diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 11:17:24 +0200 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 11:17:24 +0200 |
commit | 250c22777fe1ccd7ac588579a6c16db4c0161cc5 (patch) | |
tree | 55c317efb7d792ec6fdae1d1937c67a502c48dec /arch/x86/kernel/time_64.c | |
parent | 2db55d344e529492545cb3b755c7e9ba8e4fa94e (diff) | |
download | op-kernel-dev-250c22777fe1ccd7ac588579a6c16db4c0161cc5.zip op-kernel-dev-250c22777fe1ccd7ac588579a6c16db4c0161cc5.tar.gz |
x86_64: move kernel
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/time_64.c')
-rw-r--r-- | arch/x86/kernel/time_64.c | 447 |
1 files changed, 447 insertions, 0 deletions
diff --git a/arch/x86/kernel/time_64.c b/arch/x86/kernel/time_64.c new file mode 100644 index 0000000..6d48a4e --- /dev/null +++ b/arch/x86/kernel/time_64.c @@ -0,0 +1,447 @@ +/* + * linux/arch/x86-64/kernel/time.c + * + * "High Precision Event Timer" based timekeeping. + * + * Copyright (c) 1991,1992,1995 Linus Torvalds + * Copyright (c) 1994 Alan Modra + * Copyright (c) 1995 Markus Kuhn + * Copyright (c) 1996 Ingo Molnar + * Copyright (c) 1998 Andrea Arcangeli + * Copyright (c) 2002,2006 Vojtech Pavlik + * Copyright (c) 2003 Andi Kleen + * RTC support code taken from arch/i386/kernel/timers/time_hpet.c + */ + +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/interrupt.h> +#include <linux/init.h> +#include <linux/mc146818rtc.h> +#include <linux/time.h> +#include <linux/ioport.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/sysdev.h> +#include <linux/bcd.h> +#include <linux/notifier.h> +#include <linux/cpu.h> +#include <linux/kallsyms.h> +#include <linux/acpi.h> +#ifdef CONFIG_ACPI +#include <acpi/achware.h> /* for PM timer frequency */ +#include <acpi/acpi_bus.h> +#endif +#include <asm/8253pit.h> +#include <asm/i8253.h> +#include <asm/pgtable.h> +#include <asm/vsyscall.h> +#include <asm/timex.h> +#include <asm/proto.h> +#include <asm/hpet.h> +#include <asm/sections.h> +#include <linux/hpet.h> +#include <asm/apic.h> +#include <asm/hpet.h> +#include <asm/mpspec.h> +#include <asm/nmi.h> +#include <asm/vgtod.h> + +static char *timename = NULL; + +DEFINE_SPINLOCK(rtc_lock); +EXPORT_SYMBOL(rtc_lock); +DEFINE_SPINLOCK(i8253_lock); +EXPORT_SYMBOL(i8253_lock); + +volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; + +unsigned long profile_pc(struct pt_regs *regs) +{ + unsigned long pc = instruction_pointer(regs); + + /* Assume the lock function has either no stack frame or a copy + of eflags from PUSHF + Eflags always has bits 22 and up cleared unlike kernel addresses. */ + if (!user_mode(regs) && in_lock_functions(pc)) { + unsigned long *sp = (unsigned long *)regs->rsp; + if (sp[0] >> 22) + return sp[0]; + if (sp[1] >> 22) + return sp[1]; + } + return pc; +} +EXPORT_SYMBOL(profile_pc); + +/* + * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 + * ms after the second nowtime has started, because when nowtime is written + * into the registers of the CMOS clock, it will jump to the next second + * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data + * sheet for details. + */ + +static int set_rtc_mmss(unsigned long nowtime) +{ + int retval = 0; + int real_seconds, real_minutes, cmos_minutes; + unsigned char control, freq_select; + +/* + * IRQs are disabled when we're called from the timer interrupt, + * no need for spin_lock_irqsave() + */ + + spin_lock(&rtc_lock); + +/* + * Tell the clock it's being set and stop it. + */ + + control = CMOS_READ(RTC_CONTROL); + CMOS_WRITE(control | RTC_SET, RTC_CONTROL); + + freq_select = CMOS_READ(RTC_FREQ_SELECT); + CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT); + + cmos_minutes = CMOS_READ(RTC_MINUTES); + BCD_TO_BIN(cmos_minutes); + +/* + * since we're only adjusting minutes and seconds, don't interfere with hour + * overflow. This avoids messing with unknown time zones but requires your RTC + * not to be off by more than 15 minutes. Since we're calling it only when + * our clock is externally synchronized using NTP, this shouldn't be a problem. + */ + + real_seconds = nowtime % 60; + real_minutes = nowtime / 60; + if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) + real_minutes += 30; /* correct for half hour time zone */ + real_minutes %= 60; + + if (abs(real_minutes - cmos_minutes) >= 30) { + printk(KERN_WARNING "time.c: can't update CMOS clock " + "from %d to %d\n", cmos_minutes, real_minutes); + retval = -1; + } else { + BIN_TO_BCD(real_seconds); + BIN_TO_BCD(real_minutes); + CMOS_WRITE(real_seconds, RTC_SECONDS); + CMOS_WRITE(real_minutes, RTC_MINUTES); + } + +/* + * The following flags have to be released exactly in this order, otherwise the + * DS12887 (popular MC146818A clone with integrated battery and quartz) will + * not reset the oscillator and will not update precisely 500 ms later. You + * won't find this mentioned in the Dallas Semiconductor data sheets, but who + * believes data sheets anyway ... -- Markus Kuhn + */ + + CMOS_WRITE(control, RTC_CONTROL); + CMOS_WRITE(freq_select, RTC_FREQ_SELECT); + + spin_unlock(&rtc_lock); + + return retval; +} + +int update_persistent_clock(struct timespec now) +{ + return set_rtc_mmss(now.tv_sec); +} + +void main_timer_handler(void) +{ +/* + * Here we are in the timer irq handler. We have irqs locally disabled (so we + * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running + * on the other CPU, so we need a lock. We also need to lock the vsyscall + * variables, because both do_timer() and us change them -arca+vojtech + */ + + write_seqlock(&xtime_lock); + +/* + * Do the timer stuff. + */ + + do_timer(1); +#ifndef CONFIG_SMP + update_process_times(user_mode(get_irq_regs())); +#endif + +/* + * In the SMP case we use the local APIC timer interrupt to do the profiling, + * except when we simulate SMP mode on a uniprocessor system, in that case we + * have to call the local interrupt handler. + */ + + if (!using_apic_timer) + smp_local_timer_interrupt(); + + write_sequnlock(&xtime_lock); +} + +static irqreturn_t timer_interrupt(int irq, void *dev_id) +{ + if (apic_runs_main_timer > 1) + return IRQ_HANDLED; + main_timer_handler(); + if (using_apic_timer) + smp_send_timer_broadcast_ipi(); + return IRQ_HANDLED; +} + +unsigned long read_persistent_clock(void) +{ + unsigned int year, mon, day, hour, min, sec; + unsigned long flags; + unsigned century = 0; + + spin_lock_irqsave(&rtc_lock, flags); + + do { + sec = CMOS_READ(RTC_SECONDS); + min = CMOS_READ(RTC_MINUTES); + hour = CMOS_READ(RTC_HOURS); + day = CMOS_READ(RTC_DAY_OF_MONTH); + mon = CMOS_READ(RTC_MONTH); + year = CMOS_READ(RTC_YEAR); +#ifdef CONFIG_ACPI + if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID && + acpi_gbl_FADT.century) + century = CMOS_READ(acpi_gbl_FADT.century); +#endif + } while (sec != CMOS_READ(RTC_SECONDS)); + + spin_unlock_irqrestore(&rtc_lock, flags); + + /* + * We know that x86-64 always uses BCD format, no need to check the + * config register. + */ + + BCD_TO_BIN(sec); + BCD_TO_BIN(min); + BCD_TO_BIN(hour); + BCD_TO_BIN(day); + BCD_TO_BIN(mon); + BCD_TO_BIN(year); + + if (century) { + BCD_TO_BIN(century); + year += century * 100; + printk(KERN_INFO "Extended CMOS year: %d\n", century * 100); + } else { + /* + * x86-64 systems only exists since 2002. + * This will work up to Dec 31, 2100 + */ + year += 2000; + } + + return mktime(year, mon, day, hour, min, sec); +} + +/* calibrate_cpu is used on systems with fixed rate TSCs to determine + * processor frequency */ +#define TICK_COUNT 100000000 +static unsigned int __init tsc_calibrate_cpu_khz(void) +{ + int tsc_start, tsc_now; + int i, no_ctr_free; + unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0; + unsigned long flags; + + for (i = 0; i < 4; i++) + if (avail_to_resrv_perfctr_nmi_bit(i)) + break; + no_ctr_free = (i == 4); + if (no_ctr_free) { + i = 3; + rdmsrl(MSR_K7_EVNTSEL3, evntsel3); + wrmsrl(MSR_K7_EVNTSEL3, 0); + rdmsrl(MSR_K7_PERFCTR3, pmc3); + } else { + reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i); + reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i); + } + local_irq_save(flags); + /* start meauring