diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/nwfpe/softfloat.c | |
download | op-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip op-kernel-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/arm/nwfpe/softfloat.c')
-rw-r--r-- | arch/arm/nwfpe/softfloat.c | 3443 |
1 files changed, 3443 insertions, 0 deletions
diff --git a/arch/arm/nwfpe/softfloat.c b/arch/arm/nwfpe/softfloat.c new file mode 100644 index 0000000..9d743ae --- /dev/null +++ b/arch/arm/nwfpe/softfloat.c @@ -0,0 +1,3443 @@ +/* +=============================================================================== + +This C source file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/softfloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these three paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#include "fpa11.h" +//#include "milieu.h" +//#include "softfloat.h" + +/* +------------------------------------------------------------------------------- +Floating-point rounding mode, extended double-precision rounding precision, +and exception flags. +------------------------------------------------------------------------------- +*/ +int8 float_rounding_mode = float_round_nearest_even; +int8 floatx80_rounding_precision = 80; +int8 float_exception_flags; + +/* +------------------------------------------------------------------------------- +Primitive arithmetic functions, including multi-word arithmetic, and +division and square root approximations. (Can be specialized to target if +desired.) +------------------------------------------------------------------------------- +*/ +#include "softfloat-macros" + +/* +------------------------------------------------------------------------------- +Functions and definitions to determine: (1) whether tininess for underflow +is detected before or after rounding by default, (2) what (if anything) +happens when exceptions are raised, (3) how signaling NaNs are distinguished +from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs +are propagated from function inputs to output. These details are target- +specific. +------------------------------------------------------------------------------- +*/ +#include "softfloat-specialize" + +/* +------------------------------------------------------------------------------- +Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 +and 7, and returns the properly rounded 32-bit integer corresponding to the +input. If `zSign' is nonzero, the input is negated before being converted +to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point +input is simply rounded to an integer, with the inexact exception raised if +the input cannot be represented exactly as an integer. If the fixed-point +input is too large, however, the invalid exception is raised and the largest +positive or negative integer is returned. +------------------------------------------------------------------------------- +*/ +static int32 roundAndPackInt32( flag zSign, bits64 absZ ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + int32 z; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = absZ & 0x7F; + absZ = ( absZ + roundIncrement )>>7; + absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + z = absZ; + if ( zSign ) z = - z; + if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { + float_exception_flags |= float_flag_invalid; + return zSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat32Frac( float32 a ) +{ + + return a & 0x007FFFFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat32Exp( float32 a ) +{ + + return ( a>>23 ) & 0xFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +#if 0 /* in softfloat.h */ +INLINE flag extractFloat32Sign( float32 a ) +{ + + return a>>31; + +} +#endif + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal single-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( aSig ) - 8; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +single-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ +#if 0 + float32 f; + __asm__("@ packFloat32 \n\ + mov %0, %1, asl #31 \n\ + orr %0, %2, asl #23 \n\ + orr %0, %3" + : /* no outputs */ + : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig) + : "cc"); + return f; +#else + return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; +#endif +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the single-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. If the abstract value is too large, however, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal single- +precision floating-point number. + The input significand `zSig' has its binary point between bits 30 +and 29, which is 7 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x7F; + if ( 0xFD <= (bits16) zExp ) { + if ( ( 0xFD < zExp ) + || ( ( zExp == 0xFD ) + && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < 0x80000000 ); + shift32RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x7F; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig = ( zSig + roundIncrement )>>7; + zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat32' except that `zSig' does not have to be normalized in +any way. In all cases, `zExp' must be 1 less than the ``true'' floating- +point exponent. +------------------------------------------------------------------------------- +*/ +static float32 + normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( zSig ) - 1; + return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloat64Frac( float64 a ) +{ + + return a & LIT64( 0x000FFFFFFFFFFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat64Exp( float64 a ) +{ + + return ( a>>52 ) & 0x7FF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +#if 0 /* in softfloat.h */ +INLINE flag extractFloat64Sign( float64 a ) +{ + + return a>>63; + +} +#endif + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal double-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( aSig ) - 11; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +double-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + + return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper double-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the