
- data0 = ath5k_hw_bitswap((c - 2272), 8);
- data2 = 0;
- /* ? 5GHz ? */
- } else if ((c - (c % 5)) != 2 || c > 5435) {
- if (!(c % 20) && c < 5120)
- data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
- else if (!(c % 10))
- data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
- else if (!(c % 5))
- data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
- else
- return -EINVAL;
- data2 = ath5k_hw_bitswap(1, 2);
- } else {
- data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
- data2 = ath5k_hw_bitswap(0, 2);
- }
-
- data = (data0 << 4) | data2 << 2 | 0x1001;
-
- ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
-
- return 0;
-}
-
-/*
- * Set a channel on the radio chip
- */
-int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
-{
- int ret;
- /*
- * Check bounds supported by the PHY (we don't care about regultory
- * restrictions at this point). Note: hw_value already has the band
- * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
- * of the band by that */
- if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
- ATH5K_ERR(ah->ah_sc,
- "channel frequency (%u MHz) out of supported "
- "band range\n",
- channel->center_freq);
- return -EINVAL;
- }
-
- /*
- * Set the channel and wait
- */
- switch (ah->ah_radio) {
- case AR5K_RF5110:
- ret = ath5k_hw_rf5110_channel(ah, channel);
- break;
- case AR5K_RF5111:
- ret = ath5k_hw_rf5111_channel(ah, channel);
- break;
- case AR5K_RF2425:
- ret = ath5k_hw_rf2425_channel(ah, channel);
- break;
- default:
- ret = ath5k_hw_rf5112_channel(ah, channel);
- break;
- }
-
- if (ret)
- return ret;
-
- /* Set JAPAN setting for channel 14 */
- if (channel->center_freq == 2484) {
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
- AR5K_PHY_CCKTXCTL_JAPAN);
- } else {
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
- AR5K_PHY_CCKTXCTL_WORLD);
- }
-
- ah->ah_current_channel.center_freq = channel->center_freq;
- ah->ah_current_channel.hw_value = channel->hw_value;
- ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
-
- return 0;
-}
-
-/*****************\
- PHY calibration
-\*****************/
-
-/**
- * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
- *
- * @ah: struct ath5k_hw pointer we are operating on
- * @freq: the channel frequency, just used for error logging
- *
- * This function performs a noise floor calibration of the PHY and waits for
- * it to complete. Then the noise floor value is compared to some maximum
- * noise floor we consider valid.
- *
- * Note that this is different from what the madwifi HAL does: it reads the
- * noise floor and afterwards initiates the calibration. Since the noise floor
- * calibration can take some time to finish, depending on the current channel
- * use, that avoids the occasional timeout warnings we are seeing now.
- *
- * See the following link for an Atheros patent on noise floor calibration:
- * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
- * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
- *
- * XXX: Since during noise floor calibration antennas are detached according to
- * the patent, we should stop tx queues here.
- */
-int
-ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
-{
- int ret;
- unsigned int i;
- s32 noise_floor;
-
- /*
- * Enable noise floor calibration
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_NF);
-
- ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_NF, 0, false);
- if (ret) {
- ATH5K_ERR(ah->ah_sc,
- "noise floor calibration timeout (%uMHz)\n", freq);
- return -EAGAIN;
- }
-
- /* Wait until the noise floor is calibrated and read the value */
- for (i = 20; i > 0; i--) {
- mdelay(1);
- noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
- noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
- if (noise_floor & AR5K_PHY_NF_ACTIVE) {
- noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
-
- if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
- break;
- }
- }
-
- ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
- "noise floor %d\n", noise_floor);
-
- if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
- ATH5K_ERR(ah->ah_sc,
- "noise floor calibration failed (%uMHz)\n", freq);
- return -EAGAIN;
- }
-
- ah->ah_noise_floor = noise_floor;
-
- return 0;
-}
-
-/*
- * Perform a PHY calibration on RF5110
- * -Fix BPSK/QAM Constellation (I/Q correction)
- * -Calculate Noise Floor
- */
-static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- u32 phy_sig, phy_agc, phy_sat, beacon;
- int ret;
-
- /*
- * Disable beacons and RX/TX queues, wait
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
- AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
- beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
- ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
-
- mdelay(2);
-
- /*
- * Set the channel (with AGC turned off)
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
- udelay(10);
- ret = ath5k_hw_channel(ah, channel);
-
- /*
- * Activate PHY and wait
- */
- ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
- mdelay(1);
-
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
-
- if (ret)
- return ret;
-
- /*
- * Calibrate the radio chip
- */
-
- /* Remember normal state */
- phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
- phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
- phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
-
- /* Update radio registers */
- ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
- AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
-
- ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
- AR5K_PHY_AGCCOARSE_LO)) |
- AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
- AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
-
- ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
- AR5K_PHY_ADCSAT_THR)) |
- AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
- AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
-
- udelay(20);
-
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
