summaryrefslogtreecommitdiffstats
path: root/drivers/irqchip
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-11-14 08:51:29 +0900
committerLinus Torvalds <torvalds@linux-foundation.org>2013-11-14 08:51:29 +0900
commitf47671e2d861a2093179cd64dda22016664b2015 (patch)
treef77cb8e7d875f442e2cf0bdc8fbe478ec8ff8181 /drivers/irqchip
parent8ceafbfa91ffbdbb2afaea5c24ccb519ffb8b587 (diff)
parent42cbe8271ca6562b4ad4b2e6a9895084b16eef5e (diff)
downloadop-kernel-dev-f47671e2d861a2093179cd64dda22016664b2015.zip
op-kernel-dev-f47671e2d861a2093179cd64dda22016664b2015.tar.gz
Merge branch 'for-linus' of git://git.linaro.org/people/rmk/linux-arm
Pull ARM updates from Russell King: "Included in this series are: 1. BE8 (modern big endian) changes for ARM from Ben Dooks 2. big.Little support from Nicolas Pitre and Dave Martin 3. support for LPAE systems with all system memory above 4GB 4. Perf updates from Will Deacon 5. Additional prefetching and other performance improvements from Will. 6. Neon-optimised AES implementation fro Ard. 7. A number of smaller fixes scattered around the place. There is a rather horrid merge conflict in tools/perf - I was never notified of the conflict because it originally occurred between Will's tree and other stuff. Consequently I have a resolution which Will forwarded me, which I'll forward on immediately after sending this mail. The other notable thing is I'm expecting some build breakage in the crypto stuff on ARM only with Ard's AES patches. These were merged into a stable git branch which others had already pulled, so there's little I can do about this. The problem is caused because these patches have a dependency on some code in the crypto git tree - I tried requesting a branch I can pull to resolve these, and all I got each time from the crypto people was "we'll revert our patches then" which would only make things worse since I still don't have the dependent patches. I've no idea what's going on there or how to resolve that, and since I can't split these patches from the rest of this pull request, I'm rather stuck with pushing this as-is or reverting Ard's patches. Since it should "come out in the wash" I've left them in - the only build problems they seem to cause at the moment are with randconfigs, and since it's a new feature anyway. However, if by -rc1 the dependencies aren't in, I think it'd be best to revert Ard's patches" I resolved the perf conflict roughly as per the patch sent by Russell, but there may be some differences. Any errors are likely mine. Let's see how the crypto issues work out.. * 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (110 commits) ARM: 7868/1: arm/arm64: remove atomic_clear_mask() in "include/asm/atomic.h" ARM: 7867/1: include: asm: use 'int' instead of 'unsigned long' for 'oldval' in atomic_cmpxchg(). ARM: 7866/1: include: asm: use 'long long' instead of 'u64' within atomic.h ARM: 7871/1: amba: Extend number of IRQS ARM: 7887/1: Don't smp_cross_call() on UP devices in arch_irq_work_raise() ARM: 7872/1: Support arch_irq_work_raise() via self IPIs ARM: 7880/1: Clear the IT state independent of the Thumb-2 mode ARM: 7878/1: nommu: Implement dummy early_paging_init() ARM: 7876/1: clear Thumb-2 IT state on exception handling ARM: 7874/2: bL_switcher: Remove cpu_hotplug_driver_{lock,unlock}() ARM: footbridge: fix build warnings for netwinder ARM: 7873/1: vfp: clear vfp_current_hw_state for dying cpu ARM: fix misplaced arch_virt_to_idmap() ARM: 7848/1: mcpm: Implement cpu_kill() to synchronise on powerdown ARM: 7847/1: mcpm: Factor out logical-to-physical CPU translation ARM: 7869/1: remove unused XSCALE_PMU Kconfig param ARM: 7864/1: Handle 64-bit memory in case of 32-bit phys_addr_t ARM: 7863/1: Let arm_add_memory() always use 64-bit arguments ARM: 7862/1: pcpu: replace __get_cpu_var_uses ARM: 7861/1: cacheflush: consolidate single-CPU ARMv7 cache disabling code ...
Diffstat (limited to 'drivers/irqchip')
-rw-r--r--drivers/irqchip/irq-gic.c151
1 files changed, 148 insertions, 3 deletions
diff --git a/drivers/irqchip/irq-gic.c b/drivers/irqchip/irq-gic.c
index d0e9480..9031171 100644
--- a/drivers/irqchip/irq-gic.c
+++ b/drivers/irqchip/irq-gic.c
@@ -253,10 +253,9 @@ static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
return -EINVAL;
+ raw_spin_lock(&irq_controller_lock);
mask = 0xff << shift;
bit = gic_cpu_map[cpu] << shift;
-
- raw_spin_lock(&irq_controller_lock);
val = readl_relaxed(reg) & ~mask;
writel_relaxed(val | bit, reg);
raw_spin_unlock(&irq_controller_lock);
@@ -652,7 +651,9 @@ static void __init gic_pm_init(struct gic_chip_data *gic)
void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{
int cpu;
- unsigned long map = 0;
+ unsigned long flags, map = 0;
+
+ raw_spin_lock_irqsave(&irq_controller_lock, flags);
/* Convert our logical CPU mask into a physical one. */
for_each_cpu(cpu, mask)
@@ -666,7 +667,149 @@ void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
/* this always happens on GIC0 */
writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
+
+ raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
+}
+#endif
+
+#ifdef CONFIG_BL_SWITCHER
+/*
+ * gic_send_sgi - send a SGI directly to given CPU interface number
+ *
+ * cpu_id: the ID for the destination CPU interface
+ * irq: the IPI number to send a SGI for
+ */
+void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
+{
+ BUG_ON(cpu_id >= NR_GIC_CPU_IF);
+ cpu_id = 1 << cpu_id;
+ /* this always happens on GIC0 */
+ writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
+}
+
+/*
+ * gic_get_cpu_id - get the CPU interface ID for the specified CPU
+ *
+ * @cpu: the logical CPU number to get the GIC ID for.
