summaryrefslogtreecommitdiffstats
path: root/arch/arm/vfp
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/vfp
downloadop-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip
op-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'arch/arm/vfp')
-rw-r--r--arch/arm/vfp/Makefile12
-rw-r--r--arch/arm/vfp/entry.S45
-rw-r--r--arch/arm/vfp/vfp.h344
-rw-r--r--arch/arm/vfp/vfpdouble.c1186
-rw-r--r--arch/arm/vfp/vfphw.S215
-rw-r--r--arch/arm/vfp/vfpinstr.h88
-rw-r--r--arch/arm/vfp/vfpmodule.c288
-rw-r--r--arch/arm/vfp/vfpsingle.c1224
8 files changed, 3402 insertions, 0 deletions
diff --git a/arch/arm/vfp/Makefile b/arch/arm/vfp/Makefile
new file mode 100644
index 0000000..afabac3
--- /dev/null
+++ b/arch/arm/vfp/Makefile
@@ -0,0 +1,12 @@
+#
+# linux/arch/arm/vfp/Makefile
+#
+# Copyright (C) 2001 ARM Limited
+#
+
+# EXTRA_CFLAGS := -DDEBUG
+# EXTRA_AFLAGS := -DDEBUG
+
+obj-y += vfp.o
+
+vfp-$(CONFIG_VFP) += entry.o vfpmodule.o vfphw.o vfpsingle.o vfpdouble.o
diff --git a/arch/arm/vfp/entry.S b/arch/arm/vfp/entry.S
new file mode 100644
index 0000000..e73c8de
--- /dev/null
+++ b/arch/arm/vfp/entry.S
@@ -0,0 +1,45 @@
+/*
+ * linux/arch/arm/vfp/entry.S
+ *
+ * Copyright (C) 2004 ARM Limited.
+ * Written by Deep Blue Solutions Limited.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Basic entry code, called from the kernel's undefined instruction trap.
+ * r0 = faulted instruction
+ * r5 = faulted PC+4
+ * r9 = successful return
+ * r10 = thread_info structure
+ * lr = failure return
+ */
+#include <linux/linkage.h>
+#include <linux/init.h>
+#include <asm/constants.h>
+#include <asm/vfpmacros.h>
+
+ .globl do_vfp
+do_vfp:
+ ldr r4, .LCvfp
+ add r10, r10, #TI_VFPSTATE @ r10 = workspace
+ ldr pc, [r4] @ call VFP entry point
+
+.LCvfp:
+ .word vfp_vector
+
+@ This code is called if the VFP does not exist. It needs to flag the
+@ failure to the VFP initialisation code.
+
+ __INIT
+ .globl vfp_testing_entry
+vfp_testing_entry:
+ ldr r0, VFP_arch_address
+ str r5, [r0] @ known non-zero value
+ mov pc, r9 @ we have handled the fault
+
+VFP_arch_address:
+ .word VFP_arch
+
+ __FINIT
diff --git a/arch/arm/vfp/vfp.h b/arch/arm/vfp/vfp.h
new file mode 100644
index 0000000..55a02bc
--- /dev/null
+++ b/arch/arm/vfp/vfp.h
@@ -0,0 +1,344 @@
+/*
+ * linux/arch/arm/vfp/vfp.h
+ *
+ * Copyright (C) 2004 ARM Limited.
+ * Written by Deep Blue Solutions Limited.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
+{
+ if (shift) {
+ if (shift < 32)
+ val = val >> shift | ((val << (32 - shift)) != 0);
+ else
+ val = val != 0;
+ }
+ return val;
+}
+
+static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
+{
+ if (shift) {
+ if (shift < 64)
+ val = val >> shift | ((val << (64 - shift)) != 0);
+ else
+ val = val != 0;
+ }
+ return val;
+}
+
+static inline u32 vfp_hi64to32jamming(u64 val)
+{
+ u32 v;
+
+ asm(
+ "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
+ "movcc %0, %R1\n\t"
+ "orrcs %0, %R1, #1"
+ : "=r" (v) : "r" (val) : "cc");
+
+ return v;
+}
+
+static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
+{
+ asm( "adds %Q0, %Q2, %Q4\n\t"
+ "adcs %R0, %R2, %R4\n\t"
+ "adcs %Q1, %Q3, %Q5\n\t"
+ "adc %R1, %R3, %R5"
+ : "=r" (nl), "=r" (nh)
+ : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
+ : "cc");
+ *resh = nh;
+ *resl = nl;
+}
+
+static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
+{
+ asm( "subs %Q0, %Q2, %Q4\n\t"
+ "sbcs %R0, %R2, %R4\n\t"
+ "sbcs %Q1, %Q3, %Q5\n\t"
+ "sbc %R1, %R3, %R5\n\t"
+ : "=r" (nl), "=r" (nh)
+ : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
+ : "cc");
+ *resh = nh;
+ *resl = nl;
+}
+
+static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
+{
+ u32 nh, nl, mh, ml;
+ u64 rh, rma, rmb, rl;
+
+ nl = n;
+ ml = m;
+ rl = (u64)nl * ml;
+
+ nh = n >> 32;
+ rma = (u64)nh * ml;
+
+ mh = m >> 32;
+ rmb = (u64)nl * mh;
+ rma += rmb;
+
+ rh = (u64)nh * mh;
+ rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
+
+ rma <<= 32;
+ rl += rma;
+ rh += (rl < rma);
+
+ *resl = rl;
+ *resh = rh;
+}
+
+static inline void shift64left(u64 *resh, u64 *resl, u64 n)
+{
+ *resh = n >> 63;
+ *resl = n << 1;
+}
+
+static inline u64 vfp_hi64multiply64(u64 n, u64 m)
+{
+ u64 rh, rl;
+ mul64to128(&rh, &rl, n, m);
+ return rh | (rl != 0);
+}
+
+static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
+{
+ u64 mh, ml, remh, reml, termh, terml, z;
+
+ if (nh >= m)
+ return ~0ULL;
+ mh = m >> 32;
+ z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32;
+ mul64to128(&termh, &terml, m, z);
+ sub128(&remh, &reml, nh, nl, termh, terml);
+ ml = m << 32;
+ while ((s64)remh < 0) {
+ z -= 0x100000000ULL;
+ add128(&remh, &reml, remh, reml, mh, ml);
+ }
+ remh = (remh << 32) | (reml >> 32);
+ z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh;
+ return z;
+}
+
+/*
+ * Operations on unpacked elements
+ */
+#define vfp_sign_negate(sign) (sign ^ 0x8000)
+
+/*
+ * Single-precision
+ */
+struct vfp_single {
+ s16 exponent;
+ u16 sign;
+ u32 significand;
+};
+
+extern s32 vfp_get_float(unsigned int reg);
+extern void vfp_put_float(unsigned int reg, s32 val);
+
+/*
+ * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
+ * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
+ * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
+ * which are not propagated to the float upon packing.
+ */
+#define VFP_SINGLE_MANTISSA_BITS (23)
+#define VFP_SINGLE_EXPONENT_BITS (8)
+#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
+#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
+
+/*
+ * The bit in an unpacked float which indicates that it is a quiet NaN
+ */
+#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
+
+/*
+ * Operations on packed single-precision numbers
+ */
+#define vfp_single_packed_sign(v) ((v) & 0x80000000)
+#define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
+#define vfp_single_packed_abs(v) ((v) & ~0x80000000)
+#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
+#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
+
+/*
+ * Unpack a single-precision float. Note that this returns the magnitude
+ * of the single-precision float mantissa with the 1. if necessary,
+ * aligned to bit 30.
+ */
+static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
+{
+ u32 significand;
+
+ s->sign = vfp_single_packed_sign(val) >> 16,
+ s->exponent = vfp_single_packed_exponent(val);
+
+ significand = (u32) val;
+ significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
+ if (s->exponent && s->exponent != 255)
+ significand |= 0x40000000;
+ s->significand = significand;
+}
+
+/*
+ * Re-pack a single-precision float. This assumes that the float is
+ * already normalised such that the MSB is bit 30, _not_ bit 31.
+ */
+static inline s32 vfp_single_pack(struct vfp_single *s)
+{
+ u32 val;
+ val = (s->sign << 16) +
+ (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
+ (s->significand >> VFP_SINGLE_LOW_BITS);
+ return (s32)val;
+}
+
+#define VFP_NUMBER (1<<0)
+#define VFP_ZERO (1<<1)
+#define VFP_DENORMAL (1<<2)
+#define VFP_INFINITY (1<<3)
+#define VFP_NAN (1<<4)
+#define VFP_NAN_SIGNAL (1<<5)
+
+#define VFP_QNAN (VFP_NAN)
+#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
+
+static inline int vfp_single_type(struct vfp_single *s)
+{
+ int type = VFP_NUMBER;
+ if (s->exponent == 255) {
+ if (s->significand == 0)
+ type = VFP_INFINITY;
+ else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
+ type = VFP_QNAN;
+ else
+ type = VFP_SNAN;
+ } else if (s->exponent == 0) {
+ if (s->significand == 0)
+ type |= VFP_ZERO;
+ else
+ type |= VFP_DENORMAL;
+ }
+ return type;
+}
+
+#ifndef DEBUG
+#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
+u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
+#else
+u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
+#endif
+
+/*
+ * Double-precision
+ */
+struct vfp_double {
+ s16 exponent;
+ u16 sign;
+ u64 significand;
+};
+
+/*
+ * VFP_REG_ZERO is a special register number for vfp_get_double
+ * which returns (double)0.0. This is useful for the compare with
+ * zero instructions.
+ */
+#define VFP_REG_ZERO 16
+extern u64 vfp_get_double(unsigned int reg);
+extern void vfp_put_double(unsigned int reg, u64 val);
+
+#define VFP_DOUBLE_MANTISSA_BITS (52)
+#define VFP_DOUBLE_EXPONENT_BITS (11)
+#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
+#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
+
+/*
+ * The bit in an unpacked double which indicates that it is a quiet NaN
+ */
+#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
+
+/*
+ * Operations on packed single-precision numbers
+ */
+#define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
+#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
+#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
+#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
+#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
+
+/*
+ * Unpack a double-precision float. Note that this returns the magnitude
+ * of the double-precision float mantissa with the 1. if necessary,
+ * aligned to bit 62.
+ */
+static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
+{
+ u64 significand;
+
+ s->sign = vfp_double_packed_sign(val) >> 48;
+ s->exponent = vfp_double_packed_exponent(val);
+
+ significand = (u64) val;
+ significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
+ if (s->exponent && s->exponent != 2047)
+ significand |= (1ULL << 62);
+ s->significand = significand;
+}
+
+/*
+ * Re-pack a double-precision float. This assumes that the float is
+ * already normalised such that the MSB is bit 30, _not_ bit 31.
+ */
+static inline s64 vfp_double_pack(struct vfp_double *s)
+{
+ u64 val;
+ val = ((u64)s->sign << 48) +
+ ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
+ (s->significand >> VFP_DOUBLE_LOW_BITS);
+ return (s64)val;
+}
+
+static inline int vfp_double_type(struct vfp_double *s)
+{
+ int type = VFP_NUMBER;
+ if (s->exponent == 2047) {
+ if (s->significand == 0)
+ type = VFP_INFINITY;
+ else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
+ type = VFP_QNAN;
+ else
+ type = VFP_SNAN;
+ } else if (s->exponent == 0) {
+ if (s->significand == 0)
+ type |= VFP_ZERO;
+ else
+ type |= VFP_DENORMAL;
+ }
+ return type;
+}
+
+u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
+
+/*
+ * System registers
+ */
+extern u32 vfp_get_sys(unsigned int reg);
+extern void vfp_put_sys(unsigned int reg, u32 val);
+
+u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
+
+/*
+ * A special flag to tell the normalisation code not to normalise.
