diff options
author | Jason Roberts <jason.e.roberts@intel.com> | 2010-05-13 15:57:33 +0100 |
---|---|---|
committer | David Woodhouse <David.Woodhouse@intel.com> | 2010-05-13 16:12:16 +0100 |
commit | ce082596ae4308f67f0953a67db508bb085520fa (patch) | |
tree | c77be06bdf86c9232bea3514e371bd9bb7b4825a /drivers/mtd | |
parent | 1cd2620ca9332943c9fff84c0c9240982534d840 (diff) | |
download | op-kernel-dev-ce082596ae4308f67f0953a67db508bb085520fa.zip op-kernel-dev-ce082596ae4308f67f0953a67db508bb085520fa.tar.gz |
mtd/nand: Add Intel Moorestown/Denali NAND support
There is more work to be done on this but it is basically working now.
Signed-off-by: Jason Roberts <jason.e.roberts@intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/nand/Kconfig | 17 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/denali.c | 2134 | ||||
-rw-r--r-- | drivers/mtd/nand/denali.h | 816 |
4 files changed, 2968 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 8f402d4..98a04b3 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -50,6 +50,23 @@ config MTD_NAND_AUTCPU12 This enables the driver for the autronix autcpu12 board to access the SmartMediaCard. +config MTD_NAND_DENALI + depends on PCI + tristate "Support Denali NAND controller on Intel Moorestown" + help + Enable the driver for NAND flash on Intel Moorestown, using the + Denali NAND controller core. + +config MTD_NAND_DENALI_SCRATCH_REG_ADDR + hex "Denali NAND size scratch register address" + default "0xFF108018" + help + Some platforms place the NAND chip size in a scratch register + because (some versions of) the driver aren't able to automatically + determine the size of certain chips. Set the address of the + scratch register here to enable this feature. On Intel Moorestown + boards, the scratch register is at 0xFF108018. + config MTD_NAND_EDB7312 tristate "Support for Cirrus Logic EBD7312 evaluation board" depends on ARCH_EDB7312 diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 04bccf9..e8ab884 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -11,6 +11,7 @@ obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o obj-$(CONFIG_MTD_NAND_SPIA) += spia.o obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o +obj-$(CONFIG_MTD_NAND_DENALI) += denali.o obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c new file mode 100644 index 0000000..8a6ce0d --- /dev/null +++ b/drivers/mtd/nand/denali.c @@ -0,0 +1,2134 @@ +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + * + */ + +#include <linux/interrupt.h> +#include <linux/delay.h> +#include <linux/wait.h> +#include <linux/mutex.h> +#include <linux/pci.h> +#include <linux/mtd/mtd.h> +#include <linux/module.h> + +#include "denali.h" + +MODULE_LICENSE("GPL"); + +/* We define a module parameter that allows the user to override + * the hardware and decide what timing mode should be used. + */ +#define NAND_DEFAULT_TIMINGS -1 + +static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; +module_param(onfi_timing_mode, int, S_IRUGO); +MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates" + " use default timings"); + +#define DENALI_NAND_NAME "denali-nand" + +/* We define a macro here that combines all interrupts this driver uses into + * a single constant value, for convenience. */ +#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \ + INTR_STATUS0__ECC_TRANSACTION_DONE | \ + INTR_STATUS0__ECC_ERR | \ + INTR_STATUS0__PROGRAM_FAIL | \ + INTR_STATUS0__LOAD_COMP | \ + INTR_STATUS0__PROGRAM_COMP | \ + INTR_STATUS0__TIME_OUT | \ + INTR_STATUS0__ERASE_FAIL | \ + INTR_STATUS0__RST_COMP | \ + INTR_STATUS0__ERASE_COMP) + +/* indicates whether or not the internal value for the flash bank is + valid or not */ +#define CHIP_SELECT_INVALID -1 + +#define SUPPORT_8BITECC 1 + +/* This macro divides two integers and rounds fractional values up + * to the nearest integer value. */ +#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) + +/* this macro allows us to convert from an MTD structure to our own + * device context (denali) structure. + */ +#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) + +/* These constants are defined by the driver to enable common driver + configuration options. */ +#define SPARE_ACCESS 0x41 +#define MAIN_ACCESS 0x42 +#define MAIN_SPARE_ACCESS 0x43 + +#define DENALI_READ 0 +#define DENALI_WRITE 0x100 + +/* types of device accesses. We can issue commands and get status */ +#define COMMAND_CYCLE 0 +#define ADDR_CYCLE 1 +#define STATUS_CYCLE 2 + +/* this is a helper macro that allows us to + * format the bank into the proper bits for the controller */ +#define BANK(x) ((x) << 24) + +/* List of platforms this NAND controller has be integrated into */ +static const struct pci_device_id denali_pci_ids[] = { + { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, + { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, + { /* end: all zeroes */ } +}; + + +/* these are static lookup tables that give us easy access to + registers in the NAND controller. + */ +static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, + INTR_STATUS1, + INTR_STATUS2, + INTR_STATUS3}; + +static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, + DEVICE_RESET__BANK1, + DEVICE_RESET__BANK2, + DEVICE_RESET__BANK3}; + +static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, + INTR_STATUS1__TIME_OUT, + INTR_STATUS2__TIME_OUT, + INTR_STATUS3__TIME_OUT}; + +static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, + INTR_STATUS1__RST_COMP, + INTR_STATUS2__RST_COMP, + INTR_STATUS3__RST_COMP}; + +/* specifies the debug level of the driver */ +static int nand_debug_level = 0; + +/* forward declarations */ +static void clear_interrupts(struct denali_nand_info *denali); +static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask); +static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask); +static uint32_t read_interrupt_status(struct denali_nand_info *denali); + +#define DEBUG_DENALI 0 + +/* This is a wrapper for writing to the denali registers. + * this allows us to create debug information so we can + * observe how the driver is programming the device. + * it uses standard linux convention for (val, addr) */ +static void denali_write32(uint32_t value, void *addr) +{ + iowrite32(value, addr); + +#if DEBUG_DENALI + printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff)); +#endif +} + +/* Certain operations for the denali NAND controller use an indexed mode to read/write + data. The operation is performed by writing the address value of the command to + the device memory followed by the data. This function abstracts this common + operation. +*/ +static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) +{ + denali_write32(address, denali->flash_mem); + denali_write32(data, denali->flash_mem + 0x10); +} + +/* Perform an indexed read of the device */ +static void index_addr_read_data(struct denali_nand_info *denali, + uint32_t address, uint32_t *pdata) +{ + denali_write32(address, denali->flash_mem); + *pdata = ioread32(denali->flash_mem + 0x10); +} + +/* We need to buffer some data for some of the NAND core routines. + * The operations manage buffering that data. */ +static void reset_buf(struct denali_nand_info *denali) +{ + denali->buf.head = denali->buf.tail = 0; +} + +static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) +{ + BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); + denali->buf.buf[denali->buf.tail++] = byte; +} + +/* reads the status of the device */ +static void read_status(struct denali_nand_info *denali) +{ + uint32_t cmd = 0x0; + + /* initialize the data buffer to store status */ + reset_buf(denali); + + /* initiate a device status read */ + cmd = MODE_11 | BANK(denali->flash_bank); + index_addr(denali, cmd | COMMAND_CYCLE, 0x70); + denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); + + /* update buffer with status value */ + write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); + +#if DEBUG_DENALI + printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]); +#endif +} + +/* resets a specific device connected to the core */ +static void reset_bank(struct denali_nand_info *denali) +{ + uint32_t irq_status = 0; + uint32_t irq_mask = reset_complete[denali->flash_bank] | + operation_timeout[denali->flash_bank]; + int bank = 0; + + clear_interrupts(denali); + + bank = device_reset_banks[denali->flash_bank]; + denali_write32(bank, denali->flash_reg + DEVICE_RESET); + + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status & operation_timeout[denali->flash_bank]) + { + printk(KERN_ERR "reset bank failed.\n"); + } +} + +/* Reset the flash controller */ +static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) +{ + uint32_t i; + + nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) + denali_write32(reset_complete[i] | operation_timeout[i], + denali->flash_reg + intr_status_addresses[i]); + + for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { + denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET); + while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) & + (reset_complete[i] | operation_timeout[i]))) + ; + if (ioread32(denali->flash_reg + intr_status_addresses[i]) & + operation_timeout[i]) + nand_dbg_print(NAND_DBG_WARN, + "NAND Reset operation timed out on bank %d\n", i); + } + + for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) + denali_write32(reset_complete[i] | operation_timeout[i], + denali->flash_reg + intr_status_addresses[i]); + + return PASS; +} + +/* this routine calculates the ONFI timing values for a given mode and programs + * the clocking register accordingly. The mode is determined by the get_onfi_nand_para + routine. + */ +static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode) +{ + uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; + uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; + uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; + uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; + uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; + uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; + uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; + uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; + uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; + uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; + uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; + uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; + + uint16_t TclsRising = 1; + uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; + uint16_t dv_window = 0; + uint16_t en_lo, en_hi; + uint16_t acc_clks; + uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; + + nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + en_lo = CEIL_DIV(Trp[mode], CLK_X); + en_hi = CEIL_DIV(Treh[mode], CLK_X); +#if ONFI_BLOOM_TIME + if ((en_hi * CLK_X) < (Treh[mode] + 2)) + en_hi++; +#endif + + if ((en_lo + en_hi) * CLK_X < Trc[mode]) + en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); + + if ((en_lo + en_hi) < CLK_MULTI) + en_lo += CLK_MULTI - en_lo - en_hi; + + while (dv_window < 8) { + data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; + + data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; + + data_invalid = + data_invalid_rhoh < + data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; + + dv_window = data_invalid - Trea[mode]; + + if (dv_window < 8) + en_lo++; + } + + acc_clks = CEIL_DIV(Trea[mode], CLK_X); + + while (((acc_clks * CLK_X) - Trea[mode]) < 3) + acc_clks++; + + if ((data_invalid - acc_clks * CLK_X) < 2) + nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n", + __FILE__, __LINE__); + + addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); + re_2_we = CEIL_DIV(Trhw[mode], CLK_X); + re_2_re = CEIL_DIV(Trhz[mode], CLK_X); + we_2_re = CEIL_DIV(Twhr[mode], CLK_X); + cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); + if (!TclsRising) + cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); + if (cs_cnt == 0) + cs_cnt = 1; + + if (Tcea[mode]) { + while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) + cs_cnt++; + } + +#if MODE5_WORKAROUND + if (mode == 5) + acc_clks = 5; +#endif + + /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ + if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) && + (ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) + acc_clks = 6; + + denali_write32(acc_clks, denali->flash_reg + ACC_CLKS); + denali_write32(re_2_we, denali->flash_reg + RE_2_WE); + denali_write32(re_2_re, denali->flash_reg + RE_2_RE); + denali_write32(we_2_re, denali->flash_reg + WE_2_RE); + denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA); + denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); + denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); + denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); +} + +/* configures the initial ECC settings for the controller */ +static void set_ecc_config(struct denali_nand_info *denali) +{ +#if SUPPORT_8BITECC + if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) || + (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128)) + denali_write32(8, denali->flash_reg + ECC_CORRECTION); +#endif + + if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE) + == 1) { + denali->dev_info.wECCBytesPerSector = 4; + denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; + denali->dev_info.wNumPageSpareFlag = + denali->dev_info.wPageSpareSize - + denali->dev_info.wPageDataSize / + (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * + denali->dev_info.wECCBytesPerSector + - denali->dev_info.wSpareSkipBytes; + } else { + denali->dev_info.wECCBytesPerSector = + (ioread32(denali->flash_reg + ECC_CORRECTION) & + ECC_CORRECTION__VALUE) * 13 / 8; + if ((denali->dev_info.wECCBytesPerSector) % 2 == 0) + denali->dev_info.wECCBytesPerSector += 2; + else + denali->dev_info.wECCBytesPerSector += 1; + + denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; + denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - + denali->dev_info.wPageDataSize / + (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * + denali->dev_info.wECCBytesPerSector + - denali->dev_info.wSpareSkipBytes; + } +} + +/* queries the NAND device to see what ONFI modes it supports. */ +static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) +{ + int i; + uint16_t blks_lun_l, blks_lun_h, n_of_luns; + uint32_t blockperlun, id; + + denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET); + + while (!((ioread32(denali->flash_reg + INTR_STATUS0) & + INTR_STATUS0__RST_COMP) | + (ioread32(denali->flash_reg + INTR_STATUS0) & + INTR_STATUS0__TIME_OUT))) + ; + + if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) { + denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET); + while (!((ioread32(denali->flash_reg + INTR_STATUS1) & + INTR_STATUS1__RST_COMP) | + (ioread32(denali->flash_reg + INTR_STATUS1) & + INTR_STATUS1__TIME_OUT))) + ; + + if (ioread32(denali->flash_reg + INTR_STATUS1) & + INTR_STATUS1__RST_COMP) { + denali_write32(DEVICE_RESET__BANK2, + denali->flash_reg + DEVICE_RESET); + while (!((ioread32(denali->flash_reg + INTR_STATUS2) & + INTR_STATUS2__RST_COMP) | + (ioread32(denali->flash_reg + INTR_STATUS2) & + INTR_STATUS2__TIME_OUT))) + ; + + if (ioread32(denali->flash_reg + INTR_STATUS2) & + INTR_STATUS2__RST_COMP) { + denali_write32(DEVICE_RESET__BANK3, + denali->flash_reg + DEVICE_RESET); + while (!((ioread32(denali->flash_reg + INTR_STATUS3) & + INTR_STATUS3__RST_COMP) | + (ioread32(denali->flash_reg + INTR_STATUS3) & + INTR_STATUS3__TIME_OUT))) + ; + } else { + printk(KERN_ERR "Getting a time out for bank 2!\n"); + } + } else { + printk(KERN_ERR "Getting a time out for bank 1!\n"); + } + } + + denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0); + denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1); + denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2); + denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3); + + denali->dev_info.wONFIDevFeatures = + ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES); + denali->dev_info.wONFIOptCommands = + ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS); + denali->dev_info.wONFITimingMode = + ioread32(denali->flash_reg + ONFI_TIMING_MODE); + denali->dev_info.wONFIPgmCacheTimingMode = + ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE); + + n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & + ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS; + blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L); + blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U); + + blockperlun = (blks_lun_h << 16) | blks_lun_l; + + denali->dev_info.wTotalBlocks = n_of_luns * blockperlun; + + if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + ONFI_TIMING_MODE__VALUE)) + return FAIL; + + for (i = 5; i > 0; i--) { + if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) + break; + } + + NAND_ONFi_Timing_Mode(denali, i); + + index_addr(denali, MODE_11 | 0, 0x90); + index_addr(denali, MODE_11 | 1, 0); + + for (i = 0; i < 3; i++) + index_addr_read_data(denali, MODE_11 | 2, &id); + + nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id); + + denali->dev_info.MLCDevice = id & 0x0C; + + /* By now, all the ONFI devices we know support the page cache */ + /* rw feature. So here we enable the pipeline_rw_ahead feature */ + /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ + /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ + + return PASS; +} + +static void get_samsung_nand_para(struct denali_nand_info *denali) +{ + uint8_t no_of_planes; + uint32_t blk_size; + uint64_t plane_size, capacity; + uint32_t id_bytes[5]; + int i; + + index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90); + index_addr(denali, (uint32_t)(MODE_11 | 1), 0); + for (i = 0; i < 5; i++) + index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]); + + nand_dbg_print(NAND_DBG_DEBUG, + "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", + id_bytes[0], id_bytes[1], id_bytes[2], + id_bytes[3], id_bytes[4]); + + if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */ + /* Set timing register values according to datasheet */ + denali_write32(5, denali->flash_reg + ACC_CLKS); + denali_write32(20, denali->flash_reg + RE_2_WE); + denali_write32(12, denali->flash_reg + WE_2_RE); + denali_write32(14, denali->flash_reg + ADDR_2_DATA); + denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT); + denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); + denali_write32(2, denali->flash_reg + CS_SETUP_CNT); + } + + no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2); + plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4); + blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4); + capacity = (uint64_t)128 * plane_size * no_of_planes; + + do_div(capacity, blk_size); + denali->dev_info.wTotalBlocks = capacity; +} + +static void get_toshiba_nand_para(struct denali_nand_info *denali) +{ + void __iomem *scratch_reg; + uint32_t tmp; + + /* Workaround to fix a controller bug which reports a wrong */ + /* spare area size for some kind of Toshiba NAND device */ + if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && + (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { + denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * + ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); +#if SUPPORT_15BITECC + denali_write32(15, denali->flash_reg + ECC_CORRECTION); +#elif SUPPORT_8BITECC + denali_write32(8, denali->flash_reg + ECC_CORRECTION); +#endif + } + + /* As Toshiba NAND can not provide it's block number, */ + /* so here we need user to provide the correct block */ + /* number in a scratch register before the Linux NAND */ + /* driver is loaded. If no valid value found in the scratch */ + /* register, then we use default block number value */ + scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); + if (!scratch_reg) { + printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", + __FILE__, __LINE__); + denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; + } else { + nand_dbg_print(NAND_DBG_WARN, + "Spectra: ioremap reg address: 0x%p\n", scratch_reg); + denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); + if (denali->dev_info.wTotalBlocks < 512) + denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; + iounmap(scratch_reg); + } +} + +static void get_hynix_nand_para(struct denali_nand_info *denali) +{ + void __iomem *scratch_reg; + uint32_t main_size, spare_size; + + switch (denali->dev_info.wDeviceID) { + case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ + case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ + denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); + denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); + denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED); + spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED); + denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); + denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + denali_write32(0, denali->flash_reg + DEVICE_WIDTH); +#if SUPPORT_15BITECC + denali_write32(15, denali->flash_reg + ECC_CORRECTION); +#elif SUPPORT_8BITECC + denali_write32(8, denali->flash_reg + ECC_CORRECTION); +#endif + denali->dev_info.MLCDevice = 1; + break; + default: + nand_dbg_print(NAND_DBG_WARN, + "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." + "Will use default parameter values instead.