- udelay(10);
- ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
-
- mdelay(1);
-
- /*
- * Enable calibration and wait until completion
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
-
- ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_CAL, 0, false);
-
- /* Reset to normal state */
- ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
- ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
- ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
-
- if (ret) {
- ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
- channel->center_freq);
- return ret;
- }
-
- ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
-
- /*
- * Re-enable RX/TX and beacons
- */
- AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
- AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
- ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
-
- return 0;
-}
-
-/*
- * Perform a PHY calibration on RF5111/5112 and newer chips
- */
-static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- u32 i_pwr, q_pwr;
- s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
- int i;
- ATH5K_TRACE(ah->ah_sc);
-
- if (!ah->ah_calibration ||
- ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
- goto done;
-
- /* Calibration has finished, get the results and re-run */
- for (i = 0; i <= 10; i++) {
- iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
- i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
- q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
- }
-
- i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
- q_coffd = q_pwr >> 7;
-
- /* No correction */
- if (i_coffd == 0 || q_coffd == 0)
- goto done;
-
- i_coff = ((-iq_corr) / i_coffd) & 0x3f;
-
- /* Boundary check */
- if (i_coff > 31)
- i_coff = 31;
- if (i_coff < -32)
- i_coff = -32;
-
- q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
-
- /* Boundary check */
- if (q_coff > 15)
- q_coff = 15;
- if (q_coff < -16)
- q_coff = -16;
-
- /* Commit new I/Q value */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
- ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
-
- /* Re-enable calibration -if we don't we'll commit
- * the same values again and again */
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
- AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
-
-done:
-
- /* TODO: Separate noise floor calibration from I/Q calibration
- * since noise floor calibration interrupts rx path while I/Q
- * calibration doesn't. We don't need to run noise floor calibration
- * as often as I/Q calibration.*/
- ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
-
- /* Initiate a gain_F calibration */
- ath5k_hw_request_rfgain_probe(ah);
-
- return 0;
-}
-
-/*
- * Perform a PHY calibration
- */
-int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- int ret;
-
- if (ah->ah_radio == AR5K_RF5110)
- ret = ath5k_hw_rf5110_calibrate(ah, channel);
- else
- ret = ath5k_hw_rf511x_calibrate(ah, channel);
-
- return ret;
-}
-
-int ath5k_hw_phy_disable(struct ath5k_hw *ah)
-{
- ATH5K_TRACE(ah->ah_sc);
- /*Just a try M.F.*/
- ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
-
- return 0;
-}
-
-/********************\
- Misc PHY functions
-\********************/
-
-/*
- * Get the PHY Chip revision
- */
-u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
-{
- unsigned int i;
- u32 srev;
- u16 ret;
-
- ATH5K_TRACE(ah->ah_sc);
-
- /*
- * Set the radio chip access register
- */
- switch (chan) {
- case CHANNEL_2GHZ:
- ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
- break;
- case CHANNEL_5GHZ:
- ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
- break;
- default:
- return 0;
- }
-
- mdelay(2);
-
- /* ...wait until PHY is ready and read the selected radio revision */
- ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
-
- for (i = 0; i < 8; i++)
- ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
-
- if (ah->ah_version == AR5K_AR5210) {
- srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
- ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
- } else {
- srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
- ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
- ((srev & 0x0f) << 4), 8);
- }
-
- /* Reset to the 5GHz mode */
- ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
-
- return ret;
-}
-
-void /*TODO:Boundary check*/
-ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
-{
- ATH5K_TRACE(ah->ah_sc);
- /*Just a try M.F.*/
- if (ah->ah_version != AR5K_AR5210)
- ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
-}
-
-unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
-{
- ATH5K_TRACE(ah->ah_sc);
- /*Just a try M.F.*/
- if (ah->ah_version != AR5K_AR5210)
- return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
-
- return false; /*XXX: What do we return for 5210 ?*/
-}
-
-
-/****************\
-* TX power setup *
-\****************/
-
-/*
- * Helper functions
- */
-
-/*
- * Do linear interpolation between two given (x, y) points
- */
-static s16
-ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
- s16 y_left, s16 y_right)
-{
- s16 ratio, result;
-
- /* Avoid divide by zero and skip interpolation
- * if we have the same point */
- if ((x_left == x_right) || (y_left == y_right))
- return y_left;
-
- /*
- * Since we use ints and not fps, we need to scale up in
- * order to get a sane ratio value (or else we 'll eg. get
- * always 1 instead of 1.25, 1.75 etc). We scale up by 100
- * to have some accuracy both for 0.5 and 0.25 steps.
- */
- ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
-
- /* Now scale down to be in range */
- result = y_left + (ratio * (target - x_left) / 100);
-
- return result;
-}
-
-/*
- * Find vertical boundary (min pwr) for the linear PCDAC curve.
- *
- * Since we have the top of the curve and we draw the line below
- * until we reach 1 (1 pcdac step) we need to know which point
- * (x value) that is so that we don't go below y axis and have negative
- * pcdac values when creating the curve, or fill the table with zeroes.
