diff options
author | Divy Le Ray <divy@chelsio.com> | 2007-01-18 22:04:14 -0500 |
---|---|---|
committer | Jeff Garzik <jeff@garzik.org> | 2007-02-05 16:58:46 -0500 |
commit | 4d22de3e6cc4a09c369b504cd8bcde3385a974cd (patch) | |
tree | af13a2ee582105d961c79fc4e55fce0b5e043310 /drivers/net/cxgb3/t3_hw.c | |
parent | 0bf94faf64afaba6e7b49fd11541b59d2ba06d0e (diff) | |
download | op-kernel-dev-4d22de3e6cc4a09c369b504cd8bcde3385a974cd.zip op-kernel-dev-4d22de3e6cc4a09c369b504cd8bcde3385a974cd.tar.gz |
Add support for the latest 1G/10G Chelsio adapter, T3.
This driver is required by the Chelsio T3 RDMA driver posted by
Steve Wise.
Signed-off-by: Divy Le Ray <divy@chelsio.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
Diffstat (limited to 'drivers/net/cxgb3/t3_hw.c')
-rw-r--r-- | drivers/net/cxgb3/t3_hw.c | 3354 |
1 files changed, 3354 insertions, 0 deletions
diff --git a/drivers/net/cxgb3/t3_hw.c b/drivers/net/cxgb3/t3_hw.c new file mode 100644 index 0000000..a4e2e57 --- /dev/null +++ b/drivers/net/cxgb3/t3_hw.c @@ -0,0 +1,3354 @@ +/* + * This file is part of the Chelsio T3 Ethernet driver. + * + * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this + * release for licensing terms and conditions. + */ + +#include "common.h" +#include "regs.h" +#include "sge_defs.h" +#include "firmware_exports.h" + + /** + * t3_wait_op_done_val - wait until an operation is completed + * @adapter: the adapter performing the operation + * @reg: the register to check for completion + * @mask: a single-bit field within @reg that indicates completion + * @polarity: the value of the field when the operation is completed + * @attempts: number of check iterations + * @delay: delay in usecs between iterations + * @valp: where to store the value of the register at completion time + * + * Wait until an operation is completed by checking a bit in a register + * up to @attempts times. If @valp is not NULL the value of the register + * at the time it indicated completion is stored there. Returns 0 if the + * operation completes and -EAGAIN otherwise. + */ + +int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, + int polarity, int attempts, int delay, u32 *valp) +{ + while (1) { + u32 val = t3_read_reg(adapter, reg); + + if (!!(val & mask) == polarity) { + if (valp) + *valp = val; + return 0; + } + if (--attempts == 0) + return -EAGAIN; + if (delay) + udelay(delay); + } +} + +/** + * t3_write_regs - write a bunch of registers + * @adapter: the adapter to program + * @p: an array of register address/register value pairs + * @n: the number of address/value pairs + * @offset: register address offset + * + * Takes an array of register address/register value pairs and writes each + * value to the corresponding register. Register addresses are adjusted + * by the supplied offset. + */ +void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, + int n, unsigned int offset) +{ + while (n--) { + t3_write_reg(adapter, p->reg_addr + offset, p->val); + p++; + } +} + +/** + * t3_set_reg_field - set a register field to a value + * @adapter: the adapter to program + * @addr: the register address + * @mask: specifies the portion of the register to modify + * @val: the new value for the register field + * + * Sets a register field specified by the supplied mask to the + * given value. + */ +void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, + u32 val) +{ + u32 v = t3_read_reg(adapter, addr) & ~mask; + + t3_write_reg(adapter, addr, v | val); + t3_read_reg(adapter, addr); /* flush */ +} + +/** + * t3_read_indirect - read indirectly addressed registers + * @adap: the adapter + * @addr_reg: register holding the indirect address + * @data_reg: register holding the value of the indirect register + * @vals: where the read register values are stored + * @start_idx: index of first indirect register to read + * @nregs: how many indirect registers to read + * + * Reads registers that are accessed indirectly through an address/data + * register pair. + */ +void t3_read_indirect(struct adapter *adap, unsigned int addr_reg, + unsigned int data_reg, u32 *vals, unsigned int nregs, + unsigned int start_idx) +{ + while (nregs--) { + t3_write_reg(adap, addr_reg, start_idx); + *vals++ = t3_read_reg(adap, data_reg); + start_idx++; + } +} + +/** + * t3_mc7_bd_read - read from MC7 through backdoor accesses + * @mc7: identifies MC7 to read from + * @start: index of first 64-bit word to read + * @n: number of 64-bit words to read + * @buf: where to store the read result + * + * Read n 64-bit words from MC7 starting at word start, using backdoor + * accesses. + */ +int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, + u64 *buf) +{ + static const int shift[] = { 0, 0, 16, 24 }; + static const int step[] = { 0, 32, 16, 8 }; + + unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ + struct adapter *adap = mc7->adapter; + + if (start >= size64 || start + n > size64) + return -EINVAL; + + start *= (8 << mc7->width); + while (n--) { + int i; + u64 val64 = 0; + + for (i = (1 << mc7->width) - 1; i >= 0; --i) { + int attempts = 10; + u32 val; + + t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start); + t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); + val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); + while ((val & F_BUSY) && attempts--) + val = t3_read_reg(adap, + mc7->offset + A_MC7_BD_OP); + if (val & F_BUSY) + return -EIO; + + val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); + if (mc7->width == 0) { + val64 = t3_read_reg(adap, + mc7->offset + + A_MC7_BD_DATA0); + val64 |= (u64) val << 32; + } else { + if (mc7->width > 1) + val >>= shift[mc7->width]; + val64 |= (u64) val << (step[mc7->width] * i); + } + start += 8; + } + *buf++ = val64; + } + return 0; +} + +/* + * Initialize MI1. + */ +static void mi1_init(struct adapter *adap, const struct adapter_info *ai) +{ + u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; + u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) | + V_CLKDIV(clkdiv); + + if (!(ai->caps & SUPPORTED_10000baseT_Full)) + val |= V_ST(1); + t3_write_reg(adap, A_MI1_CFG, val); +} + +#define MDIO_ATTEMPTS 10 + +/* + * MI1 read/write operations for direct-addressed PHYs. + */ +static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr, + int reg_addr, unsigned int *valp) +{ + int ret; + u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); + + if (mmd_addr) + return -EINVAL; + + mutex_lock(&adapter->mdio_lock); + t3_write_reg(adapter, A_MI1_ADDR, addr); + t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); + ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); + if (!ret) + *valp = t3_read_reg(adapter, A_MI1_DATA); + mutex_unlock(&adapter->mdio_lock); + return ret; +} + +static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr, + int reg_addr, unsigned int val) +{ + int ret; + u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); + + if (mmd_addr) + return -EINVAL; + + mutex_lock(&adapter->mdio_lock); + t3_write_reg(adapter, A_MI1_ADDR, addr); + t3_write_reg(adapter, A_MI1_DATA, val); + t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); + ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); + mutex_unlock(&adapter->mdio_lock); + return ret; +} + +static const struct mdio_ops mi1_mdio_ops = { + mi1_read, + mi1_write +}; + +/* + * MI1 read/write operations for indirect-addressed PHYs. + */ +static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr, + int reg_addr, unsigned int *valp) +{ + int ret; + u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); + + mutex_lock(&adapter->mdio_lock); + t3_write_reg(adapter, A_MI1_ADDR, addr); + t3_write_reg(adapter, A_MI1_DATA, reg_addr); + t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); + ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); + if (!ret) { + t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); + ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, + MDIO_ATTEMPTS, 20); + if (!ret) + *valp = t3_read_reg(adapter, A_MI1_DATA); + } + mutex_unlock(&adapter->mdio_lock); + return ret; +} + +static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr, + int reg_addr, unsigned int val) +{ + int ret; + u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); + + mutex_lock(&adapter->mdio_lock); + t3_write_reg(adapter, A_MI1_ADDR, addr); + t3_write_reg(adapter, A_MI1_DATA, reg_addr); + t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); + ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); + if (!ret) { + t3_write_reg(adapter, A_MI1_DATA, val); + t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); + ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, + MDIO_ATTEMPTS, 20); + } + mutex_unlock(&adapter->mdio_lock); + return ret; +} + +static const struct mdio_ops mi1_mdio_ext_ops = { + mi1_ext_read, + mi1_ext_write +}; + +/** + * t3_mdio_change_bits - modify the value of a PHY register + * @phy: the PHY to operate on + * @mmd: the device address + * @reg: the register address + * @clear: what part of the register value to mask off + * @set: what part of the register value to set + * + * Changes the value of a PHY register by applying a mask to its current + * value and ORing the result with a new value. + */ +int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, + unsigned int set) +{ + int ret; + unsigned int val; + + ret = mdio_read(phy, mmd, reg, &val); + if (!ret) { + val &= ~clear; + ret = mdio_write(phy, mmd, reg, val | set); + } + return ret; +} + +/** + * t3_phy_reset - reset a PHY block + * @phy: the PHY to operate on + * @mmd: the device address of the PHY block to reset + * @wait: how long to wait for the reset to complete in 1ms increments + * + * Resets a PHY block and optionally waits for the reset to complete. + * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset + * for 10G PHYs. + */ +int t3_phy_reset(struct cphy *phy, int mmd, int wait) +{ + int err; + unsigned int ctl; + + err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET); + if (err || !wait) + return err; + + do { + err = mdio_read(phy, mmd, MII_BMCR, &ctl); + if (err) + return err; + ctl &= BMCR_RESET; + if (ctl) + msleep(1); + } while (ctl && --wait); + + return ctl ? -1 : 0; +} + +/** + * t3_phy_advertise - set the PHY advertisement registers for autoneg + * @phy: the PHY to operate on + * @advert: bitmap of capabilities the PHY should advertise + * + * Sets a 10/100/1000 PHY's advertisement registers to advertise the + * requested capabilities. + */ +int t3_phy_advertise(struct cphy *phy, unsigned int advert) +{ + int err; + unsigned int val = 0; + + err = mdio_read(phy, 0, MII_CTRL1000, &val); + if (err) + return err; + + val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); + if (advert & ADVERTISED_1000baseT_Half) + val |= ADVERTISE_1000HALF; + if (advert & ADVERTISED_1000baseT_Full) + val |= ADVERTISE_1000FULL; + + err = mdio_write(phy, 0, MII_CTRL1000, val); + if (err) + return err; + + val = 1; + if (advert & ADVERTISED_10baseT_Half) + val |= ADVERTISE_10HALF; + if (advert & ADVERTISED_10baseT_Full) + val |= ADVERTISE_10FULL; + if (advert & ADVERTISED_100baseT_Half) + val |= ADVERTISE_100HALF; + if (advert & ADVERTISED_100baseT_Full) + val |= ADVERTISE_100FULL; + if (advert & ADVERTISED_Pause) + val |= ADVERTISE_PAUSE_CAP; + if (advert & ADVERTISED_Asym_Pause) + val |= ADVERTISE_PAUSE_ASYM; + return mdio_write(phy, 0, MII_ADVERTISE, val); +} + +/** + * t3_set_phy_speed_duplex - force PHY speed and duplex + * @phy: the PHY to operate on + * @speed: requested PHY speed + * @duplex: requested PHY duplex + * + * Force a 10/100/1000 PHY's speed and duplex. This also disables + * auto-negotiation except for GigE, where auto-negotiation is mandatory. + */ +int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) +{ + int err; + unsigned int ctl; + + err = mdio_read(phy, 0, MII_BMCR, &ctl); + if (err) + return err; + + if (speed >= 0) { + ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); + if (speed == SPEED_100) + ctl |= BMCR_SPEED100; + else if (speed == SPEED_1000) + ctl |= BMCR_SPEED1000; + } + if (duplex >= 0) { + ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); + if (duplex == DUPLEX_FULL) + ctl |= BMCR_FULLDPLX; + } + if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ + ctl |= BMCR_ANENABLE; + return mdio_write(phy, 0, MII_BMCR, ctl); +} + +static const struct adapter_info t3_adap_info[] = { + {2, 0, 0, 0, + F_GPIO2_OEN | F_GPIO4_OEN | + F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, + SUPPORTED_OFFLOAD, + &mi1_mdio_ops, "Chelsio PE9000"}, + {2, 0, 0, 0, + F_GPIO2_OEN | F_GPIO4_OEN | + F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, + SUPPORTED_OFFLOAD, + &mi1_mdio_ops, "Chelsio T302"}, + {1, 0, 0, 