summaryrefslogtreecommitdiffstats
path: root/drivers/net/ipg.c
diff options
context:
space:
mode:
authorFrancois Romieu <romieu@fr.zoreil.com>2007-09-17 17:13:55 -0700
committerDavid S. Miller <davem@sunset.davemloft.net>2007-10-10 16:51:33 -0700
commit1202d6ff356cc66dc8d2b85546eb4f187f9e1f25 (patch)
tree158ddb9c96756ecc60a205ebc7243ee9c3e2e05b /drivers/net/ipg.c
parent6b2f9cb64db2d2460da17900bf54266030cc24f1 (diff)
downloadop-kernel-dev-1202d6ff356cc66dc8d2b85546eb4f187f9e1f25.zip
op-kernel-dev-1202d6ff356cc66dc8d2b85546eb4f187f9e1f25.tar.gz
[IPG]: add IP1000A driver to kernel tree
Signed-off-by: Jesse Huang <jesse@icplus.com.tw> Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> Signed-off-by: Francois Romieu <romieu@fr.zoreil.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers/net/ipg.c')
-rw-r--r--drivers/net/ipg.c2326
1 files changed, 2326 insertions, 0 deletions
diff --git a/drivers/net/ipg.c b/drivers/net/ipg.c
new file mode 100644
index 0000000..dfdc96f
--- /dev/null
+++ b/drivers/net/ipg.c
@@ -0,0 +1,2326 @@
+/*
+ * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
+ *
+ * Copyright (C) 2003, 2007 IC Plus Corp
+ *
+ * Original Author:
+ *
+ * Craig Rich
+ * Sundance Technology, Inc.
+ * www.sundanceti.com
+ * craig_rich@sundanceti.com
+ *
+ * Current Maintainer:
+ *
+ * Sorbica Shieh.
+ * http://www.icplus.com.tw
+ * sorbica@icplus.com.tw
+ *
+ * Jesse Huang
+ * http://www.icplus.com.tw
+ * jesse@icplus.com.tw
+ */
+#include <linux/crc32.h>
+#include <linux/ethtool.h>
+#include <linux/mii.h>
+#include <linux/mutex.h>
+
+#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
+#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
+#define IPG_RESET_MASK \
+ (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
+ IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
+ IPG_AC_AUTO_INIT)
+
+#define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg))
+#define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg))
+#define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg))
+
+#define ipg_r32(reg) ioread32(ioaddr + (reg))
+#define ipg_r16(reg) ioread16(ioaddr + (reg))
+#define ipg_r8(reg) ioread8(ioaddr + (reg))
+
+#define JUMBO_FRAME_4k_ONLY
+enum {
+ netdev_io_size = 128
+};
+
+#include "ipg.h"
+#define DRV_NAME "ipg"
+
+MODULE_AUTHOR("IC Plus Corp. 2003");
+MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver "
+ DrvVer);
+MODULE_LICENSE("GPL");
+
+static const char *ipg_brand_name[] = {
+ "IC PLUS IP1000 1000/100/10 based NIC",
+ "Sundance Technology ST2021 based NIC",
+ "Tamarack Microelectronics TC9020/9021 based NIC",
+ "Tamarack Microelectronics TC9020/9021 based NIC",
+ "D-Link NIC",
+ "D-Link NIC IP1000A"
+};
+
+static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
+ { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
+ { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
+ { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
+ { PCI_VDEVICE(DLINK, 0x9021), 3 },
+ { PCI_VDEVICE(DLINK, 0x4000), 4 },
+ { PCI_VDEVICE(DLINK, 0x4020), 5 },
+ { 0, }
+};
+
+MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
+
+static inline void __iomem *ipg_ioaddr(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ return sp->ioaddr;
+}
+
+#ifdef IPG_DEBUG
+static void ipg_dump_rfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+ u32 offset;
+
+ IPG_DEBUG_MSG("_dump_rfdlist\n");
+
+ printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
+ printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
+ printk(KERN_INFO "RFDList start address = %16.16lx\n",
+ (unsigned long) sp->rxd_map);
+ printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
+ ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
+
+ for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
+ offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
+ printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
+ offset, (unsigned long) sp->rxd[i].next_desc);
+ offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
+ printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
+ offset, (unsigned long) sp->rxd[i].rfs);
+ offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
+ printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
+ offset, (unsigned long) sp->rxd[i].frag_info);
+ }
+}
+
+static void ipg_dump_tfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+ u32 offset;
+
+ IPG_DEBUG_MSG("_dump_tfdlist\n");
+
+ printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
+ printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
+ printk(KERN_INFO "TFDList start address = %16.16lx\n",
+ (unsigned long) sp->txd_map);
+ printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
+ ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
+
+ for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
+ offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
+ printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
+ offset, (unsigned long) sp->txd[i].next_desc);
+
+ offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
+ printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
+ offset, (unsigned long) sp->txd[i].tfc);
+ offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
+ printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
+ offset, (unsigned long) sp->txd[i].frag_info);
+ }
+}
+#endif
+
+static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
+{
+ ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
+ ndelay(IPG_PC_PHYCTRLWAIT_NS);
+}
+
+static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
+{
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
+}
+
+static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
+{
+ phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
+
+ ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
+}
+
+static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
+{
+ ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
+ phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
+}
+
+static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
+{
+ u16 bit_data;
+
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
+
+ bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
+
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
+
+ return bit_data;
+}
+
+/*
+ * Read a register from the Physical Layer device located
+ * on the IPG NIC, using the IPG PHYCTRL register.
+ */
+static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ /*
+ * The GMII mangement frame structure for a read is as follows:
+ *
+ * |Preamble|st|op|phyad|regad|ta| data |idle|
+ * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
+ *
+ * <32 1s> = 32 consecutive logic 1 values
+ * A = bit of Physical Layer device address (MSB first)
+ * R = bit of register address (MSB first)
+ * z = High impedance state
+ * D = bit of read data (MSB first)
+ *
+ * Transmission order is 'Preamble' field first, bits transmitted
+ * left to right (first to last).
+ */
+ struct {
+ u32 field;
+ unsigned int len;
+ } p[] = {
+ { GMII_PREAMBLE, 32 }, /* Preamble */
+ { GMII_ST, 2 }, /* ST */
+ { GMII_READ, 2 }, /* OP */
+ { phy_id, 5 }, /* PHYAD */
+ { phy_reg, 5 }, /* REGAD */
+ { 0x0000, 2 }, /* TA */
+ { 0x0000, 16 }, /* DATA */
+ { 0x0000, 1 } /* IDLE */
+ };
+ unsigned int i, j;
+ u8 polarity, data;
+
+ polarity = ipg_r8(PHY_CTRL);
+ polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
+
+ /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
+ for (j = 0; j < 5; j++) {
+ for (i = 0; i < p[j].len; i++) {
+ /* For each variable length field, the MSB must be
+ * transmitted first. Rotate through the field bits,
+ * starting with the MSB, and move each bit into the
+ * the 1st (2^1) bit position (this is the bit position
+ * corresponding to the MgmtData bit of the PhyCtrl
+ * register for the IPG).
+ *
+ * Example: ST = 01;
+ *
+ * First write a '0' to bit 1 of the PhyCtrl
+ * register, then write a '1' to bit 1 of the
+ * PhyCtrl register.
+ *
+ * To do this, right shift the MSB of ST by the value:
+ * [field length - 1 - #ST bits already written]
+ * then left shift this result by 1.
+ */
+ data = (p[j].field >> (p[j].len - 1 - i)) << 1;
+ data &= IPG_PC_MGMTDATA;
+ data |= polarity | IPG_PC_MGMTDIR;
+
+ ipg_drive_phy_ctl_low_high(ioaddr, data);
+ }
+ }
+
+ send_three_state(ioaddr, polarity);
+
+ read_phy_bit(ioaddr, polarity);
+
+ /*
+ * For a read cycle, the bits for the next two fields (TA and
+ * DATA) are driven by the PHY (the IPG reads these bits).
