summaryrefslogtreecommitdiffstats
path: root/arch/metag/mm/highmem.c
diff options
context:
space:
mode:
authorJames Hogan <jhogan@kernel.org>2017-10-24 13:07:54 +0100
committerJames Hogan <jhogan@kernel.org>2018-02-22 11:07:21 +0000
commitbb6fb6dfcc17cddac11ac295861f7608194447a7 (patch)
tree47ee071a415546dd01adbf628f61acb80473d476 /arch/metag/mm/highmem.c
parent91ab883eb21325ad80f3473633f794c78ac87f51 (diff)
downloadop-kernel-dev-bb6fb6dfcc17cddac11ac295861f7608194447a7.zip
op-kernel-dev-bb6fb6dfcc17cddac11ac295861f7608194447a7.tar.gz
metag: Remove arch/metag/
The earliest Meta architecture port of Linux I have a record of was an import of a Meta port of Linux v2.4.1 in February 2004, which was worked on significantly over the next few years by Graham Whaley, Will Newton, Matt Fleming, myself and others. Eventually the port was merged into mainline in v3.9 in March 2013, not long after Imagination Technologies bought MIPS Technologies and shifted its CPU focus over to the MIPS architecture. As a result, though the port was maintained for a while, kept on life support for a while longer, and useful for testing a few specific drivers for which I don't have ready access to the equivalent MIPS hardware, it is now essentially dead with no users. It is also stuck using an out-of-tree toolchain based on GCC 4.2.4 which is no longer maintained, now struggles to build modern kernels due to toolchain bugs, and doesn't itself build with a modern GCC. The latest buildroot port is still using an old uClibc snapshot which is no longer served, and the latest uClibc doesn't build with GCC 4.2.4. So lets call it a day and drop the Meta architecture port from the kernel. RIP Meta. Signed-off-by: James Hogan <jhogan@kernel.org> Link: https://lkml.kernel.org/r/95906b76-6ce1-3f84-eaba-c29b4ae952eb@roeck-us.net Reviewed-by: Guenter Roeck <linux@roeck-us.net> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Graham Whaley <graham.whaley@gmail.com> Cc: linux-metag@vger.kernel.org
Diffstat (limited to 'arch/metag/mm/highmem.c')
-rw-r--r--arch/metag/mm/highmem.c122
1 files changed, 0 insertions, 122 deletions
diff --git a/arch/metag/mm/highmem.c b/arch/metag/mm/highmem.c
deleted file mode 100644
index 83527fc..0000000
--- a/arch/metag/mm/highmem.c
+++ /dev/null
@@ -1,122 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-#include <linux/export.h>
-#include <linux/highmem.h>
-#include <linux/sched.h>
-#include <linux/smp.h>
-#include <linux/interrupt.h>
-#include <asm/fixmap.h>
-#include <asm/tlbflush.h>
-
-static pte_t *kmap_pte;
-
-unsigned long highstart_pfn, highend_pfn;
-
-void *kmap(struct page *page)
-{
- might_sleep();
- if (!PageHighMem(page))
- return page_address(page);
- return kmap_high(page);
-}
-EXPORT_SYMBOL(kmap);
-
-void kunmap(struct page *page)
-{
- BUG_ON(in_interrupt());
- if (!PageHighMem(page))
- return;
- kunmap_high(page);
-}
-EXPORT_SYMBOL(kunmap);
-
-/*
- * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because
- * no global lock is needed and because the kmap code must perform a global TLB
- * invalidation when the kmap pool wraps.
- *
- * However when holding an atomic kmap is is not legal to sleep, so atomic
- * kmaps are appropriate for short, tight code paths only.
- */
-
-void *kmap_atomic(struct page *page)
-{
- enum fixed_addresses idx;
- unsigned long vaddr;
- int type;
-
- preempt_disable();
- pagefault_disable();
- if (!PageHighMem(page))
- return page_address(page);
-
- type = kmap_atomic_idx_push();
- idx = type + KM_TYPE_NR * smp_processor_id();
- vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
-#ifdef CONFIG_DEBUG_HIGHMEM
- BUG_ON(!pte_none(*(kmap_pte - idx)));
-#endif
- set_pte(kmap_pte - idx, mk_pte(page, PAGE_KERNEL));
-
- return (void *)vaddr;
-}
-EXPORT_SYMBOL(kmap_atomic);
-
-void __kunmap_atomic(void *kvaddr)
-{
- unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
- int idx, type;
-
- if (kvaddr >= (void *)FIXADDR_START) {
- type = kmap_atomic_idx();
- idx = type + KM_TYPE_NR * smp_processor_id();
-
- /*
- * Force other mappings to Oops if they'll try to access this
- * pte without first remap it. Keeping stale mappings around
- * is a bad idea also, in case the page changes cacheability
- * attributes or becomes a protected page in a hypervisor.
- */
- pte_clear(&init_mm, vaddr, kmap_pte-idx);
- flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
-
- kmap_atomic_idx_pop();
- }
-
- pagefault_enable();
- preempt_enable();
-}
-EXPORT_SYMBOL(__kunmap_atomic);
-
-/*
- * This is the same as kmap_atomic() but can map memory that doesn't
- * have a struct page associated with it.
- */
-void *kmap_atomic_pfn(unsigned long pfn)
-{
- enum fixed_addresses idx;
- unsigned long vaddr;
- int type;
-
- preempt_disable();
- pagefault_disable();
-
- type = kmap_atomic_idx_push();
- idx = type + KM_TYPE_NR * smp_processor_id();
- vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
-#ifdef CONFIG_DEBUG_HIGHMEM
- BUG_ON(!pte_none(*(kmap_pte - idx)));
-#endif
- set_pte(kmap_pte - idx, pfn_pte(pfn, PAGE_KERNEL));
- flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
-
- return (void *)vaddr;
-}
-
-void __init kmap_init(void)
-{
- unsigned long kmap_vstart;
-
- /* cache the first kmap pte */
- kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
- kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
-}
OpenPOWER on IntegriCloud