double-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. If the abstract value is too large, however, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal double- +precision floating-point number. + The input significand `zSig' has its binary point between bits 62 +and 61, which is 10 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int16 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x200; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x3FF; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x3FF; + if ( 0x7FD <= (bits16) zExp ) { + if ( ( 0x7FD < zExp ) + || ( ( zExp == 0x7FD ) + && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) + ) { + //register int lr = __builtin_return_address(0); + //printk("roundAndPackFloat64 called from 0x%08x\n",lr); + float_raise( float_flag_overflow | float_flag_inexact ); + return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); + shift64RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x3FF; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig = ( zSig + roundIncrement )>>10; + zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper double-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat64' except that `zSig' does not have to be normalized in +any way. In all cases, `zExp' must be 1 less than the ``true'' floating- +point exponent. +------------------------------------------------------------------------------- +*/ +static float64 + normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( zSig ) - 1; + return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the extended double-precision floating-point +value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloatx80Frac( floatx80 a ) +{ + + return a.low; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the extended double-precision floating-point +value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int32 extractFloatx80Exp( floatx80 a ) +{ + + return a.high & 0x7FFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the extended double-precision floating-point value +`a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloatx80Sign( floatx80 a ) +{ + + return a.high>>15; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal extended double-precision floating-point value +represented by the denormalized significand `aSig'. The normalized exponent +and significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( aSig ); + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into an +extended double-precision floating-point value, returning the result. +------------------------------------------------------------------------------- +*/ +INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) +{ + floatx80 z; + + z.low = zSig; + z.high = ( ( (bits16) zSign )<<15 ) + zExp; + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and extended significand formed by the concatenation of `zSig0' and `zSig1', +and returns the proper extended double-precision floating-point value +corresponding to the abstract input. Ordinarily, the abstract value is +rounded and packed into the extended double-precision format, with the +inexact exception raised if the abstract input cannot be represented +exactly. If the abstract value is too large, however, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal extended +double-precision floating-point number. + If `roundingPrecision' is 32 or 64, the result is rounded to the same +number of bits as single or double precision, respectively. Otherwise, the +result is rounded to the full precision of the extended double-precision +format. + The input significand must be normalized or smaller. If the input +significand is not normalized, `zExp' must be 0; in that case, the result +returned is a subnormal number, and it must not require rounding. The +handling of underflow and overflow follows the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 + roundAndPackFloatx80( + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 + ) +{ + int8 roundingMode; + flag roundNearestEven, increment, isTiny; + int64 roundIncrement, roundMask, roundBits; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + if ( roundingPrecision == 80 ) goto precision80; + if ( roundingPrecision == 64 ) { + roundIncrement = LIT64( 0x0000000000000400 ); + roundMask = LIT64( 0x00000000000007FF ); + } + else if ( roundingPrecision == 32 ) { + roundIncrement = LIT64( 0x0000008000000000 ); + roundMask = LIT64( 0x000000FFFFFFFFFF ); + } + else { + goto precision80; + } + zSig0 |= ( zSig1 != 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = roundMask; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig0 & roundMask; + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { + if ( ( 0x7FFE < zExp ) + || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) + ) { + goto overflow; + } + if ( zExp <= 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < 0 ) + || ( zSig0 <= zSig0 + roundIncrement ); + shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); + zExp = 0; + roundBits = zSig0 & roundMask; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig0 += roundIncrement; + if ( (sbits64) zSig0 < 0 ) zExp = 1; + roundIncrement = roundMask + 1; + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { + roundMask |= roundIncrement; + } + zSig0 &= ~ roundMask; + return packFloatx80( zSign, zExp, zSig0 ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig0 += roundIncrement; + if ( zSig0 < roundIncrement ) { + ++zExp; + zSig0 = LIT64( 0x8000000000000000 ); + } + roundIncrement = roundMask + 1; + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { + roundMask |= roundIncrement; + } + zSig0 &= ~ roundMask; + if ( zSig0 == 0 ) zExp = 0; + return packFloatx80( zSign, zExp, zSig0 ); + precision80: + increment = ( (sbits64) zSig1 < 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + increment = 0; + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig1; + } + else { + increment = ( roundingMode == float_round_up ) && zSig1; + } + } + } + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { + if ( ( 0x7FFE < zExp ) + || ( ( zExp == 0x7FFE ) + && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) + && increment + ) + ) { + roundMask = 0; + overflow: + float_raise( float_flag_overflow | float_flag_inexact ); + if ( ( roundingMode == float_round_to_zero ) + || ( zSign && ( roundingMode == float_round_up ) ) + || ( ! zSign && ( roundingMode == float_round_down ) ) + ) { + return packFloatx80( zSign, 0x7FFE, ~ roundMask ); + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( zExp <= 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < 0 ) + || ! increment + || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); + shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); + zExp = 0; + if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); + if ( zSig1 ) float_exception_flags |= float_flag_inexact; + if ( roundNearestEven ) { + increment = ( (sbits64) zSig1 < 0 ); + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig1; + } + else { + increment = ( roundingMode == float_round_up ) && zSig1; + } + } + if ( increment ) { + ++zSig0; + zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); + if ( (sbits64) zSig0 < 0 ) zExp = 1; + } + return packFloatx80( zSign, zExp, zSig0 ); + } + } + if ( zSig1 ) float_exception_flags |= float_flag_inexact; + if ( increment ) { + ++zSig0; + if ( zSig0 == 0 ) { + ++zExp; + zSig0 = LIT64( 0x8000000000000000 ); + } + else { + zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); + } + } + else { + if ( zSig0 == 0 ) zExp = 0; + } + + return packFloatx80( zSign, zExp, zSig0 ); +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent +`zExp', and significand formed by the concatenation of `zSig0' and `zSig1', +and returns the proper extended double-precision floating-point value +corresponding to the abstract input. This routine is just like +`roundAndPackFloatx80' except that the input significand does not have to be +normalized. +------------------------------------------------------------------------------- +*/ +static floatx80 + normalizeRoundAndPackFloatx80( + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 + ) +{ + int8 shiftCount; + + if ( zSig0 == 0 ) { + zSig0 = zSig1; + zSig1 = 0; + zExp -= 64; + } + shiftCount = countLeadingZeros64( zSig0 ); + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); + zExp -= shiftCount; + return + roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the single-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( int32 a ) +{ + flag zSign; + + if ( a == 0 ) return 0; + if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); + zSign = ( a < 0 ); + return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the double-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 int32_to_float64( int32 a ) +{ + flag aSign; + uint32 absA; + int8 shiftCount; + bits64 zSig; + + if ( a == 0 ) return 0; + aSign = ( a < 0 ); + absA = aSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) + 21; + zSig = absA; + return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' +to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 int32_to_floatx80( int32 a ) +{ + flag zSign; + uint32 absA; + int8 shiftCount; + bits64 zSig; + + if ( a == 0 ) return packFloatx80( 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) + 32; + zSig = absA; + return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + bits64 zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= 0x00800000; + shiftCount = 0xAF - aExp; + zSig = aSig; + zSig <<= 32; + if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig ); + return roundAndPackInt32( aSign, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32_round_to_zero( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + int32 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x9E; + if ( 0 <= shiftCount ) { + if ( a == 0xCF000000 ) return 0x80000000; + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; + return 0x80000000; + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig = ( aSig | 0x00800000 )<<8; + z = aSig>>( - shiftCount ); + if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { + float_exception_flags |= float_flag_inexact; + } + return aSign ? - z : z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the double-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float32_to_float64( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); + return packFloat64( aSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + --aExp; + } + return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 float32_to_floatx80( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + aSig |= 0x00800000; + return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Rounds the single-precision floating-point value `a' to an integer, and +returns the result as a single-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 lastBitMask, roundBitsMask; + int8 roundingMode; + float32 z; + + aExp = extractFloat32Exp( a ); + if ( 0x96 <= aExp ) { + if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { + return propagateFloat32NaN( a, a ); + } + return a; + } + if ( aExp <= 0x7E ) { + if ( (bits32) ( a<<1 ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat32Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { + return packFloat32( aSign, 0x7F, 0 ); + } + break; + case float_round_down: + return aSign ? 0xBF800000 : 0; + case float_round_up: + return aSign ? 