\n", + denali->dev_info.wDeviceID); + } + + scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); + if (!scratch_reg) { + printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", + __FILE__, __LINE__); + denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; + } else { + nand_dbg_print(NAND_DBG_WARN, + "Spectra: ioremap reg address: 0x%p\n", scratch_reg); + denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); + if (denali->dev_info.wTotalBlocks < 512) + denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; + iounmap(scratch_reg); + } +} + +/* determines how many NAND chips are connected to the controller. Note for + Intel CE4100 devices we don't support more than one device. + */ +static void find_valid_banks(struct denali_nand_info *denali) +{ + uint32_t id[LLD_MAX_FLASH_BANKS]; + int i; + + denali->total_used_banks = 1; + for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) { + index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); + index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); + index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); + + nand_dbg_print(NAND_DBG_DEBUG, + "Return 1st ID for bank[%d]: %x\n", i, id[i]); + + if (i == 0) { + if (!(id[i] & 0x0ff)) + break; /* WTF? */ + } else { + if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) + denali->total_used_banks++; + else + break; + } + } + + if (denali->platform == INTEL_CE4100) + { + /* Platform limitations of the CE4100 device limit + * users to a single chip solution for NAND. + * Multichip support is not enabled. + */ + if (denali->total_used_banks != 1) + { + printk(KERN_ERR "Sorry, Intel CE4100 only supports " + "a single NAND device.\n"); + BUG(); + } + } + nand_dbg_print(NAND_DBG_DEBUG, + "denali->total_used_banks: %d\n", denali->total_used_banks); +} + +static void detect_partition_feature(struct denali_nand_info *denali) +{ + if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { + if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) & + PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) { + denali->dev_info.wSpectraStartBlock = + ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & + MIN_MAX_BANK_1__MIN_VALUE) * + denali->dev_info.wTotalBlocks) + + + (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) & + MIN_BLK_ADDR_1__VALUE); + + denali->dev_info.wSpectraEndBlock = + (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & + MIN_MAX_BANK_1__MAX_VALUE) >> 2) * + denali->dev_info.wTotalBlocks) + + + (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) & + MAX_BLK_ADDR_1__VALUE); + + denali->dev_info.wTotalBlocks *= denali->total_used_banks; + + if (denali->dev_info.wSpectraEndBlock >= + denali->dev_info.wTotalBlocks) { + denali->dev_info.wSpectraEndBlock = + denali->dev_info.wTotalBlocks - 1; + } + + denali->dev_info.wDataBlockNum = + denali->dev_info.wSpectraEndBlock - + denali->dev_info.wSpectraStartBlock + 1; + } else { + denali->dev_info.wTotalBlocks *= denali->total_used_banks; + denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; + denali->dev_info.wSpectraEndBlock = + denali->dev_info.wTotalBlocks - 1; + denali->dev_info.wDataBlockNum = + denali->dev_info.wSpectraEndBlock - + denali->dev_info.wSpectraStartBlock + 1; + } + } else { + denali->dev_info.wTotalBlocks *= denali->total_used_banks; + denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; + denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; + denali->dev_info.wDataBlockNum = + denali->dev_info.wSpectraEndBlock - + denali->dev_info.wSpectraStartBlock + 1; + } +} + +static void dump_device_info(struct denali_nand_info *denali) +{ + nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n"); + nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n", + denali->dev_info.wDeviceMaker); + nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n", + denali->dev_info.wDeviceID); + nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n", + denali->dev_info.wDeviceType); + nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n", + denali->dev_info.wSpectraStartBlock); + nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n", + denali->dev_info.wSpectraEndBlock); + nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n", + denali->dev_info.wTotalBlocks); + nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n", + denali->dev_info.wPagesPerBlock); + nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n", + denali->dev_info.wPageSize); + nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n", + denali->dev_info.wPageDataSize); + nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n", + denali->dev_info.wPageSpareSize); + nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n", + denali->dev_info.wNumPageSpareFlag); + nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n", + denali->dev_info.wECCBytesPerSector); + nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n", + denali->dev_info.wBlockSize); + nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n", + denali->dev_info.wBlockDataSize); + nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n", + denali->dev_info.wDataBlockNum); + nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n", + denali->dev_info.bPlaneNum); + nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n", + denali->dev_info.wDeviceMainAreaSize); + nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n", + denali->dev_info.wDeviceSpareAreaSize); + nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n", + denali->dev_info.wDevicesConnected); + nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n", + denali->dev_info.wDeviceWidth); + nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n", + denali->dev_info.wHWRevision); + nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n", + denali->dev_info.wHWFeatures); + nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n", + denali->dev_info.wONFIDevFeatures); + nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n", + denali->dev_info.wONFIOptCommands); + nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n", + denali->dev_info.wONFITimingMode); + nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n", + denali->dev_info.wONFIPgmCacheTimingMode); + nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n", + denali->dev_info.MLCDevice ? "Yes" : "No"); + nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n", + denali->dev_info.wSpareSkipBytes); + nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n", + denali->dev_info.nBitsInPageNumber); + nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n", + denali->dev_info.nBitsInPageDataSize); + nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n", + denali->dev_info.nBitsInBlockDataSize); +} + +static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) +{ + uint16_t status = PASS; + uint8_t no_of_planes; + + nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID); + denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID); + denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0); + denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1); + denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2); + + denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c; + + if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & + ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ + if (FAIL == get_onfi_nand_para(denali)) + return FAIL; + } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */ + get_samsung_nand_para(denali); + } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */ + get_toshiba_nand_para(denali); + } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */ + get_hynix_nand_para(denali); + } else { + denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; + } + + nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" + "acc_clks: %d, re_2_we: %d, we_2_re: %d," + "addr_2_data: %d, rdwr_en_lo_cnt: %d, " + "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", + ioread32(denali->flash_reg + ACC_CLKS), + ioread32(denali->flash_reg + RE_2_WE), + ioread32(denali->flash_reg + WE_2_RE), + ioread32(denali->flash_reg + ADDR_2_DATA), + ioread32(denali->flash_reg + RDWR_EN_LO_CNT), + ioread32(denali->flash_reg + RDWR_EN_HI_CNT), + ioread32(denali->flash_reg + CS_SETUP_CNT)); + + denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION); + denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES); + + denali->dev_info.wDeviceMainAreaSize = + ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE); + denali->dev_info.wDeviceSpareAreaSize = + ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + + denali->dev_info.wPageDataSize = + ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); + + /* Note: When using the Micon 4K NAND device, the controller will report + * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes. + * And if force set it to 218 bytes, the controller can not work + * correctly. So just let it be. But keep in mind that this bug may + * cause + * other problems in future. - Yunpeng 2008-10-10 + */ + denali->dev_info.wPageSpareSize = + ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + + denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK); + + denali->dev_info.wPageSize = + denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize; + denali->dev_info.wBlockSize = + denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock; + denali->dev_info.wBlockDataSize = + denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize; + + denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH); + denali->dev_info.wDeviceType = + ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8); + + denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED); + + denali->dev_info.wSpareSkipBytes = + ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) * + denali->dev_info.wDevicesConnected; + + denali->dev_info.nBitsInPageNumber = + ilog2(denali->dev_info.wPagesPerBlock); + denali->dev_info.nBitsInPageDataSize = + ilog2(denali->dev_info.wPageDataSize); + denali->dev_info.nBitsInBlockDataSize = + ilog2(denali->dev_info.wBlockDataSize); + + set_ecc_config(denali); + + no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) & + NUMBER_OF_PLANES__VALUE; + + switch (no_of_planes) { + case 0: + case 1: + case 3: + case 7: + denali->dev_info.bPlaneNum = no_of_planes + 1; + break; + default: + status = FAIL; + break; + } + + find_valid_banks(denali); + + detect_partition_feature(denali); + + dump_device_info(denali); + + /* If the user specified to override the default timings + * with a specific ONFI mode, we apply those changes here. + */ + if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) + { + NAND_ONFi_Timing_Mode(denali, onfi_timing_mode); + } + + return status; +} + +static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, + uint16_t INT_ENABLE) +{ + nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + if (INT_ENABLE) + denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE); + else + denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE); +} + +/* validation function to verify that the controlling software is making + a valid request + */ +static inline bool is_flash_bank_valid(int flash_bank) +{ + return (flash_bank >= 0 && flash_bank < 4); +} + +static void denali_irq_init(struct denali_nand_info *denali) +{ + uint32_t int_mask = 0; + + /* Disable global interrupts */ + NAND_LLD_Enable_Disable_Interrupts(denali, false); + + int_mask = DENALI_IRQ_ALL; + + /* Clear all status bits */ + denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0); + denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1); + denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2); + denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3); + + denali_irq_enable(denali, int_mask); +} + +static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) +{ + NAND_LLD_Enable_Disable_Interrupts(denali, false); + free_irq(irqnum, denali); +} + +static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask) +{ + denali_write32(int_mask, denali->flash_reg + INTR_EN0); + denali_write32(int_mask, denali->flash_reg + INTR_EN1); + denali_write32(int_mask, denali->flash_reg + INTR_EN2); + denali_write32(int_mask, denali->flash_reg + INTR_EN3); +} + +/* This function only returns when an interrupt that this driver cares about + * occurs. This is to reduce the overhead of servicing interrupts + */ +static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) +{ + return (read_interrupt_status(denali) & DENALI_IRQ_ALL); +} + +/* Interrupts are cleared by writing a 1 to the appropriate status bit */ +static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask) +{ + uint32_t intr_status_reg = 0; + + intr_status_reg = intr_status_addresses[denali->flash_bank]; + + denali_write32(irq_mask, denali->flash_reg + intr_status_reg); +} + +static void clear_interrupts(struct denali_nand_info *denali) +{ + uint32_t status = 0x0; + spin_lock_irq(&denali->irq_lock); + + status = read_interrupt_status(denali); + +#if DEBUG_DENALI + denali->irq_debug_array[denali->idx++] = 0x30000000 | status; + denali->idx %= 32; +#endif + + denali->irq_status = 0x0; + spin_unlock_irq(&denali->irq_lock); +} + +static uint32_t read_interrupt_status(struct denali_nand_info *denali) +{ + uint32_t intr_status_reg = 0; + + intr_status_reg = intr_status_addresses[denali->flash_bank]; + + return ioread32(denali->flash_reg + intr_status_reg); +} + +#if DEBUG_DENALI +static void print_irq_log(struct denali_nand_info *denali) +{ + int i = 0; + + printk("ISR debug log index = %X\n", denali->idx); + for (i = 0; i < 32; i++) + { + printk("%08X: %08X\n", i, denali->irq_debug_array[i]); + } +} +#endif + +/* This is the interrupt service routine. It handles all interrupts + * sent to this device. Note that on CE4100, this is a shared + * interrupt. + */ +static irqreturn_t denali_isr(int irq, void *dev_id) +{ + struct denali_nand_info *denali = dev_id; + uint32_t irq_status = 0x0; + irqreturn_t result = IRQ_NONE; + + spin_lock(&denali->irq_lock); + + /* check to see if a valid NAND chip has + * been selected. + */ + if (is_flash_bank_valid(denali->flash_bank)) + { + /* check to see if controller generated + * the interrupt, since this is a shared interrupt */ + if ((irq_status = denali_irq_detected(denali)) != 0) + { +#if DEBUG_DENALI + denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status; + denali->idx %= 32; + + printk("IRQ status = 0x%04x\n", irq_status); +#endif + /* handle interrupt */ + /* first acknowledge it */ + clear_interrupt(denali, irq_status); + /* store the status in the device context for someone + to read */ + denali->irq_status |= irq_status; + /* notify anyone who cares that it happened */ + complete(&denali->complete); + /* tell the OS that we've handled this */ + result = IRQ_HANDLED; + } + } + spin_unlock(&denali->irq_lock); + return result; +} +#define BANK(x) ((x) << 24) + +static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) +{ + unsigned long comp_res = 0; + uint32_t intr_status = 0; + bool retry = false; + unsigned long timeout = msecs_to_jiffies(1000); + + do + { +#if DEBUG_DENALI + printk("waiting for 0x%x\n", irq_mask); +#endif + comp_res = wait_for_completion_timeout(&denali->complete, timeout); + spin_lock_irq(&denali->irq_lock); + intr_status = denali->irq_status; + +#if DEBUG_DENALI + denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status; + denali->idx %= 32; +#endif + + if (intr_status & irq_mask) + { + denali->irq_status &= ~irq_mask; + spin_unlock_irq(&denali->irq_lock); +#if DEBUG_DENALI + if (retry) printk("status on retry = 0x%x\n", intr_status); +#endif + /* our interrupt was detected */ + break; + } + else + { + /* these are not the interrupts you are looking for - + need to wait again */ + spin_unlock_irq(&denali->irq_lock); +#if DEBUG_DENALI + print_irq_log(denali); + printk("received irq nobody cared: irq_status = 0x%x," + " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res); +#endif + retry = true; + } + } while (comp_res != 0); + + if (comp_res == 0) + { + /* timeout */ + printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", + intr_status, irq_mask); + + intr_status = 0; + } + return intr_status; +} + +/* This helper function setups the registers for ECC and whether or not + the spare area will be transfered. */ +static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, + bool transfer_spare) +{ + int ecc_en_flag = 0, transfer_spare_flag = 0; + + /* set ECC, transfer spare bits if needed */ + ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; + transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; + + /* Enable spare area/ECC per user's request. */ + denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); + denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); +} + +/* sends a pipeline command operation to the controller. See the Denali NAND + controller's user guide for more information (section 4.2.3.6). + */ +static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, + bool transfer_spare, int access_type, + int op) +{ + int status = PASS; + uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, + irq_mask = 0; + + if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP; + else if (op == DENALI_WRITE) irq_mask = 0; + else BUG(); + + setup_ecc_for_xfer(denali, ecc_en, transfer_spare); + +#if DEBUG_DENALI + spin_lock_irq(&denali->irq_lock); + denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4); + denali->idx %= 32; + spin_unlock_irq(&denali->irq_lock); +#endif + + + /* clear interrupts */ + clear_interrupts(denali); + + addr = BANK(denali->flash_bank) | denali->page; + + if (op == DENALI_WRITE && access_type != SPARE_ACCESS) + { + cmd = MODE_01 | addr; + denali_write32(cmd, denali->flash_mem); + } + else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) + { + /* read spare area */ + cmd = MODE_10 | addr; + index_addr(denali, (uint32_t)cmd, access_type); + + cmd = MODE_01 | addr; + denali_write32(cmd, denali->flash_mem); + } + else if (op == DENALI_READ) + { + /* setup page read request for access type */ + cmd = MODE_10 | addr; + index_addr(denali, (uint32_t)cmd, access_type); + + /* page 33 of the NAND controller spec indicates we should not + use the pipeline commands in Spare area only mode. So we + don't. + */ + if (access_type == SPARE_ACCESS) + { + cmd = MODE_01 | addr; + denali_write32(cmd, denali->flash_mem); + } + else + { + index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count); + + /* wait for command to be accepted + * can always use status0 bit as the mask is identical for each + * bank. */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) + { + printk(KERN_ERR "cmd, page, addr on timeout " + "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr); + status = FAIL; + } + else + { + cmd = MODE_01 | addr; + denali_write32(cmd, denali->flash_mem); + } + } + } + return status; +} + +/* helper function that simply writes a buffer to the flash */ +static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, + int len) +{ + uint32_t i = 0, *buf32; + + /* verify that the len is a multiple of 4. see comment in + * read_data_from_flash_mem() */ + BUG_ON((len % 4) != 0); + + /* write the data to the flash memory */ + buf32 = (uint32_t *)buf; + for (i = 0; i < len / 4; i++) + { + denali_write32(*buf32++, denali->flash_mem + 0x10); + } + return i*4; /* intent is to return the number of bytes read */ +} + +/* helper function that simply reads a buffer from the flash */ +static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, + int len) +{ + uint32_t i = 0, *buf32; + + /* we assume that len will be a multiple of 4, if not + * it would be nice to know about it ASAP rather than + * have random failures... + * + * This assumption is based on the fact that this + * function is designed to be used to read flash pages, + * which are typically multiples of 4... + */ + + BUG_ON((len % 4) != 0); + + /* transfer the data from the flash */ + buf32 = (uint32_t *)buf; + for (i = 0; i < len / 4; i++) + { + *buf32++ = ioread32(denali->flash_mem + 0x10); + } + return i*4; /* intent is to return the number of bytes read */ +} + +/* writes OOB data to the device */ +static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_status = 0; + uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | + INTR_STATUS0__PROGRAM_FAIL; + int status = 0; + + denali->page = page; + + if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, + DENALI_WRITE) == PASS) + { + write_data_to_flash_mem(denali, buf, mtd->oobsize); + +#if DEBUG_DENALI + spin_lock_irq(&denali->irq_lock); + denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize; + denali->idx %= 32; + spin_unlock_irq(&denali->irq_lock); +#endif + + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) + { + printk(KERN_ERR "OOB write failed\n"); + status = -EIO; + } + } + else + { + printk(KERN_ERR "unable to send pipeline command\n"); + status = -EIO; + } + return status; +} + +/* reads OOB data from the device */ +static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0; + + denali->page = page; + +#if DEBUG_DENALI + printk("read_oob %d\n", page); +#endif + if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, + DENALI_READ) == PASS) + { + read_data_from_flash_mem(denali, buf, mtd->oobsize); + + /* wait for command to be accepted + * can always use status0 bit as the mask is identical for each + * bank. */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) + { + printk(KERN_ERR "page on OOB timeout %d\n", denali->page); + } + + /* We set the device back to MAIN_ACCESS here as I observed + * instability with the controller if you do a block erase + * and the last transaction was a SPARE_ACCESS. Block erase + * is reliable (according to the MTD test infrastructure) + * if you are in MAIN_ACCESS. + */ + addr = BANK(denali->flash_bank) | denali->page; + cmd = MODE_10 | addr; + index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); + +#if DEBUG_DENALI + spin_lock_irq(&denali->irq_lock); + denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize; + denali->idx %= 32; + spin_unlock_irq(&denali->irq_lock); +#endif + } +} + +/* this function examines buffers to see if they contain data that + * indicate that the buffer is part of an erased region of flash. + */ +bool is_erased(uint8_t *buf, int len) +{ + int i = 0; + for (i = 0; i < len; i++) + { + if (buf[i] != 0xFF) + { + return false; + } + } + return true; +} +#define ECC_SECTOR_SIZE 512 + +#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) +#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) +#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) +#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO)) +#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) +#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) + +static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, + uint8_t *oobbuf, uint32_t irq_status) +{ + bool check_erased_page = false; + + if (irq_status & INTR_STATUS0__ECC_ERR) + { + /* read the ECC errors. we'll ignore them for now */ + uint32_t err_address = 0, err_correction_info = 0; + uint32_t err_byte = 0, err_sector = 0, err_device = 0; + uint32_t err_correction_value = 0; + + do + { + err_address = ioread32(denali->flash_reg + + ECC_ERROR_ADDRESS); + err_sector = ECC_SECTOR(err_address); + err_byte = ECC_BYTE(err_address); + + + err_correction_info = ioread32(denali->flash_reg + + ERR_CORRECTION_INFO); + err_correction_value = + ECC_CORRECTION_VALUE(err_correction_info); + err_device = ECC_ERR_DEVICE(err_correction_info); + + if (ECC_ERROR_CORRECTABLE(err_correction_info)) + { + /* offset in our buffer is computed as: + sector number * sector size + offset in + sector + */ + int offset = err_sector * ECC_SECTOR_SIZE + + err_byte; + if (offset < denali->mtd.writesize) + { + /* correct the ECC error */ + buf[offset] ^= err_correction_value; + denali->mtd.ecc_stats.corrected++; + } + else + { + /* bummer, couldn't correct the error */ + printk(KERN_ERR "ECC offset invalid\n"); + denali->mtd.ecc_stats.failed++; + } + } + else + { + /* if the error is not correctable, need to + * look at the page to see if it is an erased page. + * if so, then it's not a real ECC error */ + check_erased_page = true; + } + +#if DEBUG_DENALI + printk("Detected ECC error in page %d: err_addr = 0x%08x," + " info to fix is 0x%08x\n", denali->page, err_address, + err_correction_info); +#endif + } while (!ECC_LAST_ERR(err_correction_info)); + } + return check_erased_page; +} + +/* programs the controller to either enable/disable DMA transfers */ +static void enable_dma(struct denali_nand_info *denali, bool en) +{ + uint32_t reg_val = 0x0; + + if (en) reg_val = DMA_ENABLE__FLAG; + + denali_write32(reg_val, denali->flash_reg + DMA_ENABLE); + ioread32(denali->flash_reg + DMA_ENABLE); +} + +/* setups the HW to perform the data DMA */ +static void setup_dma(struct denali_nand_info *denali, int op) +{ + uint32_t mode = 0x0; + const int page_count = 1; + dma_addr_t addr = denali->buf.dma_buf; + + mode = MODE_10 | BANK(denali->flash_bank); + + /* DMA is a four step process */ + + /* 1. setup transfer type and # of pages */ + index_addr(denali, mode | denali->page, 0x2000 | op | page_count); + + /* 2. set memory high address bits 23:8 */ + index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); + + /* 3. set memory low address bits 23:8 */ + index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); + + /* 4. interrupt when complete, burst len = 64 bytes*/ + index_addr(denali, mode | 0x14000, 0x2400); +} + +/* writes a page. user specifies type, and this function handles the + configuration details. */ +static void write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, bool raw_xfer) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + struct pci_dev *pci_dev = denali->dev; + + dma_addr_t addr = denali->buf.dma_buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + + uint32_t irq_status = 0; + uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | + INTR_STATUS0__PROGRAM_FAIL; + + /* if it is a raw xfer, we want to disable ecc, and send + * the spare area. + * !raw_xfer - enable ecc + * raw_xfer - transfer spare + */ + setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); + + /* copy buffer into DMA buffer */ + memcpy(denali->buf.buf, buf, mtd->writesize); + + if (raw_xfer) + { + /* transfer the data to the spare area */ + memcpy(denali->buf.buf + mtd->writesize, + chip->oob_poi, + mtd->oobsize); + } + + pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE); + + clear_interrupts(denali); + enable_dma(denali, true); + + setup_dma(denali, DENALI_WRITE); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) + { + printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer); + denali->status = + (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : + PASS; + } + + enable_dma(denali, false); + pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE); +} + +/* NAND core entry points */ + +/* this is the callback that the NAND core calls to write a page. Since + writing a page with ECC or without is similar, all the work is done + by write_page above. */ +static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf) +{ + /* for regular page writes, we let HW handle all the ECC + * data written to the device. */ + write_page(mtd, chip, buf, false); +} + +/* This is the callback that the NAND core calls to write a page without ECC. + raw access is similiar to ECC page writes, so all the work is done in the + write_page() function above. + */ +static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf) +{ + /* for raw page writes, we want to disable ECC and simply write + whatever data is in the buffer. */ + write_page(mtd, chip, buf, true); +} + +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return write_oob_data(mtd, chip->oob_poi, page); +} + +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page, int sndcmd) +{ + read_oob_data(mtd, chip->oob_poi, page); + + return 0; /* notify NAND core to send command to + * NAND device. */ +} + +static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + struct pci_dev *pci_dev = denali->dev; + + dma_addr_t addr = denali->buf.dma_buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + + uint32_t irq_status = 0; + uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | + INTR_STATUS0__ECC_ERR; + bool check_erased_page = false; + + setup_ecc_for_xfer(denali, true, false); + + enable_dma(denali, true); + pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + + clear_interrupts(denali); + setup_dma(denali, DENALI_READ); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + + memcpy(buf, denali->buf.buf, mtd->writesize); + + check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); + enable_dma(denali, false); + + if (check_erased_page) + { + read_oob_data(&denali->mtd, chip->oob_poi, denali->page); + + /* check ECC failures that may have occurred on erased pages */ + if (check_erased_page) + { + if (!is_erased(buf, denali->mtd.writesize)) + { + denali->mtd.ecc_stats.failed++; + } + if (!is_erased(buf, denali->mtd.oobsize)) + { + denali->mtd.ecc_stats.failed++; + } + } + } + return 0; +} + +static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + struct pci_dev *pci_dev = denali->dev; + + dma_addr_t addr = denali->buf.dma_buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + + uint32_t irq_status = 0; + uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; + + setup_ecc_for_xfer(denali, false, true); + enable_dma(denali, true); + + pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + + clear_interrupts(denali); + setup_dma(denali, DENALI_READ); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + + enable_dma(denali, false); + + memcpy(buf, denali->buf.buf, mtd->writesize); + memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); + + return 0; +} + +static uint8_t denali_read_byte(struct mtd_info *mtd) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint8_t result = 0xff; + + if (denali->buf.head < denali->buf.tail) + { + result = denali->buf.buf[denali->buf.head++]; + } + +#if DEBUG_DENALI + printk("read byte -> 0x%02x\n", result); +#endif + return result; +} + +static void denali_select_chip(struct mtd_info *mtd, int chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); +#if DEBUG_DENALI + printk("denali select chip %d\n", chip); +#endif + spin_lock_irq(&denali->irq_lock); + denali->flash_bank = chip; + spin_unlock_irq(&denali->irq_lock); +} + +static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + int status = denali->status; + denali->status = 0; + +#if DEBUG_DENALI + printk("waitfunc %d\n", status); +#endif + return status; +} + +static void denali_erase(struct mtd_info *mtd, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + uint32_t cmd = 0x0, irq_status = 0; + +#if DEBUG_DENALI + printk("erase page: %d\n", page); +#endif + /* clear interrupts */ + clear_interrupts(denali); + + /* setup page read request for access type */ + cmd = MODE_10 | BANK(denali->flash_bank) | page; + index_addr(denali, (uint32_t)cmd, 0x1); + + /* wait for erase to complete or failure to occur */ + irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | + INTR_STATUS0__ERASE_FAIL); + + denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : + PASS; +} + +static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, + int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + +#if DEBUG_DENALI + printk("cmdfunc: 0x%x %d %d\n", cmd, col, page); +#endif + switch (cmd) + { + case NAND_CMD_PAGEPROG: + break; + case NAND_CMD_STATUS: + read_status(denali); + break; + case NAND_CMD_READID: + reset_buf(denali); + if (denali->flash_bank < denali->total_used_banks) + { + /* write manufacturer information into nand + buffer for NAND subsystem to fetch. + */ + write_byte_to_buf(denali, denali->dev_info.wDeviceMaker); + write_byte_to_buf(denali, denali->dev_info.wDeviceID); + write_byte_to_buf(denali, denali->dev_info.bDeviceParam0); + write_byte_to_buf(denali, denali->dev_info.bDeviceParam1); + write_byte_to_buf(denali, denali->dev_info.bDeviceParam2); + } + else + { + int i; + for (i = 0; i < 5; i++) + write_byte_to_buf(denali, 0xff); + } + break; + case NAND_CMD_READ0: + case NAND_CMD_SEQIN: + denali->page = page; + break; + case NAND_CMD_RESET: + reset_bank(denali); + break; + case NAND_CMD_READOOB: + /* TODO: Read OOB data */ + break; + default: + printk(KERN_ERR ": unsupported command received 0x%x\n", cmd); + break; + } +} + +/* stubs for ECC functions not used by the NAND core */ +static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, + uint8_t *ecc_code) +{ + printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); + BUG(); + return -EIO; +} + +static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); + BUG(); + return -EIO; +} + +static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) +{ + printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n"); + BUG(); +} +/* end NAND core entry points */ + +/* Initialization code to bring the device up to a known good state */ +static void denali_hw_init(struct denali_nand_info *denali) +{ + denali_irq_init(denali); + NAND_Flash_Reset(denali); + denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); + denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE); + + denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); + denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); + + /* Should set value for these registers when init */ + denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); + denali_write32(1, denali->flash_reg + ECC_ENABLE); +} + +/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */ +#define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE) +static struct nand_ecclayout nand_oob_slc = { + .eccbytes = 4, + .eccpos = { 0, 1, 2, 3 }, /* not used */ + .oobfree = {{ + .offset = ECC_BYTES_SLC, + .length = 64 - ECC_BYTES_SLC + }} +}; + +#define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE) +static struct nand_ecclayout nand_oob_mlc_14bit = { + .eccbytes = 14, + .