+ */
+#define VFP_NAN_FLAG 0x100
diff --git a/arch/arm/vfp/vfpdouble.c b/arch/arm/vfp/vfpdouble.c
new file mode 100644
index 0000000..fa3053e
--- /dev/null
+++ b/arch/arm/vfp/vfpdouble.c
@@ -0,0 +1,1186 @@
+/*
+ * linux/arch/arm/vfp/vfpdouble.c
+ *
+ * This code is derived in part from John R. Housers softfloat library, which
+ * carries the following notice:
+ *
+ * ===========================================================================
+ * This C source file is part of the SoftFloat IEC/IEEE Floating-point
+ * Arithmetic Package, Release 2.
+ *
+ * Written by John R. Hauser. This work was made possible in part by the
+ * International Computer Science Institute, located at Suite 600, 1947 Center
+ * Street, Berkeley, California 94704. Funding was partially provided by the
+ * National Science Foundation under grant MIP-9311980. The original version
+ * of this code was written as part of a project to build a fixed-point vector
+ * processor in collaboration with the University of California at Berkeley,
+ * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+ * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+ * arithmetic/softfloat.html'.
+ *
+ * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+ * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+ * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+ * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+ * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+ *
+ * Derivative works are acceptable, even for commercial purposes, so long as
+ * (1) they include prominent notice that the work is derivative, and (2) they
+ * include prominent notice akin to these three paragraphs for those parts of
+ * this code that are retained.
+ * ===========================================================================
+ */
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <asm/ptrace.h>
+#include <asm/vfp.h>
+
+#include "vfpinstr.h"
+#include "vfp.h"
+
+static struct vfp_double vfp_double_default_qnan = {
+ .exponent = 2047,
+ .sign = 0,
+ .significand = VFP_DOUBLE_SIGNIFICAND_QNAN,
+};
+
+static void vfp_double_dump(const char *str, struct vfp_double *d)
+{
+ pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
+ str, d->sign != 0, d->exponent, d->significand);
+}
+
+static void vfp_double_normalise_denormal(struct vfp_double *vd)
+{
+ int bits = 31 - fls(vd->significand >> 32);
+ if (bits == 31)
+ bits = 62 - fls(vd->significand);
+
+ vfp_double_dump("normalise_denormal: in", vd);
+
+ if (bits) {
+ vd->exponent -= bits - 1;
+ vd->significand <<= bits;
+ }
+
+ vfp_double_dump("normalise_denormal: out", vd);
+}
+
+u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
+{
+ u64 significand, incr;
+ int exponent, shift, underflow;
+ u32 rmode;
+
+ vfp_double_dump("pack: in", vd);
+
+ /*
+ * Infinities and NaNs are a special case.
+ */
+ if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
+ goto pack;
+
+ /*
+ * Special-case zero.
+ */
+ if (vd->significand == 0) {
+ vd->exponent = 0;
+ goto pack;
+ }
+
+ exponent = vd->exponent;
+ significand = vd->significand;
+
+ shift = 32 - fls(significand >> 32);
+ if (shift == 32)
+ shift = 64 - fls(significand);
+ if (shift) {
+ exponent -= shift;
+ significand <<= shift;
+ }
+
+#ifdef DEBUG
+ vd->exponent = exponent;
+ vd->significand = significand;
+ vfp_double_dump("pack: normalised", vd);
+#endif
+
+ /*
+ * Tiny number?
+ */
+ underflow = exponent < 0;
+ if (underflow) {
+ significand = vfp_shiftright64jamming(significand, -exponent);
+ exponent = 0;
+#ifdef DEBUG
+ vd->exponent = exponent;
+ vd->significand = significand;
+ vfp_double_dump("pack: tiny number", vd);
+#endif
+ if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
+ underflow = 0;
+ }
+
+ /*
+ * Select rounding increment.
+ */
+ incr = 0;
+ rmode = fpscr & FPSCR_RMODE_MASK;
+
+ if (rmode == FPSCR_ROUND_NEAREST) {
+ incr = 1ULL << VFP_DOUBLE_LOW_BITS;
+ if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
+ incr -= 1;
+ } else if (rmode == FPSCR_ROUND_TOZERO) {
+ incr = 0;
+ } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
+ incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
+
+ pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
+
+ /*
+ * Is our rounding going to overflow?
+ */
+ if ((significand + incr) < significand) {
+ exponent += 1;
+ significand = (significand >> 1) | (significand & 1);
+ incr >>= 1;
+#ifdef DEBUG
+ vd->exponent = exponent;
+ vd->significand = significand;
+ vfp_double_dump("pack: overflow", vd);
+#endif
+ }
+
+ /*
+ * If any of the low bits (which will be shifted out of the
+ * number) are non-zero, the result is inexact.
+ */
+ if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
+ exceptions |= FPSCR_IXC;
+
+ /*
+ * Do our rounding.
+ */
+ significand += incr;
+
+ /*
+ * Infinity?
+ */
+ if (exponent >= 2046) {
+ exceptions |= FPSCR_OFC | FPSCR_IXC;
+ if (incr == 0) {
+ vd->exponent = 2045;
+ vd->significand = 0x7fffffffffffffffULL;
+ } else {
+ vd->exponent = 2047; /* infinity */
+ vd->significand = 0;
+ }
+ } else {
+ if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
+ exponent = 0;
+ if (exponent || significand > 0x8000000000000000ULL)
+ underflow = 0;
+ if (underflow)
+ exceptions |= FPSCR_UFC;
+ vd->exponent = exponent;
+ vd->significand = significand >> 1;
+ }
+
+ pack:
+ vfp_double_dump("pack: final", vd);
+ {
+ s64 d = vfp_double_pack(vd);
+ pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
+ dd, d, exceptions);
+ vfp_put_double(dd, d);
+ }
+ return exceptions & ~VFP_NAN_FLAG;
+}
+
+/*
+ * Propagate the NaN, setting exceptions if it is signalling.
+ * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
+ */
+static u32
+vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
+ struct vfp_double *vdm, u32 fpscr)
+{
+ struct vfp_double *nan;
+ int tn, tm = 0;
+
+ tn = vfp_double_type(vdn);
+
+ if (vdm)
+ tm = vfp_double_type(vdm);
+
+ if (fpscr & FPSCR_DEFAULT_NAN)
+ /*
+ * Default NaN mode - always returns a quiet NaN
+ */
+ nan = &vfp_double_default_qnan;
+ else {
+ /*
+ * Contemporary mode - select the first signalling
+ * NAN, or if neither are signalling, the first
+ * quiet NAN.
+ */
+ if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
+ nan = vdn;
+ else
+ nan = vdm;
+ /*
+ * Make the NaN quiet.
+ */
+ nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
+ }
+
+ *vdd = *nan;
+
+ /*
+ * If one was a signalling NAN, raise invalid operation.
+ */
+ return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
+}
+
+/*
+ * Extended operations
+ */
+static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
+{
+ vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm)));
+ return 0;
+}
+
+static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
+{
+ vfp_put_double(dd, vfp_get_double(dm));
+ return 0;
+}
+
+static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
+{
+ vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm)));
+ return 0;
+}
+
+static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
+{
+ struct vfp_double vdm, vdd;
+ int ret, tm;
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+ tm = vfp_double_type(&vdm);
+ if (tm & (VFP_NAN|VFP_INFINITY)) {
+ struct vfp_double *vdp = &vdd;
+
+ if (tm & VFP_NAN)
+ ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
+ else if (vdm.sign == 0) {
+ sqrt_copy:
+ vdp = &vdm;
+ ret = 0;
+ } else {
+ sqrt_invalid:
+ vdp = &vfp_double_default_qnan;
+ ret = FPSCR_IOC;
+ }
+ vfp_put_double(dd, vfp_double_pack(vdp));
+ return ret;
+ }
+
+ /*
+ * sqrt(+/- 0) == +/- 0
+ */
+ if (tm & VFP_ZERO)
+ goto sqrt_copy;
+
+ /*
+ * Normalise a denormalised number
+ */
+ if (tm & VFP_DENORMAL)
+ vfp_double_normalise_denormal(&vdm);
+
+ /*
+ * sqrt(<0) = invalid
+ */
+ if (vdm.sign)
+ goto sqrt_invalid;
+
+ vfp_double_dump("sqrt", &vdm);
+
+ /*
+ * Estimate the square root.
+ */
+ vdd.sign = 0;
+ vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
+ vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
+
+ vfp_double_dump("sqrt estimate1", &vdd);
+
+ vdm.significand >>= 1 + (vdm.exponent & 1);
+ vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
+
+ vfp_double_dump("sqrt estimate2", &vdd);
+
+ /*
+ * And now adjust.
+ */
+ if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
+ if (vdd.significand < 2) {
+ vdd.significand = ~0ULL;
+ } else {
+ u64 termh, terml, remh, reml;
+ vdm.significand <<= 2;
+ mul64to128(&termh, &terml, vdd.significand, vdd.significand);
+ sub128(&remh, &reml, vdm.significand, 0, termh, terml);
+ while ((s64)remh < 0) {
+ vdd.significand -= 1;
+ shift64left(&termh, &terml, vdd.significand);
+ terml |= 1;
+ add128(&remh, &reml, remh, reml, termh, terml);
+ }
+ vdd.significand |= (remh | reml) != 0;
+ }
+ }
+ vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
+
+ return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
+}
+
+/*
+ * Equal := ZC
+ * Less than := N
+ * Greater than := C
+ * Unordered := CV
+ */
+static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
+{
+ s64 d, m;
+ u32 ret = 0;
+
+ m = vfp_get_double(dm);
+ if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
+ ret |= FPSCR_C | FPSCR_V;
+ if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
+ /*
+ * Signalling NaN, or signalling on quiet NaN
+ */
+ ret |= FPSCR_IOC;
+ }
+
+ d = vfp_get_double(dd);
+ if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
+ ret |= FPSCR_C | FPSCR_V;
+ if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
+ /*
+ * Signalling NaN, or signalling on quiet NaN
+ */
+ ret |= FPSCR_IOC;
+ }
+
+ if (ret == 0) {
+ if (d == m || vfp_double_packed_abs(d | m) == 0) {
+ /*
+ * equal
+ */
+ ret |= FPSCR_Z | FPSCR_C;
+ } else if (vfp_double_packed_sign(d ^ m)) {
+ /*
+ * different signs
+ */
+ if (vfp_double_packed_sign(d))
+ /*
+ * d is negative, so d < m
+ */
+ ret |= FPSCR_N;
+ else
+ /*
+ * d is positive, so d > m
+ */
+ ret |= FPSCR_C;
+ } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
+ /*
+ * d < m
+ */
+ ret |= FPSCR_N;
+ } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
+ /*
+ * d > m
+ */
+ ret |= FPSCR_C;
+ }
+ }
+
+ return ret;
+}
+
+static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
+{
+ return vfp_compare(dd, 0, dm, fpscr);
+}
+
+static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
+{
+ return vfp_compare(dd, 1, dm, fpscr);
+}
+
+static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
+{
+ return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
+}
+
+static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
+{
+ return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
+}
+
+static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
+{
+ struct vfp_double vdm;
+ struct vfp_single vsd;
+ int tm;
+ u32 exceptions = 0;
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+
+ tm = vfp_double_type(&vdm);
+
+ /*
+ * If we have a signalling NaN, signal invalid operation.