- */
-static s16
-ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
- const s16 *pwrL, const s16 *pwrR)
-{
- s8 tmp;
- s16 min_pwrL, min_pwrR;
- s16 pwr_i = pwrL[0];
-
- do {
- pwr_i--;
- tmp = (s8) ath5k_get_interpolated_value(pwr_i,
- pwrL[0], pwrL[1],
- stepL[0], stepL[1]);
-
- } while (tmp > 1);
-
- min_pwrL = pwr_i;
-
- pwr_i = pwrR[0];
- do {
- pwr_i--;
- tmp = (s8) ath5k_get_interpolated_value(pwr_i,
- pwrR[0], pwrR[1],
- stepR[0], stepR[1]);
-
- } while (tmp > 1);
-
- min_pwrR = pwr_i;
-
- /* Keep the right boundary so that it works for both curves */
- return max(min_pwrL, min_pwrR);
-}
-
-/*
- * Interpolate (pwr,vpd) points to create a Power to PDADC or a
- * Power to PCDAC curve.
- *
- * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
- * steps (offsets) on y axis. Power can go up to 31.5dB and max
- * PCDAC/PDADC step for each curve is 64 but we can write more than
- * one curves on hw so we can go up to 128 (which is the max step we
- * can write on the final table).
- *
- * We write y values (PCDAC/PDADC steps) on hw.
- */
-static void
-ath5k_create_power_curve(s16 pmin, s16 pmax,
- const s16 *pwr, const u8 *vpd,
- u8 num_points,
- u8 *vpd_table, u8 type)
-{
- u8 idx[2] = { 0, 1 };
- s16 pwr_i = 2*pmin;
- int i;
-
- if (num_points < 2)
- return;
-
- /* We want the whole line, so adjust boundaries
- * to cover the entire power range. Note that
- * power values are already 0.25dB so no need
- * to multiply pwr_i by 2 */
- if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
- pwr_i = pmin;
- pmin = 0;
- pmax = 63;
- }
-
- /* Find surrounding turning points (TPs)
- * and interpolate between them */
- for (i = 0; (i <= (u16) (pmax - pmin)) &&
- (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
-
- /* We passed the right TP, move to the next set of TPs
- * if we pass the last TP, extrapolate above using the last
- * two TPs for ratio */
- if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
- idx[0]++;
- idx[1]++;
- }
-
- vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
- pwr[idx[0]], pwr[idx[1]],
- vpd[idx[0]], vpd[idx[1]]);
-
- /* Increase by 0.5dB
- * (0.25 dB units) */
- pwr_i += 2;
- }
-}
-
-/*
- * Get the surrounding per-channel power calibration piers
- * for a given frequency so that we can interpolate between
- * them and come up with an apropriate dataset for our current
- * channel.
- */
-static void
-ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
- struct ieee80211_channel *channel,
- struct ath5k_chan_pcal_info **pcinfo_l,
- struct ath5k_chan_pcal_info **pcinfo_r)
-{
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- struct ath5k_chan_pcal_info *pcinfo;
- u8 idx_l, idx_r;
- u8 mode, max, i;
- u32 target = channel->center_freq;
-
- idx_l = 0;
- idx_r = 0;
-
- if (!(channel->hw_value & CHANNEL_OFDM)) {
- pcinfo = ee->ee_pwr_cal_b;
- mode = AR5K_EEPROM_MODE_11B;
- } else if (channel->hw_value & CHANNEL_2GHZ) {
- pcinfo = ee->ee_pwr_cal_g;
- mode = AR5K_EEPROM_MODE_11G;
- } else {
- pcinfo = ee->ee_pwr_cal_a;
- mode = AR5K_EEPROM_MODE_11A;
- }
- max = ee->ee_n_piers[mode] - 1;
-
- /* Frequency is below our calibrated
- * range. Use the lowest power curve
- * we have */
- if (target < pcinfo[0].freq) {
- idx_l = idx_r = 0;
- goto done;
- }
-
- /* Frequency is above our calibrated
- * range. Use the highest power curve
- * we have */
- if (target > pcinfo[max].freq) {
- idx_l = idx_r = max;
- goto done;
- }
-
- /* Frequency is inside our calibrated
- * channel range. Pick the surrounding
- * calibration piers so that we can
- * interpolate */
- for (i = 0; i <= max; i++) {
-
- /* Frequency matches one of our calibration
- * piers, no need to interpolate, just use
- * that calibration pier */
- if (pcinfo[i].freq == target) {
- idx_l = idx_r = i;
- goto done;
- }
-
- /* We found a calibration pier that's above
- * frequency, use this pier and the previous
- * one to interpolate */
- if (target < pcinfo[i].freq) {
- idx_r = i;
- idx_l = idx_r - 1;
- goto done;
- }
- }
-
-done:
- *pcinfo_l = &pcinfo[idx_l];
- *pcinfo_r = &pcinfo[idx_r];
-
- return;
-}
-
-/*
- * Get the surrounding per-rate power calibration data
- * for a given frequency and interpolate between power
- * values to set max target power supported by hw for
- * each rate.
