diff options
author | Greg Ungerer <gerg@uclinux.org> | 2011-03-22 13:39:27 +1000 |
---|---|---|
committer | Greg Ungerer <gerg@uclinux.org> | 2011-03-25 14:05:13 +1000 |
commit | 66d857b08b8c3ed5c72c361f863cce77d2a978d7 (patch) | |
tree | 47222d86f4d78dc0da31baf64188bd2e4b38ac1e /arch/m68k/platform/coldfire/intc.c | |
parent | d39dd11c3e6a7af5c20bfac40594db36cf270f42 (diff) | |
download | op-kernel-dev-66d857b08b8c3ed5c72c361f863cce77d2a978d7.zip op-kernel-dev-66d857b08b8c3ed5c72c361f863cce77d2a978d7.tar.gz |
m68k: merge m68k and m68knommu arch directories
There is a lot of common code that could be shared between the m68k
and m68knommu arch branches. It makes sense to merge the two branches
into a single directory structure so that we can more easily share
that common code.
This is a brute force merge, based on a script from Stephen King
<sfking@fdwdc.com>, which was originally written by Arnd Bergmann
<arnd@arndb.de>.
> The script was inspired by the script Sam Ravnborg used to merge the
> includes from m68knommu. For those files common to both arches but
> differing in content, the m68k version of the file is renamed to
> <file>_mm.<ext> and the m68knommu version of the file is moved into the
> corresponding m68k directory and renamed <file>_no.<ext> and a small
> wrapper file <file>.<ext> is used to select between the two version. Files
> that are common to both but don't differ are removed from the m68knommu
> tree and files and directories that are unique to the m68knommu tree are
> moved to the m68k tree. Finally, the arch/m68knommu tree is removed.
>
> To select between the the versions of the files, the wrapper uses
>
> #ifdef CONFIG_MMU
> #include <file>_mm.<ext>
> #else
> #include <file>_no.<ext>
> #endif
On top of this file merge I have done a simplistic merge of m68k and
m68knommu Kconfig, which primarily attempts to keep existing options and
menus in place. Other than a handful of options being moved it produces
identical .config outputs on m68k and m68knommu targets I tested it on.
With this in place there is now quite a bit of scope for merge cleanups
in future patches.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Diffstat (limited to 'arch/m68k/platform/coldfire/intc.c')
-rw-r--r-- | arch/m68k/platform/coldfire/intc.c | 151 |
1 files changed, 151 insertions, 0 deletions
diff --git a/arch/m68k/platform/coldfire/intc.c b/arch/m68k/platform/coldfire/intc.c new file mode 100644 index 0000000..d648081 --- /dev/null +++ b/arch/m68k/platform/coldfire/intc.c @@ -0,0 +1,151 @@ +/* + * intc.c -- support for the old ColdFire interrupt controller + * + * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com> + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file COPYING in the main directory of this archive + * for more details. + */ + +#include <linux/types.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/io.h> +#include <asm/traps.h> +#include <asm/coldfire.h> +#include <asm/mcfsim.h> + +/* + * The mapping of irq number to a mask register bit is not one-to-one. + * The irq numbers are either based on "level" of interrupt or fixed + * for an autovector-able interrupt. So we keep a local data structure + * that maps from irq to mask register. Not all interrupts will have + * an IMR bit. + */ +unsigned char mcf_irq2imr[NR_IRQS]; + +/* + * Define the miniumun and maximum external interrupt numbers. + * This is also used as the "level" interrupt numbers. + */ +#define EIRQ1 25 +#define EIRQ7 31 + +/* + * In the early version 2 core ColdFire parts the IMR register was 16 bits + * in size. Version 3 (and later version 2) core parts have a 32 bit + * sized IMR register. Provide some size independant methods to access the + * IMR register. + */ +#ifdef MCFSIM_IMR_IS_16BITS + +void mcf_setimr(int index) +{ + u16 imr; + imr = __raw_readw(MCF_MBAR + MCFSIM_IMR); + __raw_writew(imr | (0x1 << index), MCF_MBAR + MCFSIM_IMR); +} + +void mcf_clrimr(int index) +{ + u16 imr; + imr = __raw_readw(MCF_MBAR + MCFSIM_IMR); + __raw_writew(imr & ~(0x1 << index), MCF_MBAR + MCFSIM_IMR); +} + +void mcf_maskimr(unsigned int mask) +{ + u16 imr; + imr = __raw_readw(MCF_MBAR + MCFSIM_IMR); + imr |= mask; + __raw_writew(imr, MCF_MBAR + MCFSIM_IMR); +} + +#else + +void mcf_setimr(int index) +{ + u32 imr; + imr = __raw_readl(MCF_MBAR + MCFSIM_IMR); + __raw_writel(imr | (0x1 << index), MCF_MBAR + MCFSIM_IMR); +} + +void mcf_clrimr(int index) +{ + u32 imr; + imr = __raw_readl(MCF_MBAR + MCFSIM_IMR); + __raw_writel(imr & ~(0x1 << index), MCF_MBAR + MCFSIM_IMR); +} + +void mcf_maskimr(unsigned int mask) +{ + u32 imr; + imr = __raw_readl(MCF_MBAR + MCFSIM_IMR); + imr |= mask; + __raw_writel(imr, MCF_MBAR + MCFSIM_IMR); +} + +#endif + +/* + * Interrupts can be "vectored" on the ColdFire cores that support this old + * interrupt controller. That is, the device raising the interrupt can also + * supply the vector number to interrupt through. The AVR register of the + * interrupt controller enables or disables this for each external interrupt, + * so provide generic support for this. Setting this up is out-of-band for + * the interrupt system API's, and needs to be done by the driver that + * supports this device. Very few devices actually use this. + */ +void mcf_autovector(int irq) +{ +#ifdef MCFSIM_AVR + if ((irq >= EIRQ1) && (irq <= EIRQ7)) { + u8 avec; + avec = __raw_readb(MCF_MBAR + MCFSIM_AVR); + avec |= (0x1 << (irq - EIRQ1 + 1)); + __raw_writeb(avec, MCF_MBAR + MCFSIM_AVR); + } +#endif +} + +static void intc_irq_mask(struct irq_data *d) +{ + if (mcf_irq2imr[d->irq]) + mcf_setimr(mcf_irq2imr[d->irq]); +} + +static void intc_irq_unmask(struct irq_data *d) +{ + if (mcf_irq2imr[d->irq]) + mcf_clrimr(mcf_irq2imr[d->irq]); +} + +static int intc_irq_set_type(struct irq_data *d, unsigned int type) +{ + return 0; +} + +static struct irq_chip intc_irq_chip = { + .name = "CF-INTC", + .irq_mask = intc_irq_mask, + .irq_unmask = intc_irq_unmask, + .irq_set_type = intc_irq_set_type, +}; + +void __init init_IRQ(void) +{ + int irq; + + init_vectors(); + mcf_maskimr(0xffffffff); + + for (irq = 0; (irq < NR_IRQS); irq++) { + set_irq_chip(irq, &intc_irq_chip); + set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH); + set_irq_handler(irq, handle_level_irq); + } +} + |