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */ + .oobfree = {{ + .offset = ECC_BYTES_MLC, + .length = 64 - ECC_BYTES_MLC + }} +}; + +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* initalize driver data structures */ +void denali_drv_init(struct denali_nand_info *denali) +{ + denali->idx = 0; + + /* setup interrupt handler */ + /* the completion object will be used to notify + * the callee that the interrupt is done */ + init_completion(&denali->complete); + + /* the spinlock will be used to synchronize the ISR + * with any element that might be access shared + * data (interrupt status) */ + spin_lock_init(&denali->irq_lock); + + /* indicate that MTD has not selected a valid bank yet */ + denali->flash_bank = CHIP_SELECT_INVALID; + + /* initialize our irq_status variable to indicate no interrupts */ + denali->irq_status = 0; +} + +/* driver entry point */ +static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + int ret = -ENODEV; + resource_size_t csr_base, mem_base; + unsigned long csr_len, mem_len; + struct denali_nand_info *denali; + + nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + denali = kzalloc(sizeof(*denali), GFP_KERNEL); + if (!denali) + return -ENOMEM; + + ret = pci_enable_device(dev); + if (ret) { + printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); + goto failed_enable; + } + + if (id->driver_data == INTEL_CE4100) { + /* Due to a silicon limitation, we can only support + * ONFI timing mode 1 and below. + */ + if (onfi_timing_mode < -1 || onfi_timing_mode > 1) + { + printk("Intel CE4100 only supports ONFI timing mode 1 " + "or below\n"); + ret = -EINVAL; + goto failed_enable; + } + denali->platform = INTEL_CE4100; + mem_base = pci_resource_start(dev, 0); + mem_len = pci_resource_len(dev, 1); + csr_base = pci_resource_start(dev, 1); + csr_len = pci_resource_len(dev, 1); + } else { + denali->platform = INTEL_MRST; + csr_base = pci_resource_start(dev, 0); + csr_len = pci_resource_start(dev, 0); + mem_base = pci_resource_start(dev, 1); + mem_len = pci_resource_len(dev, 1); + if (!mem_len) { + mem_base = csr_base + csr_len; + mem_len = csr_len; + nand_dbg_print(NAND_DBG_WARN, + "Spectra: No second BAR for PCI device; assuming %08Lx\n", + (uint64_t)csr_base); + } + } + + /* Is 32-bit DMA supported? */ + ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32)); + + if (ret) + { + printk(KERN_ERR "Spectra: no usable DMA configuration\n"); + goto failed_enable; + } + denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, + PCI_DMA_BIDIRECTIONAL); + + if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) + { + printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); + goto failed_enable; + } + + pci_set_master(dev); + denali->dev = dev; + + ret = pci_request_regions(dev, DENALI_NAND_NAME); + if (ret) { + printk(KERN_ERR "Spectra: Unable to request memory regions\n"); + goto failed_req_csr; + } + + denali->flash_reg = ioremap_nocache(csr_base, csr_len); + if (!denali->flash_reg) { + printk(KERN_ERR "Spectra: Unable to remap memory region\n"); + ret = -ENOMEM; + goto failed_remap_csr; + } + nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n", + (uint64_t)csr_base, denali->flash_reg, csr_len); + + denali->flash_mem = ioremap_nocache(mem_base, mem_len); + if (!denali->flash_mem) { + printk(KERN_ERR "Spectra: ioremap_nocache failed!"); + iounmap(denali->flash_reg); + ret = -ENOMEM; + goto failed_remap_csr; + } + + nand_dbg_print(NAND_DBG_WARN, + "Spectra: Remapped flash base address: " + "0x%p, len: %ld\n", + denali->flash_mem, csr_len); + + denali_hw_init(denali); + denali_drv_init(denali); + + nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq); + if (request_irq(dev->irq, denali_isr, IRQF_SHARED, + DENALI_NAND_NAME, denali)) { + printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); + ret = -ENODEV; + goto failed_request_irq; + } + + /* now that our ISR is registered, we can enable interrupts */ + NAND_LLD_Enable_Disable_Interrupts(denali, true); + + pci_set_drvdata(dev, denali); + + NAND_Read_Device_ID(denali); + + /* MTD supported page sizes vary by kernel. We validate our + kernel supports the device here. + */ + if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) + { + ret = -ENODEV; + printk(KERN_ERR "Spectra: device size not supported by this " + "version of MTD."); + goto failed_nand; + } + + nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" + "acc_clks: %d, re_2_we: %d, we_2_re: %d," + "addr_2_data: %d, rdwr_en_lo_cnt: %d, " + "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", + ioread32(denali->flash_reg + ACC_CLKS), + ioread32(denali->flash_reg + RE_2_WE), + ioread32(denali->flash_reg + WE_2_RE), + ioread32(denali->flash_reg + ADDR_2_DATA), + ioread32(denali->flash_reg + RDWR_EN_LO_CNT), + ioread32(denali->flash_reg + RDWR_EN_HI_CNT), + ioread32(denali->flash_reg + CS_SETUP_CNT)); + + denali->mtd.name = "Denali NAND"; + denali->mtd.owner = THIS_MODULE; + denali->mtd.priv = &denali->nand; + + /* register the driver with the NAND core subsystem */ + denali->nand.select_chip = denali_select_chip; + denali->nand.cmdfunc = denali_cmdfunc; + denali->nand.read_byte = denali_read_byte; + denali->nand.waitfunc = denali_waitfunc; + + /* scan for NAND devices attached to the controller + * this is the first stage in a two step process to register + * with the nand subsystem */ + if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) + { + ret = -ENXIO; + goto failed_nand; + } + + /* second stage of the NAND scan + * this stage requires information regarding ECC and + * bad block management. */ + + /* Bad block management */ + denali->nand.bbt_td = &bbt_main_descr; + denali->nand.bbt_md = &bbt_mirror_descr; + + /* skip the scan for now until we have OOB read and write support */ + denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; + denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; + + if (denali->dev_info.MLCDevice) + { + denali->nand.ecc.layout = &nand_oob_mlc_14bit; + denali->nand.ecc.bytes = ECC_BYTES_MLC; + } + else /* SLC */ + { + denali->nand.ecc.layout = &nand_oob_slc; + denali->nand.ecc.bytes = ECC_BYTES_SLC; + } + + /* These functions are required by the NAND core framework, otherwise, + the NAND core will assert. However, we don't need them, so we'll stub + them out. */ + denali->nand.ecc.calculate = denali_ecc_calculate; + denali->nand.ecc.correct = denali_ecc_correct; + denali->nand.ecc.hwctl = denali_ecc_hwctl; + + /* override the default read operations */ + denali->nand.ecc.size = denali->mtd.writesize; + denali->nand.ecc.read_page = denali_read_page; + denali->nand.ecc.read_page_raw = denali_read_page_raw; + denali->nand.ecc.write_page = denali_write_page; + denali->nand.ecc.write_page_raw = denali_write_page_raw; + denali->nand.ecc.read_oob = denali_read_oob; + denali->nand.ecc.write_oob = denali_write_oob; + denali->nand.erase_cmd = denali_erase; + + if (nand_scan_tail(&denali->mtd)) + { + ret = -ENXIO; + goto failed_nand; + } + + ret = add_mtd_device(&denali->mtd); + if (ret) { + printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret); + goto failed_nand; + } + return 0; + + failed_nand: + denali_irq_cleanup(dev->irq, denali); + failed_request_irq: + iounmap(denali->flash_reg); + iounmap(denali->flash_mem); + failed_remap_csr: + pci_release_regions(dev); + failed_req_csr: + pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, + PCI_DMA_BIDIRECTIONAL); + failed_enable: + kfree(denali); + return ret; +} + +/* driver exit point */ +static void denali_pci_remove(struct pci_dev *dev) +{ + struct denali_nand_info *denali = pci_get_drvdata(dev); + + nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + nand_release(&denali->mtd); + del_mtd_device(&denali->mtd); + + denali_irq_cleanup(dev->irq, denali); + + iounmap(denali->flash_reg); + iounmap(denali->flash_mem); + pci_release_regions(dev); + pci_disable_device(dev); + pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, + PCI_DMA_BIDIRECTIONAL); + pci_set_drvdata(dev, NULL); + kfree(denali); +} + +MODULE_DEVICE_TABLE(pci, denali_pci_ids); + +static struct pci_driver denali_pci_driver = { + .name = DENALI_NAND_NAME, + .id_table = denali_pci_ids, + .probe = denali_pci_probe, + .remove = denali_pci_remove, +}; + +static int __devinit denali_init(void) +{ + printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__); + return pci_register_driver(&denali_pci_driver); +} + +/* Free memory */ +static void __devexit denali_exit(void) +{ + pci_unregister_driver(&denali_pci_driver); +} + +module_init(denali_init); +module_exit(denali_exit); diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h new file mode 100644 index 0000000..422a29a --- /dev/null +++ b/drivers/mtd/nand/denali.h @@ -0,0 +1,816 @@ +/* + * NAND Flash Controller Device Driver + * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + * + */ + +#include <linux/mtd/nand.h> + +#define DEVICE_RESET 0x0 +#define DEVICE_RESET__BANK0 0x0001 +#define DEVICE_RESET__BANK1 0x0002 +#define DEVICE_RESET__BANK2 0x0004 +#define DEVICE_RESET__BANK3 0x0008 + +#define TRANSFER_SPARE_REG 0x10 +#define TRANSFER_SPARE_REG__FLAG 0x0001 + +#define LOAD_WAIT_CNT 0x20 +#define LOAD_WAIT_CNT__VALUE 0xffff + +#define PROGRAM_WAIT_CNT 0x30 +#define PROGRAM_WAIT_CNT__VALUE 0xffff + +#define ERASE_WAIT_CNT 0x40 +#define ERASE_WAIT_CNT__VALUE 0xffff + +#define INT_MON_CYCCNT 0x50 +#define INT_MON_CYCCNT__VALUE 0xffff + +#define RB_PIN_ENABLED 0x60 +#define RB_PIN_ENABLED__BANK0 0x0001 +#define RB_PIN_ENABLED__BANK1 0x0002 +#define RB_PIN_ENABLED__BANK2 0x0004 +#define RB_PIN_ENABLED__BANK3 0x0008 + +#define MULTIPLANE_OPERATION 0x70 +#define MULTIPLANE_OPERATION__FLAG 0x0001 + +#define MULTIPLANE_READ_ENABLE 0x80 +#define MULTIPLANE_READ_ENABLE__FLAG 0x0001 + +#define COPYBACK_DISABLE 0x90 +#define COPYBACK_DISABLE__FLAG 0x0001 + +#define CACHE_WRITE_ENABLE 0xa0 +#define CACHE_WRITE_ENABLE__FLAG 0x0001 + +#define CACHE_READ_ENABLE 0xb0 +#define CACHE_READ_ENABLE__FLAG 0x0001 + +#define PREFETCH_MODE 0xc0 +#define PREFETCH_MODE__PREFETCH_EN 0x0001 +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0 + +#define CHIP_ENABLE_DONT_CARE 