- */
-static void
-ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
- struct ieee80211_channel *channel,
- struct ath5k_rate_pcal_info *rates)
-{
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- struct ath5k_rate_pcal_info *rpinfo;
- u8 idx_l, idx_r;
- u8 mode, max, i;
- u32 target = channel->center_freq;
-
- idx_l = 0;
- idx_r = 0;
-
- if (!(channel->hw_value & CHANNEL_OFDM)) {
- rpinfo = ee->ee_rate_tpwr_b;
- mode = AR5K_EEPROM_MODE_11B;
- } else if (channel->hw_value & CHANNEL_2GHZ) {
- rpinfo = ee->ee_rate_tpwr_g;
- mode = AR5K_EEPROM_MODE_11G;
- } else {
- rpinfo = ee->ee_rate_tpwr_a;
- mode = AR5K_EEPROM_MODE_11A;
- }
- max = ee->ee_rate_target_pwr_num[mode] - 1;
-
- /* Get the surrounding calibration
- * piers - same as above */
- if (target < rpinfo[0].freq) {
- idx_l = idx_r = 0;
- goto done;
- }
-
- if (target > rpinfo[max].freq) {
- idx_l = idx_r = max;
- goto done;
- }
-
- for (i = 0; i <= max; i++) {
-
- if (rpinfo[i].freq == target) {
- idx_l = idx_r = i;
- goto done;
- }
-
- if (target < rpinfo[i].freq) {
- idx_r = i;
- idx_l = idx_r - 1;
- goto done;
- }
- }
-
-done:
- /* Now interpolate power value, based on the frequency */
- rates->freq = target;
-
- rates->target_power_6to24 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_6to24,
- rpinfo[idx_r].target_power_6to24);
-
- rates->target_power_36 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_36,
- rpinfo[idx_r].target_power_36);
-
- rates->target_power_48 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_48,
- rpinfo[idx_r].target_power_48);
-
- rates->target_power_54 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_54,
- rpinfo[idx_r].target_power_54);
-}
-
-/*
- * Get the max edge power for this channel if
- * we have such data from EEPROM's Conformance Test
- * Limits (CTL), and limit max power if needed.
- *
- * FIXME: Only works for world regulatory domains
- */
-static void
-ath5k_get_max_ctl_power(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
-{
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
- u8 *ctl_val = ee->ee_ctl;
- s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
- s16 edge_pwr = 0;
- u8 rep_idx;
- u8 i, ctl_mode;
- u8 ctl_idx = 0xFF;
- u32 target = channel->center_freq;
-
- /* Find out a CTL for our mode that's not mapped
- * on a specific reg domain.
- *
- * TODO: Map our current reg domain to one of the 3 available
- * reg domain ids so that we can support more CTLs. */
- switch (channel->hw_value & CHANNEL_MODES) {
- case CHANNEL_A:
- ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
- break;
- case CHANNEL_G:
- ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
- break;
- case CHANNEL_B:
- ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
- break;
- case CHANNEL_T:
- ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
- break;
- case CHANNEL_TG:
- ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
- break;
- case CHANNEL_XR:
- /* Fall through */
- default:
- return;
- }
-
- for (i = 0; i < ee->ee_ctls; i++) {
- if (ctl_val[i] == ctl_mode) {
- ctl_idx = i;
- break;
- }
- }
-
- /* If we have a CTL dataset available grab it and find the
- * edge power for our frequency */
- if (ctl_idx == 0xFF)
- return;
-
- /* Edge powers are sorted by frequency from lower
- * to higher. Each CTL corresponds to 8 edge power
- * measurements. */
- rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
-
- /* Don't do boundaries check because we
- * might have more that one bands defined
- * for this mode */
-
- /* Get the edge power that's closer to our
- * frequency */
- for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
- rep_idx += i;
- if (target <= rep[rep_idx].freq)
- edge_pwr = (s16) rep[rep_idx].edge;
- }
-
- if (edge_pwr)
- ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
-}
-
-
-/*
- * Power to PCDAC table functions
- */
-
-/*
- * Fill Power to PCDAC table on RF5111
- *
- * No further processing is needed for RF5111, the only thing we have to
- * do is fill the values below and above calibration range since eeprom data
- * may not cover the entire PCDAC table.
- */
-static void
-ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
- s16 *table_max)
-{
- u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
- u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
- u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
- s16 min_pwr, max_pwr;
-
- /* Get table boundaries */
- min_pwr = table_min[0];
- pcdac_0 = pcdac_tmp[0];
-
- max_pwr = table_max[0];
- pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
-
- /* Extrapolate below minimum using pcdac_0 */
- pcdac_i = 0;
- for (i = 0; i < min_pwr; i++)
- pcdac_out[pcdac_i++] = pcdac_0;
-
- /* Copy values from pcdac_tmp */
- pwr_idx = min_pwr;
- for (i = 0 ; pwr_idx <= max_pwr &&
- pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
- pcdac_out[pcdac_i++] = pcdac_tmp[i];
- pwr_idx++;
- }
-
- /* Extrapolate above maximum */
- while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
- pcdac_out[pcdac_i++] = pcdac_n;
-
-}
-
-/*
- * Combine available XPD Curves and fill Linear Power to PCDAC table
- * on RF5112
- *
- * RFX112 can have up to 2 curves (one for low txpower range and one for
- * higher txpower range). We need to put them both on pcdac_out and place
- * them in the correct location. In case we only have one curve available
- * just fit it on pcdac_out (it's supposed to cover the entire range of
- * available pwr levels since it's always the higher power curve). Extrapolate
- * below and above final table if needed.