+ */
+ for (i = 0; i < p[6].len; i++) {
+ p[6].field |=
+ (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
+ }
+
+ send_three_state(ioaddr, polarity);
+ send_three_state(ioaddr, polarity);
+ send_three_state(ioaddr, polarity);
+ send_end(ioaddr, polarity);
+
+ /* Return the value of the DATA field. */
+ return p[6].field;
+}
+
+/*
+ * Write to a register from the Physical Layer device located
+ * on the IPG NIC, using the IPG PHYCTRL register.
+ */
+static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ /*
+ * The GMII mangement frame structure for a read is as follows:
+ *
+ * |Preamble|st|op|phyad|regad|ta| data |idle|
+ * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
+ *
+ * <32 1s> = 32 consecutive logic 1 values
+ * A = bit of Physical Layer device address (MSB first)
+ * R = bit of register address (MSB first)
+ * z = High impedance state
+ * D = bit of write data (MSB first)
+ *
+ * Transmission order is 'Preamble' field first, bits transmitted
+ * left to right (first to last).
+ */
+ struct {
+ u32 field;
+ unsigned int len;
+ } p[] = {
+ { GMII_PREAMBLE, 32 }, /* Preamble */
+ { GMII_ST, 2 }, /* ST */
+ { GMII_WRITE, 2 }, /* OP */
+ { phy_id, 5 }, /* PHYAD */
+ { phy_reg, 5 }, /* REGAD */
+ { 0x0002, 2 }, /* TA */
+ { val & 0xffff, 16 }, /* DATA */
+ { 0x0000, 1 } /* IDLE */
+ };
+ unsigned int i, j;
+ u8 polarity, data;
+
+ polarity = ipg_r8(PHY_CTRL);
+ polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
+
+ /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
+ for (j = 0; j < 7; j++) {
+ for (i = 0; i < p[j].len; i++) {
+ /* For each variable length field, the MSB must be
+ * transmitted first. Rotate through the field bits,
+ * starting with the MSB, and move each bit into the
+ * the 1st (2^1) bit position (this is the bit position
+ * corresponding to the MgmtData bit of the PhyCtrl
+ * register for the IPG).
+ *
+ * Example: ST = 01;
+ *
+ * First write a '0' to bit 1 of the PhyCtrl
+ * register, then write a '1' to bit 1 of the
+ * PhyCtrl register.
+ *
+ * To do this, right shift the MSB of ST by the value:
+ * [field length - 1 - #ST bits already written]
+ * then left shift this result by 1.
+ */
+ data = (p[j].field >> (p[j].len - 1 - i)) << 1;
+ data &= IPG_PC_MGMTDATA;
+ data |= polarity | IPG_PC_MGMTDIR;
+
+ ipg_drive_phy_ctl_low_high(ioaddr, data);
+ }
+ }
+
+ /* The last cycle is a tri-state, so read from the PHY. */
+ for (j = 7; j < 8; j++) {
+ for (i = 0; i < p[j].len; i++) {
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
+
+ p[j].field |= ((ipg_r8(PHY_CTRL) &
+ IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
+
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
+ }
+ }
+}
+
+/* Set LED_Mode JES20040127EEPROM */
+static void ipg_set_led_mode(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ u32 mode;
+
+ mode = ipg_r32(ASIC_CTRL);
+ mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
+
+ if ((sp->LED_Mode & 0x03) > 1)
+ mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
+
+ if ((sp->LED_Mode & 0x01) == 1)
+ mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
+
+ if ((sp->LED_Mode & 0x08) == 8)
+ mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
+
+ ipg_w32(mode, ASIC_CTRL);
+}
+
+/* Set PHYSet JES20040127EEPROM */
+static void ipg_set_phy_set(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ int physet;
+
+ physet = ipg_r8(PHY_SET);
+ physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
+ physet |= ((sp->LED_Mode & 0x70) >> 4);
+ ipg_w8(physet, PHY_SET);
+}
+
+static int ipg_reset(struct net_device *dev, u32 resetflags)
+{
+ /* Assert functional resets via the IPG AsicCtrl
+ * register as specified by the 'resetflags' input
+ * parameter.
+ */
+ void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM:
+ unsigned int timeout_count = 0;
+
+ IPG_DEBUG_MSG("_reset\n");
+
+ ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
+
+ /* Delay added to account for problem with 10Mbps reset. */
+ mdelay(IPG_AC_RESETWAIT);
+
+ while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
+ mdelay(IPG_AC_RESETWAIT);
+ if (++timeout_count > IPG_AC_RESET_TIMEOUT)
+ return -ETIME;
+ }
+ /* Set LED Mode in Asic Control JES20040127EEPROM */
+ ipg_set_led_mode(dev);
+
+ /* Set PHYSet Register Value JES20040127EEPROM */
+ ipg_set_phy_set(dev);
+ return 0;
+}
+
+/* Find the GMII PHY address. */
+static int ipg_find_phyaddr(struct net_device *dev)
+{
+ unsigned int phyaddr, i;
+
+ for (i = 0; i < 32; i++) {
+ u32 status;
+
+ /* Search for the correct PHY address among 32 possible. */
+ phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
+
+ /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
+ GMII_PHY_ID1
+ */
+
+ status = mdio_read(dev, phyaddr, MII_BMSR);
+
+ if ((status != 0xFFFF) && (status != 0))
+ return phyaddr;
+ }
+
+ return 0x1f;
+}
+
+/*
+ * Configure IPG based on result of IEEE 802.3 PHY
+ * auto-negotiation.
+ */
+static int ipg_config_autoneg(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int txflowcontrol;
+ unsigned int rxflowcontrol;
+ unsigned int fullduplex;
+ unsigned int gig;
+ u32 mac_ctrl_val;
+ u32 asicctrl;
+ u8 phyctrl;
+
+ IPG_DEBUG_MSG("_config_autoneg\n");
+
+ asicctrl = ipg_r32(ASIC_CTRL);
+ phyctrl = ipg_r8(PHY_CTRL);
+ mac_ctrl_val = ipg_r32(MAC_CTRL);
+
+ /* Set flags for use in resolving auto-negotation, assuming
+ * non-1000Mbps, half duplex, no flow control.
+ */
+ fullduplex = 0;
+ txflowcontrol = 0;
+ rxflowcontrol = 0;
+ gig = 0;
+
+ /* To accomodate a problem in 10Mbps operation,
+ * set a global flag if PHY running in 10Mbps mode.
+ */
+ sp->tenmbpsmode = 0;
+
+ printk(KERN_INFO "%s: Link speed = ", dev->name);
+
+ /* Determine actual speed of operation. */
+ switch (phyctrl & IPG_PC_LINK_SPEED) {
+ case IPG_PC_LINK_SPEED_10MBPS:
+ printk("10Mbps.\n");
+ printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
+ dev->name);
+ sp->tenmbpsmode = 1;
+ break;
+ case IPG_PC_LINK_SPEED_100MBPS:
+ printk("100Mbps.\n");
+ break;
+ case IPG_PC_LINK_SPEED_1000MBPS:
+ printk("1000Mbps.\n");
+ gig = 1;
+ break;
+ default:
+ printk("undefined!\n");
+ return 0;
+ }
+
+ if (phyctrl & IPG_PC_DUPLEX_STATUS) {
+ fullduplex = 1;
+ txflowcontrol = 1;
+ rxflowcontrol = 1;
+ }
+
+ /* Configure full duplex, and flow control. */
+ if (fullduplex == 1) {
+ /* Configure IPG for full duplex operation. */
+ printk(KERN_INFO "%s: setting full duplex, ", dev->name);
+
+ mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
+
+ if (txflowcontrol == 1) {
+ printk("TX flow control");
+ mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
+ } else {
+ printk("no TX flow control");
+ mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
+ }
+
+ if (rxflowcontrol == 1) {
+ printk(", RX flow control.");
+ mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
+ } else {
+ printk(", no RX flow control.");
+ mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
+ }
+
+ printk("\n");
+ } else {
+ /* Configure IPG for half duplex operation. */
+ printk(KERN_INFO "%s: setting half duplex, "
+ "no TX flow control, no RX flow control.\n", dev->name);
+
+ mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
+ ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
+ ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
+ }
+ ipg_w32(mac_ctrl_val, MAC_CTRL);
+ return 0;
+}
+
+/* Determine and configure multicast operation and set
+ * receive mode for IPG.
