diff options
author | Marek Vasut <marex@denx.de> | 2013-12-10 20:26:21 +0100 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2014-01-05 20:49:54 +0800 |
commit | 15b59e7c3733f90ff1f7dd66ad77ae1c90bcdff5 (patch) | |
tree | f2d6df9e0f69b10fc3d86080320f689e05211650 /drivers/crypto/mxs-dcp.c | |
parent | c493c04403769d833864ad5be2ff64dee7567ca7 (diff) | |
download | op-kernel-dev-15b59e7c3733f90ff1f7dd66ad77ae1c90bcdff5.zip op-kernel-dev-15b59e7c3733f90ff1f7dd66ad77ae1c90bcdff5.tar.gz |
crypto: mxs - Add Freescale MXS DCP driver
Add support for the MXS DCP block. The driver currently supports
SHA-1/SHA-256 hashing and AES-128 CBC/ECB modes. The non-standard
CRC32 is not yet supported.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fabio Estevam <fabio.estevam@freescale.com>
Cc: Shawn Guo <shawn.guo@linaro.org>
Cc: devicetree@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'drivers/crypto/mxs-dcp.c')
-rw-r--r-- | drivers/crypto/mxs-dcp.c | 1100 |
1 files changed, 1100 insertions, 0 deletions
diff --git a/drivers/crypto/mxs-dcp.c b/drivers/crypto/mxs-dcp.c new file mode 100644 index 0000000..d41917c --- /dev/null +++ b/drivers/crypto/mxs-dcp.c @@ -0,0 +1,1100 @@ +/* + * Freescale i.MX23/i.MX28 Data Co-Processor driver + * + * Copyright (C) 2013 Marek Vasut <marex@denx.de> + * + * The code contained herein is licensed under the GNU General Public + * License. You may obtain a copy of the GNU General Public License + * Version 2 or later at the following locations: + * + * http://www.opensource.org/licenses/gpl-license.html + * http://www.gnu.org/copyleft/gpl.html + */ + +#include <linux/crypto.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/kernel.h> +#include <linux/kthread.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/stmp_device.h> + +#include <crypto/aes.h> +#include <crypto/sha.h> +#include <crypto/internal/hash.h> + +#define DCP_MAX_CHANS 4 +#define DCP_BUF_SZ PAGE_SIZE + +/* DCP DMA descriptor. */ +struct dcp_dma_desc { + uint32_t next_cmd_addr; + uint32_t control0; + uint32_t control1; + uint32_t source; + uint32_t destination; + uint32_t size; + uint32_t payload; + uint32_t status; +}; + +/* Coherent aligned block for bounce buffering. */ +struct dcp_coherent_block { + uint8_t aes_in_buf[DCP_BUF_SZ]; + uint8_t aes_out_buf[DCP_BUF_SZ]; + uint8_t sha_in_buf[DCP_BUF_SZ]; + + uint8_t aes_key[2 * AES_KEYSIZE_128]; + uint8_t sha_digest[SHA256_DIGEST_SIZE]; + + struct dcp_dma_desc desc[DCP_MAX_CHANS]; +}; + +struct dcp { + struct device *dev; + void __iomem *base; + + uint32_t caps; + + struct dcp_coherent_block *coh; + + struct completion completion[DCP_MAX_CHANS]; + struct mutex mutex[DCP_MAX_CHANS]; + struct task_struct *thread[DCP_MAX_CHANS]; + struct crypto_queue queue[DCP_MAX_CHANS]; +}; + +enum dcp_chan { + DCP_CHAN_HASH_SHA = 0, + DCP_CHAN_CRYPTO = 2, +}; + +struct dcp_async_ctx { + /* Common context */ + enum dcp_chan chan; + uint32_t fill; + + /* SHA Hash-specific context */ + struct mutex mutex; + uint32_t alg; + unsigned int hot:1; + + /* Crypto-specific context */ + unsigned int enc:1; + unsigned int ecb:1; + struct crypto_ablkcipher *fallback; + unsigned int key_len; + uint8_t key[AES_KEYSIZE_128]; +}; + +struct dcp_sha_req_ctx { + unsigned int init:1; + unsigned int fini:1; +}; + +/* + * There can even be only one instance of the MXS DCP due to the + * design of Linux Crypto API. + */ +static struct dcp *global_sdcp; +DEFINE_MUTEX(global_mutex); + +/* DCP register layout. */ +#define MXS_DCP_CTRL 0x00 +#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23) +#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22) + +#define MXS_DCP_STAT 0x10 +#define MXS_DCP_STAT_CLR 0x18 +#define MXS_DCP_STAT_IRQ_MASK 0xf + +#define MXS_DCP_CHANNELCTRL 0x20 +#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff + +#define MXS_DCP_CAPABILITY1 0x40 +#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16) +#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16) +#define MXS_DCP_CAPABILITY1_AES128 (1 << 0) + +#define MXS_DCP_CONTEXT 0x50 + +#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40)) + +#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40)) + +#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40)) +#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40)) + +/* DMA descriptor bits. */ +#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13) +#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12) +#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11) +#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8) +#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9) +#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6) +#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5) +#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1) +#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0) + +#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16) +#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16) +#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4) +#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4) +#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0) + +static int mxs_dcp_start_dma(struct dcp_async_ctx *actx) +{ + struct dcp *sdcp = global_sdcp; + const int chan = actx->chan; + uint32_t stat; + int ret; + struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; + + dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc), + DMA_TO_DEVICE); + + reinit_completion(&sdcp->completion[chan]); + + /* Clear status register. */ + writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan)); + + /* Load the DMA descriptor. */ + writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan)); + + /* Increment the semaphore to start the DMA transfer. */ + writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan)); + + ret = wait_for_completion_timeout(&sdcp->completion[chan], + msecs_to_jiffies(1000)); + if (!ret) { + dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n", + chan, readl(sdcp->base + MXS_DCP_STAT)); + return -ETIMEDOUT; + } + + stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan)); + if (stat & 0xff) { + dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n", + chan, stat); + return -EINVAL; + } + + dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE); + + return 0; +} + +/* + * Encryption (AES128) + */ +static int mxs_dcp_run_aes(struct dcp_async_ctx *actx, int init) +{ + struct dcp *sdcp = global_sdcp; + struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; + int ret; + + dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key, + 2 * AES_KEYSIZE_128, + DMA_TO_DEVICE); + dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf, + DCP_BUF_SZ, DMA_TO_DEVICE); + dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf, + DCP_BUF_SZ, DMA_FROM_DEVICE); + + /* Fill in the DMA descriptor. */ + desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | + MXS_DCP_CONTROL0_INTERRUPT | + MXS_DCP_CONTROL0_ENABLE_CIPHER; + + /* Payload contains the key. */ + desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY; + + if (actx->enc) + desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT; + if (init) + desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT; + + desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128; + + if (actx->ecb) + desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB; + else + desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC; + + desc->next_cmd_addr = 0; + desc->source = src_phys; + desc->destination = dst_phys; + desc->size = actx->fill; + desc->payload = key_phys; + desc->status = 0; + + ret = mxs_dcp_start_dma(actx); + + dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128, + DMA_TO_DEVICE); + dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE); + dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE); + + return ret; +} + +static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq) +{ + struct dcp *sdcp = global_sdcp; + + struct ablkcipher_request *req = ablkcipher_request_cast(arq); + struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); + + struct scatterlist *dst = req->dst; + struct scatterlist *src = req->src; + const