diff options
author | Ingo Molnar <mingo@elte.hu> | 2008-10-12 15:17:14 +0200 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-10-12 15:17:14 +0200 |
commit | 620f2efcdc5c7a2db68da41bc3df3cf9a718024e (patch) | |
tree | b1a0411e2588953777d0b10245b12044c33cef54 /arch/x86/kernel/tsc.c | |
parent | 04944b793e18ece23f63c0252646b310c1845940 (diff) | |
parent | fd048088306656824958e7783ffcee27e241b361 (diff) | |
download | op-kernel-dev-620f2efcdc5c7a2db68da41bc3df3cf9a718024e.zip op-kernel-dev-620f2efcdc5c7a2db68da41bc3df3cf9a718024e.tar.gz |
Merge branch 'linus' into x86/xsave
Diffstat (limited to 'arch/x86/kernel/tsc.c')
-rw-r--r-- | arch/x86/kernel/tsc.c | 418 |
1 files changed, 364 insertions, 54 deletions
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c index 8e786b0..161bb85 100644 --- a/arch/x86/kernel/tsc.c +++ b/arch/x86/kernel/tsc.c @@ -104,7 +104,7 @@ __setup("notsc", notsc_setup); /* * Read TSC and the reference counters. Take care of SMI disturbance */ -static u64 tsc_read_refs(u64 *pm, u64 *hpet) +static u64 tsc_read_refs(u64 *p, int hpet) { u64 t1, t2; int i; @@ -112,9 +112,9 @@ static u64 tsc_read_refs(u64 *pm, u64 *hpet) for (i = 0; i < MAX_RETRIES; i++) { t1 = get_cycles(); if (hpet) - *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; + *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; else - *pm = acpi_pm_read_early(); + *p = acpi_pm_read_early(); t2 = get_cycles(); if ((t2 - t1) < SMI_TRESHOLD) return t2; @@ -122,80 +122,390 @@ static u64 tsc_read_refs(u64 *pm, u64 *hpet) return ULLONG_MAX; } -/** - * native_calibrate_tsc - calibrate the tsc on boot +/* + * Calculate the TSC frequency from HPET reference */ -unsigned long native_calibrate_tsc(void) +static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) { - unsigned long flags; - u64 tsc1, tsc2, tr1, tr2, delta, pm1, pm2, hpet1, hpet2; - int hpet = is_hpet_enabled(); - unsigned int tsc_khz_val = 0; + u64 tmp; - local_irq_save(flags); + if (hpet2 < hpet1) + hpet2 += 0x100000000ULL; + hpet2 -= hpet1; + tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); + do_div(tmp, 1000000); + do_div(deltatsc, tmp); + + return (unsigned long) deltatsc; +} + +/* + * Calculate the TSC frequency from PMTimer reference + */ +static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) +{ + u64 tmp; - tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); + if (!pm1 && !pm2) + return ULONG_MAX; + if (pm2 < pm1) + pm2 += (u64)ACPI_PM_OVRRUN; + pm2 -= pm1; + tmp = pm2 * 1000000000LL; + do_div(tmp, PMTMR_TICKS_PER_SEC); + do_div(deltatsc, tmp); + + return (unsigned long) deltatsc; +} + +#define CAL_MS 10 +#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS)) +#define CAL_PIT_LOOPS 1000 + +#define CAL2_MS 50 +#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS)) +#define CAL2_PIT_LOOPS 5000 + + +/* + * Try to calibrate the TSC against the Programmable + * Interrupt Timer and return the frequency of the TSC + * in kHz. + * + * Return ULONG_MAX on failure to calibrate. + */ +static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) +{ + u64 tsc, t1, t2, delta; + unsigned long tscmin, tscmax; + int pitcnt; + + /* Set the Gate high, disable speaker */ outb((inb(0x61) & ~0x02) | 0x01, 0x61); + /* + * Setup CTC channel 2* for mode 0, (interrupt on terminal + * count mode), binary count. Set the latch register to 50ms + * (LSB then MSB) to begin countdown. + */ outb(0xb0, 0x43); - outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); - outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); - tr1 = get_cycles(); - while ((inb(0x61) & 0x20) == 0); - tr2 = get_cycles(); + outb(latch & 0xff, 0x42); + outb(latch >> 8, 0x42); + + tsc = t1 = t2 = get_cycles(); + + pitcnt = 0; + tscmax = 0; + tscmin = ULONG_MAX; + while ((inb(0x61) & 0x20) == 0) { + t2 = get_cycles(); + delta = t2 - tsc; + tsc = t2; + if ((unsigned long) delta < tscmin) + tscmin = (unsigned int) delta; + if ((unsigned long) delta > tscmax) + tscmax = (unsigned int) delta; + pitcnt++; + } + + /* + * Sanity checks: + * + * If we were not able to read the PIT more than loopmin + * times, then we have been hit by a massive SMI + * + * If the maximum is 10 times larger than the minimum, + * then we got hit by an SMI as well. + */ + if (pitcnt < loopmin || tscmax > 10 * tscmin) + return ULONG_MAX; - tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); + /* Calculate the PIT value */ + delta = t2 - t1; + do_div(delta, ms); + return delta; +} +/* + * This reads the current MSB of the PIT counter, and + * checks if we are running on sufficiently fast and + * non-virtualized hardware. + * + * Our expectations are: + * + * - the PIT is