0, + F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | + F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, + SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, + &mi1_mdio_ext_ops, "Chelsio T310"}, + {2, 0, 0, 0, + F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | + F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | + F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, + SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, + &mi1_mdio_ext_ops, "Chelsio T320"}, +}; + +/* + * Return the adapter_info structure with a given index. Out-of-range indices + * return NULL. + */ +const struct adapter_info *t3_get_adapter_info(unsigned int id) +{ + return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; +} + +#define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \ + SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII) +#define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI) + +static const struct port_type_info port_types[] = { + {NULL}, + {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE, + "10GBASE-XR"}, + {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, + "10/100/1000BASE-T"}, + {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, + "10/100/1000BASE-T"}, + {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, + {NULL, CAPS_10G, "10GBASE-KX4"}, + {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, + {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE, + "10GBASE-SR"}, + {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, +}; + +#undef CAPS_1G +#undef CAPS_10G + +#define VPD_ENTRY(name, len) \ + u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] + +/* + * Partial EEPROM Vital Product Data structure. Includes only the ID and + * VPD-R sections. + */ +struct t3_vpd { + u8 id_tag; + u8 id_len[2]; + u8 id_data[16]; + u8 vpdr_tag; + u8 vpdr_len[2]; + VPD_ENTRY(pn, 16); /* part number */ + VPD_ENTRY(ec, 16); /* EC level */ + VPD_ENTRY(sn, 16); /* serial number */ + VPD_ENTRY(na, 12); /* MAC address base */ + VPD_ENTRY(cclk, 6); /* core clock */ + VPD_ENTRY(mclk, 6); /* mem clock */ + VPD_ENTRY(uclk, 6); /* uP clk */ + VPD_ENTRY(mdc, 6); /* MDIO clk */ + VPD_ENTRY(mt, 2); /* mem timing */ + VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ + VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ + VPD_ENTRY(port0, 2); /* PHY0 complex */ + VPD_ENTRY(port1, 2); /* PHY1 complex */ + VPD_ENTRY(port2, 2); /* PHY2 complex */ + VPD_ENTRY(port3, 2); /* PHY3 complex */ + VPD_ENTRY(rv, 1); /* csum */ + u32 pad; /* for multiple-of-4 sizing and alignment */ +}; + +#define EEPROM_MAX_POLL 4 +#define EEPROM_STAT_ADDR 0x4000 +#define VPD_BASE 0xc00 + +/** + * t3_seeprom_read - read a VPD EEPROM location + * @adapter: adapter to read + * @addr: EEPROM address + * @data: where to store the read data + * + * Read a 32-bit word from a location in VPD EEPROM using the card's PCI + * VPD ROM capability. A zero is written to the flag bit when the + * addres is written to the control register. The hardware device will + * set the flag to 1 when 4 bytes have been read into the data register. + */ +int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) +{ + u16 val; + int attempts = EEPROM_MAX_POLL; + unsigned int base = adapter->params.pci.vpd_cap_addr; + + if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) + return -EINVAL; + + pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr); + do { + udelay(10); + pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); + } while (!(val & PCI_VPD_ADDR_F) && --attempts); + + if (!(val & PCI_VPD_ADDR_F)) { + CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); + return -EIO; + } + pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data); + *data = le32_to_cpu(*data); + return 0; +} + +/** + * t3_seeprom_write - write a VPD EEPROM location + * @adapter: adapter to write + * @addr: EEPROM address + * @data: value to write + * + * Write a 32-bit word to a location in VPD EEPROM using the card's PCI + * VPD ROM capability. + */ +int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data) +{ + u16 val; + int attempts = EEPROM_MAX_POLL; + unsigned int base = adapter->params.pci.vpd_cap_addr; + + if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) + return -EINVAL; + + pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA, + cpu_to_le32(data)); + pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR, + addr | PCI_VPD_ADDR_F); + do { + msleep(1); + pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); + } while ((val & PCI_VPD_ADDR_F) && --attempts); + + if (val & PCI_VPD_ADDR_F) { + CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); + return -EIO; + } + return 0; +} + +/** + * t3_seeprom_wp - enable/disable EEPROM write protection + * @adapter: the adapter + * @enable: 1 to enable write protection, 0 to disable it + * + * Enables or disables write protection on the serial EEPROM. + */ +int t3_seeprom_wp(struct adapter *adapter, int enable) +{ + return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); +} + +/* + * Convert a character holding a hex digit to a number. + */ +static unsigned int hex2int(unsigned char c) +{ + return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10; +} + +/** + * get_vpd_params - read VPD parameters from VPD EEPROM + * @adapter: adapter to read + * @p: where to store the parameters + * + * Reads card parameters stored in VPD EEPROM. + */ +static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) +{ + int i, addr, ret; + struct t3_vpd vpd; + + /* + * Card information is normally at VPD_BASE but some early cards had + * it at 0. + */ + ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd); + if (ret) + return ret; + addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; + + for (i = 0; i < sizeof(vpd); i += 4) { + ret = t3_seeprom_read(adapter, addr + i, + (u32 *)((u8 *)&vpd + i)); + if (ret) + return ret; + } + + p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10); + p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10); + p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10); + p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10); + p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10); + + /* Old eeproms didn't have port information */ + if (adapter->params.rev == 0 && !vpd.port0_data[0]) { + p->port_type[0] = uses_xaui(adapter) ? 1 : 2; + p->port_type[1] = uses_xaui(adapter) ? 6 : 2; + } else { + p->port_type[0] = hex2int(vpd.port0_data[0]); + p->port_type[1] = hex2int(vpd.port1_data[0]); + p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16); + p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16); + } + + for (i = 0; i < 6; i++) + p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 + + hex2int(vpd.na_data[2 * i + 1]); + return 0; +} + +/* serial flash and firmware constants */ +enum { + SF_ATTEMPTS = 5, /* max retries for SF1 operations */ + SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ + SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ + + /* flash command opcodes */ + SF_PROG_PAGE = 2, /* program page */ + SF_WR_DISABLE = 4, /* disable writes */ + SF_RD_STATUS = 5, /* read status register */ + SF_WR_ENABLE = 6, /* enable writes */ + SF_RD_DATA_FAST = 0xb, /* read flash */ + SF_ERASE_SECTOR = 0xd8, /* erase sector */ + + FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ + FW_VERS_ADDR = 0x77ffc /* flash address holding FW version */ +}; + +/** + * sf1_read - read data from the serial flash + * @adapter: the adapter + * @byte_cnt: number of bytes to read + * @cont: whether another operation will be chained + * @valp: where to store the read data + * + * Reads up to 4 bytes of data from the serial flash. The location of + * the read needs to be specified prior to calling this by issuing the + * appropriate commands to the serial flash. + */ +static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, + u32 *valp) +{ + int ret; + + if (!byte_cnt || byte_cnt > 4) + return -EINVAL; + if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) + return -EBUSY; + t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); + ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); + if (!ret) + *valp = t3_read_reg(adapter, A_SF_DATA); + return ret; +} + +/** + * sf1_write - write data to the serial flash + * @adapter: the adapter + * @byte_cnt: number of bytes to write + * @cont: whether another operation will be chained + * @val: value to write + * + * Writes up to 4 bytes of data to the serial flash. The location of + * the write needs to be specified prior to calling this by issuing the + * appropriate commands to the serial flash. + */ +static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, + u32 val) +{ + if (!byte_cnt || byte_cnt > 4) + return -EINVAL; + if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) + return -EBUSY; + t3_write_reg(adapter, A_SF_DATA, val); + t3_write_reg(adapter, A_SF_OP, + V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); + return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); +} + +/** + * flash_wait_op - wait for a flash operation to complete + * @adapter: the adapter + * @attempts: max number of polls of the status register + * @delay: delay between polls in ms + * + * Wait for a flash operation to complete by polling the status register. + */ +static int flash_wait_op(struct adapter *adapter, int attempts, int delay) +{ + int ret; + u32 status; + + while (1) { + if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || + (ret = sf1_read(adapter, 1, 0, &status)) != 0) + return ret; + if (!(status & 1)) + return 0; + if (--attempts == 0) + return -EAGAIN; + if (delay) + msleep(delay); + } +} + +/** + * t3_read_flash - read words from serial flash + * @adapter: the adapter + * @addr: the start address for the read + * @nwords: how many 32-bit words to read + * @data: where to store the read data + * @byte_oriented: whether to store data as bytes or as words + * + * Read the specified number of 32-bit words from the serial flash. + * If @byte_oriented is set the read data is stored as a byte array + * (i.e., big-endian), otherwise as 32-bit words in the platform's + * natural endianess. + */ +int t3_read_flash(struct adapter *adapter, unsigned int addr, + unsigned int nwords, u32 *data, int byte_oriented) +{ + int ret; + + if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) + return -EINVAL; + + addr = swab32(addr) | SF_RD_DATA_FAST; + + if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || + (ret = sf1_read(adapter, 1, 1, data)) != 0) + return ret; + + for (; nwords; nwords--, data++) { + ret = sf1_read(adapter, 4, nwords > 1, data); + if (ret) + return ret; + if (byte_oriented) + *data = htonl(*data); + } + return 0; +} + +/** + * t3_write_flash - write up to a page of data to the serial flash + * @adapter: the adapter + * @addr: the start address to write + * @n: length of data to write + * @data: the data to write + * + * Writes up to a page of data (256 bytes) to the serial flash starting + * at the given address. + */ +static int t3_write_flash(struct adapter *adapter, unsigned int addr, + unsigned int n, const u8 *data) +{ + int ret; + u32 buf[64]; + unsigned int i, c, left, val, offset = addr & 0xff; + + if (addr + n > SF_SIZE || offset + n > 256) + return -EINVAL; + + val = swab32(addr) | SF_PROG_PAGE; + + if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || + (ret = sf1_write(adapter, 4, 1, val)) != 0) + return ret; + + for (left = n; left; left -= c) { + c = min(left, 4U); + for (val = 0, i = 0; i < c; ++i) + val = (val << 8) + *data++; + + ret = sf1_write(adapter, c, c != left, val); + if (ret) + return ret; + } + if ((ret = flash_wait_op(adapter, 5, 1)) != 0) + return ret; + + /* Read the page to verify the write succeeded */ + ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); + if (ret) + return ret; + + if (memcmp(data - n, (u8 *) buf + offset, n)) + return -EIO; + return 0; +} + +/** + * t3_get_fw_version - read the firmware version + * @adapter: the adapter + * @vers: where to place the version + * + * Reads the FW version from flash. + */ +int t3_get_fw_version(struct adapter *adapter, u32 *vers) +{ + return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); +} + +/** + * t3_check_fw_version - check if the FW is compatible with this driver + * @adapter: the adapter + * + * Checks if an adapter's FW is compatible with the driver. Returns 0 + * if the versions are compatible, a negative error otherwise. + */ +int t3_check_fw_version(struct adapter *adapter) +{ + int ret; + u32 vers; + + ret = t3_get_fw_version(adapter, &vers); + if (ret) + return ret; + + /* Minor 0xfff means the FW is an internal development-only version. */ + if ((vers & 0xfff) == 0xfff) + return 0; + + if (vers == 0x1002009) + return 0; + + CH_ERR(adapter, "found wrong FW version, driver needs version 2.9\n"); + return -EINVAL; +} + +/** + * t3_flash_erase_sectors - erase a range of flash sectors + * @adapter: the adapter + * @start: the first sector to erase + * @end: the last sector to erase + * + * Erases the sectors in the given range. + */ +static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end) +{ + while (start <= end) { + int ret; + + if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || + (ret = sf1_write(adapter, 4, 0, + SF_ERASE_SECTOR | (start << 8))) != 0 || + (ret = flash_wait_op(adapter, 5, 500)) != 0) + return ret; + start++; + } + return 0; +} + +/* + * t3_load_fw - download firmware + * @adapter: the adapter + * @fw_data: the firrware image to write + * @size: image size + * + * Write the supplied firmware image to the card's serial flash. + * The FW image has the following sections: @size - 8 bytes of code and + * data, followed by 4 bytes of FW version, followed by the 32-bit + * 1's complement checksum of the whole image. + */ +int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size) +{ + u32 csum; + unsigned int i; + const u32 *p = (const u32 *)fw_data; + int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; + + if (size & 3) + return -EINVAL; + if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR) + return -EFBIG; + + for (csum = 0, i = 0; i < size / sizeof(csum); i++) + csum += ntohl(p[i]); + if (csum != 0xffffffff) { + CH_ERR(adapter, "corrupted firmware image, checksum %u\n", + csum); + return -EINVAL; + } + + ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); + if (ret) + goto out; + + size -= 8; /* trim off version and checksum */ + for (addr = FW_FLASH_BOOT_ADDR; size;) { + unsigned int chunk_size = min(size, 256U); + + ret = t3_write_flash(adapter, addr, chunk_size, fw_data); + if (ret) + goto out; + + addr += chunk_size; + fw_data += chunk_size; + size -= chunk_size; + } + + ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data); +out: + if (ret) + CH_ERR(adapter, "firmware download failed, error %d\n", ret); + return ret; +} + +#define CIM_CTL_BASE 0x2000 + +/** + * t3_cim_ctl_blk_read - read a block from CIM control region + * + * @adap: the adapter + * @addr: the start address within the CIM control region + * @n: number of words to read + * @valp: where to store the result + * + * Reads a block of 4-byte words from the CIM control region. + */ +int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, + unsigned int n, unsigned int *valp) +{ + int ret = 0; + + if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) + return -EBUSY; + + for ( ; !ret && n--; addr += 4) { + t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); + ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, + 0, 5, 2); + if (!ret) + *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); + } + return ret; +} + + +/** + * t3_link_changed - handle interface link changes + * @adapter: the adapter + * @port_id: the port index that changed link state + * + * Called when a port's link settings change to propagate the new values + * to the associated PHY and MAC. After performing the common tasks it + * invokes an OS-specific handler. + */ +void t3_link_changed(struct adapter *adapter, int port_id) +{ + int link_ok, speed, duplex, fc; + struct port_info *pi = adap2pinfo(adapter, port_id); + struct cphy *phy = &pi->phy; + struct cmac *mac = &pi->mac; + struct link_config *lc = &pi->link_config; + + phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); + + if (link_ok != lc->link_ok && adapter->params.rev > 0 && + uses_xaui(adapter)) { + if (link_ok) + t3b_pcs_reset(mac); + t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, + link_ok ? F_TXACTENABLE | F_RXEN : 0); + } + lc->link_ok = link_ok; + lc->speed = speed < 0 ? SPEED_INVALID : speed; + lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; + if (lc->requested_fc & PAUSE_AUTONEG) + fc &= lc->requested_fc; + else + fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); + + if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { + /* Set MAC speed, duplex, and flow control to match PHY. */ + t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); + lc->fc = fc; + } + + t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc); +} + +/** + * t3_link_start - apply link configuration to MAC/PHY + * @phy: the PHY to setup + * @mac: the MAC to setup + * @lc: the requested link configuration + * + * Set up a port's MAC and PHY according to a desired link configuration. + * - If the PHY can auto-negotiate first decide what to advertise, then + * enable/disable auto-negotiation as desired, and reset. + * - If the PHY does not auto-negotiate just reset it. + * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, + * otherwise do it later based on the outcome of auto-negotiation. + */ +int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) +{ + unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); + + lc->link_ok = 0; + if (lc->supported & SUPPORTED_Autoneg) { + lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); + if (fc) { + lc->advertising |= ADVERTISED_Asym_Pause; + if (fc & PAUSE_RX) + lc->advertising |= ADVERTISED_Pause; + } + phy->ops->advertise(phy, lc->advertising); + + if (lc->autoneg == AUTONEG_DISABLE) { + lc->speed = lc->requested_speed; + lc->duplex = lc->requested_duplex; + lc->fc = (unsigned char)fc; + t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, + fc); + /* Also disables autoneg */ + phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); + phy->ops->reset(phy, 0); + } else + phy->ops->autoneg_enable(phy); + } else { + t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); + lc->fc = (unsigned char)fc; + phy->ops->reset(phy, 0); + } + return 0; +} + +/** + * t3_set_vlan_accel - control HW VLAN extraction + * @adapter: the adapter + * @ports: bitmap of adapter ports to operate on + * @on: enable (1) or disable (0) HW VLAN extraction + * + * Enables or disables HW extraction of VLAN tags for the given port. + */ +void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on) +{ + t3_set_reg_field(adapter, A_TP_OUT_CONFIG, + ports << S_VLANEXTRACTIONENABLE, + on ? (ports << S_VLANEXTRACTIONENABLE) : 0); +} + +struct intr_info { + unsigned int mask; /* bits to check in interrupt status */ + const char *msg; /* message to print or NULL */ + short stat_idx; /* stat counter to increment or -1 */ + unsigned short fatal:1; /* whether the condition reported is fatal */ +}; + +/** + * t3_handle_intr_status - table driven interrupt handler + * @adapter: the adapter that generated the interrupt + * @reg: the interrupt status register to process + * @mask: a mask to apply to the interrupt status + * @acts: table of interrupt actions + * @stats: statistics counters tracking interrupt occurences + * + * A table driven interrupt handler that applies a set of masks to an + * interrupt status word and performs the corresponding actions if the + * interrupts described by the mask have occured. The actions include + * optionally printing a warning or alert message, and optionally + * incrementing a stat counter. The table is terminated by an entry + * specifying mask 0. Returns the number of fatal interrupt conditions. + */ +static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg, + unsigned int mask, + const struct intr_info *acts, + unsigned long *stats) +{ + int fatal = 0; + unsigned int status = t3_read_reg(adapter, reg) & mask; + + for (; acts->mask; ++acts) { + if (!(status & acts->mask)) + continue; + if (acts->fatal) { + fatal++; + CH_ALERT(adapter, "%s (0x%x)\n", + acts->msg, status & acts->mask); + } else if (acts->msg) + CH_WARN(adapter, "%s (0x%x)\n", + acts->msg, status & acts->mask); + if (acts->stat_idx >= 0) + stats[acts->stat_idx]++; + } + if (status) /* clear processed interrupts */ + t3_write_reg(adapter, reg, status); + return fatal; +} + +#define SGE_INTR_MASK (F_RSPQDISABLED) +#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ + F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ + F_NFASRCHFAIL) +#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) +#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ + V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ + F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW) +#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ + F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ + F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ + F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ + V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ + V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) +#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ + F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ + /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ + V_BISTERR(M_BISTERR) | F_PEXERR) +#define ULPRX_INTR_MASK F_PARERR +#define ULPTX_INTR_MASK 0 +#define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \ + F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ + F_ZERO_SWITCH_ERROR) +#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ + F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ + F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ + F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT) +#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ + V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ + V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) +#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ + V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ + V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) +#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ + V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ + V_RXTPPARERRENB(M_RXTPPARERRENB) | \ + V_MCAPARERRENB(M_MCAPARERRENB)) +#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ + F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ + F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ + F_MPS0 | F_CPL_SWITCH) + +/* + * Interrupt handler for the PCIX1 module. + */ +static void pci_intr_handler(struct adapter *adapter) +{ + static const struct intr_info pcix1_intr_info[] = { + { F_PEXERR, "PCI PEX error", -1, 1 }, + {F_MSTDETPARERR, "PCI master detected parity error", -1, 1}, + {F_SIGTARABT, "PCI signaled target abort", -1, 1}, + {F_RCVTARABT, "PCI received target abort", -1, 1}, + {F_RCVMSTABT, "PCI received master abort", -1, 1}, + {F_SIGSYSERR, "PCI signaled system error", -1, 1}, + {F_DETPARERR, "PCI detected parity error", -1, 1}, + {F_SPLCMPDIS, "PCI split completion discarded", -1, 1}, + {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1}, + {F_RCVSPLCMPERR, "PCI received split completion error", -1, + 1}, + {F_DETCORECCERR, "PCI correctable ECC error", + STAT_PCI_CORR_ECC, 0}, + {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1}, + {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, + {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, + 1}, + {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, + 1}, + {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, + 1}, + {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " + "error", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, + pcix1_intr_info, adapter->irq_stats)) + t3_fatal_err(adapter); +} + +/* + * Interrupt handler for the PCIE module. + */ +static void pcie_intr_handler(struct adapter *adapter) +{ + static const struct intr_info pcie_intr_info[] = { + {F_UNXSPLCPLERRR, + "PCI unexpected split completion DMA read error", -1, 1}, + {F_UNXSPLCPLERRC, + "PCI unexpected split completion DMA command error", -1, 1}, + {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, + {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1}, + {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1}, + {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1}, + {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), + "PCI MSI-X table/PBA parity error", -1, 1}, + {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, + pcie_intr_info, adapter->irq_stats)) + t3_fatal_err(adapter); +} + +/* + * TP interrupt handler. + */ +static void tp_intr_handler(struct adapter *adapter) +{ + static const struct intr_info tp_intr_info[] = { + {0xffffff, "TP parity error", -1, 1}, + {0x1000000, "TP out of Rx pages", -1, 1}, + {0x2000000, "TP out of Tx pages", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, + tp_intr_info, NULL)) + t3_fatal_err(adapter); +} + +/* + * CIM interrupt handler. + */ +static void cim_intr_handler(struct adapter *adapter) +{ + static const struct intr_info cim_intr_info[] = { + {F_RSVDSPACEINT, "CIM reserved space write", -1, 