0x80000000 : 0x3F800000; + } + return packFloat32( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x96 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the single-precision +floating-point values `a' and `b'. If `zSign' is true, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. The +addition is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 6; + bSig <<= 6; + if ( 0 < expDiff ) { + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x20000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x20000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); + zSig = 0x40000000 + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= 0x20000000; + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits32) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the single- +precision floating-point values `a' and `b'. If `zSign' is true, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 7; + bSig <<= 7; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign ^ 1, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x40000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + bSig |= 0x40000000; + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x40000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + aSig |= 0x40000000; + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the single-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_add( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return addFloat32Sigs( a, b, aSign ); + } + else { + return subFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sub( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return subFloat32Sigs( a, b, aSign ); + } + else { + return addFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_mul( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig; + bits64 zSig64; + bits32 zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x7F; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); + zSig = zSig64; + if ( 0 <= (sbits32) ( zSig<<1 ) ) { + zSig <<= 1; + --zExp; + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the single-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_div( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat32( zSign, 0xFF, 0 ); + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x7D; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = ( ( (bits64) aSig )<<32 ) / bSig; + if ( ( zSig & 0x3F ) == 0 ) { + zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 ); + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the single-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_rem( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits32 aSig, bSig; + bits32 q; + bits64 aSig64, bSig64, q64; + bits32 alternateASig; + sbits32 sigMean; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig |= 0x00800000; + bSig |= 0x00800000; + if ( expDiff < 32 ) { + aSig <<= 8; + bSig <<= 8; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + if ( 0 < expDiff ) { + q = ( ( (bits64) aSig )<<32 ) / bSig; + q >>= 32 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + } + else { + if ( bSig <= aSig ) aSig -= bSig; + aSig64 = ( (bits64) aSig )<<40; + bSig64 = ( (bits64) bSig )<<40; + expDiff -= 64; + while ( 0 < expDiff ) { + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); + q64 = ( 2 < q64 ) ? q64 - 2 : 0; + aSig64 = - ( ( bSig * q64 )<<38 ); + expDiff -= 62; + } + expDiff += 64; + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); + q64 = ( 2 < q64 ) ? q64 - 2 : 0; + q = q64>>( 64 - expDiff ); + bSig <<= 6; + aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits32) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits32) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the single-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sqrt( float32 a ) +{ + flag aSign; + int16 aExp, zExp; + bits32 aSig, zSig; + bits64 rem, term; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, 0 ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; + aSig = ( aSig | 0x00800000 )<<8; + zSig = estimateSqrt32( aExp, aSig ) + 2; + if ( ( zSig & 0x7F ) <= 5 ) { + if ( zSig < 2 ) { + zSig = 0xFFFFFFFF; + } + else { + aSig >>= aExp & 1; + term = ( (bits64) zSig ) * zSig; + rem = ( ( (bits64) aSig )<<32 ) - term; + while ( (sbits64) rem < 0 ) { + --zSig; + rem += ( ( (bits64) zSig )<<1 ) | 1; + } + zSig |= ( rem != 0 ); + } + } + shift32RightJamming( zSig, 1, &zSig ); + return roundAndPackFloat32( 0, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The invalid exception is raised +if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq_signaling( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + //int16 aExp, bExp; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x42C - aExp; + if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = 0x433 - aExp; + if ( shiftCount < 21 ) { + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + goto invalid; + } + else if ( 52 < shiftCount ) { + if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig |= LIT64( 0x0010000000000000 ); + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_exception_flags |= float_flag_invalid; + return aSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_exception_flags |= float_flag_inexact; + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement unsigned integer format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest positive integer is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_uint32( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = 0; //extractFloat64Sign( a ); + //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x42C - aExp; + if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest positive integer is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_uint32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = 0x433 - aExp; + if ( shiftCount < 21 ) { + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + goto invalid; + } + else if ( 52 < shiftCount ) { + if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig |= LIT64( 0x0010000000000000 ); + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_exception_flags |= float_flag_invalid; + return aSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_exception_flags |= float_flag_inexact; + } + return z; +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the single-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float64_to_float32( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig; + bits32 zSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig, 22, &aSig ); + zSig = aSig; + if ( aExp || zSig ) { + zSig |= 0x40000000; + aExp -= 0x381; + } + return roundAndPackFloat32( aSign, aExp, zSig ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 float64_to_floatx80( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + return + packFloatx80( + aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Rounds the double-precision floating-point value `a' to an integer, and +returns the result as a