+ */
+static void ipg_nic_set_multicast_list(struct net_device *dev)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ struct dev_mc_list *mc_list_ptr;
+ unsigned int hashindex;
+ u32 hashtable[2];
+ u8 receivemode;
+
+ IPG_DEBUG_MSG("_nic_set_multicast_list\n");
+
+ receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
+
+ if (dev->flags & IFF_PROMISC) {
+ /* NIC to be configured in promiscuous mode. */
+ receivemode = IPG_RM_RECEIVEALLFRAMES;
+ } else if ((dev->flags & IFF_ALLMULTI) ||
+ (dev->flags & IFF_MULTICAST &
+ (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
+ /* NIC to be configured to receive all multicast
+ * frames. */
+ receivemode |= IPG_RM_RECEIVEMULTICAST;
+ } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
+ /* NIC to be configured to receive selected
+ * multicast addresses. */
+ receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
+ }
+
+ /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
+ * The IPG applies a cyclic-redundancy-check (the same CRC
+ * used to calculate the frame data FCS) to the destination
+ * address all incoming multicast frames whose destination
+ * address has the multicast bit set. The least significant
+ * 6 bits of the CRC result are used as an addressing index
+ * into the hash table. If the value of the bit addressed by
+ * this index is a 1, the frame is passed to the host system.
+ */
+
+ /* Clear hashtable. */
+ hashtable[0] = 0x00000000;
+ hashtable[1] = 0x00000000;
+
+ /* Cycle through all multicast addresses to filter. */
+ for (mc_list_ptr = dev->mc_list;
+ mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
+ /* Calculate CRC result for each multicast address. */
+ hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
+ ETH_ALEN);
+
+ /* Use only the least significant 6 bits. */
+ hashindex = hashindex & 0x3F;
+
+ /* Within "hashtable", set bit number "hashindex"
+ * to a logic 1.
+ */
+ set_bit(hashindex, (void *)hashtable);
+ }
+
+ /* Write the value of the hashtable, to the 4, 16 bit
+ * HASHTABLE IPG registers.
+ */
+ ipg_w32(hashtable[0], HASHTABLE_0);
+ ipg_w32(hashtable[1], HASHTABLE_1);
+
+ ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
+
+ IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
+}
+
+static int ipg_io_config(struct net_device *dev)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ u32 origmacctrl;
+ u32 restoremacctrl;
+
+ IPG_DEBUG_MSG("_io_config\n");
+
+ origmacctrl = ipg_r32(MAC_CTRL);
+
+ restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
+
+ /* Based on compilation option, determine if FCS is to be
+ * stripped on receive frames by IPG.
+ */
+ if (!IPG_STRIP_FCS_ON_RX)
+ restoremacctrl |= IPG_MC_RCV_FCS;
+
+ /* Determine if transmitter and/or receiver are
+ * enabled so we may restore MACCTRL correctly.
+ */
+ if (origmacctrl & IPG_MC_TX_ENABLED)
+ restoremacctrl |= IPG_MC_TX_ENABLE;
+
+ if (origmacctrl & IPG_MC_RX_ENABLED)
+ restoremacctrl |= IPG_MC_RX_ENABLE;
+
+ /* Transmitter and receiver must be disabled before setting
+ * IFSSelect.
+ */
+ ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+
+ /* Now that transmitter and receiver are disabled, write
+ * to IFSSelect.
+ */
+ ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
+
+ /* Set RECEIVEMODE register. */
+ ipg_nic_set_multicast_list(dev);
+
+ ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
+
+ ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
+ ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
+ ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
+ ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
+ ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
+ ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
+ ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
+ IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
+ IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
+ IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
+ ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
+ ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
+
+ /* IPG multi-frag frame bug workaround.
+ * Per silicon revision B3 eratta.
+ */
+ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
+
+ /* IPG TX poll now bug workaround.
+ * Per silicon revision B3 eratta.
+ */
+ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
+
+ /* IPG RX poll now bug workaround.
+ * Per silicon revision B3 eratta.
+ */
+ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
+
+ /* Now restore MACCTRL to original setting. */
+ ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
+
+ /* Disable unused RMON statistics. */
+ ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
+
+ /* Disable unused MIB statistics. */
+ ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
+ IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
+ IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
+ IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
+ IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
+ IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
+
+ return 0;
+}
+
+/*
+ * Create a receive buffer within system memory and update
+ * NIC private structure appropriately.
+ */
+static int ipg_get_rxbuff(struct net_device *dev, int entry)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ struct ipg_rx *rxfd = sp->rxd + entry;
+ struct sk_buff *skb;
+ u64 rxfragsize;
+
+ IPG_DEBUG_MSG("_get_rxbuff\n");
+
+ skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
+ if (!skb) {
+ sp->RxBuff[entry] = NULL;
+ return -ENOMEM;
+ }
+
+ /* Adjust the data start location within the buffer to
+ * align IP address field to a 16 byte boundary.
+ */
+ skb_reserve(skb, NET_IP_ALIGN);
+
+ /* Associate the receive buffer with the IPG NIC. */
+ skb->dev = dev;
+
+ /* Save the address of the sk_buff structure. */
+ sp->RxBuff[entry] = skb;
+
+ rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
+
+ /* Set the RFD fragment length. */
+ rxfragsize = IPG_RXFRAG_SIZE;
+ rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
+
+ return 0;
+}
+
+static int init_rfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_init_rfdlist\n");
+
+ for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
+ struct ipg_rx *rxfd = sp->rxd + i;
+
+ if (sp->RxBuff[i]) {
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+ IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
+ sp->RxBuff[i] = NULL;
+ }
+
+ /* Clear out the RFS field. */
+ rxfd->rfs = 0x0000000000000000;
+
+ if (ipg_get_rxbuff(dev, i) < 0) {
+ /*
+ * A receive buffer was not ready, break the
+ * RFD list here.
+ */
+ IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
+
+ /* Just in case we cannot allocate a single RFD.
+ * Should not occur.
+ */
+ if (i == 0) {
+ printk(KERN_ERR "%s: No memory available"
+ " for RFD list.\n", dev->name);
+ return -ENOMEM;
+ }
+ }
+
+ rxfd->next_desc = cpu_to_le64(sp->rxd_map +
+ sizeof(struct ipg_rx)*(i + 1));
+ }
+ sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
+
+ sp->rx_current = 0;
+ sp->rx_dirty = 0;
+
+ /* Write the location of the RFDList to the IPG. */
+ ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
+ ipg_w32(0x00000000, RFD_LIST_PTR_1);
+
+ return 0;
+}
+
+static void init_tfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_init_tfdlist\n");
+
+ for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
+ struct ipg_tx *txfd = sp->txd + i;
+
+ txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
+
+ if (sp->TxBuff[i]) {
+ IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
+ sp->TxBuff[i] = NULL;
+ }
+
+ txfd->next_desc = cpu_to_le64(sp->txd_map +
+ sizeof(struct ipg_tx)*(i + 1));
+ }
+ sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
+
+ sp->tx_current = 0;
+ sp->tx_dirty = 0;
+
+ /* Write the location of the TFDList to the IPG. */
+ IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
+ (u32) sp->txd_map);
+ ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
+ ipg_w32(0x00000000, TFD_LIST_PTR_1);
+
+ sp->ResetCurrentTFD = 1;
+}
+
+/*
+ * Free all transmit buffers which have already been transfered
+ * via DMA to the IPG.
+ */
+static void ipg_nic_txfree(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ const unsigned int curr = ipg_r32(TFD_LIST_PTR_0) -
+ (sp->txd_map / sizeof(struct ipg_tx)) - 1;
+ unsigned int released, pending;
+
+ IPG_DEBUG_MSG("_nic_txfree\n");
+
+ pending = sp->tx_current - sp->tx_dirty;
+
+ for (released = 0; released < pending; released++) {
+ unsigned int dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
+ struct sk_buff *skb = sp->TxBuff[dirty];
+ struct ipg_tx *txfd = sp->txd + dirty;
+
+ IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
+
+ /* Look at each TFD's TFC field beginning
+ * at the last freed TFD up to the current TFD.