+ */
+ if (tm == VFP_SNAN)
+ exceptions = FPSCR_IOC;
+
+ if (tm & VFP_DENORMAL)
+ vfp_double_normalise_denormal(&vdm);
+
+ vsd.sign = vdm.sign;
+ vsd.significand = vfp_hi64to32jamming(vdm.significand);
+
+ /*
+ * If we have an infinity or a NaN, the exponent must be 255
+ */
+ if (tm & (VFP_INFINITY|VFP_NAN)) {
+ vsd.exponent = 255;
+ if (tm & VFP_NAN)
+ vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
+ goto pack_nan;
+ } else if (tm & VFP_ZERO)
+ vsd.exponent = 0;
+ else
+ vsd.exponent = vdm.exponent - (1023 - 127);
+
+ return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
+
+ pack_nan:
+ vfp_put_float(sd, vfp_single_pack(&vsd));
+ return exceptions;
+}
+
+static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
+{
+ struct vfp_double vdm;
+ u32 m = vfp_get_float(dm);
+
+ vdm.sign = 0;
+ vdm.exponent = 1023 + 63 - 1;
+ vdm.significand = (u64)m;
+
+ return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
+}
+
+static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
+{
+ struct vfp_double vdm;
+ u32 m = vfp_get_float(dm);
+
+ vdm.sign = (m & 0x80000000) >> 16;
+ vdm.exponent = 1023 + 63 - 1;
+ vdm.significand = vdm.sign ? -m : m;
+
+ return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
+}
+
+static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
+{
+ struct vfp_double vdm;
+ u32 d, exceptions = 0;
+ int rmode = fpscr & FPSCR_RMODE_MASK;
+ int tm;
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+
+ /*
+ * Do we have a denormalised number?
+ */
+ tm = vfp_double_type(&vdm);
+ if (tm & VFP_DENORMAL)
+ exceptions |= FPSCR_IDC;
+
+ if (tm & VFP_NAN)
+ vdm.sign = 0;
+
+ if (vdm.exponent >= 1023 + 32) {
+ d = vdm.sign ? 0 : 0xffffffff;
+ exceptions = FPSCR_IOC;
+ } else if (vdm.exponent >= 1023 - 1) {
+ int shift = 1023 + 63 - vdm.exponent;
+ u64 rem, incr = 0;
+
+ /*
+ * 2^0 <= m < 2^32-2^8
+ */
+ d = (vdm.significand << 1) >> shift;
+ rem = vdm.significand << (65 - shift);
+
+ if (rmode == FPSCR_ROUND_NEAREST) {
+ incr = 0x8000000000000000ULL;
+ if ((d & 1) == 0)
+ incr -= 1;
+ } else if (rmode == FPSCR_ROUND_TOZERO) {
+ incr = 0;
+ } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
+ incr = ~0ULL;
+ }
+
+ if ((rem + incr) < rem) {
+ if (d < 0xffffffff)
+ d += 1;
+ else
+ exceptions |= FPSCR_IOC;
+ }
+
+ if (d && vdm.sign) {
+ d = 0;
+ exceptions |= FPSCR_IOC;
+ } else if (rem)
+ exceptions |= FPSCR_IXC;
+ } else {
+ d = 0;
+ if (vdm.exponent | vdm.significand) {
+ exceptions |= FPSCR_IXC;
+ if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
+ d = 1;
+ else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
+ d = 0;
+ exceptions |= FPSCR_IOC;
+ }
+ }
+ }
+
+ pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
+
+ vfp_put_float(sd, d);
+
+ return exceptions;
+}
+
+static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
+{
+ return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
+}
+
+static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
+{
+ struct vfp_double vdm;
+ u32 d, exceptions = 0;
+ int rmode = fpscr & FPSCR_RMODE_MASK;
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+ vfp_double_dump("VDM", &vdm);
+
+ /*
+ * Do we have denormalised number?
+ */
+ if (vfp_double_type(&vdm) & VFP_DENORMAL)
+ exceptions |= FPSCR_IDC;
+
+ if (vdm.exponent >= 1023 + 32) {
+ d = 0x7fffffff;
+ if (vdm.sign)
+ d = ~d;
+ exceptions |= FPSCR_IOC;
+ } else if (vdm.exponent >= 1023 - 1) {
+ int shift = 1023 + 63 - vdm.exponent; /* 58 */
+ u64 rem, incr = 0;
+
+ d = (vdm.significand << 1) >> shift;
+ rem = vdm.significand << (65 - shift);
+
+ if (rmode == FPSCR_ROUND_NEAREST) {
+ incr = 0x8000000000000000ULL;
+ if ((d & 1) == 0)
+ incr -= 1;
+ } else if (rmode == FPSCR_ROUND_TOZERO) {
+ incr = 0;
+ } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
+ incr = ~0ULL;
+ }
+
+ if ((rem + incr) < rem && d < 0xffffffff)
+ d += 1;
+ if (d > 0x7fffffff + (vdm.sign != 0)) {
+ d = 0x7fffffff + (vdm.sign != 0);
+ exceptions |= FPSCR_IOC;
+ } else if (rem)
+ exceptions |= FPSCR_IXC;
+
+ if (vdm.sign)
+ d = -d;
+ } else {
+ d = 0;
+ if (vdm.exponent | vdm.significand) {
+ exceptions |= FPSCR_IXC;
+ if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
+ d = 1;
+ else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
+ d = -1;
+ }
+ }
+
+ pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
+
+ vfp_put_float(sd, (s32)d);
+
+ return exceptions;
+}
+
+static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
+{
+ return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
+}
+
+
+static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = {
+ [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy,
+ [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs,
+ [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg,
+ [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt,
+ [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp,
+ [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe,
+ [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz,
+ [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez,
+ [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts,
+ [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito,
+ [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito,
+ [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui,
+ [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz,
+ [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi,
+ [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz,
+};
+
+
+
+
+static u32
+vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
+ struct vfp_double *vdm, u32 fpscr)
+{
+ struct vfp_double *vdp;
+ u32 exceptions = 0;
+ int tn, tm;
+
+ tn = vfp_double_type(vdn);
+ tm = vfp_double_type(vdm);
+
+ if (tn & tm & VFP_INFINITY) {
+ /*
+ * Two infinities. Are they different signs?
+ */
+ if (vdn->sign ^ vdm->sign) {
+ /*
+ * different signs -> invalid
+ */
+ exceptions = FPSCR_IOC;
+ vdp = &vfp_double_default_qnan;
+ } else {
+ /*
+ * same signs -> valid
+ */
+ vdp = vdn;
+ }
+ } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
+ /*
+ * One infinity and one number -> infinity
+ */
+ vdp = vdn;
+ } else {
+ /*
+ * 'n' is a NaN of some type
+ */
+ return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
+ }
+ *vdd = *vdp;
+ return exceptions;
+}
+
+static u32
+vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
+ struct vfp_double *vdm, u32 fpscr)
+{
+ u32 exp_diff;
+ u64 m_sig;
+
+ if (vdn->significand & (1ULL << 63) ||
+ vdm->significand & (1ULL << 63)) {
+ pr_info("VFP: bad FP values in %s\n", __func__);
+ vfp_double_dump("VDN", vdn);
+ vfp_double_dump("VDM", vdm);
+ }
+
+ /*
+ * Ensure that 'n' is the largest magnitude number. Note that
+ * if 'n' and 'm' have equal exponents, we do not swap them.
+ * This ensures that NaN propagation works correctly.
+ */
+ if (vdn->exponent < vdm->exponent) {
+ struct vfp_double *t = vdn;
+ vdn = vdm;
+ vdm = t;
+ }
+
+ /*
+ * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
+ * infinity or a NaN here.
+ */
+ if (vdn->exponent == 2047)
+ return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
+
+ /*
+ * We have two proper numbers, where 'vdn' is the larger magnitude.
+ *
+ * Copy 'n' to 'd' before doing the arithmetic.
+ */
+ *vdd = *vdn;
+
+ /*
+ * Align 'm' with the result.
+ */
+ exp_diff = vdn->exponent - vdm->exponent;
+ m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
+
+ /*
+ * If the signs are different, we are really subtracting.
+ */
+ if (vdn->sign ^ vdm->sign) {
+ m_sig = vdn->significand - m_sig;
+ if ((s64)m_sig < 0) {
+ vdd->sign = vfp_sign_negate(vdd->sign);
+ m_sig = -m_sig;
+ }
+ } else {
+ m_sig += vdn->significand;
+ }
+ vdd->significand = m_sig;
+
+ return 0;
+}
+
+static u32
+vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
+ struct vfp_double *vdm, u32 fpscr)
+{
+ vfp_double_dump("VDN", vdn);
+ vfp_double_dump("VDM", vdm);
+
+ /*
+ * Ensure that 'n' is the largest magnitude number. Note that
+ * if 'n' and 'm' have equal exponents, we do not swap them.
+ * This ensures that NaN propagation works correctly.
+ */
+ if (vdn->exponent < vdm->exponent) {
+ struct vfp_double *t = vdn;
+ vdn = vdm;
+ vdm = t;
+ pr_debug("VFP: swapping M <-> N\n");
+ }
+
+ vdd->sign = vdn->sign ^ vdm->sign;
+
+ /*
+ * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
+ */
+ if (vdn->exponent == 2047) {
+ if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
+ return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
+ if ((vdm->exponent | vdm->significand) == 0) {
+ *vdd = vfp_double_default_qnan;
+ return FPSCR_IOC;
+ }
+ vdd->exponent = vdn->exponent;
+ vdd->significand = 0;
+ return 0;
+ }
+
+ /*
+ * If 'm' is zero, the result is always zero. In this case,
+ * 'n' may be zero or a number, but it doesn't matter which.
+ */
+ if ((vdm->exponent | vdm->significand) == 0) {
+ vdd->exponent = 0;
+ vdd->significand = 0;
+ return 0;
+ }
+
+ /*
+ * We add 2 to the destination exponent for the same reason
+ * as the addition case - though this time we have +1 from
+ * each input operand.