double-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_round_to_int( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 lastBitMask, roundBitsMask; + int8 roundingMode; + float64 z; + + aExp = extractFloat64Exp( a ); + if ( 0x433 <= aExp ) { + if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { + return propagateFloat64NaN( a, a ); + } + return a; + } + if ( aExp <= 0x3FE ) { + if ( (bits64) ( a<<1 ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat64Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { + return packFloat64( aSign, 0x3FF, 0 ); + } + break; + case float_round_down: + return aSign ? LIT64( 0xBFF0000000000000 ) : 0; + case float_round_up: + return + aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); + } + return packFloat64( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x433 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the double-precision +floating-point values `a' and `b'. If `zSign' is true, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. The +addition is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + aSig <<= 9; + bSig <<= 9; + if ( 0 < expDiff ) { + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= LIT64( 0x2000000000000000 ); + } + shift64RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= LIT64( 0x2000000000000000 ); + } + shift64RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0x7FF ) { + if ( aSig | bSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); + zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= LIT64( 0x2000000000000000 ); + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits64) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the double- +precision floating-point values `a' and `b'. If `zSign' is true, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + aSig <<= 10; + bSig <<= 10; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FF ) { + if ( aSig | bSig ) return propagateFloat64NaN( a, b ); + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign ^ 1, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= LIT64( 0x4000000000000000 ); + } + shift64RightJamming( aSig, - expDiff, &aSig ); + bSig |= LIT64( 0x4000000000000000 ); + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= LIT64( 0x4000000000000000 ); + } + shift64RightJamming( bSig, expDiff, &bSig ); + aSig |= LIT64( 0x4000000000000000 ); + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the double-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_add( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return addFloat64Sigs( a, b, aSign ); + } + else { + return subFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sub( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return subFloat64Sigs( a, b, aSign ); + } + else { + return addFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_mul( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { + return propagateFloat64NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x3FF; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + mul64To128( aSig, bSig, &zSig0, &zSig1 ); + zSig0 |= ( zSig1 != 0 ); + if ( 0 <= (sbits64) ( zSig0<<1 ) ) { + zSig0 <<= 1; + --zExp; + } + return roundAndPackFloat64( zSign, zExp, zSig0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the double-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to +the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_div( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + bits64 rem0, rem1; + bits64 term0, term1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat64( zSign, 0x7FF, 0 ); + } + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x3FD; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = estimateDiv128To64( aSig, 0, bSig ); + if ( ( zSig & 0x1FF ) <= 2 ) { + mul64To128( bSig, zSig, &term0, &term1 ); + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig; + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig |= ( rem1 != 0 ); + } + return roundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the double-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_rem( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits64 aSig, bSig; + bits64 q, alternateASig; + sbits64 sigMean; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + if ( aExp == 0x7FF ) { + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { + return propagateFloat64NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + expDiff -= 64; + while ( 0 < expDiff ) { + q = estimateDiv128To64( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + aSig = - ( ( bSig>>2 ) * q ); + expDiff -= 62; + } + expDiff += 64; + if ( 0 < expDiff ) { + q = estimateDiv128To64( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 64 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits64) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits64) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the double-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sqrt( float64 a ) +{ + flag aSign; + int16 aExp, zExp; + bits64 aSig, zSig; + bits64 rem0, rem1, term0, term1; //, shiftedRem; + //float64 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, a ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; + aSig |= LIT64( 0x0010000000000000 ); + zSig = estimateSqrt32( aExp, aSig>>21 ); + zSig <<= 31; + aSig <<= 9 - ( aExp & 1 ); + zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2; + if ( ( zSig & 0x3FF ) <= 5 ) { + if ( zSig < 2 ) { + zSig = LIT64( 0xFFFFFFFFFFFFFFFF ); + } + else { + aSig <<= 2; + mul64To128( zSig, zSig, &term0, &term1 ); + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig; + shortShift128Left( 0, zSig, 1, &term0, &term1 ); + term1 |= 1; + add128( rem0, rem1, term0, term1, &rem0, &rem1 ); + } + zSig |= ( ( rem0 | rem1 ) != 0 ); + } + } + shift64RightJamming( zSig, 1, &zSig ); + return roundAndPackFloat64( 0, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The invalid exception is raised +if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq_signaling( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + //int16 aExp, bExp; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 32-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic---which