int nents = sg_nents(req->src); + + const int out_off = DCP_BUF_SZ; + uint8_t *in_buf = sdcp->coh->aes_in_buf; + uint8_t *out_buf = sdcp->coh->aes_out_buf; + + uint8_t *out_tmp, *src_buf, *dst_buf = NULL; + uint32_t dst_off = 0; + + uint8_t *key = sdcp->coh->aes_key; + + int ret = 0; + int split = 0; + unsigned int i, len, clen, rem = 0; + int init = 0; + + actx->fill = 0; + + /* Copy the key from the temporary location. */ + memcpy(key, actx->key, actx->key_len); + + if (!actx->ecb) { + /* Copy the CBC IV just past the key. */ + memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128); + /* CBC needs the INIT set. */ + init = 1; + } else { + memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128); + } + + for_each_sg(req->src, src, nents, i) { + src_buf = sg_virt(src); + len = sg_dma_len(src); + + do { + if (actx->fill + len > out_off) + clen = out_off - actx->fill; + else + clen = len; + + memcpy(in_buf + actx->fill, src_buf, clen); + len -= clen; + src_buf += clen; + actx->fill += clen; + + /* + * If we filled the buffer or this is the last SG, + * submit the buffer. + */ + if (actx->fill == out_off || sg_is_last(src)) { + ret = mxs_dcp_run_aes(actx, init); + if (ret) + return ret; + init = 0; + + out_tmp = out_buf; + while (dst && actx->fill) { + if (!split) { + dst_buf = sg_virt(dst); + dst_off = 0; + } + rem = min(sg_dma_len(dst) - dst_off, + actx->fill); + + memcpy(dst_buf + dst_off, out_tmp, rem); + out_tmp += rem; + dst_off += rem; + actx->fill -= rem; + + if (dst_off == sg_dma_len(dst)) { + dst = sg_next(dst); + split = 0; + } else { + split = 1; + } + } + } + } while (len); + } + + return ret; +} + +static int dcp_chan_thread_aes(void *data) +{ + struct dcp *sdcp = global_sdcp; + const int chan = DCP_CHAN_CRYPTO; + + struct crypto_async_request *backlog; + struct crypto_async_request *arq; + + int ret; + + do { + __set_current_state(TASK_INTERRUPTIBLE); + + mutex_lock(&sdcp->mutex[chan]); + backlog = crypto_get_backlog(&sdcp->queue[chan]); + arq = crypto_dequeue_request(&sdcp->queue[chan]); + mutex_unlock(&sdcp->mutex[chan]); + + if (backlog) + backlog->complete(backlog, -EINPROGRESS); + + if (arq) { + ret = mxs_dcp_aes_block_crypt(arq); + arq->complete(arq, ret); + continue; + } + + schedule(); + } while (!kthread_should_stop()); + + return 0; +} + +static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc) +{ + struct crypto_tfm *tfm = + crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); + struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx( + crypto_ablkcipher_reqtfm(req)); + int ret; + + ablkcipher_request_set_tfm(req, ctx->fallback); + + if (enc) + ret = crypto_ablkcipher_encrypt(req); + else + ret = crypto_ablkcipher_decrypt(req); + + ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); + + return ret; +} + +static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb) +{ + struct dcp *sdcp = global_sdcp; + struct crypto_async_request *arq = &req->base; + struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); + int ret; + + if (unlikely(actx->key_len != AES_KEYSIZE_128)) + return mxs_dcp_block_fallback(req, enc); + + actx->enc = enc; + actx->ecb = ecb; + actx->chan = DCP_CHAN_CRYPTO; + + mutex_lock(&sdcp->mutex[actx->chan]); + ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); + mutex_unlock(&sdcp->mutex[actx->chan]); + + wake_up_process(sdcp->thread[actx->chan]); + + return -EINPROGRESS; +} + +static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req) +{ + return mxs_dcp_aes_enqueue(req, 0, 1); +} + +static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req) +{ + return mxs_dcp_aes_enqueue(req, 1, 1); +} + +static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req) +{ + return mxs_dcp_aes_enqueue(req, 0, 0); +} + +static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req) +{ + return mxs_dcp_aes_enqueue(req, 1, 0); +} + +static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, + unsigned int len) +{ + struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm); + unsigned int ret; + + /* + * AES 128 is supposed by the