diff options
author | Linus Torvalds <torvalds@g5.osdl.org> | 2006-04-14 17:08:18 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-04-14 17:08:18 -0700 |
commit | bcdc084257352902103aca85c65ddbbba8f74732 (patch) | |
tree | 535af6bc3d976016058ed9d1ec26227e23462ecf /Documentation | |
parent | 754a264c42178b85125a071299bb900b615c853b (diff) | |
parent | 78a596b4490e17b9990d87b9d468ef5bb70daa10 (diff) | |
download | op-kernel-dev-bcdc084257352902103aca85c65ddbbba8f74732.zip op-kernel-dev-bcdc084257352902103aca85c65ddbbba8f74732.tar.gz |
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6
* master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6: (169 commits)
commit 78a596b4490e17b9990d87b9d468ef5bb70daa10
Author: Adrian Bunk <bunk@stusta.de>
Date: Fri Mar 31 01:38:12 2006 -0800
[PATCH] remove kernel/power/pm.c:pm_unregister()
Since the last user is removed in -mm, we can now remove this long deprecated
function.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
commit 21440d313358043b0ce5e43b00ff3c9b35a8616c
Author: David Brownell <david-b@pacbell.net>
Date: Sat Apr 1 10:21:52 2006 -0800
[PATCH] dma doc updates
...
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/DMA-API.txt | 49 | ||||
-rw-r--r-- | Documentation/DMA-mapping.txt | 22 |
2 files changed, 53 insertions, 18 deletions
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt index 1af0f2d..2ffb0d6 100644 --- a/Documentation/DMA-API.txt +++ b/Documentation/DMA-API.txt @@ -33,7 +33,9 @@ pci_alloc_consistent(struct pci_dev *dev, size_t size, Consistent memory is memory for which a write by either the device or the processor can immediately be read by the processor or device -without having to worry about caching effects. +without having to worry about caching effects. (You may however need +to make sure to flush the processor's write buffers before telling +devices to read that memory.) This routine allocates a region of <size> bytes of consistent memory. it also returns a <dma_handle> which may be cast to an unsigned @@ -304,12 +306,12 @@ dma address with dma_mapping_error(). A non zero return value means the mapping could not be created and the driver should take appropriate action (eg reduce current DMA mapping usage or delay and try again later). -int -dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, - enum dma_data_direction direction) -int -pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, - int nents, int direction) + int + dma_map_sg(struct device *dev, struct scatterlist *sg, + int nents, enum dma_data_direction direction) + int + pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, + int nents, int direction) Maps a scatter gather list from the block layer. @@ -327,12 +329,33 @@ critical that the driver do something, in the case of a block driver aborting the request or even oopsing is better than doing nothing and corrupting the filesystem. -void -dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, - enum dma_data_direction direction) -void -pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, - int nents, int direction) +With scatterlists, you use the resulting mapping like this: + + int i, count = dma_map_sg(dev, sglist, nents, direction); + struct scatterlist *sg; + + for (i = 0, sg = sglist; i < count; i++, sg++) { + hw_address[i] = sg_dma_address(sg); + hw_len[i] = sg_dma_len(sg); + } + +where nents is the number of entries in the sglist. + +The implementation is free to merge several consecutive sglist entries +into one (e.g. with an IOMMU, or if several pages just happen to be +physically contiguous) and returns the actual number of sg entries it +mapped them to. On failure 0, is returned. + +Then you should loop count times (note: this can be less than nents times) +and use sg_dma_address() and sg_dma_len() macros where you previously +accessed sg->address and sg->length as shown above. + + void + dma_unmap_sg(struct device *dev, struct scatterlist *sg, + int nhwentries, enum dma_data_direction direction) + void + pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, + int nents, int direction) unmap the previously mapped scatter/gather list. All the parameters must be the same as those and passed in to the scatter/gather mapping diff --git a/Documentation/DMA-mapping.txt b/Documentation/DMA-mapping.txt index 10bf4de..7c717699 100644 --- a/Documentation/DMA-mapping.txt +++ b/Documentation/DMA-mapping.txt @@ -58,11 +58,15 @@ translating each of those pages back to a kernel address using something like __va(). [ EDIT: Update this when we integrate Gerd Knorr's generic code which does this. ] -This rule also means that you may not use kernel image addresses -(ie. items in the kernel's data/text/bss segment, or your driver's) -nor may you use kernel stack addresses for DMA. Both of these items -might be mapped somewhere entirely different than the rest of physical -memory. +This rule also means that you may use neither kernel image addresses +(items in data/text/bss segments), nor module image addresses, nor +stack addresses for DMA. These could all be mapped somewhere entirely +different than the rest of physical memory. Even if those classes of +memory could physically work with DMA, you'd need to ensure the I/O +buffers were cacheline-aligned. Without that, you'd see cacheline +sharing problems (data corruption) on CPUs with DMA-incoherent caches. +(The CPU could write to one word, DMA would write to a different one +in the same cache line, and one of them could be overwritten.) Also, this means that you cannot take the return of a kmap() call and DMA to/from that. This is similar to vmalloc(). @@ -284,6 +288,11 @@ There are two types of DMA mappings: in order to get correct behavior on all platforms. + Also, on some platforms your driver may need to flush CPU write + buffers in much the same way as it needs to flush write buffers + found in PCI bridges (such as by reading a register's value + after writing it). + - Streaming DMA mappings which are usually mapped for one DMA transfer, unmapped right after it (unless you use pci_dma_sync_* below) and for which hardware can optimize for sequential accesses. @@ -303,6 +312,9 @@ There are two types of DMA mappings: Neither type of DMA mapping has alignment restrictions that come from PCI, although some devices may have such restrictions. +Also, systems with caches that aren't DMA-coherent will work better +when the underlying buffers don't share cache lines with other data. + Using Consistent DMA mappings. |