summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/math-emu/op-1.h
diff options
context:
space:
mode:
authorKumar Gala <galak@kernel.crashing.org>2008-06-04 02:59:29 -0500
committerKumar Gala <galak@kernel.crashing.org>2008-10-01 08:40:07 -0500
commitd2b194ed820880eb19c43b9c10d9f5f30026ee54 (patch)
tree1ac21746a8c4395c7e7fd73a60202db892fe4d76 /arch/powerpc/math-emu/op-1.h
parenta969e76a7101bf5f3d369563df1ca1253dd6131b (diff)
downloadop-kernel-dev-d2b194ed820880eb19c43b9c10d9f5f30026ee54.zip
op-kernel-dev-d2b194ed820880eb19c43b9c10d9f5f30026ee54.tar.gz
powerpc/math-emu: Use kernel generic math-emu code
The math emulation code is centered around a set of generic macros that provide the core of the emulation that are shared by the various architectures and other projects (like glibc). Each arch implements its own sfp-machine.h to specific various arch specific details. For historic reasons that are now lost the powerpc math-emu code had its own version of the common headers. This moves us to using the kernel generic version and thus getting fixes when those are updated. Also cleaned up exception/error reporting from the FP emulation functions. Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Diffstat (limited to 'arch/powerpc/math-emu/op-1.h')
-rw-r--r--arch/powerpc/math-emu/op-1.h245
1 files changed, 0 insertions, 245 deletions
diff --git a/arch/powerpc/math-emu/op-1.h b/arch/powerpc/math-emu/op-1.h
deleted file mode 100644
index c92fa95..0000000
--- a/arch/powerpc/math-emu/op-1.h
+++ /dev/null
@@ -1,245 +0,0 @@
-/*
- * Basic one-word fraction declaration and manipulation.
- */
-
-#define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f
-#define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
-#define _FP_FRAC_SET_1(X,I) (X##_f = I)
-#define _FP_FRAC_HIGH_1(X) (X##_f)
-#define _FP_FRAC_LOW_1(X) (X##_f)
-#define _FP_FRAC_WORD_1(X,w) (X##_f)
-
-#define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
-#define _FP_FRAC_SLL_1(X,N) \
- do { \
- if (__builtin_constant_p(N) && (N) == 1) \
- X##_f += X##_f; \
- else \
- X##_f <<= (N); \
- } while (0)
-#define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
-
-/* Right shift with sticky-lsb. */
-#define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
-
-#define __FP_FRAC_SRS_1(X,N,sz) \
- (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \
- ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
-
-#define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
-#define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
-#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
-
-/* Predicates */
-#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
-#define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
-#define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
-#define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
-#define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
-#define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
-
-#define _FP_ZEROFRAC_1 0
-#define _FP_MINFRAC_1 1
-
-/*
- * Unpack the raw bits of a native fp value. Do not classify or
- * normalize the data.
- */
-
-#define _FP_UNPACK_RAW_1(fs, X, val) \
- do { \
- union _FP_UNION_##fs _flo; _flo.flt = (val); \
- \
- X##_f = _flo.bits.frac; \
- X##_e = _flo.bits.exp; \
- X##_s = _flo.bits.sign; \
- } while (0)
-
-
-/*
- * Repack the raw bits of a native fp value.