- */
-static void
-ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
- s16 *table_max, u8 pdcurves)
-{
- u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
- u8 *pcdac_low_pwr;
- u8 *pcdac_high_pwr;
- u8 *pcdac_tmp;
- u8 pwr;
- s16 max_pwr_idx;
- s16 min_pwr_idx;
- s16 mid_pwr_idx = 0;
- /* Edge flag turs on the 7nth bit on the PCDAC
- * to delcare the higher power curve (force values
- * to be greater than 64). If we only have one curve
- * we don't need to set this, if we have 2 curves and
- * fill the table backwards this can also be used to
- * switch from higher power curve to lower power curve */
- u8 edge_flag;
- int i;
-
- /* When we have only one curve available
- * that's the higher power curve. If we have
- * two curves the first is the high power curve
- * and the next is the low power curve. */
- if (pdcurves > 1) {
- pcdac_low_pwr = ah->ah_txpower.tmpL[1];
- pcdac_high_pwr = ah->ah_txpower.tmpL[0];
- mid_pwr_idx = table_max[1] - table_min[1] - 1;
- max_pwr_idx = (table_max[0] - table_min[0]) / 2;
-
- /* If table size goes beyond 31.5dB, keep the
- * upper 31.5dB range when setting tx power.
- * Note: 126 = 31.5 dB in quarter dB steps */
- if (table_max[0] - table_min[1] > 126)
- min_pwr_idx = table_max[0] - 126;
- else
- min_pwr_idx = table_min[1];
-
- /* Since we fill table backwards
- * start from high power curve */
- pcdac_tmp = pcdac_high_pwr;
-
- edge_flag = 0x40;
-#if 0
- /* If both min and max power limits are in lower
- * power curve's range, only use the low power curve.
- * TODO: min/max levels are related to target
- * power values requested from driver/user
- * XXX: Is this really needed ? */
- if (min_pwr < table_max[1] &&
- max_pwr < table_max[1]) {
- edge_flag = 0;
- pcdac_tmp = pcdac_low_pwr;
- max_pwr_idx = (table_max[1] - table_min[1])/2;
- }
-#endif
- } else {
- pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
- pcdac_high_pwr = ah->ah_txpower.tmpL[0];
- min_pwr_idx = table_min[0];
- max_pwr_idx = (table_max[0] - table_min[0]) / 2;
- pcdac_tmp = pcdac_high_pwr;
- edge_flag = 0;
- }
-
- /* This is used when setting tx power*/
- ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
-
- /* Fill Power to PCDAC table backwards */
- pwr = max_pwr_idx;
- for (i = 63; i >= 0; i--) {
- /* Entering lower power range, reset
- * edge flag and set pcdac_tmp to lower
- * power curve.*/
- if (edge_flag == 0x40 &&
- (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
- edge_flag = 0x00;
- pcdac_tmp = pcdac_low_pwr;
- pwr = mid_pwr_idx/2;
- }
-
- /* Don't go below 1, extrapolate below if we have
- * already swithced to the lower power curve -or
- * we only have one curve and edge_flag is zero
- * anyway */
- if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
- while (i >= 0) {
- pcdac_out[i] = pcdac_out[i + 1];
- i--;
- }
- break;
- }
-
- pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
-
- /* Extrapolate above if pcdac is greater than
- * 126 -this can happen because we OR pcdac_out
- * value with edge_flag on high power curve */
- if (pcdac_out[i] > 126)
- pcdac_out[i] = 126;
-
- /* Decrease by a 0.5dB step */
- pwr--;
- }
-}
-
-/* Write PCDAC values on hw */
-static void
-ath5k_setup_pcdac_table(struct ath5k_hw *ah)
-{
- u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
- int i;
-
- /*
- * Write TX power values
- */
- for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
- ath5k_hw_reg_write(ah,
- (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
- (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
- AR5K_PHY_PCDAC_TXPOWER(i));
- }
-}
-
-
-/*
- * Power to PDADC table functions
- */
-
-/*
- * Set the gain boundaries and create final Power to PDADC table
- *
- * We can have up to 4 pd curves, we need to do a simmilar process
- * as we do for RF5112. This time we don't have an edge_flag but we
- * set the gain boundaries on a separate register.
- */
-static void
-ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
- s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
-{
- u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
- u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
- u8 *pdadc_tmp;
- s16 pdadc_0;
- u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
- u8 pd_gain_overlap;
-
- /* Note: Register value is initialized on initvals
- * there is no feedback from hw.