+ */
+ vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
+ vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
+
+ vfp_double_dump("VDD", vdd);
+ return 0;
+}
+
+#define NEG_MULTIPLY (1 << 0)
+#define NEG_SUBTRACT (1 << 1)
+
+static u32
+vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
+{
+ struct vfp_double vdd, vdp, vdn, vdm;
+ u32 exceptions;
+
+ vfp_double_unpack(&vdn, vfp_get_double(dn));
+ if (vdn.exponent == 0 && vdn.significand)
+ vfp_double_normalise_denormal(&vdn);
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+ if (vdm.exponent == 0 && vdm.significand)
+ vfp_double_normalise_denormal(&vdm);
+
+ exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
+ if (negate & NEG_MULTIPLY)
+ vdp.sign = vfp_sign_negate(vdp.sign);
+
+ vfp_double_unpack(&vdn, vfp_get_double(dd));
+ if (negate & NEG_SUBTRACT)
+ vdn.sign = vfp_sign_negate(vdn.sign);
+
+ exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
+
+ return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
+}
+
+/*
+ * Standard operations
+ */
+
+/*
+ * sd = sd + (sn * sm)
+ */
+static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
+{
+ return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
+}
+
+/*
+ * sd = sd - (sn * sm)
+ */
+static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
+{
+ return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
+}
+
+/*
+ * sd = -sd + (sn * sm)
+ */
+static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
+{
+ return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
+}
+
+/*
+ * sd = -sd - (sn * sm)
+ */
+static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
+{
+ return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
+}
+
+/*
+ * sd = sn * sm
+ */
+static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
+{
+ struct vfp_double vdd, vdn, vdm;
+ u32 exceptions;
+
+ vfp_double_unpack(&vdn, vfp_get_double(dn));
+ if (vdn.exponent == 0 && vdn.significand)
+ vfp_double_normalise_denormal(&vdn);
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+ if (vdm.exponent == 0 && vdm.significand)
+ vfp_double_normalise_denormal(&vdm);
+
+ exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
+ return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
+}
+
+/*
+ * sd = -(sn * sm)
+ */
+static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
+{
+ struct vfp_double vdd, vdn, vdm;
+ u32 exceptions;
+
+ vfp_double_unpack(&vdn, vfp_get_double(dn));
+ if (vdn.exponent == 0 && vdn.significand)
+ vfp_double_normalise_denormal(&vdn);
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+ if (vdm.exponent == 0 && vdm.significand)
+ vfp_double_normalise_denormal(&vdm);
+
+ exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
+ vdd.sign = vfp_sign_negate(vdd.sign);
+
+ return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
+}
+
+/*
+ * sd = sn + sm
+ */
+static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
+{
+ struct vfp_double vdd, vdn, vdm;
+ u32 exceptions;
+
+ vfp_double_unpack(&vdn, vfp_get_double(dn));
+ if (vdn.exponent == 0 && vdn.significand)
+ vfp_double_normalise_denormal(&vdn);
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+ if (vdm.exponent == 0 && vdm.significand)
+ vfp_double_normalise_denormal(&vdm);
+
+ exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
+
+ return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
+}
+
+/*
+ * sd = sn - sm
+ */
+static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
+{
+ struct vfp_double vdd, vdn, vdm;
+ u32 exceptions;
+
+ vfp_double_unpack(&vdn, vfp_get_double(dn));
+ if (vdn.exponent == 0 && vdn.significand)
+ vfp_double_normalise_denormal(&vdn);
+
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+ if (vdm.exponent == 0 && vdm.significand)
+ vfp_double_normalise_denormal(&vdm);
+
+ /*
+ * Subtraction is like addition, but with a negated operand.
+ */
+ vdm.sign = vfp_sign_negate(vdm.sign);
+
+ exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
+
+ return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
+}
+
+/*
+ * sd = sn / sm
+ */
+static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
+{
+ struct vfp_double vdd, vdn, vdm;
+ u32 exceptions = 0;
+ int tm, tn;
+
+ vfp_double_unpack(&vdn, vfp_get_double(dn));
+ vfp_double_unpack(&vdm, vfp_get_double(dm));
+
+ vdd.sign = vdn.sign ^ vdm.sign;
+
+ tn = vfp_double_type(&vdn);
+ tm = vfp_double_type(&vdm);
+
+ /*
+ * Is n a NAN?
+ */
+ if (tn & VFP_NAN)
+ goto vdn_nan;
+
+ /*
+ * Is m a NAN?
+ */
+ if (tm & VFP_NAN)
+ goto vdm_nan;
+
+ /*
+ * If n and m are infinity, the result is invalid
+ * If n and m are zero, the result is invalid
+ */
+ if (tm & tn & (VFP_INFINITY|VFP_ZERO))
+ goto invalid;
+
+ /*
+ * If n is infinity, the result is infinity
+ */
+ if (tn & VFP_INFINITY)
+ goto infinity;
+
+ /*
+ * If m is zero, raise div0 exceptions
+ */
+ if (tm & VFP_ZERO)
+ goto divzero;
+
+ /*
+ * If m is infinity, or n is zero, the result is zero
+ */
+ if (tm & VFP_INFINITY || tn & VFP_ZERO)
+ goto zero;
+
+ if (tn & VFP_DENORMAL)
+ vfp_double_normalise_denormal(&vdn);
+ if (tm & VFP_DENORMAL)
+ vfp_double_normalise_denormal(&vdm);
+
+ /*
+ * Ok, we have two numbers, we can perform division.
+ */
+ vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
+ vdm.significand <<= 1;
+ if (vdm.significand <= (2 * vdn.significand)) {
+ vdn.significand >>= 1;
+ vdd.exponent++;
+ }
+ vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
+ if ((vdd.significand & 0x1ff) <= 2) {
+ u64 termh, terml, remh, reml;
+ mul64to128(&termh, &terml, vdm.significand, vdd.significand);
+ sub128(&remh, &reml, vdn.significand, 0, termh, terml);
+ while ((s64)remh < 0) {
+ vdd.significand -= 1;
+ add128(&remh, &reml, remh, reml, 0, vdm.significand);
+ }
+ vdd.significand |= (reml != 0);
+ }
+ return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
+
+ vdn_nan:
+ exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
+ pack:
+ vfp_put_double(dd, vfp_double_pack(&vdd));
+ return exceptions;
+
+ vdm_nan:
+ exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
+ goto pack;
+
+ zero:
+ vdd.exponent = 0;
+ vdd.significand = 0;
+ goto pack;
+
+ divzero:
+ exceptions = FPSCR_DZC;
+ infinity:
+ vdd.exponent = 2047;
+ vdd.significand = 0;
+ goto pack;
+
+ invalid:
+ vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan));
+ return FPSCR_IOC;
+}
+
+static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = {
+ [FOP_TO_IDX(FOP_FMAC)] = vfp_double_fmac,
+ [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac,
+ [FOP_TO_IDX(FOP_FMSC)] = vfp_double_fmsc,
+ [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc,
+ [FOP_TO_IDX(FOP_FMUL)] = vfp_double_fmul,
+ [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul,
+ [FOP_TO_IDX(FOP_FADD)] = vfp_double_fadd,
+ [FOP_TO_IDX(FOP_FSUB)] = vfp_double_fsub,
+ [FOP_TO_IDX(FOP_FDIV)] = vfp_double_fdiv,
+};
+
+#define FREG_BANK(x) ((x) & 0x0c)
+#define FREG_IDX(x) ((x) & 3)
+
+u32 vfp_double_cpdo(u32 inst, u32 fpscr)
+{
+ u32 op = inst & FOP_MASK;
+ u32 exceptions = 0;
+ unsigned int dd = vfp_get_sd(inst);
+ unsigned int dn = vfp_get_sn(inst);
+ unsigned int dm = vfp_get_sm(inst);
+ unsigned int vecitr, veclen, vecstride;
+ u32 (*fop)(int, int, s32, u32);
+
+ veclen = fpscr & FPSCR_LENGTH_MASK;
+ vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2;
+
+ /*
+ * If destination bank is zero, vector length is always '1'.
+ * ARM DDI0100F C5.1.3, C5.3.2.
+ */
+ if (FREG_BANK(dd) == 0)
+ veclen = 0;
+
+ pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
+ (veclen >> FPSCR_LENGTH_BIT) + 1);
+
+ fop = (op == FOP_EXT) ? fop_extfns[dn] : fop_fns[FOP_TO_IDX(op)];
+ if (!fop)
+ goto invalid;
+
+ for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
+ u32 except;
+
+ if (op == FOP_EXT)
+ pr_debug("VFP: itr%d (d%u.%u) = op[%u] (d%u.%u)\n",
+ vecitr >> FPSCR_LENGTH_BIT,
+ dd >> 1, dd & 1, dn,
+ dm >> 1, dm & 1);
+ else
+ pr_debug("VFP: itr%d (d%u.%u) = (d%u.%u) op[%u] (d%u.%u)\n",
+ vecitr >> FPSCR_LENGTH_BIT,
+ dd >> 1, dd & 1,
+ dn >> 1, dn & 1,
+ FOP_TO_IDX(op),
+ dm >> 1, dm & 1);
+
+ except = fop(dd, dn, dm, fpscr);
+ pr_debug("VFP: itr%d: exceptions=%08x\n",
+ vecitr >> FPSCR_LENGTH_BIT, except);
+
+ exceptions |= except;
+
+ /*
+ * This ensures that comparisons only operate on scalars;
+ * comparisons always return with one FPSCR status bit set.
+ */
+ if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
+ break;
+
+ /*
+ * CHECK: It appears to be undefined whether we stop when
+ * we encounter an exception. We continue.
+ */
+
+ dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6);
+ dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6);
+ if (FREG_BANK(dm) != 0)
+ dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6);
+ }
+ return exceptions;
+
+ invalid:
+ return ~0;
+}
diff --git a/arch/arm/vfp/vfphw.S b/arch/arm/vfp/vfphw.S
new file mode 100644
index 0000000..de4ca12
--- /dev/null
+++ b/arch/arm/vfp/vfphw.S
@@ -0,0 +1,215 @@
+/*
+ * linux/arch/arm/vfp/vfphw.S
+ *
+ * Copyright (C) 2004 ARM Limited.
+ * Written by Deep Blue Solutions Limited.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This code is called from the kernel's undefined instruction trap.
+ * r9 holds the return address for successful handling.
+ * lr holds the return address for unrecognised instructions.
+ * r10 points at the start of the private FP workspace in the thread structure
+ * sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
+ */
+#include <asm/thread_info.h>
+#include <asm/vfpmacros.h>
+#include "../kernel/entry-header.S"
+
+ .macro DBGSTR, str
+#ifdef DEBUG
+ stmfd sp!, {r0-r3, ip, lr}
+ add r0, pc, #4
+ bl printk
+ b 1f
+ .asciz "<7>VFP: \str\n"
+ .balign 4
+1: ldmfd sp!, {r0-r3, ip, lr}
+#endif
+ .endm
+
+ .macro DBGSTR1, str, arg
+#ifdef DEBUG
+ stmfd sp!, {r0-r3, ip, lr}
+ mov r1, \arg
+ add r0, pc, #4
+ bl printk
+ b 1f
+ .asciz "<7>VFP: \str\n"
+ .balign 4
+1: ldmfd sp!, {r0-r3, ip, lr}
+#endif
+ .endm
+
+ .macro DBGSTR3, str, arg1, arg2, arg3
+#ifdef DEBUG
+ stmfd sp!, {r0-r3, ip, lr}
+ mov r3, \arg3
+ mov r2, \arg2
+ mov r1, \arg1
+ add r0, pc, #4
+ bl printk
+ b 1f
+ .asciz "<7>VFP: \str\n"
+ .balign 4
+1: ldmfd sp!, {r0-r3, ip, lr}
+#endif
+ .endm
+
+
+@ VFP hardware support entry point.
+@
+@ r0 = faulted instruction
+@ r2 = faulted PC+4
+@ r9 = successful return
+@ r10 = vfp_state union
+@ lr = failure return
+
+ .globl vfp_support_entry
+vfp_support_entry:
+ DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
+
+ VFPFMRX r1, FPEXC @ Is the VFP enabled?
+ DBGSTR1 "fpexc %08x", r1
+ tst r1, #FPEXC_ENABLE
+ bne look_for_VFP_exceptions @ VFP is already enabled
+
+ DBGSTR1 "enable %x", r10
+ ldr r3, last_VFP_context_address
+ orr r1, r1, #FPEXC_ENABLE @ user FPEXC has the enable bit set
+ ldr r4, [r3] @ last_VFP_context pointer
+ bic r5, r1, #FPEXC_EXCEPTION @ make sure exceptions are disabled
+ cmp r4, r10
+ beq check_for_exception @ we are returning to the same
+ @ process, so the registers are
+ @ still there. In this case, we do
+ @ not want to drop a pending exception.
+
+ VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
+ @ exceptions, so we can get at the
+ @ rest of it
+
+ @ Save out the current registers to the old thread state
+
+ DBGSTR1 "save old state %p", r4
+ cmp r4, #0
+ beq no_old_VFP_process
+ VFPFMRX r5, FPSCR @ current status
+ VFPFMRX r6, FPINST @ FPINST (always there, rev0 onwards)
+ tst r1, #FPEXC_FPV2 @ is there an FPINST2 to read?