hardware, store key into temporary + * buffer and exit. We must use the temporary buffer here, since + * there can still be an operation in progress. + */ + actx->key_len = len; + if (len == AES_KEYSIZE_128) { + memcpy(actx->key, key, len); + return 0; + } + + /* Check if the key size is supported by kernel at all. */ + if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) { + tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; + return -EINVAL; + } + + /* + * If the requested AES key size is not supported by the hardware, + * but is supported by in-kernel software implementation, we use + * software fallback. + */ + actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; + actx->fallback->base.crt_flags |= + tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK; + + ret = crypto_ablkcipher_setkey(actx->fallback, key, len); + if (!ret) + return 0; + + tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK; + tfm->base.crt_flags |= + actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK; + + return ret; +} + +static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm) +{ + const char *name = tfm->__crt_alg->cra_name; + const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK; + struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); + struct crypto_ablkcipher *blk; + + blk = crypto_alloc_ablkcipher(name, 0, flags); + if (IS_ERR(blk)) + return PTR_ERR(blk); + + actx->fallback = blk; + tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_async_ctx); + return 0; +} + +static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm) +{ + struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); + + crypto_free_ablkcipher(actx->fallback); + actx->fallback = NULL; +} + +/* + * Hashing (SHA1/SHA256) + */ +static int mxs_dcp_run_sha(struct ahash_request *req) +{ + struct dcp *sdcp = global_sdcp; + int ret; + + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); + struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); + + struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; + dma_addr_t digest_phys = dma_map_single(sdcp->dev, + sdcp->coh->sha_digest, + SHA256_DIGEST_SIZE, + DMA_FROM_DEVICE); + + dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf, + DCP_BUF_SZ, DMA_TO_DEVICE); + + /* Fill in the DMA descriptor. */ + desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | + MXS_DCP_CONTROL0_INTERRUPT | + MXS_DCP_CONTROL0_ENABLE_HASH; + if (rctx->init) + desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT; + + desc->control1 = actx->alg; + desc->next_cmd_addr = 0; + desc->source = buf_phys; + desc->destination = 0; + desc->size = actx->fill; + desc->payload = 0; + desc->status = 0; + + /* Set HASH_TERM bit for last transfer block. */ + if (rctx->fini) { + desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM; + desc->payload = digest_phys; + } + + ret = mxs_dcp_start_dma(actx); + + dma_unmap_single(sdcp->dev, digest_phys, SHA256_DIGEST_SIZE, + DMA_FROM_DEVICE); + dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE); + + return ret; +} + +static int dcp_sha_req_to_buf(struct crypto_async_request *arq) +{ + struct dcp *sdcp = global_sdcp; + + struct ahash_request *req = ahash_request_cast(arq); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); + struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); + struct hash_alg_common *halg = crypto_hash_alg_common(tfm); + const int nents = sg_nents(req->src); + + uint8_t *digest = sdcp->coh->sha_digest; + uint8_t *in_buf = sdcp->coh->sha_in_buf; + + uint8_t *src_buf; + + struct scatterlist *src; + + unsigned int i, len, clen; + int ret; + + int fin = rctx->fini; + if (fin) + rctx->fini = 0; + + for_each_sg(req->src, src, nents, i) { + src_buf = sg_virt(src); + len = sg_dma_len(src); + + do { + if (actx->fill + len > DCP_BUF_SZ) + clen = DCP_BUF_SZ - actx->fill; + else + clen = len; + + memcpy(in_buf + actx->fill, src_buf, clen); + len -= clen; + src_buf += clen; + actx->fill += clen; + + /* + * If we filled the buffer and still have some + * more data, submit the buffer. + */ + if (len && actx->fill == DCP_BUF_SZ) { + ret = mxs_dcp_run_sha(req); + if (ret) + return ret; + actx->fill = 0; + rctx->init = 0; + } + } while (len); + } + + if (fin) { + rctx->fini = 1; + + /* Submit whatever is left. */ + ret = mxs_dcp_run_sha(req); + if (ret || !req->result) + return ret; + actx->fill = 0; + + /* For some reason, the result is flipped. */ + for (i = 0; i < halg->digestsize; i++) + req->result[i] = digest[halg->digestsize - i - 1]; + } + + return 0; +} + +static int dcp_chan_thread_sha(void *data) +{ + struct dcp *sdcp = global_sdcp; + const int chan = DCP_CHAN_HASH_SHA; + + struct crypto_async_request *backlog; + struct crypto_async_request *arq; + + struct dcp_sha_req_ctx *rctx; + + struct ahash_request *req; + int ret, fini; + + do { + __set_current_state(TASK_INTERRUPTIBLE); + + mutex_lock(&sdcp->mutex[chan]); + backlog = crypto_get_backlog(&sdcp->queue[chan]); + arq = crypto_dequeue_request(&sdcp->queue[chan]); + mutex_unlock(&sdcp->mutex[chan]); + + if (backlog) + backlog->complete(backlog, -EINPROGRESS); + + if (arq) { + req = ahash_request_cast(arq); + rctx = ahash_request_ctx(req); + + ret = dcp_sha_req_to_buf(arq); + fini = rctx->fini; + arq->complete(arq, ret); + if (!fini) + continue; + } + + schedule(); + } while (!kthread_should_stop()); + + return 0; +} + +static int dcp_sha_init(struct ahash_request *req) +{ + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); + + struct hash_alg_common *halg = crypto_hash_alg_common(tfm); + + /* + * Start hashing session. The code below only inits the + * hashing session context, nothing more. + */ + memset(actx, 0, sizeof(*actx)); + + if (strcmp(halg->base.cra_name, "sha1") == 0) + actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1; + else + actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256; + + actx->fill = 0; + actx->hot = 0; + actx->chan = DCP_CHAN_HASH_SHA; + + mutex_init(&actx->mutex); + + return 0; +} + +static int dcp_sha_update_fx(struct ahash_request *req, int fini) +{ + struct dcp *sdcp = global_sdcp; + + struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); + + int ret; + + /* + * Ignore requests that have no data in them and are not + * the trailing requests in the stream of requests. + */ + if (!req->nbytes && !fini) + return 0; + + mutex_lock(&actx->mutex); + + rctx->fini = fini; + + if (!actx->hot) { + actx->hot = 1; + rctx->init = 1; + } + + mutex_lock(&sdcp->mutex[actx->chan]); + ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); + mutex_unlock(&sdcp->mutex[actx->chan]); + + wake_up_process(sdcp->thread[actx->chan]); + mutex_unlock(&actx->mutex); + + return -EINPROGRESS; +} + +static int dcp_sha_update(struct ahash_request *req) +{ + return dcp_sha_update_fx(req, 0); +} + +static int dcp_sha_final(struct ahash_request *req) +{ + ahash_request_set_crypt(req, NULL, req->result, 0); + req->nbytes = 0; + return dcp_sha_update_fx(req, 1); +} + +static int dcp_sha_finup(struct ahash_request *req) +{ + return dcp_sha_update_fx(req, 1); +} + +static int dcp_sha_digest(struct ahash_request *req) +{ + int ret; + + ret = dcp_sha_init(req); + if (ret) + return ret; + + return dcp_sha_finup(req); +} + +static int dcp_sha_cra_init(struct crypto_tfm *tfm) +{ + crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), + sizeof(struct dcp_sha_req_ctx)); + return 0; +} + +static void dcp_sha_cra_exit(struct crypto_tfm *tfm) +{ +} + +/* AES 128 ECB and AES 128 CBC */ +static struct crypto_alg dcp_aes_algs[] = { + { + .cra_name = "ecb(aes)", + .cra_driver_name = "ecb-aes-dcp", + .cra_priority = 400, + .cra_alignmask = 15, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | + CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_init = mxs_dcp_aes_fallback_init, + .cra_exit = mxs_dcp_aes_fallback_exit, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct dcp_async_ctx), + .cra_type = &crypto_ablkcipher_type, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .setkey = mxs_dcp_aes_setkey, + .encrypt = mxs_dcp_aes_ecb_encrypt, + .decrypt = mxs_dcp_aes_ecb_decrypt + }, + }, + }, { + .cra_name = "cbc(aes)", + .cra_driver_name = "cbc-aes-dcp", + .cra_priority = 400, + .cra_alignmask = 15, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | + CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_init = mxs_dcp_aes_fallback_init, + .cra_exit = mxs_dcp_aes_fallback_exit, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct dcp_async_ctx), + .cra_type = &crypto_ablkcipher_type, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .setkey = mxs_dcp_aes_setkey, + .encrypt = mxs_dcp_aes_cbc_encrypt, + .decrypt = mxs_dcp_aes_cbc_decrypt, + .ivsize = AES_BLOCK_SIZE, + }, + }, + }, +}; + +/* SHA1 */ +static struct ahash_alg dcp_sha1_alg = { + .init = dcp_sha_init, + .update = dcp_sha_update, + .final = dcp_sha_final, + .finup = dcp_sha_finup, + .digest = dcp_sha_digest, + .halg = { + .digestsize = SHA1_DIGEST_SIZE, + .base = { + .cra_name = "sha1", + .cra_driver_name = "sha1-dcp", + .cra_priority = 400, + .cra_alignmask = 63, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA1_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct dcp_async_ctx), + .cra_module = THIS_MODULE, + .cra_init = dcp_sha_cra_init, + .cra_exit = dcp_sha_cra_exit, + }, + }, +}; + +/* SHA256 */ +static struct ahash_alg dcp_sha256_alg = { + .init = dcp_sha_init, + .update = dcp_sha_update, + .final = dcp_sha_final, + .finup = dcp_sha_finup, + .digest = dcp_sha_digest, + .halg = { + .digestsize = SHA256_DIGEST_SIZE, + .base = { + .cra_name = "sha256", + .cra_driver_name = "sha256-dcp", + .cra_priority = 400, + .cra_alignmask = 63, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA256_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct dcp_async_ctx), + .cra_module = THIS_MODULE, + .cra_init = dcp_sha_cra_init, + .cra_exit = dcp_sha_cra_exit, + }, + }, +}; + +static irqreturn_t mxs_dcp_irq(int irq, void *context) +{ + struct dcp *sdcp = context; + uint32_t stat; + int i; + + stat = readl(sdcp->base + MXS_DCP_STAT); + stat &= MXS_DCP_STAT_IRQ_MASK; + if (!stat) + return IRQ_NONE; + + /* Clear the interrupts. */ + writel(stat, sdcp->base + MXS_DCP_STAT_CLR); + + /* Complete the DMA requests that finished. */ + for (i = 0; i < DCP_MAX_CHANS; i++) + if (stat & (1 << i)) + complete(&sdcp->completion[i]); + + return IRQ_HANDLED; +} + +static int mxs_dcp_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct dcp *sdcp = NULL; + int i, ret; + + struct resource *iores; + int dcp_vmi_irq, dcp_irq; + + mutex_lock(&global_mutex); + if (global_sdcp) { + dev_err(dev, "Only one DCP instance allowed!\n"); + ret = -ENODEV; + goto err_mutex; + } + + iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); + dcp_vmi_irq = platform_get_irq(pdev, 0); + dcp_irq = platform_get_irq(pdev, 1); + if (dcp_vmi_irq < 0 || dcp_irq < 0) { + ret = -EINVAL; + goto err_mutex; + } + + sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL); + if (!sdcp) { + ret = -ENOMEM; + goto err_mutex; + } + + sdcp->dev = dev; + sdcp->base = devm_ioremap_resource(dev, iores); + if (IS_ERR(sdcp->base)) { + ret = PTR_ERR(sdcp->base); + goto err_mutex; + } + + ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0, + "dcp-vmi-irq", sdcp); + if (ret) { + dev_err(dev, "Failed to claim DCP VMI IRQ!\n"); + goto err_mutex; + } + + ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0, + "dcp-irq", sdcp); + if (ret) { + dev_err(dev, "Failed to claim DCP IRQ!\n"); + goto err_mutex; + } + + /* Allocate coherent helper block. */ + sdcp->coh = kzalloc(sizeof(struct dcp_coherent_block), GFP_KERNEL); + if (!sdcp->coh) { + dev_err(dev, "Error allocating coherent block\n"); + ret = -ENOMEM; + goto err_mutex; + } + + /* Restart the DCP block. */ + stmp_reset_block(sdcp->base); + + /* Initialize control register. */ + writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES | + MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf, + sdcp->base + MXS_DCP_CTRL); + + /* Enable all DCP DMA channels. */ + writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK, + sdcp->base + MXS_DCP_CHANNELCTRL); + + /* + * We do not enable context switching. Give the context buffer a + * pointer to an illegal address so if context