diff options
author | David Woodhouse <David.Woodhouse@intel.com> | 2009-07-04 19:11:08 +0100 |
---|---|---|
committer | David Woodhouse <David.Woodhouse@intel.com> | 2009-07-04 19:19:10 +0100 |
commit | 3dfc813d94bba2046c6aed216e0fd69ac93a8e03 (patch) | |
tree | 227c2cecfdab3b9bb86508e9d8b6de51e68bfa70 /arch | |
parent | 6941af2810c6fc970b88f7c0d52ba4e286acbee5 (diff) | |
download | op-kernel-dev-3dfc813d94bba2046c6aed216e0fd69ac93a8e03.zip op-kernel-dev-3dfc813d94bba2046c6aed216e0fd69ac93a8e03.tar.gz |
intel-iommu: Don't use identity mapping for PCI devices behind bridges
Our current strategy for pass-through mode is to put all devices into
the 1:1 domain at startup (which is before we know what their dma_mask
will be), and only _later_ take them out of that domain, if it turns out
that they really can't address all of memory.
However, when there are a bunch of PCI devices behind a bridge, they all
end up with the same source-id on their DMA transactions, and hence in
the same IOMMU domain. This means that we _can't_ easily move them from
the 1:1 domain into their own domain at runtime, because there might be DMA
in-flight from their siblings.
So we have to adjust our pass-through strategy: For PCI devices not on
the root bus, and for the bridges which will take responsibility for
their transactions, we have to start up _out_ of the 1:1 domain, just in
case.
This fixes the BUG() we see when we have 32-bit-capable devices behind a
PCI-PCI bridge, and use the software identity mapping.
It does mean that we might end up using 'normal' mapping mode for some
devices which could actually live with the faster 1:1 mapping -- but
this is only for PCI devices behind bridges, which presumably aren't the
devices for which people are most concerned about performance.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'arch')
0 files changed, 0 insertions, 0 deletions