+ VFPFMRX r8, FPINST2, NE @ FPINST2 if needed - avoids reading
+ @ nonexistant reg on rev0
+ VFPFSTMIA r4 @ save the working registers
+ add r4, r4, #8*16+4
+ stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
+ @ and point r4 at the word at the
+ @ start of the register dump
+
+no_old_VFP_process:
+ DBGSTR1 "load state %p", r10
+ str r10, [r3] @ update the last_VFP_context pointer
+ @ Load the saved state back into the VFP
+ add r4, r10, #8*16+4
+ ldmia r4, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2
+ VFPFLDMIA r10 @ reload the working registers while
+ @ FPEXC is in a safe state
+ tst r1, #FPEXC_FPV2 @ is there an FPINST2 to write?
+ VFPFMXR FPINST2, r8, NE @ FPINST2 if needed - avoids writing
+ @ nonexistant reg on rev0
+ VFPFMXR FPINST, r6
+ VFPFMXR FPSCR, r5 @ restore status
+
+check_for_exception:
+ tst r1, #FPEXC_EXCEPTION
+ bne process_exception @ might as well handle the pending
+ @ exception before retrying branch
+ @ out before setting an FPEXC that
+ @ stops us reading stuff
+ VFPFMXR FPEXC, r1 @ restore FPEXC last
+ sub r2, r2, #4
+ str r2, [sp, #S_PC] @ retry the instruction
+ mov pc, r9 @ we think we have handled things
+
+
+look_for_VFP_exceptions:
+ tst r1, #FPEXC_EXCEPTION
+ bne process_exception
+ VFPFMRX r5, FPSCR
+ tst r5, #FPSCR_IXE @ IXE doesn't set FPEXC_EXCEPTION !
+ bne process_exception
+
+ @ Fall into hand on to next handler - appropriate coproc instr
+ @ not recognised by VFP
+
+ DBGSTR "not VFP"
+ mov pc, lr
+
+process_exception:
+ DBGSTR "bounce"
+ sub r2, r2, #4
+ str r2, [sp, #S_PC] @ retry the instruction on exit from
+ @ the imprecise exception handling in
+ @ the support code
+ mov r2, sp @ nothing stacked - regdump is at TOS
+ mov lr, r9 @ setup for a return to the user code.
+
+ @ Now call the C code to package up the bounce to the support code
+ @ r0 holds the trigger instruction
+ @ r1 holds the FPEXC value
+ @ r2 pointer to register dump
+ b VFP9_bounce @ we have handled this - the support
+ @ code will raise an exception if
+ @ required. If not, the user code will
+ @ retry the faulted instruction
+
+last_VFP_context_address:
+ .word last_VFP_context
+
+ .globl vfp_get_float
+vfp_get_float:
+ add pc, pc, r0, lsl #3
+ mov r0, r0
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+ mrc p10, 0, r0, c\dr, c0, 0 @ fmrs r0, s0
+ mov pc, lr
+ mrc p10, 0, r0, c\dr, c0, 4 @ fmrs r0, s1
+ mov pc, lr
+ .endr
+
+ .globl vfp_put_float
+vfp_put_float:
+ add pc, pc, r0, lsl #3
+ mov r0, r0
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+ mcr p10, 0, r1, c\dr, c0, 0 @ fmsr r0, s0
+ mov pc, lr
+ mcr p10, 0, r1, c\dr, c0, 4 @ fmsr r0, s1
+ mov pc, lr
+ .endr
+
+ .globl vfp_get_double
+vfp_get_double:
+ mov r0, r0, lsr #1
+ add pc, pc, r0, lsl #3
+ mov r0, r0
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+ mrrc p10, 1, r0, r1, c\dr @ fmrrd r0, r1, d\dr
+ mov pc, lr
+ .endr
+
+ @ virtual register 16 for compare with zero
+ mov r0, #0
+ mov r1, #0
+ mov pc, lr
+
+ .globl vfp_put_double
+vfp_put_double:
+ mov r0, r0, lsr #1
+ add pc, pc, r0, lsl #3
+ mov r0, r0
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+ mcrr p10, 1, r1, r2, c\dr @ fmrrd r1, r2, d\dr
+ mov pc, lr
+ .endr
diff --git a/arch/arm/vfp/vfpinstr.h b/arch/arm/vfp/vfpinstr.h
new file mode 100644
index 0000000..6c819ae
--- /dev/null
+++ b/arch/arm/vfp/vfpinstr.h
@@ -0,0 +1,88 @@
+/*
+ * linux/arch/arm/vfp/vfpinstr.h
+ *
+ * Copyright (C) 2004 ARM Limited.
+ * Written by Deep Blue Solutions Limited.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * VFP instruction masks.
+ */
+#define INST_CPRTDO(inst) (((inst) & 0x0f000000) == 0x0e000000)
+#define INST_CPRT(inst) ((inst) & (1 << 4))
+#define INST_CPRT_L(inst) ((inst) & (1 << 20))
+#define INST_CPRT_Rd(inst) (((inst) & (15 << 12)) >> 12)
+#define INST_CPRT_OP(inst) (((inst) >> 21) & 7)
+#define INST_CPNUM(inst) ((inst) & 0xf00)
+#define CPNUM(cp) ((cp) << 8)
+
+#define FOP_MASK (0x00b00040)
+#define FOP_FMAC (0x00000000)
+#define FOP_FNMAC (0x00000040)
+#define FOP_FMSC (0x00100000)
+#define FOP_FNMSC (0x00100040)
+#define FOP_FMUL (0x00200000)
+#define FOP_FNMUL (0x00200040)
+#define FOP_FADD (0x00300000)
+#define FOP_FSUB (0x00300040)
+#define FOP_FDIV (0x00800000)
+#define FOP_EXT (0x00b00040)
+
+#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)
+
+#define FEXT_MASK (0x000f0080)
+#define FEXT_FCPY (0x00000000)
+#define FEXT_FABS (0x00000080)
+#define FEXT_FNEG (0x00010000)
+#define FEXT_FSQRT (0x00010080)
+#define FEXT_FCMP (0x00040000)
+#define FEXT_FCMPE (0x00040080)
+#define FEXT_FCMPZ (0x00050000)
+#define FEXT_FCMPEZ (0x00050080)
+#define FEXT_FCVT (0x00070080)
+#define FEXT_FUITO (0x00080000)
+#define FEXT_FSITO (0x00080080)
+#define FEXT_FTOUI (0x000c0000)
+#define FEXT_FTOUIZ (0x000c0080)
+#define FEXT_FTOSI (0x000d0000)
+#define FEXT_FTOSIZ (0x000d0080)
+
+#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
+
+#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
+#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12)
+#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
+#define vfp_get_dm(inst) ((inst & 0x0000000f))
+#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
+#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16)
+
+#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
+
+#define FPSCR_N (1 << 31)
+#define FPSCR_Z (1 << 30)
+#define FPSCR_C (1 << 29)
+#define FPSCR_V (1 << 28)
+
+/*
+ * Since we aren't building with -mfpu=vfp, we need to code
+ * these instructions using their MRC/MCR equivalents.
+ */
+#define vfpreg(_vfp_) #_vfp_
+
+#define fmrx(_vfp_) ({ \
+ u32 __v; \
+ asm("mrc%? p10, 7, %0, " vfpreg(_vfp_) ", cr0, 0 @ fmrx %0, " #_vfp_ \
+ : "=r" (__v)); \
+ __v; \
+ })
+
+#define fmxr(_vfp_,_var_) \
+ asm("mcr%? p10, 7, %0, " vfpreg(_vfp_) ", cr0, 0 @ fmxr " #_vfp_ ", %0" \
+ : : "r" (_var_))
+
+u32 vfp_single_cpdo(u32 inst, u32 fpscr);
+u32 vfp_single_cprt(u32 inst, u32 fpscr, struct pt_regs *regs);
+
+u32 vfp_double_cpdo(u32 inst, u32 fpscr);
diff --git a/arch/arm/vfp/vfpmodule.c b/arch/arm/vfp/vfpmodule.c
new file mode 100644
index 0000000..3aeedd2
--- /dev/null
+++ b/arch/arm/vfp/vfpmodule.c
@@ -0,0 +1,288 @@
+/*
+ * linux/arch/arm/vfp/vfpmodule.c
+ *
+ * Copyright (C) 2004 ARM Limited.
+ * Written by Deep Blue Solutions Limited.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/module.h>
+#include <linux/config.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <asm/vfp.h>
+
+#include "vfpinstr.h"
+#include "vfp.h"
+
+/*
+ * Our undef handlers (in entry.S)
+ */
+void vfp_testing_entry(void);
+void vfp_support_entry(void);
+
+void (*vfp_vector)(void) = vfp_testing_entry;
+union vfp_state *last_VFP_context;
+
+/*
+ * Dual-use variable.
+ * Used in startup: set to non-zero if VFP checks fail
+ * After startup, holds VFP architecture
+ */
+unsigned int VFP_arch;
+
+/*
+ * Per-thread VFP initialisation.
+ */
+void vfp_flush_thread(union vfp_state *vfp)
+{
+ memset(vfp, 0, sizeof(union vfp_state));
+
+ vfp->hard.fpexc = FPEXC_ENABLE;
+ vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
+
+ /*
+ * Disable VFP to ensure we initialise it first.
+ */
+ fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
+
+ /*
+ * Ensure we don't try to overwrite our newly initialised
+ * state information on the first fault.
+ */
+ if (last_VFP_context == vfp)
+ last_VFP_context = NULL;
+}
+
+/*
+ * Per-thread VFP cleanup.
+ */
+void vfp_release_thread(union vfp_state *vfp)
+{
+ if (last_VFP_context == vfp)
+ last_VFP_context = NULL;
+}
+
+/*
+ * Raise a SIGFPE for the current process.
+ * sicode describes the signal being raised.
+ */
+void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
+{
+ siginfo_t info;
+
+ memset(&info, 0, sizeof(info));
+
+ info.si_signo = SIGFPE;
+ info.si_code = sicode;
+ info.si_addr = (void *)(instruction_pointer(regs) - 4);
+
+ /*
+ * This is the same as NWFPE, because it's not clear what
+ * this is used for
+ */
+ current->thread.error_code = 0;
+ current->thread.trap_no = 6;
+
+ force_sig_info(SIGFPE, &info, current);
+}
+
+static void vfp_panic(char *reason)
+{
+ int i;
+
+ printk(KERN_ERR "VFP: Error: %s\n", reason);
+ printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
+ fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
+ for (i = 0; i < 32; i += 2)
+ printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
+ i, vfp_get_float(i), i+1, vfp_get_float(i+1));
+}
+
+/*
+ * Process bitmask of exception conditions.
+ */
+static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
+{
+ int si_code = 0;
+
+ pr_debug("VFP: raising exceptions %08x\n", exceptions);
+
+ if (exceptions == (u32)-1) {
+ vfp_panic("unhandled bounce");
+ vfp_raise_sigfpe(0, regs);
+ return;
+ }
+
+ /*
+ * If any of the status flags are set, update the FPSCR.
+ * Comparison instructions always return at least one of
+ * these flags set.
+ */
+ if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
+ fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
+
+ fpscr |= exceptions;
+
+ fmxr(FPSCR, fpscr);
+
+#define RAISE(stat,en,sig) \
+ if (exceptions & stat && fpscr & en) \
+ si_code = sig;
+
+ /*
+ * These are arranged in priority order, least to highest.