1}, + {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1}, + {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1}, + {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1}, + {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1}, + {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1}, + {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1}, + {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1}, + {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1}, + {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1}, + {F_BLKRDPLINT, "CIM block read from PL space", -1, 1}, + {F_BLKWRPLINT, "CIM block write to PL space", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff, + cim_intr_info, NULL)) + t3_fatal_err(adapter); +} + +/* + * ULP RX interrupt handler. + */ +static void ulprx_intr_handler(struct adapter *adapter) +{ + static const struct intr_info ulprx_intr_info[] = { + {F_PARERR, "ULP RX parity error", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, + ulprx_intr_info, NULL)) + t3_fatal_err(adapter); +} + +/* + * ULP TX interrupt handler. + */ +static void ulptx_intr_handler(struct adapter *adapter) +{ + static const struct intr_info ulptx_intr_info[] = { + {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", + STAT_ULP_CH0_PBL_OOB, 0}, + {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", + STAT_ULP_CH1_PBL_OOB, 0}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, + ulptx_intr_info, adapter->irq_stats)) + t3_fatal_err(adapter); +} + +#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ + F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ + F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ + F_ICSPI1_TX_FRAMING_ERROR) +#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ + F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ + F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ + F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) + +/* + * PM TX interrupt handler. + */ +static void pmtx_intr_handler(struct adapter *adapter) +{ + static const struct intr_info pmtx_intr_info[] = { + {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1}, + {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1}, + {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1}, + {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), + "PMTX ispi parity error", -1, 1}, + {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), + "PMTX ospi parity error", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, + pmtx_intr_info, NULL)) + t3_fatal_err(adapter); +} + +#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ + F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ + F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ + F_IESPI1_TX_FRAMING_ERROR) +#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ + F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ + F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ + F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) + +/* + * PM RX interrupt handler. + */ +static void pmrx_intr_handler(struct adapter *adapter) +{ + static const struct intr_info pmrx_intr_info[] = { + {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1}, + {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1}, + {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1}, + {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), + "PMRX ispi parity error", -1, 1}, + {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), + "PMRX ospi parity error", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, + pmrx_intr_info, NULL)) + t3_fatal_err(adapter); +} + +/* + * CPL switch interrupt handler. + */ +static void cplsw_intr_handler(struct adapter *adapter) +{ + static const struct intr_info cplsw_intr_info[] = { +/* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */ + {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1}, + {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1}, + {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1}, + {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, + cplsw_intr_info, NULL)) + t3_fatal_err(adapter); +} + +/* + * MPS interrupt handler. + */ +static void mps_intr_handler(struct adapter *adapter) +{ + static const struct intr_info mps_intr_info[] = { + {0x1ff, "MPS parity error", -1, 1}, + {0} + }; + + if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, + mps_intr_info, NULL)) + t3_fatal_err(adapter); +} + +#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) + +/* + * MC7 interrupt handler. + */ +static void mc7_intr_handler(struct mc7 *mc7) +{ + struct adapter *adapter = mc7->adapter; + u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); + + if (cause & F_CE) { + mc7->stats.corr_err++; + CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " + "data 0x%x 0x%x 0x%x\n", mc7->name, + t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), + t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), + t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), + t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); + } + + if (cause & F_UE) { + mc7->stats.uncorr_err++; + CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " + "data 0x%x 0x%x 0x%x\n", mc7->name, + t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), + t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), + t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), + t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); + } + + if (G_PE(cause)) { + mc7->stats.parity_err++; + CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", + mc7->name, G_PE(cause)); + } + + if (cause & F_AE) { + u32 addr = 0; + + if (adapter->params.rev > 0) + addr = t3_read_reg(adapter, + mc7->offset + A_MC7_ERR_ADDR); + mc7->stats.addr_err++; + CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", + mc7->name, addr); + } + + if (cause & MC7_INTR_FATAL) + t3_fatal_err(adapter); + + t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); +} + +#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ + V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) +/* + * XGMAC interrupt handler. + */ +static int mac_intr_handler(struct adapter *adap, unsigned int idx) +{ + struct cmac *mac = &adap2pinfo(adap, idx)->mac; + u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset); + + if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { + mac->stats.tx_fifo_parity_err++; + CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); + } + if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { + mac->stats.rx_fifo_parity_err++; + CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); + } + if (cause & F_TXFIFO_UNDERRUN) + mac->stats.tx_fifo_urun++; + if (cause & F_RXFIFO_OVERFLOW) + mac->stats.rx_fifo_ovfl++; + if (cause & V_SERDES_LOS(M_SERDES_LOS)) + mac->stats.serdes_signal_loss++; + if (cause & F_XAUIPCSCTCERR) + mac->stats.xaui_pcs_ctc_err++; + if (cause & F_XAUIPCSALIGNCHANGE) + mac->stats.xaui_pcs_align_change++; + + t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); + if (cause & XGM_INTR_FATAL) + t3_fatal_err(adap); + return cause != 0; +} + +/* + * Interrupt handler for PHY events. + */ +int t3_phy_intr_handler(struct adapter *adapter) +{ + static const int intr_gpio_bits[] = { 8, 0x20 }; + + u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); + + for_each_port(adapter, i) { + if (cause & intr_gpio_bits[i]) { + struct cphy *phy = &adap2pinfo(adapter, i)->phy; + int phy_cause = phy->ops->intr_handler(phy); + + if (phy_cause & cphy_cause_link_change) + t3_link_changed(adapter, i); + if (phy_cause & cphy_cause_fifo_error) + phy->fifo_errors++; + } + } + + t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); + return 0; +} + +/* + * T3 slow path (non-data) interrupt handler. + */ +int t3_slow_intr_handler(struct adapter *adapter) +{ + u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); + + cause &= adapter->slow_intr_mask; + if (!cause) + return 0; + if (cause & F_PCIM0) { + if (is_pcie(adapter)) + pcie_intr_handler(adapter); + else + pci_intr_handler(adapter); + } + if (cause & F_SGE3) + t3_sge_err_intr_handler(adapter); + if (cause & F_MC7_PMRX) + mc7_intr_handler(&adapter->pmrx); + if (cause & F_MC7_PMTX) + mc7_intr_handler(&adapter->pmtx); + if (cause & F_MC7_CM) + mc7_intr_handler(&adapter->cm); + if (cause & F_CIM) + cim_intr_handler(adapter); + if (cause & F_TP1) + tp_intr_handler(adapter); + if (cause & F_ULP2_RX) + ulprx_intr_handler(adapter); + if (cause & F_ULP2_TX) + ulptx_intr_handler(adapter); + if (cause & F_PM1_RX) + pmrx_intr_handler(adapter); + if (cause & F_PM1_TX) + pmtx_intr_handler(adapter); + if (cause & F_CPL_SWITCH) + cplsw_intr_handler(adapter); + if (cause & F_MPS0) + mps_intr_handler(adapter); + if (cause & F_MC5A) + t3_mc5_intr_handler(&adapter->mc5); + if (cause & F_XGMAC0_0) + mac_intr_handler(adapter, 0); + if (cause & F_XGMAC0_1) + mac_intr_handler(adapter, 1); + if (cause & F_T3DBG) + t3_os_ext_intr_handler(adapter); + + /* Clear the interrupts just processed. */ + t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); + t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ + return 1; +} + +/** + * t3_intr_enable - enable interrupts + * @adapter: the adapter whose interrupts should be enabled + * + * Enable interrupts by setting the interrupt enable registers of the + * various HW modules and then enabling the top-level interrupt + * concentrator. + */ +void t3_intr_enable(struct adapter *adapter) +{ + static const struct addr_val_pair intr_en_avp[] = { + {A_SG_INT_ENABLE, SGE_INTR_MASK}, + {A_MC7_INT_ENABLE, MC7_INTR_MASK}, + {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, + MC7_INTR_MASK}, + {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, + MC7_INTR_MASK}, + {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK}, + {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK}, + {A_TP_INT_ENABLE, 0x3bfffff}, + {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK}, + {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK}, + {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK}, + {A_MPS_INT_ENABLE, MPS_INTR_MASK}, + }; + + adapter->slow_intr_mask = PL_INTR_MASK; + + t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); + + if (adapter->params.rev > 0) { + t3_write_reg(adapter, A_CPL_INTR_ENABLE, + CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); + t3_write_reg(adapter, A_ULPTX_INT_ENABLE, + ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | + F_PBL_BOUND_ERR_CH1); + } else { + t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); + t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); + } + + t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, + adapter_info(adapter)->gpio_intr); + t3_write_reg(adapter, A_T3DBG_INT_ENABLE, + adapter_info(adapter)->gpio_intr); + if (is_pcie(adapter)) + t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); + else + t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); + t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); + t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ +} + +/** + * t3_intr_disable - disable a card's interrupts + * @adapter: the adapter whose interrupts should be disabled + * + * Disable interrupts. We only disable the top-level interrupt + * concentrator and the SGE data interrupts. + */ +void t3_intr_disable(struct adapter *adapter) +{ + t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); + t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ + adapter->slow_intr_mask = 0; +} + +/** + * t3_intr_clear - clear all interrupts + * @adapter: the adapter whose interrupts should be cleared + * + * Clears all interrupts. + */ +void t3_intr_clear(struct adapter *adapter) +{ + static const unsigned int cause_reg_addr[] = { + A_SG_INT_CAUSE, + A_SG_RSPQ_FL_STATUS, + A_PCIX_INT_CAUSE, + A_MC7_INT_CAUSE, + A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, + A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, + A_CIM_HOST_INT_CAUSE, + A_TP_INT_CAUSE, + A_MC5_DB_INT_CAUSE, + A_ULPRX_INT_CAUSE, + A_ULPTX_INT_CAUSE, + A_CPL_INTR_CAUSE, + A_PM1_TX_INT_CAUSE, + A_PM1_RX_INT_CAUSE, + A_MPS_INT_CAUSE, + A_T3DBG_INT_CAUSE, + }; + unsigned int i; + + /* Clear PHY and MAC interrupts for each port. */ + for_each_port(adapter, i) + t3_port_intr_clear(adapter, i); + + for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) + t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); + + t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); + t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ +} + +/** + * t3_port_intr_enable - enable port-specific interrupts + * @adapter: associated adapter + * @idx: index of port whose interrupts should be enabled + * + * Enable port-specific (i.e., MAC and PHY) interrupts for the given + * adapter port. + */ +void t3_port_intr_enable(struct adapter *adapter, int idx) +{ + struct cphy *phy = &adap2pinfo(adapter, idx)->phy; + + t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK); + t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ + phy->ops->intr_enable(phy); +} + +/** + * t3_port_intr_disable - disable port-specific interrupts + * @adapter: associated adapter + * @idx: index of port whose interrupts should be disabled + * + * Disable port-specific (i.e., MAC and PHY) interrupts for the given + * adapter port. + */ +void t3_port_intr_disable(struct adapter *adapter, int idx) +{ + struct cphy *phy = &adap2pinfo(adapter, idx)->phy; + + t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0); + t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ + phy->ops->intr_disable(phy); +} + +/** + * t3_port_intr_clear - clear port-specific interrupts + * @adapter: associated adapter + * @idx: index of port whose interrupts to clear + * + * Clear port-specific (i.e., MAC and PHY) interrupts for the given + * adapter port. + */ +void t3_port_intr_clear(struct adapter *adapter, int idx) +{ + struct cphy *phy = &adap2pinfo(adapter, idx)->phy; + + t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff); + t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */ + phy->ops->intr_clear(phy); +} + +/** + * t3_sge_write_context - write an SGE context + * @adapter: the adapter + * @id: the context id + * @type: the context type + * + * Program an SGE context with the values already loaded in the + * CONTEXT_DATA? registers. + */ +static int t3_sge_write_context(struct adapter *adapter, unsigned int id, + unsigned int type) +{ + t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); + t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); + t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); + t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); + t3_write_reg(adapter, A_SG_CONTEXT_CMD, + V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); + return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, + 0, 5, 1); +} + +/** + * t3_sge_init_ecntxt - initialize an SGE egress context + * @adapter: the adapter to configure + * @id: the context id + * @gts_enable: whether to enable GTS for the context + * @type: the egress context type + * @respq: associated response queue + * @base_addr: base address of queue + * @size: number of queue entries + * @token: uP token + * @gen: initial generation value for the context + * @cidx: consumer pointer + * + * Initialize an SGE egress context and make it ready for use. If the + * platform allows concurrent context operations, the caller is + * responsible for appropriate locking. + */ +int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, + enum sge_context_type type, int respq, u64 base_addr, + unsigned int size, unsigned int token, int gen, + unsigned int cidx) +{ + unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; + + if (base_addr & 0xfff) /* must be 4K aligned */ + return -EINVAL; + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + base_addr >>= 12; + t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | + V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); + t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | + V_EC_BASE_LO(base_addr & 0xffff)); + base_addr >>= 16; + t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr); + base_addr >>= 32; + t3_write_reg(adapter, A_SG_CONTEXT_DATA3, + V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) | + V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | + F_EC_VALID); + return t3_sge_write_context(adapter, id, F_EGRESS); +} + +/** + * t3_sge_init_flcntxt - initialize an SGE free-buffer list context + * @adapter: the adapter to configure + * @id: the context id + * @gts_enable: whether to enable GTS for the context + * @base_addr: base address of queue + * @size: number of queue entries + * @bsize: size of each buffer for this queue + * @cong_thres: threshold to signal congestion to upstream producers + * @gen: initial generation value for the context + * @cidx: consumer pointer + * + * Initialize an SGE free list context and make it ready for use. The + * caller is responsible for ensuring only one context operation occurs + * at a time. + */ +int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, + int gts_enable, u64 base_addr, unsigned int size, + unsigned int bsize, unsigned int cong_thres, int gen, + unsigned int cidx) +{ + if (base_addr & 0xfff) /* must be 4K aligned */ + return -EINVAL; + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + base_addr >>= 12; + t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr); + base_addr >>= 32; + t3_write_reg(adapter, A_SG_CONTEXT_DATA1, + V_FL_BASE_HI((u32) base_addr) | + V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); + t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | + V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | + V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); + t3_write_reg(adapter, A_SG_CONTEXT_DATA3, + V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | + V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); + return t3_sge_write_context(adapter, id, F_FREELIST); +} + +/** + * t3_sge_init_rspcntxt - initialize an SGE response queue context + * @adapter: the adapter to configure + * @id: the context id + * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ + * @base_addr: base address of queue + * @size: number of queue entries + * @fl_thres: threshold for selecting the normal or jumbo free list + * @gen: initial generation value for the context + * @cidx: consumer pointer + * + * Initialize an SGE response queue context and make it ready for use. + * The caller is responsible for ensuring only one context operation + * occurs at a time. + */ +int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, + int irq_vec_idx, u64 base_addr, unsigned int size, + unsigned int fl_thres, int gen, unsigned int cidx) +{ + unsigned int intr = 0; + + if (base_addr & 0xfff) /* must be 4K aligned */ + return -EINVAL; + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + base_addr >>= 12; + t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | + V_CQ_INDEX(cidx)); + t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); + base_addr >>= 32; + if (irq_vec_idx >= 0) + intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN; + t3_write_reg(adapter, A_SG_CONTEXT_DATA2, + V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen)); + t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); + return t3_sge_write_context(adapter, id, F_RESPONSEQ); +} + +/** + * t3_sge_init_cqcntxt - initialize an SGE completion queue context + * @adapter: the adapter to configure + * @id: the context id + * @base_addr: base address of queue + * @size: number of queue entries + * @rspq: response queue for async notifications + * @ovfl_mode: CQ overflow mode + * @credits: completion queue credits + * @credit_thres: the credit threshold + * + * Initialize an SGE completion queue context and make it ready for use. + * The caller is responsible for ensuring only one context operation + * occurs at a time. + */ +int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, + unsigned int size, int rspq, int ovfl_mode, + unsigned int credits, unsigned int credit_thres) +{ + if (base_addr & 0xfff) /* must be 4K aligned */ + return -EINVAL; + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + base_addr >>= 12; + t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); + t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); + base_addr >>= 32; + t3_write_reg(adapter, A_SG_CONTEXT_DATA2, + V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) | + V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode)); + t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | + V_CQ_CREDIT_THRES(credit_thres)); + return t3_sge_write_context(adapter, id, F_CQ); +} + +/** + * t3_sge_enable_ecntxt - enable/disable an SGE egress context + * @adapter: the adapter + * @id: the egress context id + * @enable: enable (1) or disable (0) the context + * + * Enable or disable an SGE egress context. The caller is responsible for + * ensuring only one context operation occurs at a time. + */ +int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable) +{ + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); + t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); + t3_write_reg(adapter, A_SG_CONTEXT_CMD, + V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); + return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, + 0, 5, 1); +} + +/** + * t3_sge_disable_fl - disable an SGE free-buffer list + * @adapter: the adapter + * @id: the free list context id + * + * Disable an SGE free-buffer list. The caller is responsible for + * ensuring only one context operation occurs at a time. + */ +int t3_sge_disable_fl(struct adapter *adapter, unsigned int id) +{ + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); + t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); + t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); + t3_write_reg(adapter, A_SG_CONTEXT_CMD, + V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); + return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, + 0, 5, 1); +} + +/** + * t3_sge_disable_rspcntxt - disable an SGE response queue + * @adapter: the adapter + * @id: the response queue context id + * + * Disable an SGE response queue. The caller is responsible for + * ensuring only one context operation occurs at a time. + */ +int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id) +{ + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); + t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); + t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); + t3_write_reg(adapter, A_SG_CONTEXT_CMD, + V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); + return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, + 0, 5, 1); +} + +/** + * t3_sge_disable_cqcntxt - disable an SGE completion queue + * @adapter: the adapter + * @id: the completion queue context id + * + * Disable an SGE completion queue. The caller is responsible for + * ensuring only one context operation occurs at a time. + */ +int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id) +{ + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); + t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); + t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); + t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); + t3_write_reg(adapter, A_SG_CONTEXT_CMD, + V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); + return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, + 0, 5, 1); +} + +/** + * t3_sge_cqcntxt_op - perform an operation on a completion queue context + * @adapter: the adapter + * @id: the context id + * @op: the operation to perform + * + * Perform the selected operation on an SGE completion queue context. + * The caller is responsible for ensuring only one context operation + * occurs at a time. + */ +int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, + unsigned int credits) +{ + u32 val; + + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); + t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | + V_CONTEXT(id) | F_CQ); + if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, + 0, 5, 1, &val)) + return -EIO; + + if (op >= 2 && op < 7) { + if (adapter->params.rev > 0) + return G_CQ_INDEX(val); + + t3_write_reg(adapter, A_SG_CONTEXT_CMD, + V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); + if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, + F_CONTEXT_CMD_BUSY, 0, 5, 1)) + return -EIO; + return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); + } + return 0; +} + +/** + * t3_sge_read_context - read an SGE context + * @type: the context type + * @adapter: the adapter + * @id: the context id + * @data: holds the retrieved context + * + * Read an SGE egress context. The caller is responsible for ensuring + * only one context operation occurs at a time. + */ +static int t3_sge_read_context(unsigned int type, struct adapter *adapter, + unsigned int id, u32 data[4]) +{ + if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) + return -EBUSY; + + t3_write_reg(adapter, A_SG_CONTEXT_CMD, + V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id)); + if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, + 5, 1)) + return -EIO; + data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0); + data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1); + data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2); + data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3); + return 0; +} + +/** + * t3_sge_read_ecntxt - read an SGE egress context + * @adapter: the adapter + * @id: the context id + * @data: holds the retrieved context + * + * Read an SGE egress context. The caller is responsible for ensuring + * only one context operation occurs at a time. + */ +int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4]) +{ + if (id >= 65536) + return -EINVAL; + return