- * XXX: What about pd_gain_overlap from EEPROM ? */
- pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
- AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
-
- /* Create final PDADC table */
- for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
- pdadc_tmp = ah->ah_txpower.tmpL[pdg];
-
- if (pdg == pdcurves - 1)
- /* 2 dB boundary stretch for last
- * (higher power) curve */
- gain_boundaries[pdg] = pwr_max[pdg] + 4;
- else
- /* Set gain boundary in the middle
- * between this curve and the next one */
- gain_boundaries[pdg] =
- (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
-
- /* Sanity check in case our 2 db stretch got out of
- * range. */
- if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
- gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
-
- /* For the first curve (lower power)
- * start from 0 dB */
- if (pdg == 0)
- pdadc_0 = 0;
- else
- /* For the other curves use the gain overlap */
- pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
- pd_gain_overlap;
-
- /* Force each power step to be at least 0.5 dB */
- if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
- pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
- else
- pwr_step = 1;
-
- /* If pdadc_0 is negative, we need to extrapolate
- * below this pdgain by a number of pwr_steps */
- while ((pdadc_0 < 0) && (pdadc_i < 128)) {
- s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
- pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
- pdadc_0++;
- }
-
- /* Set last pwr level, using gain boundaries */
- pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
- /* Limit it to be inside pwr range */
- table_size = pwr_max[pdg] - pwr_min[pdg];
- max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
-
- /* Fill pdadc_out table */
- while (pdadc_0 < max_idx)
- pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
-
- /* Need to extrapolate above this pdgain? */
- if (pdadc_n <= max_idx)
- continue;
-
- /* Force each power step to be at least 0.5 dB */
- if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
- pwr_step = pdadc_tmp[table_size - 1] -
- pdadc_tmp[table_size - 2];
- else
- pwr_step = 1;
-
- /* Extrapolate above */
- while ((pdadc_0 < (s16) pdadc_n) &&
- (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
- s16 tmp = pdadc_tmp[table_size - 1] +
- (pdadc_0 - max_idx) * pwr_step;
- pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
- pdadc_0++;
- }
- }
-
- while (pdg < AR5K_EEPROM_N_PD_GAINS) {
- gain_boundaries[pdg] = gain_boundaries[pdg - 1];
- pdg++;
- }
-
- while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
- pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
- pdadc_i++;
- }
-
- /* Set gain boundaries */
- ath5k_hw_reg_write(ah,
- AR5K_REG_SM(pd_gain_overlap,
- AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
- AR5K_REG_SM(gain_boundaries[0],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
- AR5K_REG_SM(gain_boundaries[1],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
- AR5K_REG_SM(gain_boundaries[2],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
- AR5K_REG_SM(gain_boundaries[3],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
- AR5K_PHY_TPC_RG5);
-
- /* Used for setting rate power table */
- ah->ah_txpower.txp_min_idx = pwr_min[0];
-
-}
-
-/* Write PDADC values on hw */
-static void
-ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
- u8 pdcurves, u8 *pdg_to_idx)
-{
- u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
- u32 reg;
- u8 i;
-
- /* Select the right pdgain curves */
-
- /* Clear current settings */
- reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
- reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
- AR5K_PHY_TPC_RG1_PDGAIN_2 |
- AR5K_PHY_TPC_RG1_PDGAIN_3 |
- AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
-
- /*
- * Use pd_gains curve from eeprom
- *
- * This overrides the default setting from initvals
- * in case some vendors (e.g. Zcomax) don't use the default
- * curves. If we don't honor their settings we 'll get a
- * 5dB (1 * gain overlap ?) drop.
- */
- reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
-
- switch (pdcurves) {
- case 3:
- reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
- /* Fall through */
- case 2:
- reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
- /* Fall through */
- case 1:
- reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
- break;
- }
- ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
-
- /*
- * Write TX power values
- */
- for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
- ath5k_hw_reg_write(ah,
- ((pdadc_out[4*i + 0] & 0xff) << 0) |
- ((pdadc_out[4*i + 1] & 0xff) << 8) |
- ((pdadc_out[4*i + 2] & 0xff) << 16) |
- ((pdadc_out[4*i + 3] & 0xff) << 24),
- AR5K_PHY_PDADC_TXPOWER(i));
- }
-}
-
-
-/*
- * Common code for PCDAC/PDADC tables
- */
-
-/*
- * This is the main function that uses all of the above
- * to set PCDAC/PDADC table on hw for the current channel.
- * This table is used for tx power calibration on the basband,
- * without it we get weird tx power levels and in some cases
- * distorted spectral mask
- */
-static int
-ath5k_setup_channel_powertable(struct ath5k_hw *ah,
- struct ieee80211_channel *channel,
- u8 ee_mode, u8 type)
-{
- struct ath5k_pdgain_info *pdg_L, *pdg_R;
- struct ath5k_chan_pcal_info *pcinfo_L;
- struct ath5k_chan_pcal_info *pcinfo_R;
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
- s16 table_min[AR5K_EEPROM_N_PD_GAINS];
- s16 table_max[AR5K_EEPROM_N_PD_GAINS];
- u8 *tmpL;
- u8 *tmpR;
- u32 target = channel->center_freq;
- int pdg, i;
-
- /* Get surounding freq piers for this channel */
- ath5k_get_chan_pcal_surrounding_piers(ah, channel,
- &pcinfo_L,
- &pcinfo_R);
-
- /* Loop over pd gain curves on
- * surounding freq piers by index */
- for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
-
- /* Fill curves in reverse order
- * from lower power (max gain)
- * to higher power. Use curve -> idx
- * backmaping we did on eeprom init */
- u8 idx = pdg_curve_to_idx[pdg];
-
- /* Grab the needed curves by index */
- pdg_L = &pcinfo_L->pd_curves[idx];
- pdg_R = &pcinfo_R->pd_curves[idx];
-
- /* Initialize the temp tables */
- tmpL = ah->ah_txpower.tmpL[pdg];
- tmpR = ah->ah_txpower.tmpR[pdg];
-
- /* Set curve's x boundaries and create
- * curves so that they cover the same
- * range (if we don't do that one table
- * will have values on some range and the
- * other one won't have any so interpolation
- * will fail) */
- table_min[pdg] = min(pdg_L->pd_pwr[0],
- pdg_R->pd_pwr[0]) / 2;
-
- table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
- pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
-
- /* Now create the curves on surrounding channels
- * and interpolate if needed to get the final
- * curve for this gain on this channel */
- switch (type) {
- case AR5K_PWRTABLE_LINEAR_PCDAC:
- /* Override min/max so that we don't loose
- * accuracy (don't divide by 2) */
- table_min[pdg] = min(pdg_L->pd_pwr[0],
- pdg_R->pd_pwr[0]);
-
- table_max[pdg] =
- max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
- pdg_R->pd_pwr[pdg_R->pd_points - 1]);
-
- /* Override minimum so that we don't get
- * out of bounds while extrapolating
- * below. Don't do this when we have 2
- * curves and we are on the high power curve
- * because table_min is ok in this case */
- if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
-
- table_min[pdg] =
- ath5k_get_linear_pcdac_min(pdg_L->pd_step,
- pdg_R->pd_step,
- pdg_L->pd_pwr,
- pdg_R->pd_pwr);
-
- /* Don't go too low because we will
- * miss the upper part of the curve.