+ */
+ RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
+ RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
+ RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
+ RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
+
+ if (si_code)
+ vfp_raise_sigfpe(si_code, regs);
+}
+
+/*
+ * Emulate a VFP instruction.
+ */
+static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
+{
+ u32 exceptions = (u32)-1;
+
+ pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
+
+ if (INST_CPRTDO(inst)) {
+ if (!INST_CPRT(inst)) {
+ /*
+ * CPDO
+ */
+ if (vfp_single(inst)) {
+ exceptions = vfp_single_cpdo(inst, fpscr);
+ } else {
+ exceptions = vfp_double_cpdo(inst, fpscr);
+ }
+ } else {
+ /*
+ * A CPRT instruction can not appear in FPINST2, nor
+ * can it cause an exception. Therefore, we do not
+ * have to emulate it.
+ */
+ }
+ } else {
+ /*
+ * A CPDT instruction can not appear in FPINST2, nor can
+ * it cause an exception. Therefore, we do not have to
+ * emulate it.
+ */
+ }
+ return exceptions;
+}
+
+/*
+ * Package up a bounce condition.
+ */
+void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
+{
+ u32 fpscr, orig_fpscr, exceptions, inst;
+
+ pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
+
+ /*
+ * Enable access to the VFP so we can handle the bounce.
+ */
+ fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
+
+ orig_fpscr = fpscr = fmrx(FPSCR);
+
+ /*
+ * If we are running with inexact exceptions enabled, we need to
+ * emulate the trigger instruction. Note that as we're emulating
+ * the trigger instruction, we need to increment PC.
+ */
+ if (fpscr & FPSCR_IXE) {
+ regs->ARM_pc += 4;
+ goto emulate;
+ }
+
+ barrier();
+
+ /*
+ * Modify fpscr to indicate the number of iterations remaining
+ */
+ if (fpexc & FPEXC_EXCEPTION) {
+ u32 len;
+
+ len = fpexc + (1 << FPEXC_LENGTH_BIT);
+
+ fpscr &= ~FPSCR_LENGTH_MASK;
+ fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
+ }
+
+ /*
+ * Handle the first FP instruction. We used to take note of the
+ * FPEXC bounce reason, but this appears to be unreliable.
+ * Emulate the bounced instruction instead.
+ */
+ inst = fmrx(FPINST);
+ exceptions = vfp_emulate_instruction(inst, fpscr, regs);
+ if (exceptions)
+ vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
+
+ /*
+ * If there isn't a second FP instruction, exit now.
+ */
+ if (!(fpexc & FPEXC_FPV2))
+ return;
+
+ /*
+ * The barrier() here prevents fpinst2 being read
+ * before the condition above.
+ */
+ barrier();
+ trigger = fmrx(FPINST2);
+ fpscr = fmrx(FPSCR);
+
+ emulate:
+ exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
+ if (exceptions)
+ vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
+}
+
+/*
+ * VFP support code initialisation.
+ */
+static int __init vfp_init(void)
+{
+ unsigned int vfpsid;
+
+ /*
+ * First check that there is a VFP that we can use.
+ * The handler is already setup to just log calls, so
+ * we just need to read the VFPSID register.
+ */
+ vfpsid = fmrx(FPSID);
+
+ printk(KERN_INFO "VFP support v0.3: ");
+ if (VFP_arch) {
+ printk("not present\n");
+ } else if (vfpsid & FPSID_NODOUBLE) {
+ printk("no double precision support\n");
+ } else {
+ VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
+ printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
+ (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
+ (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
+ (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
+ (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
+ (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
+ vfp_vector = vfp_support_entry;
+ }
+ return 0;
+}
+
+late_initcall(vfp_init);
diff --git a/arch/arm/vfp/vfpsingle.c b/arch/arm/vfp/vfpsingle.c
new file mode 100644
index 0000000..6849fe3
--- /dev/null
+++ b/arch/arm/vfp/vfpsingle.c
@@ -0,0 +1,1224 @@
+/*
+ * linux/arch/arm/vfp/vfpsingle.c
+ *
+ * This code is derived in part from John R. Housers softfloat library, which
+ * carries the following notice:
+ *
+ * ===========================================================================
+ * This C source file is part of the SoftFloat IEC/IEEE Floating-point
+ * Arithmetic Package, Release 2.
+ *
+ * Written by John R. Hauser. This work was made possible in part by the
+ * International Computer Science Institute, located at Suite 600, 1947 Center
+ * Street, Berkeley, California 94704. Funding was partially provided by the
+ * National Science Foundation under grant MIP-9311980. The original version
+ * of this code was written as part of a project to build a fixed-point vector
+ * processor in collaboration with the University of California at Berkeley,
+ * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+ * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+ * arithmetic/softfloat.html'.
+ *
+ * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+ * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+ * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+ * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+ * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+ *
+ * Derivative works are acceptable, even for commercial purposes, so long as
+ * (1) they include prominent notice that the work is derivative, and (2) they
+ * include prominent notice akin to these three paragraphs for those parts of
+ * this code that are retained.
+ * ===========================================================================
+ */
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <asm/ptrace.h>
+#include <asm/vfp.h>
+
+#include "vfpinstr.h"
+#include "vfp.h"
+
+static struct vfp_single vfp_single_default_qnan = {
+ .exponent = 255,
+ .sign = 0,
+ .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
+};
+
+static void vfp_single_dump(const char *str, struct vfp_single *s)
+{
+ pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
+ str, s->sign != 0, s->exponent, s->significand);
+}
+
+static void vfp_single_normalise_denormal(struct vfp_single *vs)
+{
+ int bits = 31 - fls(vs->significand);
+
+ vfp_single_dump("normalise_denormal: in", vs);
+
+ if (bits) {
+ vs->exponent -= bits - 1;
+ vs->significand <<= bits;
+ }
+
+ vfp_single_dump("normalise_denormal: out", vs);
+}
+
+#ifndef DEBUG
+#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
+u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
+#else
+u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
+#endif
+{
+ u32 significand, incr, rmode;
+ int exponent, shift, underflow;
+
+ vfp_single_dump("pack: in", vs);
+
+ /*
+ * Infinities and NaNs are a special case.
+ */
+ if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
+ goto pack;
+
+ /*
+ * Special-case zero.
+ */
+ if (vs->significand == 0) {
+ vs->exponent = 0;
+ goto pack;
+ }
+
+ exponent = vs->exponent;
+ significand = vs->significand;
+
+ /*
+ * Normalise first. Note that we shift the significand up to
+ * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
+ * significant bit.
+ */
+ shift = 32 - fls(significand);
+ if (shift < 32 && shift) {
+ exponent -= shift;
+ significand <<= shift;
+ }
+
+#ifdef DEBUG
+ vs->exponent = exponent;
+ vs->significand = significand;
+ vfp_single_dump("pack: normalised", vs);
+#endif
+
+ /*
+ * Tiny number?
+ */
+ underflow = exponent < 0;
+ if (underflow) {
+ significand = vfp_shiftright32jamming(significand, -exponent);
+ exponent = 0;
+#ifdef DEBUG
+ vs->exponent = exponent;
+ vs->significand = significand;
+ vfp_single_dump("pack: tiny number", vs);
+#endif
+ if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
+ underflow = 0;
+ }
+
+ /*
+ * Select rounding increment.
+ */
+ incr = 0;
+ rmode = fpscr & FPSCR_RMODE_MASK;
+
+ if (rmode == FPSCR_ROUND_NEAREST) {
+ incr = 1 << VFP_SINGLE_LOW_BITS;
+ if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
+ incr -= 1;
+ } else if (rmode == FPSCR_ROUND_TOZERO) {
+ incr = 0;
+ } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
+ incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
+
+ pr_debug("VFP: rounding increment = 0x%08x\n", incr);
+
+ /*
+ * Is our rounding going to overflow?
+ */
+ if ((significand + incr) < significand) {
+ exponent += 1;
+ significand = (significand >> 1) | (significand & 1);
+ incr >>= 1;
+#ifdef DEBUG
+ vs->exponent = exponent;
+ vs->significand = significand;
+ vfp_single_dump("pack: overflow", vs);
+#endif
+ }
+
+ /*
+ * If any of the low bits (which will be shifted out of the
+ * number) are non-zero, the result is inexact.
+ */
+ if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
+ exceptions |= FPSCR_IXC;
+
+ /*
+ * Do our rounding.
+ */
+ significand += incr;
+
+ /*
+ * Infinity?
+ */
+ if (exponent >= 254) {
+ exceptions |= FPSCR_OFC | FPSCR_IXC;
+ if (incr == 0) {
+ vs->exponent = 253;
+ vs->significand = 0x7fffffff;
+ } else {
+ vs->exponent = 255; /* infinity */
+ vs->significand = 0;
+ }
+ } else {
+ if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
+ exponent = 0;
+ if (exponent || significand > 0x80000000)
+ underflow = 0;
+ if (underflow)
+ exceptions |= FPSCR_UFC;
+ vs->exponent = exponent;
+ vs->significand = significand >> 1;
+ }
+
+ pack:
+ vfp_single_dump("pack: final", vs);
+ {
+ s32 d = vfp_single_pack(vs);
+ pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
+ sd, d, exceptions);
+ vfp_put_float(sd, d);
+ }
+
+ return exceptions & ~VFP_NAN_FLAG;
+}
+
+/*
+ * Propagate the NaN, setting exceptions if it is signalling.
+ * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
+ */
+static u32
+vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
+ struct vfp_single *vsm, u32 fpscr)
+{
+ struct vfp_single *nan;
+ int tn, tm = 0;
+
+ tn = vfp_single_type(vsn);
+
+ if (vsm)
+ tm = vfp_single_type(vsm);
+
+ if (fpscr & FPSCR_DEFAULT_NAN)
+ /*
+ * Default NaN mode - always returns a quiet NaN
+ */
+ nan = &vfp_single_default_qnan;
+ else {
+ /*
+ * Contemporary mode - select the first signalling
+ * NAN, or if neither are signalling, the first
+ * quiet NAN.
+ */
+ if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
+ nan = vsn;
+ else
+ nan = vsm;
+ /*
+ * Make the NaN quiet.
+ */
+ nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
+ }
+
+ *vsd = *nan;
+
+ /*
+ * If one was a signalling NAN, raise invalid operation.
+ */
+ return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
+}
+
+
+/*
+ * Extended operations
+ */
+static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
+{
+ vfp_put_float(sd, vfp_single_packed_abs(m));
+ return 0;
+}
+
+static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
+{
+ vfp_put_float(sd, m);
+ return 0;
+}
+
+static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
+{
+ vfp_put_float(sd, vfp_single_packed_negate(m));
+ return 0;
+}
+
+static const u16 sqrt_oddadjust[] = {
+ 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
+ 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
+};
+
+static const u16 sqrt_evenadjust[] = {
+ 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
+ 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
+};
+
+u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
+{
+ int index;
+ u32 z, a;
+
+ if ((significand & 0xc0000000) != 0x40000000) {
+ printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
+ }
+
+ a = significand << 1;
+ index = (a >> 27) & 15;
+ if (exponent & 1) {
+ z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
+ z = ((a / z) << 14) + (z << 15);
+ a >>= 1;
+ } else {
+ z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
+ z = a / z + z;
+ z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
+ if (z <= a)
+ return (s32)a >> 1;
+ }
+ return (u32)(((u64)a << 31) / z) + (z >> 1);
+}
+
+static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
+{
+ struct vfp_single vsm, vsd;
+ int ret, tm;
+
+ vfp_single_unpack(&vsm, m);
+ tm = vfp_single_type(&vsm);
+ if (tm & (VFP_NAN|VFP_INFINITY)) {
+ struct vfp_single *vsp = &vsd;
+
+ if (tm & VFP_NAN)
+ ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
+ else if (vsm.sign == 0) {
+ sqrt_copy:
+ vsp = &vsm;
+ ret = 0;
+ } else {
+ sqrt_invalid:
+ vsp = &vfp_single_default_qnan;
+ ret = FPSCR_IOC;
+ }
+ vfp_put_float(sd, vfp_single_pack(vsp));
+ return ret;
+ }
+
+ /*
+ * sqrt(+/- 0) == +/- 0
+ */
+ if (tm & VFP_ZERO)
+ goto sqrt_copy;
+
+ /*
+ * Normalise a denormalised number
+ */
+ if (tm & VFP_DENORMAL)
+ vfp_single_normalise_denormal(&vsm);
+
+ /*
+ * sqrt(<0) = invalid
+ */
+ if (vsm.sign)
+ goto sqrt_invalid;
+
+ vfp_single_dump("sqrt", &vsm);
+
+ /*
+ * Estimate the square root.
