diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/math-emu/poly_sin.c | |
download | op-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip op-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/math-emu/poly_sin.c')
-rw-r--r-- | arch/i386/math-emu/poly_sin.c | 397 |
1 files changed, 397 insertions, 0 deletions
diff --git a/arch/i386/math-emu/poly_sin.c b/arch/i386/math-emu/poly_sin.c new file mode 100644 index 0000000..a36313f --- /dev/null +++ b/arch/i386/math-emu/poly_sin.c @@ -0,0 +1,397 @@ +/*---------------------------------------------------------------------------+ + | poly_sin.c | + | | + | Computation of an approximation of the sin function and the cosine | + | function by a polynomial. | + | | + | Copyright (C) 1992,1993,1994,1997,1999 | + | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | + | E-mail billm@melbpc.org.au | + | | + | | + +---------------------------------------------------------------------------*/ + + +#include "exception.h" +#include "reg_constant.h" +#include "fpu_emu.h" +#include "fpu_system.h" +#include "control_w.h" +#include "poly.h" + + +#define N_COEFF_P 4 +#define N_COEFF_N 4 + +static const unsigned long long pos_terms_l[N_COEFF_P] = +{ + 0xaaaaaaaaaaaaaaabLL, + 0x00d00d00d00cf906LL, + 0x000006b99159a8bbLL, + 0x000000000d7392e6LL +}; + +static const unsigned long long neg_terms_l[N_COEFF_N] = +{ + 0x2222222222222167LL, + 0x0002e3bc74aab624LL, + 0x0000000b09229062LL, + 0x00000000000c7973LL +}; + + + +#define N_COEFF_PH 4 +#define N_COEFF_NH 4 +static const unsigned long long pos_terms_h[N_COEFF_PH] = +{ + 0x0000000000000000LL, + 0x05b05b05b05b0406LL, + 0x000049f93edd91a9LL, + 0x00000000c9c9ed62LL +}; + +static const unsigned long long neg_terms_h[N_COEFF_NH] = +{ + 0xaaaaaaaaaaaaaa98LL, + 0x001a01a01a019064LL, + 0x0000008f76c68a77LL, + 0x0000000000d58f5eLL +}; + + +/*--- poly_sine() -----------------------------------------------------------+ + | | + +---------------------------------------------------------------------------*/ +void poly_sine(FPU_REG *st0_ptr) +{ + int exponent, echange; + Xsig accumulator, argSqrd, argTo4; + unsigned long fix_up, adj; + unsigned long long fixed_arg; + FPU_REG result; + + exponent = exponent(st0_ptr); + + accumulator.lsw = accumulator.midw = accumulator.msw = 0; + + /* Split into two ranges, for arguments below and above 1.0 */ + /* The boundary between upper and lower is approx 0.88309101259 */ + if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa)) ) + { + /* The argument is <= 0.88309101259 */ + + argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &significand(st0_ptr)); + shr_Xsig(&argSqrd, 2*(-1-exponent)); + argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; + argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, + N_COEFF_N-1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, + N_COEFF_P-1); + + shr_Xsig(&accumulator, 2); /* Divide by four */ + accumulator.msw |= 0x80000000; /* Add 1.0 */ + + mul64_Xsig(&accumulator, &significand(st0_ptr)); + mul64_Xsig(&accumulator, &significand(st0_ptr)); + mul64_Xsig(&accumulator, &significand(st0_ptr)); + + /* Divide by four, FPU_REG compatible, etc */ + exponent = 3*exponent; + + /* The minimum exponent difference is 3 */ + shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); + + negate_Xsig(&accumulator); + XSIG_LL(accumulator) += significand(st0_ptr); + + echange = round_Xsig(&accumulator); + + setexponentpos(&result, exponent(st0_ptr) + echange); + } + else + { + /* The argument is > 0.88309101259 */ + /* We use sin(st(0)) = cos(pi/2-st(0)) */ + + fixed_arg = significand(st0_ptr); + + if ( exponent == 0 ) + { + /* The argument is >= 1.0 */ + + /* Put the binary point at the left. */ + fixed_arg <<= 1; + } + /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ + fixed_arg = 0x921fb54442d18469LL - fixed_arg; + /* There is a special case which arises due to rounding, to fix here. */ + if ( fixed_arg == 0xffffffffffffffffLL ) + fixed_arg = 0; + + XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &fixed_arg); + + XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, + N_COEFF_NH-1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, + N_COEFF_PH-1); + negate_Xsig(&accumulator); + + mul64_Xsig(&accumulator, &fixed_arg); + mul64_Xsig(&accumulator, &fixed_arg); + + shr_Xsig(&accumulator, 3); + negate_Xsig(&accumulator); + + add_Xsig_Xsig(&accumulator, &argSqrd); + + shr_Xsig(&accumulator, 1); + + accumulator.lsw |= 1; /* A zero accumulator here would cause problems */ + negate_Xsig(&accumulator); + + /* The basic computation is complete. Now fix the answer to + compensate for the error due to the approximation used for + pi/2 + */ + + /* This has an exponent of -65 */ + fix_up = 0x898cc517; + /* The fix-up needs to be improved for larger args */ + if ( argSqrd.msw & 0xffc00000 ) + { + /* Get about 32 bit precision in these: */ + fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; + } + fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); + + adj = accumulator.lsw; /* temp save */ + accumulator.lsw -= fix_up; + if ( accumulator.lsw > adj ) + XSIG_LL(accumulator) --; + + echange = round_Xsig(&accumulator); + + setexponentpos(&result, echange - 1); + } + + significand(&result) = XSIG_LL(accumulator); + setsign(&result, getsign(st0_ptr)); + FPU_copy_to_reg0(&result, TAG_Valid); + +#ifdef PARANOID + if ( (exponent(&result) >= 0) + && (significand(&result) > 0x8000000000000000LL) ) + { + EXCEPTION(EX_INTERNAL|0x150); + } +#endif /* PARANOID */ + +} + + + +/*--- poly_cos() ------------------------------------------------------------+ + | | + +---------------------------------------------------------------------------*/ +void poly_cos(FPU_REG *st0_ptr) +{ + FPU_REG result; + long int exponent, exp2, echange; + Xsig accumulator, argSqrd, fix_up, argTo4; + unsigned long long fixed_arg; + +#ifdef PARANOID + if ( (exponent(st0_ptr) > 0) + || ((exponent(st0_ptr) == 0) + && (significand(st0_ptr) > 0xc90fdaa22168c234LL)) ) + { + EXCEPTION(EX_Invalid); + FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); + return; + } +#endif /* PARANOID */ + + exponent = exponent(st0_ptr); + + accumulator.lsw = accumulator.midw = accumulator.msw = 0; + + if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54)) ) + { + /* arg is < 0.687705 */ + + argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; + argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &significand(st0_ptr)); + + if ( exponent < -1 ) + { + /* shift the argument right by the required places */ + shr_Xsig(&argSqrd, 2*(-1-exponent)); + } + + argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; + argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, + N_COEFF_NH-1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, + N_COEFF_PH-1); + negate_Xsig(&accumulator); + + mul64_Xsig(&accumulator, &significand(st0_ptr)); + mul64_Xsig(&accumulator, &significand(st0_ptr)); + shr_Xsig(&accumulator, -2*(1+exponent)); + + shr_Xsig(&accumulator, 3); + negate_Xsig(&accumulator); + + add_Xsig_Xsig(&accumulator, &argSqrd); + + shr_Xsig(&accumulator, 1); + + /* It doesn't matter if accumulator is all zero here, the + following code will work ok */ + negate_Xsig(&accumulator); + + if ( accumulator.lsw & 0x80000000 ) + XSIG_LL(accumulator) ++; + if ( accumulator.msw == 0 ) + { + /* The result is 1.0 */ + FPU_copy_to_reg0(&CONST_1, TAG_Valid); + return; + } + else + { + significand(&result) = XSIG_LL(accumulator); + + /* will be a valid positive nr with expon = -1 */ + setexponentpos(&result, -1); + } + } + else + { + fixed_arg = significand(st0_ptr); + + if ( exponent == 0 ) + { + /* The argument is >= 1.0 */ + + /* Put the binary point at the left. */ + fixed_arg <<= 1; + } + /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ + fixed_arg = 0x921fb54442d18469LL - fixed_arg; + /* There is a special case which arises due to rounding, to fix here. */ + if ( fixed_arg == 0xffffffffffffffffLL ) + fixed_arg = 0; + + exponent = -1; + exp2 = -1; + + /* A shift is needed here only for a narrow range of arguments, + i.e. for fixed_arg approx 2^-32, but we pick up more... */ + if ( !(LL_MSW(fixed_arg) & 0xffff0000) ) + { + fixed_arg <<= 16; + exponent -= 16; + exp2 -= 16; + } + + XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &fixed_arg); + + if ( exponent < -1 ) + { + /* shift the argument right by the required places */ + shr_Xsig(&argSqrd, 2*(-1-exponent)); + } + + argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; + argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, + N_COEFF_N-1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, + N_COEFF_P-1); + + shr_Xsig(&accumulator, 2); /* Divide by four */ + accumulator.msw |= 0x80000000; /* Add 1.0 */ + + mul64_Xsig(&accumulator, &fixed_arg); + mul64_Xsig(&accumulator, &fixed_arg); + mul64_Xsig(&accumulator, &fixed_arg); + + /* Divide by four, FPU_REG compatible, etc */ + exponent = 3*exponent; + + /* The minimum exponent difference is 3 */ + shr_Xsig(&accumulator, exp2 - exponent); + + negate_Xsig(&accumulator); + XSIG_LL(accumulator) += fixed_arg; + + /* The basic computation is complete. Now fix the answer to + compensate for the error due to the approximation used for + pi/2 + */ + + /* This has an exponent of -65 */ + XSIG_LL(fix_up) = 0x898cc51701b839a2ll; + fix_up.lsw = 0; + + /* The fix-up needs to be improved for larger args */ + if ( argSqrd.msw & 0xffc00000 ) + { + /* Get about 32 bit precision in these: */ + fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; + fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; + } + + exp2 += norm_Xsig(&accumulator); + shr_Xsig(&accumulator, 1); /* Prevent overflow */ + exp2++; + shr_Xsig(&fix_up, 65 + exp2); + + add_Xsig_Xsig(&accumulator, &fix_up); + + echange = round_Xsig(&accumulator); + + setexponentpos(&result, exp2 + echange); + significand(&result) = XSIG_LL(accumulator); + } + + FPU_copy_to_reg0(&result, TAG_Valid); + +#ifdef PARANOID + if ( (exponent(&result) >= 0) + && (significand(&result) > 0x8000000000000000LL) ) + { + EXCEPTION(EX_INTERNAL|0x151); + } +#endif /* PARANOID */ + +} |