+ * If the TFDDone bit is set, free the associated
+ * buffer.
+ */
+ if (dirty == curr)
+ break;
+
+ /* Setup TFDDONE for compatible issue. */
+ txfd->tfc |= cpu_to_le64(IPG_TFC_TFDDONE);
+
+ /* Free the transmit buffer. */
+ if (skb) {
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(txfd->frag_info & ~IPG_TFI_FRAGLEN),
+ skb->len, PCI_DMA_TODEVICE);
+
+ IPG_DEV_KFREE_SKB(skb);
+
+ sp->TxBuff[dirty] = NULL;
+ }
+ }
+
+ sp->tx_dirty += released;
+
+ if (netif_queue_stopped(dev) &&
+ (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
+ netif_wake_queue(dev);
+ }
+}
+
+static void ipg_tx_timeout(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+
+ ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
+ IPG_AC_FIFO);
+
+ spin_lock_irq(&sp->lock);
+
+ /* Re-configure after DMA reset. */
+ if (ipg_io_config(dev) < 0) {
+ printk(KERN_INFO "%s: Error during re-configuration.\n",
+ dev->name);
+ }
+
+ init_tfdlist(dev);
+
+ spin_unlock_irq(&sp->lock);
+
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
+ MAC_CTRL);
+}
+
+/*
+ * For TxComplete interrupts, free all transmit
+ * buffers which have already been transfered via DMA
+ * to the IPG.
+ */
+static void ipg_nic_txcleanup(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_nic_txcleanup\n");
+
+ for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
+ /* Reading the TXSTATUS register clears the
+ * TX_COMPLETE interrupt.
+ */
+ u32 txstatusdword = ipg_r32(TX_STATUS);
+
+ IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
+
+ /* Check for Transmit errors. Error bits only valid if
+ * TX_COMPLETE bit in the TXSTATUS register is a 1.
+ */
+ if (!(txstatusdword & IPG_TS_TX_COMPLETE))
+ break;
+
+ /* If in 10Mbps mode, indicate transmit is ready. */
+ if (sp->tenmbpsmode) {
+ netif_wake_queue(dev);
+ }
+
+ /* Transmit error, increment stat counters. */
+ if (txstatusdword & IPG_TS_TX_ERROR) {
+ IPG_DEBUG_MSG("Transmit error.\n");
+ sp->stats.tx_errors++;
+ }
+
+ /* Late collision, re-enable transmitter. */
+ if (txstatusdword & IPG_TS_LATE_COLLISION) {
+ IPG_DEBUG_MSG("Late collision on transmit.\n");
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+ }
+
+ /* Maximum collisions, re-enable transmitter. */
+ if (txstatusdword & IPG_TS_TX_MAX_COLL) {
+ IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+ }
+
+ /* Transmit underrun, reset and re-enable
+ * transmitter.
+ */
+ if (txstatusdword & IPG_TS_TX_UNDERRUN) {
+ IPG_DEBUG_MSG("Transmitter underrun.\n");
+ sp->stats.tx_fifo_errors++;
+ ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
+ IPG_AC_NETWORK | IPG_AC_FIFO);
+
+ /* Re-configure after DMA reset. */
+ if (ipg_io_config(dev) < 0) {
+ printk(KERN_INFO
+ "%s: Error during re-configuration.\n",
+ dev->name);
+ }
+ init_tfdlist(dev);
+
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+ }
+ }
+
+ ipg_nic_txfree(dev);
+}
+
+/* Provides statistical information about the IPG NIC. */
+struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ u16 temp1;
+ u16 temp2;
+
+ IPG_DEBUG_MSG("_nic_get_stats\n");
+
+ /* Check to see if the NIC has been initialized via nic_open,
+ * before trying to read statistic registers.
+ */
+ if (!test_bit(__LINK_STATE_START, &dev->state))
+ return &sp->stats;
+
+ sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
+ sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
+ sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
+ sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
+ temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
+ sp->stats.rx_errors += temp1;
+ sp->stats.rx_missed_errors += temp1;
+ temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
+ ipg_r32(IPG_LATECOLLISIONS);
+ temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
+ sp->stats.collisions += temp1;
+ sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
+ sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
+ ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
+ sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
+
+ /* detailed tx_errors */
+ sp->stats.tx_carrier_errors += temp2;
+
+ /* detailed rx_errors */
+ sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
+ ipg_r16(IPG_FRAMETOOLONGERRRORS);
+ sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
+
+ /* Unutilized IPG statistic registers. */
+ ipg_r32(IPG_MCSTFRAMESRCVDOK);
+
+ return &sp->stats;
+}
+
+/* Restore used receive buffers. */
+static int ipg_nic_rxrestore(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ const unsigned int curr = sp->rx_current;
+ unsigned int dirty = sp->rx_dirty;
+
+ IPG_DEBUG_MSG("_nic_rxrestore\n");
+
+ for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
+ unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
+
+ /* rx_copybreak may poke hole here and there. */
+ if (sp->RxBuff[entry])
+ continue;
+
+ /* Generate a new receive buffer to replace the
+ * current buffer (which will be released by the
+ * Linux system).
+ */
+ if (ipg_get_rxbuff(dev, entry) < 0) {
+ IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
+
+ break;
+ }
+
+ /* Reset the RFS field. */
+ sp->rxd[entry].rfs = 0x0000000000000000;
+ }
+ sp->rx_dirty = dirty;
+
+ return 0;
+}
+
+#ifdef JUMBO_FRAME
+
+/* use jumboindex and jumbosize to control jumbo frame status
+ initial status is jumboindex=-1 and jumbosize=0
+ 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
+ 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
+ 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
+ previous receiving and need to continue dumping the current one
+*/
+enum {
+ NormalPacket,
+ ErrorPacket
+};
+
+enum {
+ Frame_NoStart_NoEnd = 0,
+ Frame_WithStart = 1,
+ Frame_WithEnd = 10,
+ Frame_WithStart_WithEnd = 11
+};
+
+inline void ipg_nic_rx_free_skb(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
+
+ if (sp->RxBuff[entry]) {
+ struct ipg_rx *rxfd = sp->rxd + entry;
+
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+ IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
+ sp->RxBuff[entry] = NULL;
+ }
+}
+
+inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
+ int type = Frame_NoStart_NoEnd;
+
+ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
+ type += Frame_WithStart;
+ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
+ type += Frame_WithEnd;
+ return type;
+}
+
+inline int ipg_nic_rx_check_error(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
+ struct ipg_rx *rxfd = sp->rxd + entry;
+
+ if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
+ (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
+ IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
+ IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
+ IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
+ (unsigned long) rxfd->rfs);
+
+ /* Increment general receive error statistic. */
+ sp->stats.rx_errors++;
+
+ /* Increment detailed receive error statistics. */
+ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
+ IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
+
+ sp->stats.rx_fifo_errors++;
+ }
+
+ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
+ IPG_DEBUG_MSG("RX runt occured.\n");
+ sp->stats.rx_length_errors++;
+ }
+
+ /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
+ * error count handled by a IPG statistic register.
+ */
+
+ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
+ IPG_DEBUG_MSG("RX alignment error occured.\n");
+ sp->stats.rx_frame_errors++;
+ }
+
+ /* Do nothing for IPG_RFS_RXFCSERROR, error count
+ * handled by a IPG statistic register.
+ */
+
+ /* Free the memory associated with the RX
+ * buffer since it is erroneous and we will
+ * not pass it to higher layer processes.