t3_sge_read_context(F_EGRESS, adapter, id, data); +} + +/** + * t3_sge_read_cq - read an SGE CQ context + * @adapter: the adapter + * @id: the context id + * @data: holds the retrieved context + * + * Read an SGE CQ context. The caller is responsible for ensuring + * only one context operation occurs at a time. + */ +int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4]) +{ + if (id >= 65536) + return -EINVAL; + return t3_sge_read_context(F_CQ, adapter, id, data); +} + +/** + * t3_sge_read_fl - read an SGE free-list context + * @adapter: the adapter + * @id: the context id + * @data: holds the retrieved context + * + * Read an SGE free-list context. The caller is responsible for ensuring + * only one context operation occurs at a time. + */ +int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4]) +{ + if (id >= SGE_QSETS * 2) + return -EINVAL; + return t3_sge_read_context(F_FREELIST, adapter, id, data); +} + +/** + * t3_sge_read_rspq - read an SGE response queue context + * @adapter: the adapter + * @id: the context id + * @data: holds the retrieved context + * + * Read an SGE response queue context. The caller is responsible for + * ensuring only one context operation occurs at a time. + */ +int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4]) +{ + if (id >= SGE_QSETS) + return -EINVAL; + return t3_sge_read_context(F_RESPONSEQ, adapter, id, data); +} + +/** + * t3_config_rss - configure Rx packet steering + * @adapter: the adapter + * @rss_config: RSS settings (written to TP_RSS_CONFIG) + * @cpus: values for the CPU lookup table (0xff terminated) + * @rspq: values for the response queue lookup table (0xffff terminated) + * + * Programs the receive packet steering logic. @cpus and @rspq provide + * the values for the CPU and response queue lookup tables. If they + * provide fewer values than the size of the tables the supplied values + * are used repeatedly until the tables are fully populated. + */ +void t3_config_rss(struct adapter *adapter, unsigned int rss_config, + const u8 * cpus, const u16 *rspq) +{ + int i, j, cpu_idx = 0, q_idx = 0; + + if (cpus) + for (i = 0; i < RSS_TABLE_SIZE; ++i) { + u32 val = i << 16; + + for (j = 0; j < 2; ++j) { + val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); + if (cpus[cpu_idx] == 0xff) + cpu_idx = 0; + } + t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); + } + + if (rspq) + for (i = 0; i < RSS_TABLE_SIZE; ++i) { + t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, + (i << 16) | rspq[q_idx++]); + if (rspq[q_idx] == 0xffff) + q_idx = 0; + } + + t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); +} + +/** + * t3_read_rss - read the contents of the RSS tables + * @adapter: the adapter + * @lkup: holds the contents of the RSS lookup table + * @map: holds the contents of the RSS map table + * + * Reads the contents of the receive packet steering tables. + */ +int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map) +{ + int i; + u32 val; + + if (lkup) + for (i = 0; i < RSS_TABLE_SIZE; ++i) { + t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, + 0xffff0000 | i); + val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE); + if (!(val & 0x80000000)) + return -EAGAIN; + *lkup++ = val; + *lkup++ = (val >> 8); + } + + if (map) + for (i = 0; i < RSS_TABLE_SIZE; ++i) { + t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, + 0xffff0000 | i); + val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE); + if (!(val & 0x80000000)) + return -EAGAIN; + *map++ = val; + } + return 0; +} + +/** + * t3_tp_set_offload_mode - put TP in NIC/offload mode + * @adap: the adapter + * @enable: 1 to select offload mode, 0 for regular NIC + * + * Switches TP to NIC/offload mode. + */ +void t3_tp_set_offload_mode(struct adapter *adap, int enable) +{ + if (is_offload(adap) || !enable) + t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, + V_NICMODE(!enable)); +} + +/** + * pm_num_pages - calculate the number of pages of the payload memory + * @mem_size: the size of the payload memory + * @pg_size: the size of each payload memory page + * + * Calculate the number of pages, each of the given size, that fit in a + * memory of the specified size, respecting the HW requirement that the + * number of pages must be a multiple of 24. + */ +static inline unsigned int pm_num_pages(unsigned int mem_size, + unsigned int pg_size) +{ + unsigned int n = mem_size / pg_size; + + return n - n % 24; +} + +#define mem_region(adap, start, size, reg) \ + t3_write_reg((adap), A_ ## reg, (start)); \ + start += size + +/* + * partition_mem - partition memory and configure TP memory settings + * @adap: the adapter + * @p: the TP parameters + * + * Partitions context and payload memory and configures TP's memory + * registers. + */ +static void partition_mem(struct adapter *adap, const struct tp_params *p) +{ + unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); + unsigned int timers = 0, timers_shift = 22; + + if (adap->params.rev > 0) { + if (tids <= 16 * 1024) { + timers = 1; + timers_shift = 16; + } else if (tids <= 64 * 1024) { + timers = 2; + timers_shift = 18; + } else if (tids <= 256 * 1024) { + timers = 3; + timers_shift = 20; + } + } + + t3_write_reg(adap, A_TP_PMM_SIZE, + p->chan_rx_size | (p->chan_tx_size >> 16)); + + t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); + t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); + t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); + t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), + V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); + + t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); + t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); + t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); + + pstructs = p->rx_num_pgs + p->tx_num_pgs; + /* Add a bit of headroom and make multiple of 24 */ + pstructs += 48; + pstructs -= pstructs % 24; + t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); + + m = tids * TCB_SIZE; + mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); + mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); + t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); + m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); + mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); + mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); + mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); + mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); + + m = (m + 4095) & ~0xfff; + t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); + t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); + + tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; + m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - + adap->params.mc5.nfilters - adap->params.mc5.nroutes; + if (tids < m) + adap->params.mc5.nservers += m - tids; +} + +static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr, + u32 val) +{ + t3_write_reg(adap, A_TP_PIO_ADDR, addr); + t3_write_reg(adap, A_TP_PIO_DATA, val); +} + +static void tp_config(struct adapter *adap, const struct tp_params *p) +{ + unsigned int v; + + t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | + F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | + F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); + t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | + F_MTUENABLE | V_WINDOWSCALEMODE(1) | + V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); + t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | + V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | + V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) | + F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); + t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE, + F_IPV6ENABLE | F_NICMODE); + t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); + t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); + t3_set_reg_field(adap, A_TP_PARA_REG6, + adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND, + 0); + + v = t3_read_reg(adap, A_TP_PC_CONFIG); + v &= ~(F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL); + t3_write_reg(adap, A_TP_PC_CONFIG, v | F_TXDEFERENABLE | + F_MODULATEUNIONMODE | F_HEARBEATDACK | + F_TXCONGESTIONMODE | F_RXCONGESTIONMODE); + + v = t3_read_reg(adap, A_TP_PC_CONFIG2); + v &= ~F_CHDRAFULL; + t3_write_reg(adap, A_TP_PC_CONFIG2, v); + + if (adap->params.rev > 0) { + tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); + t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO, + F_TXPACEAUTO); + t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); + t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT); + } else + t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); + + t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212); + t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212); + t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212); +} + +/* Desired TP timer resolution in usec */ +#define TP_TMR_RES 50 + +/* TCP timer values in ms */ +#define TP_DACK_TIMER 50 +#define TP_RTO_MIN 250 + +/** + * tp_set_timers - set TP timing parameters + * @adap: the adapter to set + * @core_clk: the core clock frequency in Hz + * + * Set TP's timing parameters, such as the various timer resolutions and + * the TCP timer values. + */ +static void tp_set_timers(struct adapter *adap, unsigned int core_clk) +{ + unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1; + unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */ + unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ + unsigned int tps = core_clk >> tre; + + t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | + V_DELAYEDACKRESOLUTION(dack_re) | + V_TIMESTAMPRESOLUTION(tstamp_re)); + t3_write_reg(adap, A_TP_DACK_TIMER, + (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); + t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); + t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); + t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); + t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); + t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | + V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | + V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | + V_KEEPALIVEMAX(9)); + +#define SECONDS * tps + + t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS); + t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); + t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); + t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); + t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); + t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); + t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); + t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); + t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); + +#undef SECONDS +} + +/** + * t3_tp_set_coalescing_size - set receive coalescing size + * @adap: the adapter + * @size: the receive coalescing size + * @psh: whether a set PSH bit should deliver coalesced data + * + * Set the receive coalescing size and PSH bit handling. + */ +int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh) +{ + u32 val; + + if (size > MAX_RX_COALESCING_LEN) + return -EINVAL; + + val = t3_read_reg(adap, A_TP_PARA_REG3); + val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); + + if (size) { + val |= F_RXCOALESCEENABLE; + if (psh) + val |= F_RXCOALESCEPSHEN; + t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | + V_MAXRXDATA(MAX_RX_COALESCING_LEN)); + } + t3_write_reg(adap, A_TP_PARA_REG3, val); + return 0; +} + +/** + * t3_tp_set_max_rxsize - set the max receive size + * @adap: the adapter + * @size: the max receive size + * + * Set TP's max receive size. This is the limit that applies when + * receive coalescing is disabled. + */ +void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size) +{ + t3_write_reg(adap, A_TP_PARA_REG7, + V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); +} + +static void __devinit init_mtus(unsigned short mtus[]) +{ + /* + * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so + * it can accomodate max size TCP/IP headers when SACK and timestamps + * are enabled and still have at least 8 bytes of payload. + */ + mtus[0] = 88; + mtus[1] = 256; + mtus[2] = 512; + mtus[3] = 576; + mtus[4] = 808; + mtus[5] = 1024; + mtus[6] = 1280; + mtus[7] = 1492; + mtus[8] = 1500; + mtus[9] = 2002; + mtus[10] = 2048; + mtus[11] = 4096; + mtus[12] = 4352; + mtus[13] = 8192; + mtus[14] = 9000; + mtus[15] = 9600; +} + +/* + * Initial congestion control parameters. + */ +static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) +{ + a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; + a[9] = 2; + a[10] = 3; + a[11] = 4; + a[12] = 5; + a[13] = 6; + a[14] = 7; + a[15] = 8; + a[16] = 9; + a[17] = 10; + a[18] = 14; + a[19] = 17; + a[20] = 21; + a[21] = 25; + a[22] = 30; + a[23] = 35; + a[24] = 45; + a[25] = 60; + a[26] = 80; + a[27] = 100; + a[28] = 200; + a[29] = 300; + a[30] = 400; + a[31] = 500; + + b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; + b[9] = b[10] = 1; + b[11] = b[12] = 2; + b[13] = b[14] = b[15] = b[16] = 3; + b[17] = b[18] = b[19] = b[20] = b[21] = 4; + b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; + b[28] = b[29] = 6; + b[30] = b[31] = 7; +} + +/* The minimum additive increment value for the congestion control table */ +#define CC_MIN_INCR 2U + +/** + * t3_load_mtus - write the MTU and congestion control HW tables + * @adap: the adapter + * @mtus: the unrestricted values for the MTU table + * @alphs: the values for the congestion control alpha parameter + * @beta: the values for the congestion control beta parameter + * @mtu_cap: the maximum permitted effective MTU + * + * Write the MTU table with the supplied MTUs capping each at &mtu_cap. + * Update the high-speed congestion control table with the supplied alpha, + * beta, and MTUs. + */ +void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], + unsigned short alpha[NCCTRL_WIN], + unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) +{ + static const unsigned int avg_pkts[NCCTRL_WIN] = { + 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, + 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, + 28672, 40960, 57344, 81920, 114688, 163840, 229376 + }; + + unsigned int i, w; + + for (i = 0; i < NMTUS; ++i) { + unsigned int mtu = min(mtus[i], mtu_cap); + unsigned int log2 = fls(mtu); + + if (!