running at roughly 1.19MHz + * + * - each IO is going to take about 1us on real hardware, + * but we allow it to be much faster (by a factor of 10) or + * _slightly_ slower (ie we allow up to a 2us read+counter + * update - anything else implies a unacceptably slow CPU + * or PIT for the fast calibration to work. + * + * - with 256 PIT ticks to read the value, we have 214us to + * see the same MSB (and overhead like doing a single TSC + * read per MSB value etc). + * + * - We're doing 2 reads per loop (LSB, MSB), and we expect + * them each to take about a microsecond on real hardware. + * So we expect a count value of around 100. But we'll be + * generous, and accept anything over 50. + * + * - if the PIT is stuck, and we see *many* more reads, we + * return early (and the next caller of pit_expect_msb() + * then consider it a failure when they don't see the + * next expected value). + * + * These expectations mean that we know that we have seen the + * transition from one expected value to another with a fairly + * high accuracy, and we didn't miss any events. We can thus + * use the TSC value at the transitions to calculate a pretty + * good value for the TSC frequencty. + */ +static inline int pit_expect_msb(unsigned char val) +{ + int count = 0; + + for (count = 0; count < 50000; count++) { + /* Ignore LSB */ + inb(0x42); + if (inb(0x42) != val) + break; + } + return count > 50; +} + +/* + * How many MSB values do we want to see? We aim for a + * 15ms calibration, which assuming a 2us counter read + * error should give us roughly 150 ppm precision for + * the calibration. + */ +#define QUICK_PIT_MS 15 +#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) + +static unsigned long quick_pit_calibrate(void) +{ + /* Set the Gate high, disable speaker */ + outb((inb(0x61) & ~0x02) | 0x01, 0x61); + + /* + * Counter 2, mode 0 (one-shot), binary count + * + * NOTE! Mode 2 decrements by two (and then the + * output is flipped each time, giving the same + * final output frequency as a decrement-by-one), + * so mode 0 is much better when looking at the + * individual counts. + */ + outb(0xb0, 0x43); + + /* Start at 0xffff */ + outb(0xff, 0x42); + outb(0xff, 0x42); + + if (pit_expect_msb(0xff)) { + int i; + u64 t1, t2, delta; + unsigned char expect = 0xfe; + + t1 = get_cycles(); + for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) { + if (!pit_expect_msb(expect)) + goto failed; + } + t2 = get_cycles(); + + /* + * Make sure we can rely on the second TSC timestamp: + */ + if (!pit_expect_msb(expect)) + goto failed; + + /* + * Ok, if we get here, then we've seen the + * MSB of the PIT decrement QUICK_PIT_ITERATIONS + * times, and each MSB had many hits, so we never + * had any sudden jumps. + * + * As a result, we can depend on there not being + * any odd delays anywhere, and the TSC reads are + * reliable. + * + * kHz = ticks / time-in-seconds / 1000; + * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000 + * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000) + */ + delta = (t2 - t1)*PIT_TICK_RATE; + do_div(delta, QUICK_PIT_ITERATIONS*256*1000); + printk("Fast TSC calibration using PIT\n"); + return delta; + } +failed: + return 0; +} + +/** + * native_calibrate_tsc - calibrate the tsc on boot + */ +unsigned long native_calibrate_tsc(void) +{ + u64 tsc1, tsc2, delta, ref1, ref2; + unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; + unsigned long flags, latch, ms, fast_calibrate; + int hpet = is_hpet_enabled(), i, loopmin; + + local_irq_save(flags); + fast_calibrate = quick_pit_calibrate(); local_irq_restore(flags); + if (fast_calibrate) + return fast_calibrate; /* - * Preset the result with the raw and inaccurate PIT - * calibration value + * Run 5 calibration loops to get the lowest frequency value + * (the best estimate). We use two different calibration modes + * here: + * + * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and + * load a timeout of 50ms. We read the time right after we + * started the timer and wait until the PIT count down reaches + * zero. In each wait loop iteration we read the TSC and check + * the delta to the previous read. We keep track of the min + * and max values of that delta. The delta is mostly defined + * by the IO time of the PIT access, so we can detect when a + * SMI/SMM disturbance happend between the two reads. If the + * maximum time is significantly larger than the minimum time, + * then we discard the result and have another try. + * + * 2) Reference counter. If available we use the HPET or the + * PMTIMER as a reference to check the sanity of that value. + * We use separate TSC readouts and check inside of the + * reference read for a SMI/SMM disturbance. We dicard + * disturbed values here as well. We do that around the PIT + * calibration delay loop as we have to wait for a certain + * amount of time anyway. */ - delta = (tr2 - tr1); - do_div(delta, 50); - tsc_khz_val = delta; - - /* hpet or pmtimer available ? */ - if (!hpet && !pm1 && !pm2) { - printk(KERN_INFO "TSC calibrated against PIT\n"); - goto out; + + /* Preset PIT loop values */ + latch = CAL_LATCH; + ms = CAL_MS; + loopmin = CAL_PIT_LOOPS; + + for (i = 0; i < 3; i++) { + unsigned long tsc_pit_khz; + + /* + * Read the start value and the reference count of + * hpet/pmtimer when available. Then do the PIT + * calibration, which will take at least 50ms, and + * read the end value. + */ + local_irq_save(flags); + tsc1 = tsc_read_refs(&ref1, hpet); + tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); + tsc2 = tsc_read_refs(&ref2, hpet); + local_irq_restore(flags); + + /* Pick the lowest PIT TSC calibration so far */ + tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); + + /* hpet or pmtimer available ? */ + if (!hpet && !ref1 && !ref2) + continue; + + /* Check, whether the sampling was disturbed by an SMI */ + if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) + continue; + + tsc2 = (tsc2 - tsc1) * 1000000LL; + if (hpet) + tsc2 = calc_hpet_ref(tsc2, ref1, ref2); + else + tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); + + tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); + + /* Check the reference deviation */ + delta = ((u64) tsc_pit_min) * 100; + do_div(delta, tsc_ref_min); + + /* + * If both calibration results are inside a 10% window + * then we can be sure, that the calibration + * succeeded. We break out of the loop right away. We + * use the reference value, as it is more precise. + */ + if (delta >= 90 && delta <= 110) { + printk(KERN_INFO + "TSC: PIT calibration matches %s. %d loops\n", + hpet ? "HPET" : "PMTIMER", i + 1); + return tsc_ref_min; + } + + /* + * Check whether PIT failed more than once. This + * happens in virtualized environments. We need to + * give the virtual PC a slightly longer timeframe for + * the HPET/PMTIMER to make the result precise. + */ + if (i == 1 && tsc_pit_min == ULONG_MAX) { + latch = CAL2_LATCH; + ms = CAL2_MS; + loopmin = CAL2_PIT_LOOPS; + } } - /* Check, whether the sampling was disturbed by an SMI */ - if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) { - printk(KERN_WARNING "TSC calibration disturbed by SMI, " - "using PIT calibration result\n"); - goto out; + /* + * Now check the results. + */ + if (tsc_pit_min == ULONG_MAX) { + /* PIT gave no useful value */ + printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n"); + + /* We don't have an alternative source, disable TSC */ + if (!hpet && !ref1 && !ref2) { + printk("TSC: No reference (HPET/PMTIMER) available\n"); + return 0; + } + + /* The alternative source failed as well, disable TSC */ + if (tsc_ref_min == ULONG_MAX) { + printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " + "failed.\n"); + return 0; + } + + /* Use the alternative source */ + printk(KERN_INFO "TSC: using %s reference calibration\n", + hpet ? "HPET" : "PMTIMER"); + + return tsc_ref_min; } - tsc2 = (tsc2 - tsc1) * 1000000LL; - - if (hpet) { - printk(KERN_INFO "TSC calibrated against HPET\n"); - if (hpet2 < hpet1) - hpet2 += 0x100000000ULL; - hpet2 -= hpet1; - tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); - do_div(tsc1, 1000000); - } else { - printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); - if (pm2 < pm1) - pm2 += (u64)ACPI_PM_OVRRUN; - pm2 -= pm1; - tsc1 = pm2 * 1000000000LL; - do_div(tsc1, PMTMR_TICKS_PER_SEC); + /* We don't have an alternative source, use the PIT calibration value */ + if (!hpet && !ref1 && !ref2) { + printk(KERN_INFO "TSC: Using PIT calibration value\n"); + return tsc_pit_min; } - do_div(tsc2, tsc1); - tsc_khz_val = tsc2; + /* The alternative source failed, use the PIT calibration value */ + if (tsc_ref_min == ULONG_MAX) { + printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " + "Using PIT calibration\n"); + return tsc_pit_min; + } -out: - return tsc_khz_val; + /* + * The calibration values differ too much. In doubt, we use + * the PIT value as we know that there are PMTIMERs around + * running at double speed. At least we let the user know: + */ + printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", + hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); + printk(KERN_INFO "TSC: Using PIT calibration value\n"); + return tsc_pit_min; } - #ifdef CONFIG_X86_32 /* Only called from the Powernow K7 cpu freq driver */ int recalibrate_cpu_khz(void) |