+ */
+ if (sp->RxBuff[entry]) {
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+
+ IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
+ sp->RxBuff[entry] = NULL;
+ }
+ return ErrorPacket;
+ }
+ return NormalPacket;
+}
+
+static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
+ struct ipg_nic_private *sp,
+ struct ipg_rx *rxfd, unsigned entry)
+{
+ struct SJumbo *jumbo = &sp->Jumbo;
+ struct sk_buff *skb;
+ int framelen;
+
+ if (jumbo->FoundStart) {
+ IPG_DEV_KFREE_SKB(jumbo->skb);
+ jumbo->FoundStart = 0;
+ jumbo->CurrentSize = 0;
+ jumbo->skb = NULL;
+ }
+
+ // 1: found error, 0 no error
+ if (ipg_nic_rx_check_error(dev) != NormalPacket)
+ return;
+
+ skb = sp->RxBuff[entry];
+ if (!skb)
+ return;
+
+ // accept this frame and send to upper layer
+ framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
+ if (framelen > IPG_RXFRAG_SIZE)
+ framelen = IPG_RXFRAG_SIZE;
+
+ skb_put(skb, framelen);
+ skb->protocol = eth_type_trans(skb, dev);
+ skb->ip_summed = CHECKSUM_NONE;
+ netif_rx(skb);
+ dev->last_rx = jiffies;
+ sp->RxBuff[entry] = NULL;
+}
+
+static void ipg_nic_rx_with_start(struct net_device *dev,
+ struct ipg_nic_private *sp,
+ struct ipg_rx *rxfd, unsigned entry)
+{
+ struct SJumbo *jumbo = &sp->Jumbo;
+ struct pci_dev *pdev = sp->pdev;
+ struct sk_buff *skb;
+
+ // 1: found error, 0 no error
+ if (ipg_nic_rx_check_error(dev) != NormalPacket)
+ return;
+
+ // accept this frame and send to upper layer
+ skb = sp->RxBuff[entry];
+ if (!skb)
+ return;
+
+ if (jumbo->FoundStart)
+ IPG_DEV_KFREE_SKB(jumbo->skb);
+
+ pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+
+ skb_put(skb, IPG_RXFRAG_SIZE);
+
+ jumbo->FoundStart = 1;
+ jumbo->CurrentSize = IPG_RXFRAG_SIZE;
+ jumbo->skb = skb;
+
+ sp->RxBuff[entry] = NULL;
+ dev->last_rx = jiffies;
+}
+
+static void ipg_nic_rx_with_end(struct net_device *dev,
+ struct ipg_nic_private *sp,
+ struct ipg_rx *rxfd, unsigned entry)
+{
+ struct SJumbo *jumbo = &sp->Jumbo;
+
+ //1: found error, 0 no error
+ if (ipg_nic_rx_check_error(dev) == NormalPacket) {
+ struct sk_buff *skb = sp->RxBuff[entry];
+
+ if (!skb)
+ return;
+
+ if (jumbo->FoundStart) {
+ int framelen, endframelen;
+
+ framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
+
+ endframeLen = framelen - jumbo->CurrentSize;
+ /*
+ if (framelen > IPG_RXFRAG_SIZE)
+ framelen=IPG_RXFRAG_SIZE;
+ */
+ if (framelen > IPG_RXSUPPORT_SIZE)
+ IPG_DEV_KFREE_SKB(jumbo->skb);
+ else {
+ memcpy(skb_put(jumbo->skb, endframeLen),
+ skb->data, endframeLen);
+
+ jumbo->skb->protocol =
+ eth_type_trans(jumbo->skb, dev);
+
+ jumbo->skb->ip_summed = CHECKSUM_NONE;
+ netif_rx(jumbo->skb);
+ }
+ }
+
+ dev->last_rx = jiffies;
+ jumbo->FoundStart = 0;
+ jumbo->CurrentSize = 0;
+ jumbo->skb = NULL;
+
+ ipg_nic_rx_free_skb(dev);
+ } else {
+ IPG_DEV_KFREE_SKB(jumbo->skb);
+ jumbo->FoundStart = 0;
+ jumbo->CurrentSize = 0;
+ jumbo->skb = NULL;
+ }
+}
+
+static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
+ struct ipg_nic_private *sp,
+ struct ipg_rx *rxfd, unsigned entry)
+{
+ struct SJumbo *jumbo = &sp->Jumbo;
+
+ //1: found error, 0 no error
+ if (ipg_nic_rx_check_error(dev) == NormalPacket) {
+ struct sk_buff *skb = sp->RxBuff[entry];
+
+ if (skb) {
+ if (jumbo->FoundStart) {
+ jumbo->CurrentSize += IPG_RXFRAG_SIZE;
+ if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
+ memcpy(skb_put(jumbo->skb,
+ IPG_RXFRAG_SIZE),
+ skb->data, IPG_RXFRAG_SIZE);
+ }
+ }
+ dev->last_rx = jiffies;
+ ipg_nic_rx_free_skb(dev);
+ }
+ } else {
+ IPG_DEV_KFREE_SKB(jumbo->skb);
+ jumbo->FoundStart = 0;
+ jumbo->CurrentSize = 0;
+ jumbo->skb = NULL;
+ }
+}
+
+static int ipg_nic_rx(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ unsigned int curr = sp->rx_current;
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_nic_rx\n");
+
+ for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
+ unsigned int entry = curr % IPG_RFDLIST_LENGTH;
+ struct ipg_rx *rxfd = sp->rxd + entry;
+
+ if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
+ break;
+
+ switch (ipg_nic_rx_check_frame_type(dev)) {
+ case Frame_WithStart_WithEnd:
+ ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
+ break;
+ case Frame_WithStart:
+ ipg_nic_rx_with_start(dev, tp, rxfd, entry);
+ break;
+ case Frame_WithEnd:
+ ipg_nic_rx_with_end(dev, tp, rxfd, entry);
+ break;
+ case Frame_NoStart_NoEnd:
+ ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
+ break;
+ }
+ }
+
+ sp->rx_current = curr;
+
+ if (i == IPG_MAXRFDPROCESS_COUNT) {
+ /* There are more RFDs to process, however the
+ * allocated amount of RFD processing time has
+ * expired. Assert Interrupt Requested to make
+ * sure we come back to process the remaining RFDs.
+ */
+ ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
+ }
+
+ ipg_nic_rxrestore(dev);
+
+ return 0;
+}
+
+#else
+static int ipg_nic_rx(struct net_device *dev)
+{
+ /* Transfer received Ethernet frames to higher network layers. */
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ unsigned int curr = sp->rx_current;
+ void __iomem *ioaddr = sp->ioaddr;
+ struct ipg_rx *rxfd;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_nic_rx\n");
+
+#define __RFS_MASK \
+ cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
+
+ for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
+ unsigned int entry = curr % IPG_RFDLIST_LENGTH;
+ struct sk_buff *skb = sp->RxBuff[entry];
+ unsigned int framelen;
+
+ rxfd = sp->rxd + entry;
+
+ if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
+ break;
+
+ /* Get received frame length. */
+ framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
+
+ /* Check for jumbo frame arrival with too small
+ * RXFRAG_SIZE.
+ */
+ if (framelen > IPG_RXFRAG_SIZE) {
+ IPG_DEBUG_MSG
+ ("RFS FrameLen > allocated fragment size.\n");
+
+ framelen = IPG_RXFRAG_SIZE;
+ }
+
+ if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs &
+ (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
+ IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
+ IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))))) {
+
+ IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
+ (unsigned long int) rxfd->rfs);
+
+ /* Increment general receive error statistic. */
+ sp->stats.rx_errors++;
+
+ /* Increment detailed receive error statistics. */
+ if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXFIFOOVERRUN)) {
+ IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
+ sp->stats.rx_fifo_errors++;
+ }
+
+ if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXRUNTFRAME)) {
+ IPG_DEBUG_MSG("RX runt occured.\n");
+ sp->stats.rx_length_errors++;
+ }
+
+ if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXOVERSIZEDFRAME)) ;
+ /* Do nothing, error count handled by a IPG
+ * statistic register.
+ */
+
+ if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXALIGNMENTERROR)) {
+ IPG_DEBUG_MSG("RX alignment error occured.\n");
+ sp->stats.rx_frame_errors++;
+ }
+
+ if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXFCSERROR)) ;
+ /* Do nothing, error count handled by a IPG
+ * statistic register.