+ *
+ * Return the CPU interface ID for the given logical CPU number,
+ * or -1 if the CPU number is too large or the interface ID is
+ * unknown (more than one bit set).
+ */
+int gic_get_cpu_id(unsigned int cpu)
+{
+ unsigned int cpu_bit;
+
+ if (cpu >= NR_GIC_CPU_IF)
+ return -1;
+ cpu_bit = gic_cpu_map[cpu];
+ if (cpu_bit & (cpu_bit - 1))
+ return -1;
+ return __ffs(cpu_bit);
}
+
+/*
+ * gic_migrate_target - migrate IRQs to another CPU interface
+ *
+ * @new_cpu_id: the CPU target ID to migrate IRQs to
+ *
+ * Migrate all peripheral interrupts with a target matching the current CPU
+ * to the interface corresponding to @new_cpu_id. The CPU interface mapping
+ * is also updated. Targets to other CPU interfaces are unchanged.
+ * This must be called with IRQs locally disabled.
+ */
+void gic_migrate_target(unsigned int new_cpu_id)
+{
+ unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
+ void __iomem *dist_base;
+ int i, ror_val, cpu = smp_processor_id();
+ u32 val, cur_target_mask, active_mask;
+
+ if (gic_nr >= MAX_GIC_NR)
+ BUG();
+
+ dist_base = gic_data_dist_base(&gic_data[gic_nr]);
+ if (!dist_base)
+ return;
+ gic_irqs = gic_data[gic_nr].gic_irqs;
+
+ cur_cpu_id = __ffs(gic_cpu_map[cpu]);
+ cur_target_mask = 0x01010101 << cur_cpu_id;
+ ror_val = (cur_cpu_id - new_cpu_id) & 31;
+
+ raw_spin_lock(&irq_controller_lock);
+
+ /* Update the target interface for this logical CPU */
+ gic_cpu_map[cpu] = 1 << new_cpu_id;
+
+ /*
+ * Find all the peripheral interrupts targetting the current
+ * CPU interface and migrate them to the new CPU interface.
+ * We skip DIST_TARGET 0 to 7 as they are read-only.
+ */
+ for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
+ val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
+ active_mask = val & cur_target_mask;
+ if (active_mask) {
+ val &= ~active_mask;
+ val |= ror32(active_mask, ror_val);
+ writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
+ }
+ }
+
+ raw_spin_unlock(&irq_controller_lock);
+
+ /*
+ * Now let's migrate and clear any potential SGIs that might be
+ * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
+ * is a banked register, we can only forward the SGI using
+ * GIC_DIST_SOFTINT. The original SGI source is lost but Linux
+ * doesn't use that information anyway.
+ *
+ * For the same reason we do not adjust SGI source information
+ * for previously sent SGIs by us to other CPUs either.
+ */
+ for (i = 0; i < 16; i += 4) {
+ int j;
+ val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
+ if (!val)
+ continue;
+ writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
+ for (j = i; j < i + 4; j++) {
+ if (val & 0xff)
+ writel_relaxed((1 << (new_cpu_id + 16)) | j,
+ dist_base + GIC_DIST_SOFTINT);
+ val >>= 8;
+ }
+ }
+}
+
+/*
+ * gic_get_sgir_physaddr - get the physical address for the SGI register
+ *
+ * REturn the physical address of the SGI register to be used
+ * by some early assembly code when the kernel is not yet available.
+ */
+static unsigned long gic_dist_physaddr;
+
+unsigned long gic_get_sgir_physaddr(void)
+{
+ if (!gic_dist_physaddr)
+ return 0;
+ return gic_dist_physaddr + GIC_DIST_SOFTINT;
+}
+
+void __init gic_init_physaddr(struct device_node *node)
+{
+ struct resource res;
+ if (of_address_to_resource(node, 0, &res) == 0) {
+ gic_dist_physaddr = res.start;
+ pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
+ }
+}
+
+#else
+#define gic_init_physaddr(node) do { } while (0)
#endif
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
@@ -850,6 +993,8 @@ int __init gic_of_init(struct device_node *node, struct device_node *parent)
percpu_offset = 0;
gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset, node);
+ if (!gic_cnt)
+ gic_init_physaddr(node);
if (parent) {
irq = irq_of_parse_and_map(node, 0);
OpenPOWER on IntegriCloud