+ */
+ vsd.sign = 0;
+ vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
+ vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
+
+ vfp_single_dump("sqrt estimate", &vsd);
+
+ /*
+ * And now adjust.
+ */
+ if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
+ if (vsd.significand < 2) {
+ vsd.significand = 0xffffffff;
+ } else {
+ u64 term;
+ s64 rem;
+ vsm.significand <<= !(vsm.exponent & 1);
+ term = (u64)vsd.significand * vsd.significand;
+ rem = ((u64)vsm.significand << 32) - term;
+
+ pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
+
+ while (rem < 0) {
+ vsd.significand -= 1;
+ rem += ((u64)vsd.significand << 1) | 1;
+ }
+ vsd.significand |= rem != 0;
+ }
+ }
+ vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
+
+ return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
+}
+
+/*
+ * Equal := ZC
+ * Less than := N
+ * Greater than := C
+ * Unordered := CV
+ */
+static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
+{
+ s32 d;
+ u32 ret = 0;
+
+ d = vfp_get_float(sd);
+ if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
+ ret |= FPSCR_C | FPSCR_V;
+ if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
+ /*
+ * Signalling NaN, or signalling on quiet NaN
+ */
+ ret |= FPSCR_IOC;
+ }
+
+ if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
+ ret |= FPSCR_C | FPSCR_V;
+ if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
+ /*
+ * Signalling NaN, or signalling on quiet NaN
+ */
+ ret |= FPSCR_IOC;
+ }
+
+ if (ret == 0) {
+ if (d == m || vfp_single_packed_abs(d | m) == 0) {
+ /*
+ * equal
+ */
+ ret |= FPSCR_Z | FPSCR_C;
+ } else if (vfp_single_packed_sign(d ^ m)) {
+ /*
+ * different signs
+ */
+ if (vfp_single_packed_sign(d))
+ /*
+ * d is negative, so d < m
+ */
+ ret |= FPSCR_N;
+ else
+ /*
+ * d is positive, so d > m
+ */
+ ret |= FPSCR_C;
+ } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
+ /*
+ * d < m
+ */
+ ret |= FPSCR_N;
+ } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
+ /*
+ * d > m
+ */
+ ret |= FPSCR_C;
+ }
+ }
+ return ret;
+}
+
+static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
+{
+ return vfp_compare(sd, 0, m, fpscr);
+}
+
+static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
+{
+ return vfp_compare(sd, 1, m, fpscr);
+}
+
+static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
+{
+ return vfp_compare(sd, 0, 0, fpscr);
+}
+
+static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
+{
+ return vfp_compare(sd, 1, 0, fpscr);
+}
+
+static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
+{
+ struct vfp_single vsm;
+ struct vfp_double vdd;
+ int tm;
+ u32 exceptions = 0;
+
+ vfp_single_unpack(&vsm, m);
+
+ tm = vfp_single_type(&vsm);
+
+ /*
+ * If we have a signalling NaN, signal invalid operation.
+ */
+ if (tm == VFP_SNAN)
+ exceptions = FPSCR_IOC;
+
+ if (tm & VFP_DENORMAL)
+ vfp_single_normalise_denormal(&vsm);
+
+ vdd.sign = vsm.sign;
+ vdd.significand = (u64)vsm.significand << 32;
+
+ /*
+ * If we have an infinity or NaN, the exponent must be 2047.
+ */
+ if (tm & (VFP_INFINITY|VFP_NAN)) {
+ vdd.exponent = 2047;
+ if (tm & VFP_NAN)
+ vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
+ goto pack_nan;
+ } else if (tm & VFP_ZERO)
+ vdd.exponent = 0;
+ else
+ vdd.exponent = vsm.exponent + (1023 - 127);
+
+ /*
+ * Technically, if bit 0 of dd is set, this is an invalid
+ * instruction. However, we ignore this for efficiency.
+ */
+ return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
+
+ pack_nan:
+ vfp_put_double(dd, vfp_double_pack(&vdd));
+ return exceptions;
+}
+
+static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
+{
+ struct vfp_single vs;
+
+ vs.sign = 0;
+ vs.exponent = 127 + 31 - 1;
+ vs.significand = (u32)m;
+
+ return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
+}
+
+static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
+{
+ struct vfp_single vs;
+
+ vs.sign = (m & 0x80000000) >> 16;
+ vs.exponent = 127 + 31 - 1;
+ vs.significand = vs.sign ? -m : m;
+
+ return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
+}
+
+static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
+{
+ struct vfp_single vsm;
+ u32 d, exceptions = 0;
+ int rmode = fpscr & FPSCR_RMODE_MASK;
+ int tm;
+
+ vfp_single_unpack(&vsm, m);
+ vfp_single_dump("VSM", &vsm);
+
+ /*
+ * Do we have a denormalised number?
+ */
+ tm = vfp_single_type(&vsm);
+ if (tm & VFP_DENORMAL)
+ exceptions |= FPSCR_IDC;
+
+ if (tm & VFP_NAN)
+ vsm.sign = 0;
+
+ if (vsm.exponent >= 127 + 32) {
+ d = vsm.sign ? 0 : 0xffffffff;
+ exceptions = FPSCR_IOC;
+ } else if (vsm.exponent >= 127 - 1) {
+ int shift = 127 + 31 - vsm.exponent;
+ u32 rem, incr = 0;
+
+ /*
+ * 2^0 <= m < 2^32-2^8
+ */
+ d = (vsm.significand << 1) >> shift;
+ rem = vsm.significand << (33 - shift);
+
+ if (rmode == FPSCR_ROUND_NEAREST) {
+ incr = 0x80000000;
+ if ((d & 1) == 0)
+ incr -= 1;
+ } else if (rmode == FPSCR_ROUND_TOZERO) {
+ incr = 0;
+ } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
+ incr = ~0;
+ }
+
+ if ((rem + incr) < rem) {
+ if (d < 0xffffffff)
+ d += 1;
+ else
+ exceptions |= FPSCR_IOC;
+ }
+
+ if (d && vsm.sign) {
+ d = 0;
+ exceptions |= FPSCR_IOC;
+ } else if (rem)
+ exceptions |= FPSCR_IXC;
+ } else {
+ d = 0;
+ if (vsm.exponent | vsm.significand) {
+ exceptions |= FPSCR_IXC;
+ if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
+ d = 1;
+ else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
+ d = 0;
+ exceptions |= FPSCR_IOC;
+ }
+ }
+ }
+
+ pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
+
+ vfp_put_float(sd, d);
+
+ return exceptions;
+}
+
+static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
+{
+ return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
+}
+
+static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
+{
+ struct vfp_single vsm;
+ u32 d, exceptions = 0;
+ int rmode = fpscr & FPSCR_RMODE_MASK;
+
+ vfp_single_unpack(&vsm, m);
+ vfp_single_dump("VSM", &vsm);
+
+ /*
+ * Do we have a denormalised number?
+ */
+ if (vfp_single_type(&vsm) & VFP_DENORMAL)
+ exceptions |= FPSCR_IDC;
+
+ if (vsm.exponent >= 127 + 32) {
+ /*
+ * m >= 2^31-2^7: invalid
+ */
+ d = 0x7fffffff;
+ if (vsm.sign)
+ d = ~d;
+ exceptions |= FPSCR_IOC;
+ } else if (vsm.exponent >= 127 - 1) {
+ int shift = 127 + 31 - vsm.exponent;
+ u32 rem, incr = 0;
+
+ /* 2^0 <= m <= 2^31-2^7 */
+ d = (vsm.significand << 1) >> shift;
+ rem = vsm.significand << (33 - shift);
+
+ if (rmode == FPSCR_ROUND_NEAREST) {
+ incr = 0x80000000;
+ if ((d & 1) == 0)
+ incr -= 1;
+ } else if (rmode == FPSCR_ROUND_TOZERO) {
+ incr = 0;
+ } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
+ incr = ~0;
+ }
+
+ if ((rem + incr) < rem && d < 0xffffffff)
+ d += 1;
+ if (d > 0x7fffffff + (vsm.sign != 0)) {
+ d = 0x7fffffff + (vsm.sign != 0);
+ exceptions |= FPSCR_IOC;
+ } else if (rem)
+ exceptions |= FPSCR_IXC;
+
+ if (vsm.sign)
+ d = -d;
+ } else {
+ d = 0;
+ if (vsm.exponent | vsm.significand) {
+ exceptions |= FPSCR_IXC;
+ if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
+ d = 1;
+ else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
+ d = -1;
+ }
+ }
+
+ pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
+
+ vfp_put_float(sd, (s32)d);
+
+ return exceptions;
+}
+
+static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
+{
+ return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
+}
+
+static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = {
+ [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy,
+ [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs,
+ [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg,
+ [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt,
+ [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp,
+ [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe,
+ [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz,
+ [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez,
+ [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd,
+ [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito,
+ [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito,
+ [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui,
+ [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz,
+ [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi,
+ [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz,
+};
+
+
+
+
+
+static u32
+vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
+ struct vfp_single *vsm, u32 fpscr)
+{
+ struct vfp_single *vsp;
+ u32 exceptions = 0;
+ int tn, tm;
+
+ tn = vfp_single_type(vsn);
+ tm = vfp_single_type(vsm);
+
+ if (tn & tm & VFP_INFINITY) {
+ /*
+ * Two infinities. Are they different signs?
+ */
+ if (vsn->sign ^ vsm->sign) {
+ /*
+ * different signs -> invalid
+ */
+ exceptions = FPSCR_IOC;
+ vsp = &vfp_single_default_qnan;
+ } else {
+ /*
+ * same signs -> valid
+ */
+ vsp = vsn;
+ }
+ } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
+ /*
+ * One infinity and one number -> infinity
+ */
+ vsp = vsn;
+ } else {
+ /*
+ * 'n' is a NaN of some type
+ */
+ return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
+ }
+ *vsd = *vsp;
+ return exceptions;
+}
+
+static u32
+vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
+ struct vfp_single *vsm, u32 fpscr)
+{
+ u32 exp_diff, m_sig;
+
+ if (vsn->significand & 0x80000000 ||
+ vsm->significand & 0x80000000) {
+ pr_info("VFP: bad FP values in %s\n", __func__);
+ vfp_single_dump("VSN", vsn);
+ vfp_single_dump("VSM", vsm);
+ }
+
+ /*
+ * Ensure that 'n' is the largest magnitude number. Note that
+ * if 'n' and 'm' have equal exponents, we do not swap them.