+ */
+
+ /* Free the memory associated with the RX
+ * buffer since it is erroneous and we will
+ * not pass it to higher layer processes.
+ */
+ if (skb) {
+ u64 info = rxfd->frag_info;
+
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+
+ IPG_DEV_KFREE_SKB(skb);
+ }
+ } else {
+
+ /* Adjust the new buffer length to accomodate the size
+ * of the received frame.
+ */
+ skb_put(skb, framelen);
+
+ /* Set the buffer's protocol field to Ethernet. */
+ skb->protocol = eth_type_trans(skb, dev);
+
+ /* If the frame contains an IP/TCP/UDP frame,
+ * determine if upper layer must check IP/TCP/UDP
+ * checksums.
+ *
+ * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM
+ * VERIFICATION FOR SILICON REVISIONS B3
+ * AND EARLIER!
+ *
+ if ((le64_to_cpu(rxfd->rfs &
+ (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED |
+ IPG_RFS_IPDETECTED))) &&
+ !(le64_to_cpu(rxfd->rfs &
+ (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR |
+ IPG_RFS_IPERROR)))) {
+ * Indicate IP checksums were performed
+ * by the IPG.
+ *
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ } else
+ */
+ {
+ /* The IPG encountered an error with (or
+ * there were no) IP/TCP/UDP checksums.
+ * This may or may not indicate an invalid
+ * IP/TCP/UDP frame was received. Let the
+ * upper layer decide.
+ */
+ skb->ip_summed = CHECKSUM_NONE;
+ }
+
+ /* Hand off frame for higher layer processing.
+ * The function netif_rx() releases the sk_buff
+ * when processing completes.
+ */
+ netif_rx(skb);
+
+ /* Record frame receive time (jiffies = Linux
+ * kernel current time stamp).
+ */
+ dev->last_rx = jiffies;
+ }
+
+ /* Assure RX buffer is not reused by IPG. */
+ sp->RxBuff[entry] = NULL;
+ }
+
+ /*
+ * If there are more RFDs to proces and the allocated amount of RFD
+ * processing time has expired, assert Interrupt Requested to make
+ * sure we come back to process the remaining RFDs.
+ */
+ if (i == IPG_MAXRFDPROCESS_COUNT)
+ ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
+
+#ifdef IPG_DEBUG
+ /* Check if the RFD list contained no receive frame data. */
+ if (!i)
+ sp->EmptyRFDListCount++;
+#endif
+ while ((le64_to_cpu(rxfd->rfs & IPG_RFS_RFDDONE)) &&
+ !((le64_to_cpu(rxfd->rfs & IPG_RFS_FRAMESTART)) &&
+ (le64_to_cpu(rxfd->rfs & IPG_RFS_FRAMEEND)))) {
+ unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
+
+ rxfd = sp->rxd + entry;
+
+ IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
+
+ /* An unexpected event, additional code needed to handle
+ * properly. So for the time being, just disregard the
+ * frame.
+ */
+
+ /* Free the memory associated with the RX
+ * buffer since it is erroneous and we will
+ * not pass it to higher layer processes.
+ */
+ if (sp->RxBuff[entry]) {
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+ IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
+ }
+
+ /* Assure RX buffer is not reused by IPG. */
+ sp->RxBuff[entry] = NULL;
+ }
+
+ sp->rx_current = curr;
+
+ /* Check to see if there are a minimum number of used
+ * RFDs before restoring any (should improve performance.)
+ */
+ if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
+ ipg_nic_rxrestore(dev);
+
+ return 0;
+}
+#endif
+
+static void ipg_reset_after_host_error(struct work_struct *work)
+{
+ struct ipg_nic_private *sp =
+ container_of(work, struct ipg_nic_private, task.work);
+ struct net_device *dev = sp->dev;
+
+ IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
+
+ /*
+ * Acknowledge HostError interrupt by resetting
+ * IPG DMA and HOST.
+ */
+ ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
+
+ init_rfdlist(dev);
+ init_tfdlist(dev);
+
+ if (ipg_io_config(dev) < 0) {
+ printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
+ dev->name);
+ schedule_delayed_work(&sp->task, HZ);
+ }
+}
+
+static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
+{
+ struct net_device *dev = dev_inst;
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int handled = 0;
+ u16 status;
+
+ IPG_DEBUG_MSG("_interrupt_handler\n");
+
+#ifdef JUMBO_FRAME
+ ipg_nic_rxrestore(dev);
+#endif
+ /* Get interrupt source information, and acknowledge
+ * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
+ * IntRequested, MacControlFrame, LinkEvent) interrupts
+ * if issued. Also, all IPG interrupts are disabled by
+ * reading IntStatusAck.
+ */
+ status = ipg_r16(INT_STATUS_ACK);
+
+ IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
+
+ /* Shared IRQ of remove event. */
+ if (!(status & IPG_IS_RSVD_MASK))
+ goto out_enable;
+
+ handled = 1;
+
+ if (unlikely(!netif_running(dev)))
+ goto out;
+
+ spin_lock(&sp->lock);
+
+ /* If RFDListEnd interrupt, restore all used RFDs. */
+ if (status & IPG_IS_RFD_LIST_END) {
+ IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
+
+ /* The RFD list end indicates an RFD was encountered
+ * with a 0 NextPtr, or with an RFDDone bit set to 1
+ * (indicating the RFD is not read for use by the
+ * IPG.) Try to restore all RFDs.
+ */
+ ipg_nic_rxrestore(dev);
+
+#ifdef IPG_DEBUG
+ /* Increment the RFDlistendCount counter. */
+ sp->RFDlistendCount++;
+#endif
+ }
+
+ /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
+ * IntRequested interrupt, process received frames. */
+ if ((status & IPG_IS_RX_DMA_PRIORITY) ||
+ (status & IPG_IS_RFD_LIST_END) ||
+ (status & IPG_IS_RX_DMA_COMPLETE) ||
+ (status & IPG_IS_INT_REQUESTED)) {
+#ifdef IPG_DEBUG
+ /* Increment the RFD list checked counter if interrupted
+ * only to check the RFD list. */
+ if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
+ IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
+ (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
+ IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
+ IPG_IS_UPDATE_STATS)))
+ sp->RFDListCheckedCount++;
+#endif
+
+ ipg_nic_rx(dev);
+ }
+
+ /* If TxDMAComplete interrupt, free used TFDs. */
+ if (status & IPG_IS_TX_DMA_COMPLETE)
+ ipg_nic_txfree(dev);
+
+ /* TxComplete interrupts indicate one of numerous actions.
+ * Determine what action to take based on TXSTATUS register.
+ */
+ if (status & IPG_IS_TX_COMPLETE)
+ ipg_nic_txcleanup(dev);
+
+ /* If UpdateStats interrupt, update Linux Ethernet statistics */
+ if (status & IPG_IS_UPDATE_STATS)
+ ipg_nic_get_stats(dev);
+
+ /* If HostError interrupt, reset IPG. */
+ if (status & IPG_IS_HOST_ERROR) {
+ IPG_DDEBUG_MSG("HostError Interrupt\n");
+
+ schedule_delayed_work(&sp->task, 0);
+ }
+
+ /* If LinkEvent interrupt, resolve autonegotiation. */
+ if (status & IPG_IS_LINK_EVENT) {
+ if (ipg_config_autoneg(dev) < 0)
+ printk(KERN_INFO "%s: Auto-negotiation error.\n",
+ dev->name);
+ }
+
+ /* If MACCtrlFrame interrupt, do nothing. */
+ if (status & IPG_IS_MAC_CTRL_FRAME)
+ IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
+
+ /* If RxComplete interrupt, do nothing. */
+ if (status & IPG_IS_RX_COMPLETE)
+ IPG_DEBUG_MSG("RxComplete interrupt.\n");
+
+ /* If RxEarly interrupt, do nothing. */
+ if (status & IPG_IS_RX_EARLY)
+ IPG_DEBUG_MSG("RxEarly interrupt.\n");
+
+out_enable:
+ /* Re-enable IPG interrupts. */
+ ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
+ IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
+ IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
+
+ spin_unlock(&sp->lock);
+out:
+ return IRQ_RETVAL(handled);
+}
+
+static void ipg_rx_clear(struct ipg_nic_private *sp)
+{
+ unsigned int i;
+
+ for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
+ if (sp->RxBuff[i]) {
+ struct ipg_rx *rxfd = sp->rxd + i;
+
+ IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
+ sp->RxBuff[i] = NULL;
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+ }
+ }
+}
+
+static void ipg_tx_clear(struct ipg_nic_private *sp)
+{
+ unsigned int i;
+
+ for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
+ if (sp->TxBuff[i]) {
+ struct ipg_tx *txfd = sp->txd + i;
+
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(txfd->frag_info & ~IPG_TFI_FRAGLEN),
+ sp->TxBuff[i]->len, PCI_DMA_TODEVICE);
+
+ IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
+
+ sp->TxBuff[i] = NULL;
+ }
+ }
+}
+
+static int ipg_nic_open(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ struct pci_dev *pdev = sp->pdev;
+ int rc;
+
+ IPG_DEBUG_MSG("_nic_open\n");
+
+ sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
+
+ /* Check for interrupt line conflicts, and request interrupt
+ * line for IPG.