cycles, incrementing from 0 */ + wrmsrl(MSR_K7_PERFCTR0 + i, 0); + wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76); + rdtscl(tsc_start); + do { + rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now); + tsc_now = get_cycles_sync(); + } while ((tsc_now - tsc_start) < TICK_COUNT); + + local_irq_restore(flags); + if (no_ctr_free) { + wrmsrl(MSR_K7_EVNTSEL3, 0); + wrmsrl(MSR_K7_PERFCTR3, pmc3); + wrmsrl(MSR_K7_EVNTSEL3, evntsel3); + } else { + release_perfctr_nmi(MSR_K7_PERFCTR0 + i); + release_evntsel_nmi(MSR_K7_EVNTSEL0 + i); + } + + return pmc_now * tsc_khz / (tsc_now - tsc_start); +} + +/* + * pit_calibrate_tsc() uses the speaker output (channel 2) of + * the PIT. This is better than using the timer interrupt output, + * because we can read the value of the speaker with just one inb(), + * where we need three i/o operations for the interrupt channel. + * We count how many ticks the TSC does in 50 ms. + */ + +static unsigned int __init pit_calibrate_tsc(void) +{ + unsigned long start, end; + unsigned long flags; + + spin_lock_irqsave(&i8253_lock, flags); + + outb((inb(0x61) & ~0x02) | 0x01, 0x61); + + outb(0xb0, 0x43); + outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42); + outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42); + start = get_cycles_sync(); + while ((inb(0x61) & 0x20) == 0); + end = get_cycles_sync(); + + spin_unlock_irqrestore(&i8253_lock, flags); + + return (end - start) / 50; +} + +#define PIT_MODE 0x43 +#define PIT_CH0 0x40 + +static void __pit_init(int val, u8 mode) +{ + unsigned long flags; + + spin_lock_irqsave(&i8253_lock, flags); + outb_p(mode, PIT_MODE); + outb_p(val & 0xff, PIT_CH0); /* LSB */ + outb_p(val >> 8, PIT_CH0); /* MSB */ + spin_unlock_irqrestore(&i8253_lock, flags); +} + +void __init pit_init(void) +{ + __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */ +} + +void pit_stop_interrupt(void) +{ + __pit_init(0, 0x30); /* mode 0 */ +} + +void stop_timer_interrupt(void) +{ + char *name; + if (hpet_address) { + name = "HPET"; + hpet_timer_stop_set_go(0); + } else { + name = "PIT"; + pit_stop_interrupt(); + } + printk(KERN_INFO "timer: %s interrupt stopped.\n", name); +} + +static struct irqaction irq0 = { + .handler = timer_interrupt, + .flags = IRQF_DISABLED | IRQF_IRQPOLL, + .mask = CPU_MASK_NONE, + .name = "timer" +}; + +void __init time_init(void) +{ + if (nohpet) + hpet_address = 0; + + if (hpet_arch_init()) + hpet_address = 0; + + if (hpet_use_timer) { + /* set tick_nsec to use the proper rate for HPET */ + tick_nsec = TICK_NSEC_HPET; + tsc_khz = hpet_calibrate_tsc(); + timename = "HPET"; + } else { + pit_init(); + tsc_khz = pit_calibrate_tsc(); + timename = "PIT"; + } + + cpu_khz = tsc_khz; + if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && + boot_cpu_data.x86_vendor == X86_VENDOR_AMD && + boot_cpu_data.x86 == 16) + cpu_khz = tsc_calibrate_cpu_khz(); + + if (unsynchronized_tsc()) + mark_tsc_unstable("TSCs unsynchronized"); + + if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) + vgetcpu_mode = VGETCPU_RDTSCP; + else + vgetcpu_mode = VGETCPU_LSL; + + set_cyc2ns_scale(tsc_khz); + printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n", + cpu_khz / 1000, cpu_khz % 1000); + init_tsc_clocksource(); + + setup_irq(0, &irq0); +} + +/* + * sysfs support for the timer. + */ + +static int timer_suspend(struct sys_device *dev, pm_message_t state) +{ + return 0; +} + +static int timer_resume(struct sys_device *dev) +{ + if (hpet_address) + hpet_reenable(); + else + i8254_timer_resume(); + return 0; +} + +static struct sysdev_class timer_sysclass = { + .resume = timer_resume, + .suspend = timer_suspend, + set_kset_name("timer"), +}; + +/* XXX this sysfs stuff should probably go elsewhere later -john */ +static struct sys_device device_timer = { + .id = 0, + .cls = &timer_sysclass, +}; + +static int time_init_device(void) +{ + int error = sysdev_class_register(&timer_sysclass); + if (!error) + error = sysdev_register(&device_timer); + return error; +} + +device_initcall(time_init_device); |