- * Note: 126 = 31.5dB (max power supported)
- * in 0.25dB units */
- if (table_max[pdg] - table_min[pdg] > 126)
- table_min[pdg] = table_max[pdg] - 126;
- }
-
- /* Fall through */
- case AR5K_PWRTABLE_PWR_TO_PCDAC:
- case AR5K_PWRTABLE_PWR_TO_PDADC:
-
- ath5k_create_power_curve(table_min[pdg],
- table_max[pdg],
- pdg_L->pd_pwr,
- pdg_L->pd_step,
- pdg_L->pd_points, tmpL, type);
-
- /* We are in a calibration
- * pier, no need to interpolate
- * between freq piers */
- if (pcinfo_L == pcinfo_R)
- continue;
-
- ath5k_create_power_curve(table_min[pdg],
- table_max[pdg],
- pdg_R->pd_pwr,
- pdg_R->pd_step,
- pdg_R->pd_points, tmpR, type);
- break;
- default:
- return -EINVAL;
- }
-
- /* Interpolate between curves
- * of surounding freq piers to
- * get the final curve for this
- * pd gain. Re-use tmpL for interpolation
- * output */
- for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
- (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
- tmpL[i] = (u8) ath5k_get_interpolated_value(target,
- (s16) pcinfo_L->freq,
- (s16) pcinfo_R->freq,
- (s16) tmpL[i],
- (s16) tmpR[i]);
- }
- }
-
- /* Now we have a set of curves for this
- * channel on tmpL (x range is table_max - table_min
- * and y values are tmpL[pdg][]) sorted in the same
- * order as EEPROM (because we've used the backmaping).
- * So for RF5112 it's from higher power to lower power
- * and for RF2413 it's from lower power to higher power.
- * For RF5111 we only have one curve. */
-
- /* Fill min and max power levels for this
- * channel by interpolating the values on
- * surounding channels to complete the dataset */
- ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
- (s16) pcinfo_L->freq,
- (s16) pcinfo_R->freq,
- pcinfo_L->min_pwr, pcinfo_R->min_pwr);
-
- ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
- (s16) pcinfo_L->freq,
- (s16) pcinfo_R->freq,
- pcinfo_L->max_pwr, pcinfo_R->max_pwr);
-
- /* We are ready to go, fill PCDAC/PDADC
- * table and write settings on hardware */
- switch (type) {
- case AR5K_PWRTABLE_LINEAR_PCDAC:
- /* For RF5112 we can have one or two curves
- * and each curve covers a certain power lvl
- * range so we need to do some more processing */
- ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
- ee->ee_pd_gains[ee_mode]);
-
- /* Set txp.offset so that we can
- * match max power value with max
- * table index */
- ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
-
- /* Write settings on hw */
- ath5k_setup_pcdac_table(ah);
- break;
- case AR5K_PWRTABLE_PWR_TO_PCDAC:
- /* We are done for RF5111 since it has only
- * one curve, just fit the curve on the table */
- ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
-
- /* No rate powertable adjustment for RF5111 */
- ah->ah_txpower.txp_min_idx = 0;
- ah->ah_txpower.txp_offset = 0;
-
- /* Write settings on hw */
- ath5k_setup_pcdac_table(ah);
- break;
- case AR5K_PWRTABLE_PWR_TO_PDADC:
- /* Set PDADC boundaries and fill
- * final PDADC table */
- ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
- ee->ee_pd_gains[ee_mode]);
-
- /* Write settings on hw */
- ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
-
- /* Set txp.offset, note that table_min
- * can be negative */
- ah->ah_txpower.txp_offset = table_min[0];
- break;
- default:
- return -EINVAL;
- }
-
- return 0;
-}
-
-
-/*
- * Per-rate tx power setting
- *
- * This is the code that sets the desired tx power (below
- * maximum) on hw for each rate (we also have TPC that sets
- * power per packet). We do that by providing an index on the
- * PCDAC/PDADC table we set up.