0xd0 +#define CHIP_EN_DONT_CARE__FLAG 0x01 + +#define ECC_ENABLE 0xe0 +#define ECC_ENABLE__FLAG 0x0001 + +#define GLOBAL_INT_ENABLE 0xf0 +#define GLOBAL_INT_EN_FLAG 0x01 + +#define WE_2_RE 0x100 +#define WE_2_RE__VALUE 0x003f + +#define ADDR_2_DATA 0x110 +#define ADDR_2_DATA__VALUE 0x003f + +#define RE_2_WE 0x120 +#define RE_2_WE__VALUE 0x003f + +#define ACC_CLKS 0x130 +#define ACC_CLKS__VALUE 0x000f + +#define NUMBER_OF_PLANES 0x140 +#define NUMBER_OF_PLANES__VALUE 0x0007 + +#define PAGES_PER_BLOCK 0x150 +#define PAGES_PER_BLOCK__VALUE 0xffff + +#define DEVICE_WIDTH 0x160 +#define DEVICE_WIDTH__VALUE 0x0003 + +#define DEVICE_MAIN_AREA_SIZE 0x170 +#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff + +#define DEVICE_SPARE_AREA_SIZE 0x180 +#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff + +#define TWO_ROW_ADDR_CYCLES 0x190 +#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001 + +#define MULTIPLANE_ADDR_RESTRICT 0x1a0 +#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001 + +#define ECC_CORRECTION 0x1b0 +#define ECC_CORRECTION__VALUE 0x001f + +#define READ_MODE 0x1c0 +#define READ_MODE__VALUE 0x000f + +#define WRITE_MODE 0x1d0 +#define WRITE_MODE__VALUE 0x000f + +#define COPYBACK_MODE 0x1e0 +#define COPYBACK_MODE__VALUE 0x000f + +#define RDWR_EN_LO_CNT 0x1f0 +#define RDWR_EN_LO_CNT__VALUE 0x001f + +#define RDWR_EN_HI_CNT 0x200 +#define RDWR_EN_HI_CNT__VALUE 0x001f + +#define MAX_RD_DELAY 0x210 +#define MAX_RD_DELAY__VALUE 0x000f + +#define CS_SETUP_CNT 0x220 +#define CS_SETUP_CNT__VALUE 0x001f + +#define SPARE_AREA_SKIP_BYTES 0x230 +#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f + +#define SPARE_AREA_MARKER 0x240 +#define SPARE_AREA_MARKER__VALUE 0xffff + +#define DEVICES_CONNECTED 0x250 +#define DEVICES_CONNECTED__VALUE 0x0007 + +#define DIE_MASK 0x260 +#define DIE_MASK__VALUE 0x00ff + +#define FIRST_BLOCK_OF_NEXT_PLANE 0x270 +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff + +#define WRITE_PROTECT 0x280 +#define WRITE_PROTECT__FLAG 0x0001 + +#define RE_2_RE 0x290 +#define RE_2_RE__VALUE 0x003f + +#define MANUFACTURER_ID 0x300 +#define MANUFACTURER_ID__VALUE 0x00ff + +#define DEVICE_ID 0x310 +#define DEVICE_ID__VALUE 0x00ff + +#define DEVICE_PARAM_0 0x320 +#define DEVICE_PARAM_0__VALUE 0x00ff + +#define DEVICE_PARAM_1 0x330 +#define DEVICE_PARAM_1__VALUE 0x00ff + +#define DEVICE_PARAM_2 0x340 +#define DEVICE_PARAM_2__VALUE 0x00ff + +#define LOGICAL_PAGE_DATA_SIZE 0x350 +#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff + +#define LOGICAL_PAGE_SPARE_SIZE 0x360 +#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff + +#define REVISION 0x370 +#define REVISION__VALUE 0xffff + +#define ONFI_DEVICE_FEATURES 0x380 +#define ONFI_DEVICE_FEATURES__VALUE 0x003f + +#define ONFI_OPTIONAL_COMMANDS 0x390 +#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f + +#define ONFI_TIMING_MODE 0x3a0 +#define ONFI_TIMING_MODE__VALUE 0x003f + +#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f + +#define ONFI_DEVICE_NO_OF_LUNS 0x3c0 +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100 + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff + +#define FEATURES 0x3f0 +#define FEATURES__N_BANKS 0x0003 +#define FEATURES__ECC_MAX_ERR 0x003c +#define FEATURES__DMA 0x0040 +#define FEATURES__CMD_DMA 0x0080 +#define FEATURES__PARTITION 0x0100 +#define FEATURES__XDMA_SIDEBAND 0x0200 +#define FEATURES__GPREG 0x0400 +#define FEATURES__INDEX_ADDR 0x0800 + +#define TRANSFER_MODE 0x400 +#define TRANSFER_MODE__VALUE 0x0003 + +#define INTR_STATUS0 0x410 +#define INTR_STATUS0__ECC_TRANSACTION_DONE 0x0001 +#define INTR_STATUS0__ECC_ERR 0x0002 +#define INTR_STATUS0__DMA_CMD_COMP 0x0004 +#define INTR_STATUS0__TIME_OUT 0x0008 +#define INTR_STATUS0__PROGRAM_FAIL 0x0010 +#define INTR_STATUS0__ERASE_FAIL 0x0020 +#define INTR_STATUS0__LOAD_COMP 0x0040 +#define INTR_STATUS0__PROGRAM_COMP 0x0080 +#define INTR_STATUS0__ERASE_COMP 0x0100 +#define INTR_STATUS0__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_STATUS0__LOCKED_BLK 0x0400 +#define INTR_STATUS0__UNSUP_CMD 0x0800 +#define INTR_STATUS0__INT_ACT 0x1000 +#define INTR_STATUS0__RST_COMP 0x2000 +#define INTR_STATUS0__PIPE_CMD_ERR 0x4000 +#define INTR_STATUS0__PAGE_XFER_INC 0x8000 + +#define INTR_EN0 0x420 +#define INTR_EN0__ECC_TRANSACTION_DONE 0x0001 +#define INTR_EN0__ECC_ERR 0x0002 +#define INTR_EN0__DMA_CMD_COMP 0x0004 +#define INTR_EN0__TIME_OUT 0x0008 +#define INTR_EN0__PROGRAM_FAIL 0x0010 +#define INTR_EN0__ERASE_FAIL 0x0020 +#define INTR_EN0__LOAD_COMP 0x0040 +#define INTR_EN0__PROGRAM_COMP 0x0080 +#define INTR_EN0__ERASE_COMP 0x0100 +#define INTR_EN0__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_EN0__LOCKED_BLK 0x0400 +#define INTR_EN0__UNSUP_CMD 0x0800 +#define INTR_EN0__INT_ACT 0x1000 +#define INTR_EN0__RST_COMP 0x2000 +#define INTR_EN0__PIPE_CMD_ERR 0x4000 +#define INTR_EN0__PAGE_XFER_INC 0x8000 + +#define PAGE_CNT0 0x430 +#define PAGE_CNT0__VALUE 0x00ff + +#define ERR_PAGE_ADDR0 0x440 +#define ERR_PAGE_ADDR0__VALUE 0xffff + +#define ERR_BLOCK_ADDR0 0x450 +#define ERR_BLOCK_ADDR0__VALUE 0xffff + +#define INTR_STATUS1 0x460 +#define INTR_STATUS1__ECC_TRANSACTION_DONE 0x0001 +#define INTR_STATUS1__ECC_ERR 0x0002 +#define INTR_STATUS1__DMA_CMD_COMP 0x0004 +#define INTR_STATUS1__TIME_OUT 0x0008 +#define INTR_STATUS1__PROGRAM_FAIL 0x0010 +#define INTR_STATUS1__ERASE_FAIL 0x0020 +#define INTR_STATUS1__LOAD_COMP 0x0040 +#define INTR_STATUS1__PROGRAM_COMP 0x0080 +#define INTR_STATUS1__ERASE_COMP 0x0100 +#define INTR_STATUS1__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_STATUS1__LOCKED_BLK 0x0400 +#define INTR_STATUS1__UNSUP_CMD 0x0800 +#define INTR_STATUS1__INT_ACT 0x1000 +#define INTR_STATUS1__RST_COMP 0x2000 +#define INTR_STATUS1__PIPE_CMD_ERR 0x4000 +#define INTR_STATUS1__PAGE_XFER_INC 0x8000 + +#define INTR_EN1 0x470 +#define INTR_EN1__ECC_TRANSACTION_DONE 0x0001 +#define INTR_EN1__ECC_ERR 0x0002 +#define INTR_EN1__DMA_CMD_COMP 0x0004 +#define INTR_EN1__TIME_OUT 0x0008 +#define INTR_EN1__PROGRAM_FAIL 0x0010 +#define INTR_EN1__ERASE_FAIL 0x0020 +#define INTR_EN1__LOAD_COMP 0x0040 +#define INTR_EN1__PROGRAM_COMP 0x0080 +#define INTR_EN1__ERASE_COMP 0x0100 +#define INTR_EN1__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_EN1__LOCKED_BLK 0x0400 +#define INTR_EN1__UNSUP_CMD 0x0800 +#define INTR_EN1__INT_ACT 0x1000 +#define INTR_EN1__RST_COMP 0x2000 +#define INTR_EN1__PIPE_CMD_ERR 0x4000 +#define INTR_EN1__PAGE_XFER_INC 0x8000 + +#define PAGE_CNT1 0x480 +#define PAGE_CNT1__VALUE 0x00ff + +#define ERR_PAGE_ADDR1 0x490 +#define ERR_PAGE_ADDR1__VALUE 0xffff + +#define ERR_BLOCK_ADDR1 0x4a0 +#define ERR_BLOCK_ADDR1__VALUE 0xffff + +#define INTR_STATUS2 0x4b0 +#define INTR_STATUS2__ECC_TRANSACTION_DONE 0x0001 +#define INTR_STATUS2__ECC_ERR 0x0002 +#define INTR_STATUS2__DMA_CMD_COMP 0x0004 +#define INTR_STATUS2__TIME_OUT 0x0008 +#define INTR_STATUS2__PROGRAM_FAIL 0x0010 +#define INTR_STATUS2__ERASE_FAIL 0x0020 +#define INTR_STATUS2__LOAD_COMP 0x0040 +#define INTR_STATUS2__PROGRAM_COMP 0x0080 +#define INTR_STATUS2__ERASE_COMP 0x0100 +#define INTR_STATUS2__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_STATUS2__LOCKED_BLK 0x0400 +#define INTR_STATUS2__UNSUP_CMD 0x0800 +#define INTR_STATUS2__INT_ACT 0x1000 +#define INTR_STATUS2__RST_COMP 0x2000 +#define INTR_STATUS2__PIPE_CMD_ERR 0x4000 +#define INTR_STATUS2__PAGE_XFER_INC 0x8000 + +#define INTR_EN2 0x4c0 +#define INTR_EN2__ECC_TRANSACTION_DONE 0x0001 +#define INTR_EN2__ECC_ERR 0x0002 +#define INTR_EN2__DMA_CMD_COMP 0x0004 +#define INTR_EN2__TIME_OUT 0x0008 +#define INTR_EN2__PROGRAM_FAIL 0x0010 +#define INTR_EN2__ERASE_FAIL 0x0020 +#define INTR_EN2__LOAD_COMP 0x0040 +#define INTR_EN2__PROGRAM_COMP 0x0080 +#define INTR_EN2__ERASE_COMP 0x0100 +#define INTR_EN2__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_EN2__LOCKED_BLK 0x0400 +#define INTR_EN2__UNSUP_CMD 0x0800 +#define INTR_EN2__INT_ACT 0x1000 +#define INTR_EN2__RST_COMP 0x2000 +#define INTR_EN2__PIPE_CMD_ERR 0x4000 +#define INTR_EN2__PAGE_XFER_INC 0x8000 + +#define PAGE_CNT2 0x4d0 +#define PAGE_CNT2__VALUE 0x00ff + +#define ERR_PAGE_ADDR2 0x4e0 +#define ERR_PAGE_ADDR2__VALUE 0xffff + +#define ERR_BLOCK_ADDR2 0x4f0 +#define ERR_BLOCK_ADDR2__VALUE 0xffff + +#define INTR_STATUS3 0x500 +#define INTR_STATUS3__ECC_TRANSACTION_DONE 0x0001 +#define INTR_STATUS3__ECC_ERR 0x0002 +#define INTR_STATUS3__DMA_CMD_COMP 0x0004 +#define INTR_STATUS3__TIME_OUT 0x0008 +#define INTR_STATUS3__PROGRAM_FAIL 0x0010 +#define INTR_STATUS3__ERASE_FAIL 0x0020 +#define INTR_STATUS3__LOAD_COMP 0x0040 +#define INTR_STATUS3__PROGRAM_COMP 0x0080 +#define INTR_STATUS3__ERASE_COMP 0x0100 +#define INTR_STATUS3__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_STATUS3__LOCKED_BLK 0x0400 +#define INTR_STATUS3__UNSUP_CMD 0x0800 +#define INTR_STATUS3__INT_ACT 0x1000 +#define INTR_STATUS3__RST_COMP 0x2000 +#define INTR_STATUS3__PIPE_CMD_ERR 0x4000 +#define INTR_STATUS3__PAGE_XFER_INC 0x8000 + +#define INTR_EN3 0x510 +#define INTR_EN3__ECC_TRANSACTION_DONE 0x0001 +#define INTR_EN3__ECC_ERR 0x0002 +#define INTR_EN3__DMA_CMD_COMP 0x0004 +#define INTR_EN3__TIME_OUT 0x0008 +#define INTR_EN3__PROGRAM_FAIL 0x0010 +#define INTR_EN3__ERASE_FAIL 0x0020 +#define INTR_EN3__LOAD_COMP 0x0040 +#define INTR_EN3__PROGRAM_COMP 0x0080 +#define INTR_EN3__ERASE_COMP 0x0100 +#define INTR_EN3__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_EN3__LOCKED_BLK 0x0400 +#define INTR_EN3__UNSUP_CMD 0x0800 +#define INTR_EN3__INT_ACT 0x1000 +#define INTR_EN3__RST_COMP 0x2000 +#define INTR_EN3__PIPE_CMD_ERR 0x4000 +#define INTR_EN3__PAGE_XFER_INC 0x8000 + +#define PAGE_CNT3 0x520 +#define PAGE_CNT3__VALUE 0x00ff + +#define ERR_PAGE_ADDR3 0x530 +#define ERR_PAGE_ADDR3__VALUE 0xffff + +#define ERR_BLOCK_ADDR3 0x540 +#define ERR_BLOCK_ADDR3__VALUE 0xffff + +#define DATA_INTR 0x550 +#define DATA_INTR__WRITE_SPACE_AV 0x0001 +#define DATA_INTR__READ_DATA_AV 0x0002 + +#define DATA_INTR_EN 0x560 +#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001 +#define DATA_INTR_EN__READ_DATA_AV 0x0002 + +#define GPREG_0 0x570 +#define GPREG_0__VALUE 0xffff + +#define GPREG_1 0x580 +#define GPREG_1__VALUE 0xffff + +#define GPREG_2 0x590 +#define GPREG_2__VALUE 0xffff + +#define GPREG_3 0x5a0 +#define GPREG_3__VALUE 0xffff + +#define ECC_THRESHOLD 0x600 +#define ECC_THRESHOLD__VALUE 0x03ff + +#define ECC_ERROR_BLOCK_ADDRESS 0x610 +#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff + +#define ECC_ERROR_PAGE_ADDRESS 0x620 +#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff +#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000 + +#define ECC_ERROR_ADDRESS 0x630 +#define ECC_ERROR_ADDRESS__OFFSET 0x0fff +#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000 + +#define ERR_CORRECTION_INFO 0x640 +#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff +#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00 +#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000 +#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000 + +#define DMA_ENABLE 0x700 +#define DMA_ENABLE__FLAG 0x0001 + +#define IGNORE_ECC_DONE 0x710 +#define IGNORE_ECC_DONE__FLAG 0x0001 + +#define DMA_INTR 0x720 +#define DMA_INTR__TARGET_ERROR 0x0001 +#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002 +#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004 +#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008 +#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010 +#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020 + +#define DMA_INTR_EN 0x730 +#define DMA_INTR_EN__TARGET_ERROR 0x0001 +#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002 +#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004 +#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008 +#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010 +#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020 + +#define TARGET_ERR_ADDR_LO 0x740 +#define TARGET_ERR_ADDR_LO__VALUE 0xffff + +#define TARGET_ERR_ADDR_HI 0x750 +#define TARGET_ERR_ADDR_HI__VALUE 0xffff + +#define CHNL_ACTIVE 0x760 +#define CHNL_ACTIVE__CHANNEL0 0x0001 +#define CHNL_ACTIVE__CHANNEL1 0x0002 +#define CHNL_ACTIVE__CHANNEL2 0x0004 +#define CHNL_ACTIVE__CHANNEL3 0x0008 + +#define ACTIVE_SRC_ID 0x800 +#define ACTIVE_SRC_ID__VALUE 0x00ff + +#define PTN_INTR 0x810 +#define PTN_INTR__CONFIG_ERROR 0x0001 +#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002 +#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004 +#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008 +#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010 +#define PTN_INTR__REG_ACCESS_ERROR 0x0020 + +#define PTN_INTR_EN 0x820 +#define PTN_INTR_EN__CONFIG_ERROR 0x0001 +#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002 +#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004 +#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008 +#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 +#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020 + +#define PERM_SRC_ID_0 0x830 +#define PERM_SRC_ID_0__SRCID 0x00ff +#define PERM_SRC_ID_0__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_0__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_0__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_0__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_0 0x840 +#define MIN_BLK_ADDR_0__VALUE 0xffff + +#define MAX_BLK_ADDR_0 0x850 +#define MAX_BLK_ADDR_0__VALUE 0xffff + +#define MIN_MAX_BANK_0 0x860 +#define MIN_MAX_BANK_0__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_0__MAX_VALUE 0x000c + +#define PERM_SRC_ID_1 0x870 +#define PERM_SRC_ID_1__SRCID 0x00ff +#define PERM_SRC_ID_1__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_1__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_1__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_1__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_1 0x880 +#define MIN_BLK_ADDR_1__VALUE 0xffff + +#define MAX_BLK_ADDR_1 0x890 +#define MAX_BLK_ADDR_1__VALUE 0xffff + +#define MIN_MAX_BANK_1 0x8a0 +#define MIN_MAX_BANK_1__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_1__MAX_VALUE 0x000c + +#define PERM_SRC_ID_2 0x8b0 +#define PERM_SRC_ID_2__SRCID 0x00ff +#define PERM_SRC_ID_2__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_2__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_2__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_2__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_2 0x8c0 +#define MIN_BLK_ADDR_2__VALUE 0xffff + +#define MAX_BLK_ADDR_2 0x8d0 +#define MAX_BLK_ADDR_2__VALUE 0xffff + +#define MIN_MAX_BANK_2 0x8e0 +#define MIN_MAX_BANK_2__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_2__MAX_VALUE 0x000c + +#define PERM_SRC_ID_3 0x8f0 +#define PERM_SRC_ID_3__SRCID 0x00ff +#define PERM_SRC_ID_3__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_3__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_3__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_3__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_3 0x900 +#define MIN_BLK_ADDR_3__VALUE 0xffff + +#define MAX_BLK_ADDR_3 0x910 +#define MAX_BLK_ADDR_3__VALUE 0xffff + +#define MIN_MAX_BANK_3 0x920 +#define MIN_MAX_BANK_3__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_3__MAX_VALUE 0x000c + +#define PERM_SRC_ID_4 0x930 +#define PERM_SRC_ID_4__SRCID 0x00ff +#define PERM_SRC_ID_4__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_4__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_4__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_4__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_4 0x940 +#define MIN_BLK_ADDR_4__VALUE 0xffff + +#define MAX_BLK_ADDR_4 0x950 +#define MAX_BLK_ADDR_4__VALUE 0xffff + +#define MIN_MAX_BANK_4 0x960 +#define MIN_MAX_BANK_4__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_4__MAX_VALUE 0x000c + +#define PERM_SRC_ID_5 0x970 +#define PERM_SRC_ID_5__SRCID 0x00ff +#define PERM_SRC_ID_5__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_5__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_5__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_5__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_5 0x980 +#define MIN_BLK_ADDR_5__VALUE 0xffff + +#define MAX_BLK_ADDR_5 0x990 +#define MAX_BLK_ADDR_5__VALUE 0xffff + +#define MIN_MAX_BANK_5 0x9a0 +#define MIN_MAX_BANK_5__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_5__MAX_VALUE 0x000c + +#define PERM_SRC_ID_6 0x9b0 +#define PERM_SRC_ID_6__SRCID 0x00ff +#define PERM_SRC_ID_6__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_6__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_6__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_6__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_6 0x9c0 +#define MIN_BLK_ADDR_6__VALUE 0xffff + +#define MAX_BLK_ADDR_6 0x9d0 +#define MAX_BLK_ADDR_6__VALUE 0xffff + +#define MIN_MAX_BANK_6 0x9e0 +#define MIN_MAX_BANK_6__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_6__MAX_VALUE 0x000c + +#define PERM_SRC_ID_7 0x9f0 +#define PERM_SRC_ID_7__SRCID 0x00ff +#define PERM_SRC_ID_7__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID_7__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID_7__READ_ACTIVE 0x4000 +#define PERM_SRC_ID_7__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR_7 0xa00 +#define MIN_BLK_ADDR_7__VALUE 0xffff + +#define MAX_BLK_ADDR_7 0xa10 +#define MAX_BLK_ADDR_7__VALUE 0xffff + +#define MIN_MAX_BANK_7 0xa20 +#define MIN_MAX_BANK_7__MIN_VALUE 0x0003 +#define MIN_MAX_BANK_7__MAX_VALUE 0x000c + +/* flash.h */ +struct device_info_tag { + uint16_t wDeviceMaker; + uint16_t wDeviceID; + uint8_t bDeviceParam0; + uint8_t bDeviceParam1; + uint8_t bDeviceParam2; + uint32_t wDeviceType; + uint32_t wSpectraStartBlock; + uint32_t wSpectraEndBlock; + uint32_t wTotalBlocks; + uint16_t wPagesPerBlock; + uint16_t wPageSize; + uint16_t wPageDataSize; + uint16_t wPageSpareSize; + uint16_t wNumPageSpareFlag; + uint16_t wECCBytesPerSector; + uint32_t wBlockSize; + uint32_t wBlockDataSize; + uint32_t wDataBlockNum; + uint8_t bPlaneNum; + uint16_t wDeviceMainAreaSize; + uint16_t wDeviceSpareAreaSize; + uint16_t wDevicesConnected; + uint16_t wDeviceWidth; + uint16_t wHWRevision; + uint16_t wHWFeatures; + + uint16_t wONFIDevFeatures; + uint16_t wONFIOptCommands; + uint16_t wONFITimingMode; + uint16_t wONFIPgmCacheTimingMode; + + uint16_t MLCDevice; + uint16_t wSpareSkipBytes; + + uint8_t nBitsInPageNumber; + uint8_t nBitsInPageDataSize; + uint8_t nBitsInBlockDataSize; +}; + +/* ffsdefs.h */ +#define CLEAR 0 /*use this to clear a field instead of "fail"*/ +#define SET 1 /*use this to set a field instead of "pass"*/ +#define FAIL 1 /*failed flag*/ +#define PASS 0 /*success flag*/ +#define ERR -1 /*error flag*/ + +/* lld.h */ +#define GOOD_BLOCK 0 +#define DEFECTIVE_BLOCK 1 +#define READ_ERROR 2 + +#define CLK_X 5 +#define CLK_MULTI 4 + +/* ffsport.h */ +#define VERBOSE 1 + +#define NAND_DBG_WARN 1 +#define NAND_DBG_DEBUG 2 +#define NAND_DBG_TRACE 3 + +#ifdef VERBOSE +#define nand_dbg_print(level, args...) \ + do { \ + if (level <= nand_debug_level) \ + printk(KERN_ALERT args); \ + } while (0) +#else +#define nand_dbg_print(level, args...) +#endif + + +/* spectraswconfig.h */ +#define CMD_DMA 0 + +#define SPECTRA_PARTITION_ID 0 +/**** Block Table and Reserved Block Parameters *****/ +#define SPECTRA_START_BLOCK 3 +#define NUM_FREE_BLOCKS_GATE 30 + +/* KBV - Updated to LNW scratch register address */ +#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR +#define SCRATCH_REG_SIZE 64 + +#define GLOB_HWCTL_DEFAULT_BLKS 2048 + +#define SUPPORT_15BITECC 1 +#define SUPPORT_8BITECC 1 + +#define CUSTOM_CONF_PARAMS 0 + +#define ONFI_BLOOM_TIME 1 +#define MODE5_WORKAROUND 0 + +/* lld_nand.h */ +/* + * NAND Flash Controller Device Driver + * Copyright (c) 2009, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + * + */ + +#ifndef _LLD_NAND_ +#define _LLD_NAND_ + +#define MODE_00 0x00000000 +#define MODE_01 0x04000000 +#define MODE_10 0x08000000 +#define MODE_11 0x0C000000 + + +#define DATA_TRANSFER_MODE 0 +#define PROTECTION_PER_BLOCK 1 +#define LOAD_WAIT_COUNT 2 +#define PROGRAM_WAIT_COUNT 3 +#define ERASE_WAIT_COUNT 4 +#define INT_MONITOR_CYCLE_COUNT 5 +#define READ_BUSY_PIN_ENABLED 6 +#define MULTIPLANE_OPERATION_SUPPORT 7 +#define PRE_FETCH_MODE 8 +#define CE_DONT_CARE_SUPPORT 9 +#define COPYBACK_SUPPORT 10 +#define CACHE_WRITE_SUPPORT 11 +#define CACHE_READ_SUPPORT 12 +#define NUM_PAGES_IN_BLOCK 13 +#define ECC_ENABLE_SELECT 14 +#define WRITE_ENABLE_2_READ_ENABLE 15 +#define ADDRESS_2_DATA 16 +#define READ_ENABLE_2_WRITE_ENABLE 17 +#define TWO_ROW_ADDRESS_CYCLES 18 +#define MULTIPLANE_ADDRESS_RESTRICT 19 +#define ACC_CLOCKS 20 +#define READ_WRITE_ENABLE_LOW_COUNT 21 +#define READ_WRITE_ENABLE_HIGH_COUNT 22 + +#define ECC_SECTOR_SIZE 512 +#define LLD_MAX_FLASH_BANKS 4 + +#define DENALI_BUF_SIZE NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE + +struct nand_buf +{ + int head; + int tail; + uint8_t buf[DENALI_BUF_SIZE]; + dma_addr_t dma_buf; +}; + +#define INTEL_CE4100 1 +#define INTEL_MRST 2 + +struct denali_nand_info { + struct mtd_info mtd; + struct nand_chip nand; + struct device_info_tag dev_info; + int flash_bank; /* currently selected chip */ + int status; + int platform; + struct nand_buf buf; + struct pci_dev *dev; + int total_used_banks; + uint32_t block; /* stored for future use */ + uint16_t page; + void __iomem *flash_reg; /* Mapped io reg base address */ + void __iomem *flash_mem; /* Mapped io reg base address */ + + /* elements used by ISR */ + struct completion complete; + spinlock_t irq_lock; + uint32_t irq_status; + int irq_debug_array[32]; + int idx; +}; + +static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali); +static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali); +static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, uint16_t INT_ENABLE); + +#endif /*_LLD_NAND_*/ + |