(mtu & ((1 << log2) >> 2))) /* round */ + log2--; + t3_write_reg(adap, A_TP_MTU_TABLE, + (i << 24) | (log2 << 16) | mtu); + + for (w = 0; w < NCCTRL_WIN; ++w) { + unsigned int inc; + + inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], + CC_MIN_INCR); + + t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | + (w << 16) | (beta[w] << 13) | inc); + } + } +} + +/** + * t3_read_hw_mtus - returns the values in the HW MTU table + * @adap: the adapter + * @mtus: where to store the HW MTU values + * + * Reads the HW MTU table. + */ +void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS]) +{ + int i; + + for (i = 0; i < NMTUS; ++i) { + unsigned int val; + + t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i); + val = t3_read_reg(adap, A_TP_MTU_TABLE); + mtus[i] = val & 0x3fff; + } +} + +/** + * t3_get_cong_cntl_tab - reads the congestion control table + * @adap: the adapter + * @incr: where to store the alpha values + * + * Reads the additive increments programmed into the HW congestion + * control table. + */ +void t3_get_cong_cntl_tab(struct adapter *adap, + unsigned short incr[NMTUS][NCCTRL_WIN]) +{ + unsigned int mtu, w; + + for (mtu = 0; mtu < NMTUS; ++mtu) + for (w = 0; w < NCCTRL_WIN; ++w) { + t3_write_reg(adap, A_TP_CCTRL_TABLE, + 0xffff0000 | (mtu << 5) | w); + incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) & + 0x1fff; + } +} + +/** + * t3_tp_get_mib_stats - read TP's MIB counters + * @adap: the adapter + * @tps: holds the returned counter values + * + * Returns the values of TP's MIB counters. + */ +void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps) +{ + t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps, + sizeof(*tps) / sizeof(u32), 0); +} + +#define ulp_region(adap, name, start, len) \ + t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ + t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ + (start) + (len) - 1); \ + start += len + +#define ulptx_region(adap, name, start, len) \ + t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ + t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ + (start) + (len) - 1) + +static void ulp_config(struct adapter *adap, const struct tp_params *p) +{ + unsigned int m = p->chan_rx_size; + + ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); + ulp_region(adap, TDDP, m, p->chan_rx_size / 8); + ulptx_region(adap, TPT, m, p->chan_rx_size / 4); + ulp_region(adap, STAG, m, p->chan_rx_size / 4); + ulp_region(adap, RQ, m, p->chan_rx_size / 4); + ulptx_region(adap, PBL, m, p->chan_rx_size / 4); + ulp_region(adap, PBL, m, p->chan_rx_size / 4); + t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); +} + +void t3_config_trace_filter(struct adapter *adapter, + const struct trace_params *tp, int filter_index, + int invert, int enable) +{ + u32 addr, key[4], mask[4]; + + key[0] = tp->sport | (tp->sip << 16); + key[1] = (tp->sip >> 16) | (tp->dport << 16); + key[2] = tp->dip; + key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); + + mask[0] = tp->sport_mask | (tp->sip_mask << 16); + mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); + mask[2] = tp->dip_mask; + mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); + + if (invert) + key[3] |= (1 << 29); + if (enable) + key[3] |= (1 << 28); + + addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; + tp_wr_indirect(adapter, addr++, key[0]); + tp_wr_indirect(adapter, addr++, mask[0]); + tp_wr_indirect(adapter, addr++, key[1]); + tp_wr_indirect(adapter, addr++, mask[1]); + tp_wr_indirect(adapter, addr++, key[2]); + tp_wr_indirect(adapter, addr++, mask[2]); + tp_wr_indirect(adapter, addr++, key[3]); + tp_wr_indirect(adapter, addr, mask[3]); + t3_read_reg(adapter, A_TP_PIO_DATA); +} + +/** + * t3_config_sched - configure a HW traffic scheduler + * @adap: the adapter + * @kbps: target rate in Kbps + * @sched: the scheduler index + * + * Configure a HW scheduler for the target rate + */ +int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched) +{ + unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; + unsigned int clk = adap->params.vpd.cclk * 1000; + unsigned int selected_cpt = 0, selected_bpt = 0; + + if (kbps > 0) { + kbps *= 125; /* -> bytes */ + for (cpt = 1; cpt <= 255; cpt++) { + tps = clk / cpt; + bpt = (kbps + tps / 2) / tps; + if (bpt > 0 && bpt <= 255) { + v = bpt * tps; + delta = v >= kbps ? v - kbps : kbps - v; + if (delta <= mindelta) { + mindelta = delta; + selected_cpt = cpt; + selected_bpt = bpt; + } + } else if (selected_cpt) + break; + } + if (!selected_cpt) + return -EINVAL; + } + t3_write_reg(adap, A_TP_TM_PIO_ADDR, + A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); + v = t3_read_reg(adap, A_TP_TM_PIO_DATA); + if (sched & 1) + v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); + else + v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); + t3_write_reg(adap, A_TP_TM_PIO_DATA, v); + return 0; +} + +static int tp_init(struct adapter *adap, const struct tp_params *p) +{ + int busy = 0; + + tp_config(adap, p); + t3_set_vlan_accel(adap, 3, 0); + + if (is_offload(adap)) { + tp_set_timers(adap, adap->params.vpd.cclk * 1000); + t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); + busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, + 0, 1000, 5); + if (busy) + CH_ERR(adap, "TP initialization timed out\n"); + } + + if (!busy) + t3_write_reg(adap, A_TP_RESET, F_TPRESET); + return busy; +} + +int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask) +{ + if (port_mask & ~((1 << adap->params.nports) - 1)) + return -EINVAL; + t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE, + port_mask << S_PORT0ACTIVE); + return 0; +} + +/* + * Perform the bits of HW initialization that are dependent on the number + * of available ports. + */ +static void init_hw_for_avail_ports(struct adapter *adap, int nports) +{ + int i; + + if (nports == 1) { + t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); + t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); + t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN | + F_PORT0ACTIVE | F_ENFORCEPKT); + t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000); + } else { + t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); + t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); + t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, + V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); + t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | + F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | + F_ENFORCEPKT); + t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); + t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); + t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, + V_TX_MOD_QUEUE_REQ_MAP(0xaa)); + for (i = 0; i < 16; i++) + t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, + (i << 16) | 0x1010); + } +} + +static int calibrate_xgm(struct adapter *adapter) +{ + if (uses_xaui(adapter)) { + unsigned int v, i; + + for (i = 0; i < 5; ++i) { + t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); + t3_read_reg(adapter, A_XGM_XAUI_IMP); + msleep(1); + v = t3_read_reg(adapter, A_XGM_XAUI_IMP); + if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { + t3_write_reg(adapter, A_XGM_XAUI_IMP, + V_XAUIIMP(G_CALIMP(v) >> 2)); + return 0; + } + } + CH_ERR(adapter, "MAC calibration failed\n"); + return -1; + } else { + t3_write_reg(adapter, A_XGM_RGMII_IMP, + V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); + t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, + F_XGM_IMPSETUPDATE); + } + return 0; +} + +static void calibrate_xgm_t3b(struct adapter *adapter) +{ + if (!uses_xaui(adapter)) { + t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | + F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); + t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); + t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, + F_XGM_IMPSETUPDATE); + t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, + 0); + t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); + t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); + } +} + +struct mc7_timing_params { + unsigned char ActToPreDly; + unsigned char ActToRdWrDly; + unsigned char PreCyc; + unsigned char RefCyc[5]; + unsigned char BkCyc; + unsigned char WrToRdDly; + unsigned char RdToWrDly; +}; + +/* + * Write a value to a register and check that the write completed. These + * writes normally complete in a cycle or two, so one read should suffice. + * The very first read exists to flush the posted write to the device. + */ +static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val) +{ + t3_write_reg(adapter, addr, val); + t3_read_reg(adapter, addr); /* flush */ + if (!(t3_read_reg(adapter, addr) & F_BUSY)) + return 0; + CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); + return -EIO; +} + +static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) +{ + static const unsigned int mc7_mode[] = { + 0x632, 0x642, 0x652, 0x432, 0x442 + }; + static const struct mc7_timing_params mc7_timings[] = { + {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4}, + {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4}, + {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4}, + {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4}, + {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4} + }; + + u32 val; + unsigned int width, density, slow, attempts; + struct adapter *adapter = mc7->adapter; + const struct mc7_timing_params *p = &mc7_timings[mem_type]; + + val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); + slow = val & F_SLOW; + width = G_WIDTH(val); + density = G_DEN(val); + + t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); + val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ + msleep(1); + + if (!slow) { + t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); + t3_read_reg(adapter, mc7->offset + A_MC7_CAL); + msleep(1); + if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & + (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { + CH_ERR(adapter, "%s MC7 calibration timed out\n", + mc7->name); + goto out_fail; + } + } + + t3_write_reg(adapter, mc7->offset + A_MC7_PARM, + V_ACTTOPREDLY(p->ActToPreDly) | + V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | + V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | + V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); + + t3_write_reg(adapter, mc7->offset + A_MC7_CFG, + val | F_CLKEN | F_TERM150); + t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ + + if (!slow) + t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, + F_DLLENB); + udelay(1); + + val = slow ? 