- */
-
-#define _FP_PACK_RAW_1(fs, val, X) \
- do { \
- union _FP_UNION_##fs _flo; \
- \
- _flo.bits.frac = X##_f; \
- _flo.bits.exp = X##_e; \
- _flo.bits.sign = X##_s; \
- \
- (val) = _flo.flt; \
- } while (0)
-
-
-/*
- * Multiplication algorithms:
- */
-
-/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- multiplication immediately. */
-
-#define _FP_MUL_MEAT_1_imm(fs, R, X, Y) \
- do { \
- R##_f = X##_f * Y##_f; \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \
- } while (0)
-
-/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
-
-#define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit) \
- do { \
- _FP_W_TYPE _Z_f0, _Z_f1; \
- doit(_Z_f1, _Z_f0, X##_f, Y##_f); \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \
- R##_f = _Z_f0; \
- } while (0)
-
-/* Finally, a simple widening multiply algorithm. What fun! */
-
-#define _FP_MUL_MEAT_1_hard(fs, R, X, Y) \
- do { \
- _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \
- \
- /* split the words in half */ \
- _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
- _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
- _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
- _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
- \
- /* multiply the pieces */ \
- _z_f0 = _xl * _yl; \
- _a_f0 = _xh * _yl; \
- _a_f1 = _xl * _yh; \
- _z_f1 = _xh * _yh; \
- \
- /* reassemble into two full words */ \
- if ((_a_f0 += _a_f1) < _a_f1) \
- _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \
- _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
- _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
- _FP_FRAC_ADD_2(_z, _z, _a); \
- \
- /* normalize */ \
- _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs); \
- R##_f = _z_f0; \
- } while (0)
-
-
-/*
- * Division algorithms:
- */
-
-/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- division immediately. Give this macro either _FP_DIV_HELP_imm for
- C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
- choose will depend on what the compiler does with divrem4. */
-
-#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
- do { \
- _FP_W_TYPE _q, _r; \
- X##_f <<= (X##_f < Y##_f \
- ? R##_e--, _FP_WFRACBITS_##fs \
- : _FP_WFRACBITS_##fs - 1); \
- doit(_q, _r, X##_f, Y##_f); \
- R##_f = _q | (_r != 0); \
- } while (0)
-
-/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
- that may be useful in this situation. This first is for a primitive
- that requires normalization, the second for one that does not. Look
- for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
-
-#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
- do { \
- _FP_W_TYPE _nh, _nl, _q, _r; \
- \
- /* Normalize Y -- i.e. make the most significant bit set. */ \
- Y##_f <<= _FP_WFRACXBITS_##fs - 1; \
- \
- /* Shift X op correspondingly high, that is, up one full word. */ \
- if (X##_f <= Y##_f) \
- { \
- _nl = 0; \
- _nh = X##_f; \
- } \
- else \
- { \
- R##_e++; \
- _nl = X##_f << (_FP_W_TYPE_SIZE-1); \
- _nh = X##_f >> 1; \
- } \
- \
- udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
- R##_f = _q | (_r != 0); \
- } while (0)
-
-#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
- do { \
- _FP_W_TYPE _nh, _nl, _q, _r; \
- if (X##_f < Y##_f) \
- { \
- R##_e--; \
- _nl = X##_f << _FP_WFRACBITS_##fs; \
- _nh = X##_f >> _FP_WFRACXBITS_##fs; \
- } \
- else \
- { \
- _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
- _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
- } \
- udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
- R##_f = _q | (_r != 0); \
- } while (0)
-
-
-/*
- * Square root algorithms:
- * We have just one right now, maybe Newton approximation
- * should be added for those machines where division is fast.
- */
-
-#define _FP_SQRT_MEAT_1(R, S, T, X, q) \
- do { \
- while (q) \
- { \
- T##_f = S##_f + q; \
- if (T##_f <= X##_f) \
- { \
- S##_f = T##_f + q; \
- X##_f -= T##_f; \
- R##_f += q; \
- } \
- _FP_FRAC_SLL_1(X, 1); \
- q >>= 1; \
- } \
- } while (0)
-
-/*
- * Assembly/disassembly for converting to/from integral types.
- * No shifting or overflow handled here.
- */
-
-#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
-#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
-
-
-/*
- * Convert FP values between word sizes
- */
-
-#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \
- do { \
- D##_f = S##_f; \
- if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \
- _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \
- _FP_WFRACBITS_##sfs); \
- else \
- D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \
- } while (0)
OpenPOWER on IntegriCloud