+ * This ensures that NaN propagation works correctly.
+ */
+ if (vsn->exponent < vsm->exponent) {
+ struct vfp_single *t = vsn;
+ vsn = vsm;
+ vsm = t;
+ }
+
+ /*
+ * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
+ * infinity or a NaN here.
+ */
+ if (vsn->exponent == 255)
+ return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
+
+ /*
+ * We have two proper numbers, where 'vsn' is the larger magnitude.
+ *
+ * Copy 'n' to 'd' before doing the arithmetic.
+ */
+ *vsd = *vsn;
+
+ /*
+ * Align both numbers.
+ */
+ exp_diff = vsn->exponent - vsm->exponent;
+ m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
+
+ /*
+ * If the signs are different, we are really subtracting.
+ */
+ if (vsn->sign ^ vsm->sign) {
+ m_sig = vsn->significand - m_sig;
+ if ((s32)m_sig < 0) {
+ vsd->sign = vfp_sign_negate(vsd->sign);
+ m_sig = -m_sig;
+ } else if (m_sig == 0) {
+ vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
+ FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
+ }
+ } else {
+ m_sig = vsn->significand + m_sig;
+ }
+ vsd->significand = m_sig;
+
+ return 0;
+}
+
+static u32
+vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
+{
+ vfp_single_dump("VSN", vsn);
+ vfp_single_dump("VSM", vsm);
+
+ /*
+ * Ensure that 'n' is the largest magnitude number. Note that
+ * if 'n' and 'm' have equal exponents, we do not swap them.
+ * This ensures that NaN propagation works correctly.
+ */
+ if (vsn->exponent < vsm->exponent) {
+ struct vfp_single *t = vsn;
+ vsn = vsm;
+ vsm = t;
+ pr_debug("VFP: swapping M <-> N\n");
+ }
+
+ vsd->sign = vsn->sign ^ vsm->sign;
+
+ /*
+ * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
+ */
+ if (vsn->exponent == 255) {
+ if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
+ return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
+ if ((vsm->exponent | vsm->significand) == 0) {
+ *vsd = vfp_single_default_qnan;
+ return FPSCR_IOC;
+ }
+ vsd->exponent = vsn->exponent;
+ vsd->significand = 0;
+ return 0;
+ }
+
+ /*
+ * If 'm' is zero, the result is always zero. In this case,
+ * 'n' may be zero or a number, but it doesn't matter which.
+ */
+ if ((vsm->exponent | vsm->significand) == 0) {
+ vsd->exponent = 0;
+ vsd->significand = 0;
+ return 0;
+ }
+
+ /*
+ * We add 2 to the destination exponent for the same reason as
+ * the addition case - though this time we have +1 from each
+ * input operand.
+ */
+ vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
+ vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
+
+ vfp_single_dump("VSD", vsd);
+ return 0;
+}
+
+#define NEG_MULTIPLY (1 << 0)
+#define NEG_SUBTRACT (1 << 1)
+
+static u32
+vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
+{
+ struct vfp_single vsd, vsp, vsn, vsm;
+ u32 exceptions;
+ s32 v;
+
+ v = vfp_get_float(sn);
+ pr_debug("VFP: s%u = %08x\n", sn, v);
+ vfp_single_unpack(&vsn, v);
+ if (vsn.exponent == 0 && vsn.significand)
+ vfp_single_normalise_denormal(&vsn);
+
+ vfp_single_unpack(&vsm, m);
+ if (vsm.exponent == 0 && vsm.significand)
+ vfp_single_normalise_denormal(&vsm);
+
+ exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
+ if (negate & NEG_MULTIPLY)
+ vsp.sign = vfp_sign_negate(vsp.sign);
+
+ v = vfp_get_float(sd);
+ pr_debug("VFP: s%u = %08x\n", sd, v);
+ vfp_single_unpack(&vsn, v);
+ if (negate & NEG_SUBTRACT)
+ vsn.sign = vfp_sign_negate(vsn.sign);
+
+ exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
+
+ return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
+}
+
+/*
+ * Standard operations
+ */
+
+/*
+ * sd = sd + (sn * sm)
+ */
+static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
+{
+ return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
+}
+
+/*
+ * sd = sd - (sn * sm)
+ */
+static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
+{
+ return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
+}
+
+/*
+ * sd = -sd + (sn * sm)
+ */
+static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
+{
+ return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
+}
+
+/*
+ * sd = -sd - (sn * sm)
+ */
+static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
+{
+ return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
+}
+
+/*
+ * sd = sn * sm
+ */
+static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
+{
+ struct vfp_single vsd, vsn, vsm;
+ u32 exceptions;
+ s32 n = vfp_get_float(sn);
+
+ pr_debug("VFP: s%u = %08x\n", sn, n);
+
+ vfp_single_unpack(&vsn, n);
+ if (vsn.exponent == 0 && vsn.significand)
+ vfp_single_normalise_denormal(&vsn);
+
+ vfp_single_unpack(&vsm, m);
+ if (vsm.exponent == 0 && vsm.significand)
+ vfp_single_normalise_denormal(&vsm);
+
+ exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
+ return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
+}
+
+/*
+ * sd = -(sn * sm)
+ */
+static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
+{
+ struct vfp_single vsd, vsn, vsm;
+ u32 exceptions;
+ s32 n = vfp_get_float(sn);
+
+ pr_debug("VFP: s%u = %08x\n", sn, n);
+
+ vfp_single_unpack(&vsn, n);
+ if (vsn.exponent == 0 && vsn.significand)
+ vfp_single_normalise_denormal(&vsn);
+
+ vfp_single_unpack(&vsm, m);
+ if (vsm.exponent == 0 && vsm.significand)
+ vfp_single_normalise_denormal(&vsm);
+
+ exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
+ vsd.sign = vfp_sign_negate(vsd.sign);
+ return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
+}
+
+/*
+ * sd = sn + sm
+ */
+static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
+{
+ struct vfp_single vsd, vsn, vsm;
+ u32 exceptions;
+ s32 n = vfp_get_float(sn);
+
+ pr_debug("VFP: s%u = %08x\n", sn, n);
+
+ /*
+ * Unpack and normalise denormals.
+ */
+ vfp_single_unpack(&vsn, n);
+ if (vsn.exponent == 0 && vsn.significand)
+ vfp_single_normalise_denormal(&vsn);
+
+ vfp_single_unpack(&vsm, m);
+ if (vsm.exponent == 0 && vsm.significand)
+ vfp_single_normalise_denormal(&vsm);
+
+ exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
+
+ return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
+}
+
+/*
+ * sd = sn - sm
+ */
+static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
+{
+ /*
+ * Subtraction is addition with one sign inverted.
+ */
+ return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
+}
+
+/*
+ * sd = sn / sm
+ */
+static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
+{
+ struct vfp_single vsd, vsn, vsm;
+ u32 exceptions = 0;
+ s32 n = vfp_get_float(sn);
+ int tm, tn;
+
+ pr_debug("VFP: s%u = %08x\n", sn, n);
+
+ vfp_single_unpack(&vsn, n);
+ vfp_single_unpack(&vsm, m);
+
+ vsd.sign = vsn.sign ^ vsm.sign;
+
+ tn = vfp_single_type(&vsn);
+ tm = vfp_single_type(&vsm);
+
+ /*
+ * Is n a NAN?
+ */
+ if (tn & VFP_NAN)
+ goto vsn_nan;
+
+ /*
+ * Is m a NAN?
+ */
+ if (tm & VFP_NAN)
+ goto vsm_nan;
+
+ /*
+ * If n and m are infinity, the result is invalid
+ * If n and m are zero, the result is invalid
+ */
+ if (tm & tn & (VFP_INFINITY|VFP_ZERO))
+ goto invalid;
+
+ /*
+ * If n is infinity, the result is infinity
+ */
+ if (tn & VFP_INFINITY)
+ goto infinity;
+
+ /*
+ * If m is zero, raise div0 exception
+ */
+ if (tm & VFP_ZERO)
+ goto divzero;
+
+ /*
+ * If m is infinity, or n is zero, the result is zero
+ */
+ if (tm & VFP_INFINITY || tn & VFP_ZERO)
+ goto zero;
+
+ if (tn & VFP_DENORMAL)
+ vfp_single_normalise_denormal(&vsn);
+ if (tm & VFP_DENORMAL)
+ vfp_single_normalise_denormal(&vsm);
+
+ /*
+ * Ok, we have two numbers, we can perform division.
+ */
+ vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
+ vsm.significand <<= 1;
+ if (vsm.significand <= (2 * vsn.significand)) {
+ vsn.significand >>= 1;
+ vsd.exponent++;
+ }
+ vsd.significand = ((u64)vsn.significand << 32) / vsm.significand;
+ if ((vsd.significand & 0x3f) == 0)
+ vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
+
+ return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
+
+ vsn_nan:
+ exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
+ pack:
+ vfp_put_float(sd, vfp_single_pack(&vsd));
+ return exceptions;
+
+ vsm_nan:
+ exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
+ goto pack;
+
+ zero:
+ vsd.exponent = 0;
+ vsd.significand = 0;
+ goto pack;
+
+ divzero:
+ exceptions = FPSCR_DZC;
+ infinity:
+ vsd.exponent = 255;
+ vsd.significand = 0;
+ goto pack;
+
+ invalid:
+ vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan));
+ return FPSCR_IOC;
+}
+
+static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = {
+ [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac,
+ [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac,
+ [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc,
+ [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc,
+ [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul,
+ [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul,
+ [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd,
+ [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub,
+ [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv,
+};
+
+#define FREG_BANK(x) ((x) & 0x18)
+#define FREG_IDX(x) ((x) & 7)
+
+u32 vfp_single_cpdo(u32 inst, u32 fpscr)
+{
+ u32 op = inst & FOP_MASK;
+ u32 exceptions = 0;
+ unsigned int sd = vfp_get_sd(inst);
+ unsigned int sn = vfp_get_sn(inst);
+ unsigned int sm = vfp_get_sm(inst);
+ unsigned int vecitr, veclen, vecstride;
+ u32 (*fop)(int, int, s32, u32);
+
+ veclen = fpscr & FPSCR_LENGTH_MASK;
+ vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
+
+ /*
+ * If destination bank is zero, vector length is always '1'.
+ * ARM DDI0100F C5.1.3, C5.3.2.
+ */
+ if (FREG_BANK(sd) == 0)
+ veclen = 0;
+
+ pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
+ (veclen >> FPSCR_LENGTH_BIT) + 1);
+
+ fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)];
+ if (!fop)
+ goto invalid;
+
+ for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
+ s32 m = vfp_get_float(sm);
+ u32 except;
+
+ if (op == FOP_EXT)
+ pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
+ vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m);
+ else
+ pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
+ vecitr >> FPSCR_LENGTH_BIT, sd, sn,
+ FOP_TO_IDX(op), sm, m);
+
+ except = fop(sd, sn, m, fpscr);
+ pr_debug("VFP: itr%d: exceptions=%08x\n",
+ vecitr >> FPSCR_LENGTH_BIT, except);
+
+ exceptions |= except;
+
+ /*
+ * This ensures that comparisons only operate on scalars;
+ * comparisons always return with one FPSCR status bit set.
+ */
+ if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
+ break;
+
+ /*
+ * CHECK: It appears to be undefined whether we stop when
+ * we encounter an exception. We continue.
+ */
+
+ sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7);
+ sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
+ if (FREG_BANK(sm) != 0)
+ sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
+ }
+ return exceptions;
+
+ invalid:
+ return (u32)-1;
+}
OpenPOWER on IntegriCloud