3 : 6; + if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || + wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || + wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || + wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) + goto out_fail; + + if (!slow) { + t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); + t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0); + udelay(5); + } + + if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || + wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || + wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || + wrreg_wait(adapter, mc7->offset + A_MC7_MODE, + mc7_mode[mem_type]) || + wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || + wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) + goto out_fail; + + /* clock value is in KHz */ + mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ + mc7_clock /= 1000000; /* KHz->MHz, ns->us */ + + t3_write_reg(adapter, mc7->offset + A_MC7_REF, + F_PERREFEN | V_PREREFDIV(mc7_clock)); + t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ + + t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN); + t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); + t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); + t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, + (mc7->size << width) - 1); + t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); + t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ + + attempts = 50; + do { + msleep(250); + val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); + } while ((val & F_BUSY) && --attempts); + if (val & F_BUSY) { + CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); + goto out_fail; + } + + /* Enable normal memory accesses. */ + t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); + return 0; + +out_fail: + return -1; +} + +static void config_pcie(struct adapter *adap) +{ + static const u16 ack_lat[4][6] = { + {237, 416, 559, 1071, 2095, 4143}, + {128, 217, 289, 545, 1057, 2081}, + {73, 118, 154, 282, 538, 1050}, + {67, 107, 86, 150, 278, 534} + }; + static const u16 rpl_tmr[4][6] = { + {711, 1248, 1677, 3213, 6285, 12429}, + {384, 651, 867, 1635, 3171, 6243}, + {219, 354, 462, 846, 1614, 3150}, + {201, 321, 258, 450, 834, 1602} + }; + + u16 val; + unsigned int log2_width, pldsize; + unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; + + pci_read_config_word(adap->pdev, + adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL, + &val); + pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; + pci_read_config_word(adap->pdev, + adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL, + &val); + + fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); + fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : + G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); + log2_width = fls(adap->params.pci.width) - 1; + acklat = ack_lat[log2_width][pldsize]; + if (val & 1) /* check LOsEnable */ + acklat += fst_trn_tx * 4; + rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; + + if (adap->params.rev == 0) + t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, + V_T3A_ACKLAT(M_T3A_ACKLAT), + V_T3A_ACKLAT(acklat)); + else + t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), + V_ACKLAT(acklat)); + + t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), + V_REPLAYLMT(rpllmt)); + + t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); + t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN); +} + +/* + * Initialize and configure T3 HW modules. This performs the + * initialization steps that need to be done once after a card is reset. + * MAC and PHY initialization is handled separarely whenever a port is enabled. + * + * fw_params are passed to FW and their value is platform dependent. Only the + * top 8 bits are available for use, the rest must be 0. + */ +int t3_init_hw(struct adapter *adapter, u32 fw_params) +{ + int err = -EIO, attempts = 100; + const struct vpd_params *vpd = &adapter->params.vpd; + + if (adapter->params.rev > 0) + calibrate_xgm_t3b(adapter); + else if (calibrate_xgm(adapter)) + goto out_err; + + if (vpd->mclk) { + partition_mem(adapter, &adapter->params.tp); + + if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || + mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || + mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || + t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, + adapter->params.mc5.nfilters, + adapter->params.mc5.nroutes)) + goto out_err; + } + + if (tp_init(adapter, &adapter->params.tp)) + goto out_err; + + t3_tp_set_coalescing_size(adapter, + min(adapter->params.sge.max_pkt_size, + MAX_RX_COALESCING_LEN), 1); + t3_tp_set_max_rxsize(adapter, + min(adapter->params.sge.max_pkt_size, 16384U)); + ulp_config(adapter, &adapter->params.tp); + + if (is_pcie(adapter)) + config_pcie(adapter); + else + t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN); + + t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000); + init_hw_for_avail_ports(adapter, adapter->params.nports); + t3_sge_init(adapter, &adapter->params.sge); + + t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); + t3_write_reg(adapter, A_CIM_BOOT_CFG, + V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); + t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ + + do { /* wait for uP to initialize */ + msleep(20); + } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); + if (!attempts) + goto out_err; + + err = 0; +out_err: + return err; +} + +/** + * get_pci_mode - determine a card's PCI mode + * @adapter: the adapter + * @p: where to store the PCI settings + * + * Determines a card's PCI mode and associated parameters, such as speed + * and width. + */ +static void __devinit get_pci_mode(struct adapter *adapter, + struct pci_params *p) +{ + static unsigned short speed_map[] = { 33, 66, 100, 133 }; + u32 pci_mode, pcie_cap; + + pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); + if (pcie_cap) { + u16 val; + + p->variant = PCI_VARIANT_PCIE; + p->pcie_cap_addr = pcie_cap; + pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA, + &val); + p->width = (val >> 4) & 0x3f; + return; + } + + pci_mode = t3_read_reg(adapter, A_PCIX_MODE); + p->speed = speed_map[G_PCLKRANGE(pci_mode)]; + p->width = (pci_mode & F_64BIT) ? 64 : 32; + pci_mode = G_PCIXINITPAT(pci_mode); + if (pci_mode == 0) + p->variant = PCI_VARIANT_PCI; + else if (pci_mode < 4) + p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; + else if (pci_mode < 8) + p->variant = PCI_VARIANT_PCIX_MODE1_ECC; + else + p->variant = PCI_VARIANT_PCIX_266_MODE2; +} + +/** + * init_link_config - initialize a link's SW state + * @lc: structure holding the link state + * @ai: information about the current card + * + * Initializes the SW state maintained for each link, including the link's + * capabilities and default speed/duplex/flow-control/autonegotiation + * settings. + */ +static void __devinit init_link_config(struct link_config *lc, + unsigned int caps) +{ + lc->supported = caps; + lc->requested_speed = lc->speed = SPEED_INVALID; + lc->requested_duplex = lc->duplex = DUPLEX_INVALID; + lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; + if (lc->supported & SUPPORTED_Autoneg) { + lc->advertising = lc->supported; + lc->autoneg = AUTONEG_ENABLE; + lc->requested_fc |= PAUSE_AUTONEG; + } else { + lc->advertising = 0; + lc->autoneg = AUTONEG_DISABLE; + } +} + +/** + * mc7_calc_size - calculate MC7 memory size + * @cfg: the MC7 configuration + * + * Calculates the size of an MC7 memory in bytes from the value of its + * configuration register. + */ +static unsigned int __devinit mc7_calc_size(u32 cfg) +{ + unsigned int width = G_WIDTH(cfg); + unsigned int banks = !!(cfg & F_BKS) + 1; + unsigned int org = !!(cfg & F_ORG) + 1; + unsigned int density = G_DEN(cfg); + unsigned int MBs = ((256 << density) * banks) / (org << width); + + return MBs << 20; +} + +static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7, + unsigned int base_addr, const char *name) +{ + u32 cfg; + + mc7->adapter = adapter; + mc7->name = name; + mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; + cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); + mc7->size = mc7_calc_size(cfg); + mc7->width = G_WIDTH(cfg); +} + +void mac_prep(struct cmac *mac, struct adapter *adapter, int index) +{ + mac->adapter = adapter; + mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; + mac->nucast = 1; + + if (adapter->params.rev == 0 && uses_xaui(adapter)) { + t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, + is_10G(adapter) ? 0x2901c04 : 0x2301c04); + t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, + F_ENRGMII, 0); + } +} + +void early_hw_init(struct adapter *adapter, const struct adapter_info *ai) +{ + u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2); + + mi1_init(adapter, ai); + t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ + V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); + t3_write_reg(adapter, A_T3DBG_GPIO_EN, + ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); + + if (adapter->params.rev == 0 || !uses_xaui(adapter)) + val |= F_ENRGMII; + + /* Enable MAC clocks so we can access the registers */ + t3_write_reg(adapter, A_XGM_PORT_CFG, val); + t3_read_reg(adapter, A_XGM_PORT_CFG); + + val |= F_CLKDIVRESET_; + t3_write_reg(adapter, A_XGM_PORT_CFG, val); + t3_read_reg(adapter, A_XGM_PORT_CFG); + t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); + t3_read_reg(adapter, A_XGM_PORT_CFG); +} + +/* + * Reset the adapter. PCIe cards lose their config space during reset, PCI-X + * ones don't. + */ +int t3_reset_adapter(struct adapter *adapter) +{ + int i; + uint16_t devid = 0; + + if (is_pcie(adapter)) + pci_save_state(adapter->pdev); + t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); + + /* + * Delay. Give Some time to device to reset fully. + * XXX The delay time should be modified. + */ + for (i = 0; i < 10; i++) { + msleep(50); + pci_read_config_word(adapter->pdev, 0x00, &devid); + if (devid == 0x1425) + break; + } + + if (devid != 0x1425) + return -1; + + if (is_pcie(adapter)) + pci_restore_state(adapter->pdev); + return 0; +} + +/* + * Initialize adapter SW state for the various HW modules, set initial values + * for some adapter tunables, take PHYs out of reset, and initialize the MDIO + * interface. + */ +int __devinit t3_prep_adapter(struct adapter *adapter, + const struct adapter_info *ai, int reset) +{ + int ret; + unsigned int i, j = 0; + + get_pci_mode(adapter, &adapter->params.pci); + + adapter->params.info = ai; + adapter->params.nports = ai->nports; + adapter->params.rev = t3_read_reg(adapter, A_PL_REV); + adapter->params.linkpoll_period = 0; + adapter->params.stats_update_period = is_10G(adapter) ? + MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); + adapter->params.pci.vpd_cap_addr = + pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD); + ret = get_vpd_params(adapter, &adapter->params.vpd); + if (ret < 0) + return ret; + + if (reset && t3_reset_adapter(adapter)) + return -1; + + t3_sge_prep(adapter, &adapter->params.sge); + + if (adapter->params.vpd.mclk) { + struct tp_params *p = &adapter->params.tp; + + mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); + mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); + mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); + + p->nchan = ai->nports; + p->pmrx_size = t3_mc7_size(&adapter->pmrx); + p->pmtx_size = t3_mc7_size(&adapter->pmtx); + p->cm_size = t3_mc7_size(&adapter->cm); + p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ + p->chan_tx_size = p->pmtx_size / p->nchan; + p->rx_pg_size = 64 * 1024; + p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; + p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); + p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); + p->ntimer_qs = p->cm_size >= (128 << 20) || + adapter->params.rev > 0 ? 12 : 6; + + adapter->params.mc5.nservers = DEFAULT_NSERVERS; + adapter->params.mc5.nfilters = adapter->params.rev > 0 ? + DEFAULT_NFILTERS : 0; + adapter->params.mc5.nroutes = 0; + t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); + + init_mtus(adapter->params.mtus); + init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); + } + + early_hw_init(adapter, ai); + + for_each_port(adapter, i) { + u8 hw_addr[6]; + struct port_info *p = adap2pinfo(adapter, i); + + while (!adapter->params.vpd.port_type[j]) + ++j; + + p->port_type = &port_types[adapter->params.vpd.port_type[j]]; + p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j, + ai->mdio_ops); + mac_prep(&p->mac, adapter, j); + ++j; + + /* + * The VPD EEPROM stores the base Ethernet address for the + * card. A port's address is derived from the base by adding + * the port's index to the base's low octet. + */ + memcpy(hw_addr, adapter->params.vpd.eth_base, 5); + hw_addr[5] = adapter->params.vpd.eth_base[5] + i; + + memcpy(adapter->port[i]->dev_addr, hw_addr, + ETH_ALEN); + memcpy(adapter->port[i]->perm_addr, hw_addr, + ETH_ALEN); + init_link_config(&p->link_config, p->port_type->caps); + p->phy.ops->power_down(&p->phy, 1); + if (!(p->port_type->caps & SUPPORTED_IRQ)) + adapter->params.linkpoll_period = 10; + } + + return 0; +} + +void t3_led_ready(struct adapter *adapter) +{ + t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, + F_GPIO0_OUT_VAL); +} |