+ *
+ * IMPORTANT: Disable IPG interrupts prior to registering
+ * IRQ.
+ */
+ ipg_w16(0x0000, INT_ENABLE);
+
+ /* Register the interrupt line to be used by the IPG within
+ * the Linux system.
+ */
+ rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
+ dev->name, dev);
+ if (rc < 0) {
+ printk(KERN_INFO "%s: Error when requesting interrupt.\n",
+ dev->name);
+ goto out;
+ }
+
+ dev->irq = pdev->irq;
+
+ rc = -ENOMEM;
+
+ sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
+ &sp->rxd_map, GFP_KERNEL);
+ if (!sp->rxd)
+ goto err_free_irq_0;
+
+ sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
+ &sp->txd_map, GFP_KERNEL);
+ if (!sp->txd)
+ goto err_free_rx_1;
+
+ rc = init_rfdlist(dev);
+ if (rc < 0) {
+ printk(KERN_INFO "%s: Error during configuration.\n",
+ dev->name);
+ goto err_free_tx_2;
+ }
+
+ init_tfdlist(dev);
+
+ rc = ipg_io_config(dev);
+ if (rc < 0) {
+ printk(KERN_INFO "%s: Error during configuration.\n",
+ dev->name);
+ goto err_release_tfdlist_3;
+ }
+
+ /* Resolve autonegotiation. */
+ if (ipg_config_autoneg(dev) < 0)
+ printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
+
+#ifdef JUMBO_FRAME
+ /* initialize JUMBO Frame control variable */
+ sp->Jumbo.FoundStart = 0;
+ sp->Jumbo.CurrentSize = 0;
+ sp->Jumbo.skb = 0;
+ dev->mtu = IPG_TXFRAG_SIZE;
+#endif
+
+ /* Enable transmit and receive operation of the IPG. */
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+
+ netif_start_queue(dev);
+out:
+ return rc;
+
+err_release_tfdlist_3:
+ ipg_tx_clear(sp);
+ ipg_rx_clear(sp);
+err_free_tx_2:
+ dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
+err_free_rx_1:
+ dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
+err_free_irq_0:
+ free_irq(pdev->irq, dev);
+ goto out;
+}
+
+static int ipg_nic_stop(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ struct pci_dev *pdev = sp->pdev;
+
+ IPG_DEBUG_MSG("_nic_stop\n");
+
+ netif_stop_queue(dev);
+
+ IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
+ IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
+ IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
+ IPG_DUMPTFDLIST(dev);
+
+ do {
+ (void) ipg_r16(INT_STATUS_ACK);
+
+ ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
+
+ synchronize_irq(pdev->irq);
+ } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
+
+ ipg_rx_clear(sp);
+
+ ipg_tx_clear(sp);
+
+ pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
+ pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
+
+ free_irq(pdev->irq, dev);
+
+ return 0;
+}
+
+static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
+ unsigned long flags;
+ struct ipg_tx *txfd;
+
+ IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
+
+ /* If in 10Mbps mode, stop the transmit queue so
+ * no more transmit frames are accepted.
+ */
+ if (sp->tenmbpsmode)
+ netif_stop_queue(dev);
+
+ if (sp->ResetCurrentTFD) {
+ sp->ResetCurrentTFD = 0;
+ entry = 0;
+ }
+
+ txfd = sp->txd + entry;
+
+ sp->TxBuff[entry] = skb;
+
+ /* Clear all TFC fields, except TFDDONE. */
+ txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
+
+ /* Specify the TFC field within the TFD. */
+ txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
+ (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
+ (IPG_TFC_FRAGCOUNT & (1 << 24)));
+
+ /* Request TxComplete interrupts at an interval defined
+ * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
+ * Request TxComplete interrupt for every frame
+ * if in 10Mbps mode to accomodate problem with 10Mbps
+ * processing.
+ */
+ if (sp->tenmbpsmode)
+ txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
+ else if (!((sp->tx_current - sp->tx_dirty + 1) >
+ IPG_FRAMESBETWEENTXDMACOMPLETES)) {
+ txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
+ }
+ /* Based on compilation option, determine if FCS is to be
+ * appended to transmit frame by IPG.
+ */
+ if (!(IPG_APPEND_FCS_ON_TX))
+ txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
+
+ /* Based on compilation option, determine if IP, TCP and/or
+ * UDP checksums are to be added to transmit frame by IPG.
+ */
+ if (IPG_ADD_IPCHECKSUM_ON_TX)
+ txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
+
+ if (IPG_ADD_TCPCHECKSUM_ON_TX)
+ txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
+
+ if (IPG_ADD_UDPCHECKSUM_ON_TX)
+ txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
+
+ /* Based on compilation option, determine if VLAN tag info is to be
+ * inserted into transmit frame by IPG.
+ */
+ if (IPG_INSERT_MANUAL_VLAN_TAG) {
+ txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
+ ((u64) IPG_MANUAL_VLAN_VID << 32) |
+ ((u64) IPG_MANUAL_VLAN_CFI << 44) |
+ ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
+ }
+
+ /* The fragment start location within system memory is defined
+ * by the sk_buff structure's data field. The physical address
+ * of this location within the system's virtual memory space
+ * is determined using the IPG_HOST2BUS_MAP function.
+ */
+ txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
+ skb->len, PCI_DMA_TODEVICE));
+
+ /* The length of the fragment within system memory is defined by
+ * the sk_buff structure's len field.
+ */
+ txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
+ ((u64) (skb->len & 0xffff) << 48));
+
+ /* Clear the TFDDone bit last to indicate the TFD is ready
+ * for transfer to the IPG.