- */
-
-/*
- * Set rate power table
- *
- * For now we only limit txpower based on maximum tx power
- * supported by hw (what's inside rate_info). We need to limit
- * this even more, based on regulatory domain etc.
- *
- * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
- * and is indexed as follows:
- * rates[0] - rates[7] -> OFDM rates
- * rates[8] - rates[14] -> CCK rates
- * rates[15] -> XR rates (they all have the same power)
- */
-static void
-ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
- struct ath5k_rate_pcal_info *rate_info,
- u8 ee_mode)
-{
- unsigned int i;
- u16 *rates;
-
- /* max_pwr is power level we got from driver/user in 0.5dB
- * units, switch to 0.25dB units so we can compare */
- max_pwr *= 2;
- max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
-
- /* apply rate limits */
- rates = ah->ah_txpower.txp_rates_power_table;
-
- /* OFDM rates 6 to 24Mb/s */
- for (i = 0; i < 5; i++)
- rates[i] = min(max_pwr, rate_info->target_power_6to24);
-
- /* Rest OFDM rates */
- rates[5] = min(rates[0], rate_info->target_power_36);
- rates[6] = min(rates[0], rate_info->target_power_48);
- rates[7] = min(rates[0], rate_info->target_power_54);
-
- /* CCK rates */
- /* 1L */
- rates[8] = min(rates[0], rate_info->target_power_6to24);
- /* 2L */
- rates[9] = min(rates[0], rate_info->target_power_36);
- /* 2S */
- rates[10] = min(rates[0], rate_info->target_power_36);
- /* 5L */
- rates[11] = min(rates[0], rate_info->target_power_48);
- /* 5S */
- rates[12] = min(rates[0], rate_info->target_power_48);
- /* 11L */
- rates[13] = min(rates[0], rate_info->target_power_54);
- /* 11S */
- rates[14] = min(rates[0], rate_info->target_power_54);
-
- /* XR rates */
- rates[15] = min(rates[0], rate_info->target_power_6to24);
-
- /* CCK rates have different peak to average ratio
- * so we have to tweak their power so that gainf
- * correction works ok. For this we use OFDM to
- * CCK delta from eeprom */
- if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
- (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
- for (i = 8; i <= 15; i++)
- rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
-
- ah->ah_txpower.txp_min_pwr = rates[7];
- ah->ah_txpower.txp_max_pwr = rates[0];
- ah->ah_txpower.txp_ofdm = rates[7];
-}
-
-
-/*
- * Set transmition power
- */
-int
-ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
- u8 ee_mode, u8 txpower)
-{
- struct ath5k_rate_pcal_info rate_info;
- u8 type;
- int ret;
-
- ATH5K_TRACE(ah->ah_sc);
- if (txpower > AR5K_TUNE_MAX_TXPOWER) {
- ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
- return -EINVAL;
- }
- if (txpower == 0)
- txpower = AR5K_TUNE_DEFAULT_TXPOWER;
-
- /* Reset TX power values */
- memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
- ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
- ah->ah_txpower.txp_min_pwr = 0;
- ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
-
- /* Initialize TX power table */
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- type = AR5K_PWRTABLE_PWR_TO_PCDAC;
- break;
- case AR5K_RF5112:
- type = AR5K_PWRTABLE_LINEAR_PCDAC;
- break;
- case AR5K_RF2413:
- case AR5K_RF5413:
- case AR5K_RF2316:
- case AR5K_RF2317:
- case AR5K_RF2425:
- type = AR5K_PWRTABLE_PWR_TO_PDADC;
- break;
- default:
- return -EINVAL;
- }
-
- /* FIXME: Only on channel/mode change */
- ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
- if (ret)
- return ret;
-
- /* Limit max power if we have a CTL available */
- ath5k_get_max_ctl_power(ah, channel);
-
- /* FIXME: Tx power limit for this regdomain
- * XXX: Mac80211/CRDA will do that anyway ? */
-
- /* FIXME: Antenna reduction stuff */
-
- /* FIXME: Limit power on turbo modes */
-
- /* FIXME: TPC scale reduction */
-
- /* Get surounding channels for per-rate power table
- * calibration */
- ath5k_get_rate_pcal_data(ah, channel, &rate_info);
-
- /* Setup rate power table */
- ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
-
- /* Write rate power table on hw */
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
- AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
- AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
-
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
- AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
- AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
-
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
- AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
- AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
-
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
- AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
- AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
-
- /* FIXME: TPC support */
- if (ah->ah_txpower.txp_tpc) {
- ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
- AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
-
- ath5k_hw_reg_write(ah,
- AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
- AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
- AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
- AR5K_TPC);
- } else {
- ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
- AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
- }
-
- return 0;
-}
-
-int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
-{
- /*Just a try M.F.*/
- struct ieee80211_channel *channel = &ah->ah_current_channel;
-
- ATH5K_TRACE(ah->ah_sc);
- ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
- "changing txpower to %d\n", txpower);
-
- return ath5k_hw_txpower(ah, channel, mode, txpower);
-}
-
-#undef _ATH5K_PHY
OpenPOWER on IntegriCloud