means in particular that the conversion +is rounded according to the current rounding mode. If `a' is a NaN, the +largest positive integer is returned. Otherwise, if the conversion +overflows, the largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 floatx80_to_int32( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; + shiftCount = 0x4037 - aExp; + if ( shiftCount <= 0 ) shiftCount = 1; + shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 32-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic, except that the conversion is always rounded +toward zero. If `a' is a NaN, the largest positive integer is returned. +Otherwise, if the conversion overflows, the largest integer with the same +sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 floatx80_to_int32_round_to_zero( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + shiftCount = 0x403E - aExp; + if ( shiftCount < 32 ) { + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; + goto invalid; + } + else if ( 63 < shiftCount ) { + if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_exception_flags |= float_flag_invalid; + return aSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_exception_flags |= float_flag_inexact; + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the single-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 floatx80_to_float32( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) { + return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); + } + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig, 33, &aSig ); + if ( aExp || aSig ) aExp -= 0x3F81; + return roundAndPackFloat32( aSign, aExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the double-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 floatx80_to_float64( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig, zSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) { + return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); + } + return packFloat64( aSign, 0x7FF, 0 ); + } + shift64RightJamming( aSig, 1, &zSig ); + if ( aExp || aSig ) aExp -= 0x3C01; + return roundAndPackFloat64( aSign, aExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Rounds the extended double-precision floating-point value `a' to an integer, +and returns the result as an extended quadruple-precision floating-point +value. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_round_to_int( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 lastBitMask, roundBitsMask; + int8 roundingMode; + floatx80 z; + + aExp = extractFloatx80Exp( a ); + if ( 0x403E <= aExp ) { + if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { + return propagateFloatx80NaN( a, a ); + } + return a; + } + if ( aExp <= 0x3FFE ) { + if ( ( aExp == 0 ) + && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { + return a; + } + float_exception_flags |= float_flag_inexact; + aSign = extractFloatx80Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) + ) { + return + packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); + } + break; + case float_round_down: + return + aSign ? + packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) + : packFloatx80( 0, 0, 0 ); + case float_round_up: + return + aSign ? packFloatx80( 1, 0, 0 ) + : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); + } + return packFloatx80( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x403E - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z.low += lastBitMask>>1; + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z.low += roundBitsMask; + } + } + z.low &= ~ roundBitsMask; + if ( z.low == 0 ) { + ++z.high; + z.low = LIT64( 0x8000000000000000 ); + } + if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the extended double- +precision floating-point values `a' and `b'. If `zSign' is true, the sum is +negated before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + int32 expDiff; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) { + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) --expDiff; + shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) ++expDiff; + shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); + zExp = bExp; + } + else { + if ( aExp == 0x7FFF ) { + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { + return propagateFloatx80NaN( a, b ); + } + return a; + } + zSig1 = 0; + zSig0 = aSig + bSig; + if ( aExp == 0 ) { + normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); + goto roundAndPack; + } + zExp = aExp; + goto shiftRight1; + } + + zSig0 = aSig + bSig; + + if ( (sbits64) zSig0 < 0 ) goto roundAndPack; + shiftRight1: + shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); + zSig0 |= LIT64( 0x8000000000000000 ); + ++zExp; + roundAndPack: + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the extended +double-precision floating-point values `a' and `b'. If `zSign' is true, +the difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + int32 expDiff; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { + return propagateFloatx80NaN( a, b ); + } + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + zSig1 = 0; + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) ++expDiff; + shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); + bBigger: + sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) --expDiff; + shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); + aBigger: + sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); + zExp = aExp; + normalizeRoundAndPack: + return + normalizeRoundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the extended double-precision floating-point +values `a' and `b'. The operation is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_add( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign == bSign ) { + return addFloatx80Sigs( a, b, aSign ); + } + else { + return subFloatx80Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the extended double-precision floating- +point values `a' and `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_sub( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign == bSign ) { + return subFloatx80Sigs( a, b, aSign ); + } + else { + return addFloatx80Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the extended double-precision floating- +point values `a' and `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_mul( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { + return propagateFloatx80NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) goto invalid; + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x3FFE; + mul64To128( aSig, bSig, &zSig0, &zSig1 ); + if ( 0 < (sbits64) zSig0 ) { + shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); + --zExp; + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the extended double-precision floating-point +value `a' by the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_div( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + bits64 rem0, rem1, rem2, term0, term1, term2; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + goto invalid; + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + float_raise( float_flag_divbyzero ); + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x3FFE; + rem1 = 0; + if ( bSig <= aSig ) { + shift128Right( aSig, 0, 1, &aSig, &rem1 ); + ++zExp; + } + zSig0 = estimateDiv128To64( aSig, rem1, bSig ); + mul64To128( bSig, zSig0, &term0, &term1 ); + sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig1 = estimateDiv128To64( rem1, 0, bSig ); + if ( (bits64) ( zSig1<<1 ) <= 8 ) { + mul64To128( bSig, zSig1, &term1, &term2 ); + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); + } + zSig1 |= ( ( rem1 | rem2 ) != 0 ); + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the extended double-precision floating-point value +`a' with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_rem( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, expDiff; + bits64 aSig0, aSig1, bSig; + bits64 q, term0, term1, alternateASig0, alternateASig1; + floatx80 z; + + aSig0 = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig0<<1 ) + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { + return propagateFloatx80NaN( a, b ); + } + goto invalid; + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( (bits64) ( aSig0<<1 ) == 0 ) return a; + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); + } + bSig |= LIT64( 0x8000000000000000 ); + zSign = aSign; + expDiff = aExp - bExp; + aSig1 = 0; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); + expDiff = 0; + } + q = ( bSig <= aSig0 ); + if ( q ) aSig0 -= bSig; + expDiff -= 64; + while ( 0 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + mul64To128( bSig, q, &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); + expDiff -= 62; + } + expDiff += 64; + if ( 0 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 64 - expDiff; + mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); + while ( le128( term0, term1, aSig0, aSig1 ) ) { + ++q; + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + } + } + else { + term1 = 0; + term0 = bSig; + } + sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); + if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) + || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) + && ( q & 1 ) ) + ) { + aSig0 = alternateASig0; + aSig1 = alternateASig1; + zSign = ! zSign; + } + return + normalizeRoundAndPackFloatx80( + 80, zSign, bExp + expDiff, aSig0, aSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the extended double-precision floating-point +value `a'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_sqrt( floatx80 a ) +{ + flag aSign; + int32 aExp, zExp; + bits64 aSig0, aSig1, zSig0, zSig1; + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + bits64 shiftedRem0, shiftedRem1; + floatx80 z; + + aSig0 = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); + if ( ! aSign ) return a; + goto invalid; + } + if ( aSign ) { + if ( ( aExp | aSig0 ) == 0 ) return a; + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + if ( aExp == 0 ) { + if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); + } + zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; + zSig0 = estimateSqrt32( aExp, aSig0>>32 ); + zSig0 <<= 31; + aSig1 = 0; + shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 ); + zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4; + if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF ); + shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 ); + mul64To128( zSig0, zSig0, &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + shortShift128Left( 0, zSig0, 1, &term0, &term1 ); + term1 |= 1; + add128( rem0, rem1, term0, term1, &rem0, &rem1 ); + } + shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 ); + zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 ); + if ( (bits64) ( zSig1<<1 ) <= 10 ) { + if ( zSig1 == 0 ) zSig1 = 1; + mul64To128( zSig0, zSig1, &term1, &term2 ); + shortShift128Left( term1, term2, 1, &term1, &term2 ); + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); + mul64To128( zSig1, zSig1, &term2, &term3 ); + sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 ); + term3 |= 1; + add192( + rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_eq( floatx80 a, floatx80 b ) +{ + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +less than or equal to the corresponding value `b', and 0 otherwise. The +comparison is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_le( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +less than the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_lt( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is equal +to the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_eq_signaling( floatx80 a, floatx80 b ) +{ + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is less +than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs +do not cause an exception. Otherwise, the comparison is performed according +to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_le_quiet( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is less +than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause +an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_lt_quiet( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +#endif + |