+ */
+ txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
+
+ spin_lock_irqsave(&sp->lock, flags);
+
+ sp->tx_current++;
+
+ mmiowb();
+
+ ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
+
+ if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
+ netif_wake_queue(dev);
+
+ spin_unlock_irqrestore(&sp->lock, flags);
+
+ return NETDEV_TX_OK;
+}
+
+static void ipg_set_phy_default_param(unsigned char rev,
+ struct net_device *dev, int phy_address)
+{
+ unsigned short length;
+ unsigned char revision;
+ unsigned short *phy_param;
+ unsigned short address, value;
+
+ phy_param = &DefaultPhyParam[0];
+ length = *phy_param & 0x00FF;
+ revision = (unsigned char)((*phy_param) >> 8);
+ phy_param++;
+ while (length != 0) {
+ if (rev == revision) {
+ while (length > 1) {
+ address = *phy_param;
+ value = *(phy_param + 1);
+ phy_param += 2;
+ mdio_write(dev, phy_address, address, value);
+ length -= 4;
+ }
+ break;
+ } else {
+ phy_param += length / 2;
+ length = *phy_param & 0x00FF;
+ revision = (unsigned char)((*phy_param) >> 8);
+ phy_param++;
+ }
+ }
+}
+
+/* JES20040127EEPROM */
+static int read_eeprom(struct net_device *dev, int eep_addr)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ unsigned int i;
+ int ret = 0;
+ u16 value;
+
+ value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
+ ipg_w16(value, EEPROM_CTRL);
+
+ for (i = 0; i < 1000; i++) {
+ u16 data;
+
+ mdelay(10);
+ data = ipg_r16(EEPROM_CTRL);
+ if (!(data & IPG_EC_EEPROM_BUSY)) {
+ ret = ipg_r16(EEPROM_DATA);
+ break;
+ }
+ }
+ return ret;
+}
+
+static void ipg_init_mii(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ struct mii_if_info *mii_if = &sp->mii_if;
+ int phyaddr;
+
+ mii_if->dev = dev;
+ mii_if->mdio_read = mdio_read;
+ mii_if->mdio_write = mdio_write;
+ mii_if->phy_id_mask = 0x1f;
+ mii_if->reg_num_mask = 0x1f;
+
+ mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
+
+ if (phyaddr != 0x1f) {
+ u16 mii_phyctrl, mii_1000cr;
+ u8 revisionid = 0;
+
+ mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
+ mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
+ GMII_PHY_1000BASETCONTROL_PreferMaster;
+ mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
+
+ mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
+
+ /* Set default phyparam */
+ pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
+ ipg_set_phy_default_param(revisionid, dev, phyaddr);
+
+ /* Reset PHY */
+ mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
+ mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
+
+ }
+}
+
+static int ipg_hw_init(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+ int rc;
+
+ /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
+ /* Read LED Mode Configuration from EEPROM */
+ sp->LED_Mode = read_eeprom(dev, 6);
+
+ /* Reset all functions within the IPG. Do not assert
+ * RST_OUT as not compatible with some PHYs.
+ */
+ rc = ipg_reset(dev, IPG_RESET_MASK);
+ if (rc < 0)
+ goto out;
+
+ ipg_init_mii(dev);
+
+ /* Read MAC Address from EEPROM */
+ for (i = 0; i < 3; i++)
+ sp->station_addr[i] = read_eeprom(dev, 16 + i);
+
+ for (i = 0; i < 3; i++)
+ ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
+
+ /* Set station address in ethernet_device structure. */
+ dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
+ dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
+ dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
+ dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
+ dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
+ dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
+out:
+ return rc;
+}
+
+static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ int rc;
+
+ mutex_lock(&sp->mii_mutex);
+ rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
+ mutex_unlock(&sp->mii_mutex);
+
+ return rc;
+}
+
+static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
+{
+ /* Function to accomodate changes to Maximum Transfer Unit
+ * (or MTU) of IPG NIC. Cannot use default function since
+ * the default will not allow for MTU > 1500 bytes.
+ */
+
+ IPG_DEBUG_MSG("_nic_change_mtu\n");
+
+ /* Check that the new MTU value is between 68 (14 byte header, 46
+ * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
+ * corresponds to the MAXFRAMESIZE register in the IPG.
+ */
+ if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
+ return -EINVAL;
+
+ dev->mtu = new_mtu;
+
+ return 0;
+}
+
+static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ int rc;
+
+ mutex_lock(&sp->mii_mutex);
+ rc = mii_ethtool_gset(&sp->mii_if, cmd);
+ mutex_unlock(&sp->mii_mutex);
+
+ return rc;
+}
+
+static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ int rc;
+
+ mutex_lock(&sp->mii_mutex);
+ rc = mii_ethtool_sset(&sp->mii_if, cmd);
+ mutex_unlock(&sp->mii_mutex);
+
+ return rc;
+}
+
+static int ipg_nway_reset(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ int rc;
+
+ mutex_lock(&sp->mii_mutex);
+ rc = mii_nway_restart(&sp->mii_if);
+ mutex_unlock(&sp->mii_mutex);
+
+ return rc;
+}
+
+static struct ethtool_ops ipg_ethtool_ops = {
+ .get_settings = ipg_get_settings,
+ .set_settings = ipg_set_settings,
+ .nway_reset = ipg_nway_reset,
+};
+
+static void ipg_remove(struct pci_dev *pdev)
+{
+ struct net_device *dev = pci_get_drvdata(pdev);
+ struct ipg_nic_private *sp = netdev_priv(dev);
+
+ IPG_DEBUG_MSG("_remove\n");
+
+ /* Un-register Ethernet device. */
+ unregister_netdev(dev);
+
+ pci_iounmap(pdev, sp->ioaddr);
+
+ pci_release_regions(pdev);
+
+ free_netdev(dev);
+ pci_disable_device(pdev);
+ pci_set_drvdata(pdev, NULL);
+}
+
+static int __devinit ipg_probe(struct pci_dev *pdev,
+ const struct pci_device_id *id)
+{
+ unsigned int i = id->driver_data;
+ struct ipg_nic_private *sp;
+ struct net_device *dev;
+ void __iomem *ioaddr;
+ int rc;
+
+ rc = pci_enable_device(pdev);
+ if (rc < 0)
+ goto out;
+
+ printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
+
+ pci_set_master(pdev);
+
+ rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
+ if (rc < 0) {
+ rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
+ if (rc < 0) {
+ printk(KERN_ERR "%s: DMA config failed.\n",
+ pci_name(pdev));
+ goto err_disable_0;
+ }
+ }
+
+ /*
+ * Initialize net device.
+ */
+ dev = alloc_etherdev(sizeof(struct ipg_nic_private));
+ if (!dev) {
+ printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
+ rc = -ENOMEM;
+ goto err_disable_0;
+ }
+
+ sp = netdev_priv(dev);
+ spin_lock_init(&sp->lock);
+ mutex_init(&sp->mii_mutex);
+
+ /* Declare IPG NIC functions for Ethernet device methods.
+ */
+ dev->open = &ipg_nic_open;
+ dev->stop = &ipg_nic_stop;
+ dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
+ dev->get_stats = &ipg_nic_get_stats;
+ dev->set_multicast_list = &ipg_nic_set_multicast_list;
+ dev->do_ioctl = ipg_ioctl;
+ dev->tx_timeout = ipg_tx_timeout;
+ dev->change_mtu = &ipg_nic_change_mtu;
+
+ SET_NETDEV_DEV(dev, &pdev->dev);
+ SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
+
+ rc = pci_request_regions(pdev, DRV_NAME);
+ if (rc)
+ goto err_free_dev_1;
+
+ ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
+ if (!ioaddr) {
+ printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
+ rc = -EIO;
+ goto err_release_regions_2;
+ }
+
+ /* Save the pointer to the PCI device information. */
+ sp->ioaddr = ioaddr;
+ sp->pdev = pdev;
+ sp->dev = dev;
+
+ INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
+
+ pci_set_drvdata(pdev, dev);
+
+ rc = ipg_hw_init(dev);
+ if (rc < 0)
+ goto err_unmap_3;
+
+ rc = register_netdev(dev);
+ if (rc < 0)
+ goto err_unmap_3;
+
+ printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
+out:
+ return rc;
+
+err_unmap_3:
+ pci_iounmap(pdev, ioaddr);
+err_release_regions_2:
+ pci_release_regions(pdev);
+err_free_dev_1:
+ free_netdev(dev);
+err_disable_0:
+ pci_disable_device(pdev);
+ goto out;
+}
+
+static struct pci_driver ipg_pci_driver = {
+ .name = IPG_DRIVER_NAME,
+ .id_table = ipg_pci_tbl,
+ .probe = ipg_probe,
+ .remove = __devexit_p(ipg_remove),
+};
+
+static int __init ipg_init_module(void)
+{
+ return pci_register_driver(&ipg_pci_driver);
+}
+
+static void __exit ipg_exit_module(void)
+{
+ pci_unregister_driver(&ipg_pci_driver);
+}
+
+module_init(ipg_init_module);
+module_exit(ipg_exit_module);
OpenPOWER on IntegriCloud