switching is + * inadvertantly enabled, the DCP will return an error instead of + * trashing good memory. The DCP DMA cannot access ROM, so any ROM + * address will do. + */ + writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT); + for (i = 0; i < DCP_MAX_CHANS; i++) + writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i)); + writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR); + + global_sdcp = sdcp; + + platform_set_drvdata(pdev, sdcp); + + for (i = 0; i < DCP_MAX_CHANS; i++) { + mutex_init(&sdcp->mutex[i]); + init_completion(&sdcp->completion[i]); + crypto_init_queue(&sdcp->queue[i], 50); + } + + /* Create the SHA and AES handler threads. */ + sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha, + NULL, "mxs_dcp_chan/sha"); + if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) { + dev_err(dev, "Error starting SHA thread!\n"); + ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]); + goto err_free_coherent; + } + + sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes, + NULL, "mxs_dcp_chan/aes"); + if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) { + dev_err(dev, "Error starting SHA thread!\n"); + ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]); + goto err_destroy_sha_thread; + } + + /* Register the various crypto algorithms. */ + sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1); + + if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) { + ret = crypto_register_algs(dcp_aes_algs, + ARRAY_SIZE(dcp_aes_algs)); + if (ret) { + /* Failed to register algorithm. */ + dev_err(dev, "Failed to register AES crypto!\n"); + goto err_destroy_aes_thread; + } + } + + if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) { + ret = crypto_register_ahash(&dcp_sha1_alg); + if (ret) { + dev_err(dev, "Failed to register %s hash!\n", + dcp_sha1_alg.halg.base.cra_name); + goto err_unregister_aes; + } + } + + if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) { + ret = crypto_register_ahash(&dcp_sha256_alg); + if (ret) { + dev_err(dev, "Failed to register %s hash!\n", + dcp_sha256_alg.halg.base.cra_name); + goto err_unregister_sha1; + } + } + + return 0; + +err_unregister_sha1: + if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) + crypto_unregister_ahash(&dcp_sha1_alg); + +err_unregister_aes: + if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) + crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); + +err_destroy_aes_thread: + kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); + +err_destroy_sha_thread: + kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); + +err_free_coherent: + kfree(sdcp->coh); +err_mutex: + mutex_unlock(&global_mutex); + return ret; +} + +static int mxs_dcp_remove(struct platform_device *pdev) +{ + struct dcp *sdcp = platform_get_drvdata(pdev); + + kfree(sdcp->coh); + + if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) + crypto_unregister_ahash(&dcp_sha256_alg); + + if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) + crypto_unregister_ahash(&dcp_sha1_alg); + + if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) + crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); + + kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); + kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); + + platform_set_drvdata(pdev, NULL); + + mutex_lock(&global_mutex); + global_sdcp = NULL; + mutex_unlock(&global_mutex); + + return 0; +} + +static const struct of_device_id mxs_dcp_dt_ids[] = { + { .compatible = "fsl,imx23-dcp", .data = NULL, }, + { .compatible = "fsl,imx28-dcp", .data = NULL, }, + { /* sentinel */ } +}; + +MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids); + +static struct platform_driver mxs_dcp_driver = { + .probe = mxs_dcp_probe, + .remove = mxs_dcp_remove, + .driver = { + .name = "mxs-dcp", + .owner = THIS_MODULE, + .of_match_table = mxs_dcp_dt_ids, + }, +}; + +module_platform_driver(mxs_dcp_driver); + +MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); +MODULE_DESCRIPTION("Freescale MXS DCP Driver"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:mxs-dcp"); |