diff options
author | Ingo Molnar <mingo@kernel.org> | 2013-04-30 10:49:04 +0200 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2013-04-30 10:49:04 +0200 |
commit | fd29f424d458118f02e89596505c68a63dcb3007 (patch) | |
tree | b52470ff7fe7a9f29260afe4a9f22a80fc900140 /Documentation | |
parent | c1be5a5b1b355d40e6cf79cc979eb66dafa24ad1 (diff) | |
parent | 49717cb40410fe4b563968680ff7c513967504c6 (diff) | |
download | op-kernel-dev-fd29f424d458118f02e89596505c68a63dcb3007.zip op-kernel-dev-fd29f424d458118f02e89596505c68a63dcb3007.tar.gz |
Merge branch 'rcu/doc' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/urgent
Pull RCU documentation update for reducing OS jitter due to
per-CPU kthreads, from Paul McKenney.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/RCU/checklist.txt | 26 | ||||
-rw-r--r-- | Documentation/RCU/lockdep.txt | 5 | ||||
-rw-r--r-- | Documentation/RCU/rcubarrier.txt | 15 | ||||
-rw-r--r-- | Documentation/RCU/stallwarn.txt | 33 | ||||
-rw-r--r-- | Documentation/RCU/whatisRCU.txt | 4 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 35 | ||||
-rw-r--r-- | Documentation/kernel-per-CPU-kthreads.txt | 202 |
7 files changed, 287 insertions, 33 deletions
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt index 31ef8fe..79e789b8 100644 --- a/Documentation/RCU/checklist.txt +++ b/Documentation/RCU/checklist.txt @@ -217,9 +217,14 @@ over a rather long period of time, but improvements are always welcome! whether the increased speed is worth it. 8. Although synchronize_rcu() is slower than is call_rcu(), it - usually results in simpler code. So, unless update performance - is critically important or the updaters cannot block, - synchronize_rcu() should be used in preference to call_rcu(). + usually results in simpler code. So, unless update performance is + critically important, the updaters cannot block, or the latency of + synchronize_rcu() is visible from userspace, synchronize_rcu() + should be used in preference to call_rcu(). Furthermore, + kfree_rcu() usually results in even simpler code than does + synchronize_rcu() without synchronize_rcu()'s multi-millisecond + latency. So please take advantage of kfree_rcu()'s "fire and + forget" memory-freeing capabilities where it applies. An especially important property of the synchronize_rcu() primitive is that it automatically self-limits: if grace periods @@ -268,7 +273,8 @@ over a rather long period of time, but improvements are always welcome! e. Periodically invoke synchronize_rcu(), permitting a limited number of updates per grace period. - The same cautions apply to call_rcu_bh() and call_rcu_sched(). + The same cautions apply to call_rcu_bh(), call_rcu_sched(), + call_srcu(), and kfree_rcu(). 9. All RCU list-traversal primitives, which include rcu_dereference(), list_for_each_entry_rcu(), and @@ -296,9 +302,9 @@ over a rather long period of time, but improvements are always welcome! all currently executing rcu_read_lock()-protected RCU read-side critical sections complete. It does -not- necessarily guarantee that all currently running interrupts, NMIs, preempt_disable() - code, or idle loops will complete. Therefore, if you do not have - rcu_read_lock()-protected read-side critical sections, do -not- - use synchronize_rcu(). + code, or idle loops will complete. Therefore, if your + read-side critical sections are protected by something other + than rcu_read_lock(), do -not- use synchronize_rcu(). Similarly, disabling preemption is not an acceptable substitute for rcu_read_lock(). Code that attempts to use preemption @@ -401,9 +407,9 @@ over a rather long period of time, but improvements are always welcome! read-side critical sections. It is the responsibility of the RCU update-side primitives to deal with this. -17. Use CONFIG_PROVE_RCU, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and - the __rcu sparse checks to validate your RCU code. These - can help find problems as follows: +17. Use CONFIG_PROVE_RCU, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and the + __rcu sparse checks (enabled by CONFIG_SPARSE_RCU_POINTER) to + validate your RCU code. These can help find problems as follows: CONFIG_PROVE_RCU: check that accesses to RCU-protected data structures are carried out under the proper RCU diff --git a/Documentation/RCU/lockdep.txt b/Documentation/RCU/lockdep.txt index a102d4b..cd83d23 100644 --- a/Documentation/RCU/lockdep.txt +++ b/Documentation/RCU/lockdep.txt @@ -64,6 +64,11 @@ checking of rcu_dereference() primitives: but retain the compiler constraints that prevent duplicating or coalescsing. This is useful when when testing the value of the pointer itself, for example, against NULL. + rcu_access_index(idx): + Return the value of the index and omit all barriers, but + retain the compiler constraints that prevent duplicating + or coalescsing. This is useful when when testing the + value of the index itself, for example, against -1. The rcu_dereference_check() check expression can be any boolean expression, but would normally include a lockdep expression. However, diff --git a/Documentation/RCU/rcubarrier.txt b/Documentation/RCU/rcubarrier.txt index 38428c1..2e319d1 100644 --- a/Documentation/RCU/rcubarrier.txt +++ b/Documentation/RCU/rcubarrier.txt @@ -79,7 +79,20 @@ complete. Pseudo-code using rcu_barrier() is as follows: 2. Execute rcu_barrier(). 3. Allow the module to be unloaded. -The rcutorture module makes use of rcu_barrier in its exit function +There are also rcu_barrier_bh(), rcu_barrier_sched(), and srcu_barrier() +functions for the other flavors of RCU, and you of course must match +the flavor of rcu_barrier() with that of call_rcu(). If your module +uses multiple flavors of call_rcu(), then it must also use multiple +flavors of rcu_barrier() when unloading that module. For example, if +it uses call_rcu_bh(), call_srcu() on srcu_struct_1, and call_srcu() on +srcu_struct_2(), then the following three lines of code will be required +when unloading: + + 1 rcu_barrier_bh(); + 2 srcu_barrier(&srcu_struct_1); + 3 srcu_barrier(&srcu_struct_2); + +The rcutorture module makes use of rcu_barrier() in its exit function as follows: 1 static void diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt index 1927151..e38b8df 100644 --- a/Documentation/RCU/stallwarn.txt +++ b/Documentation/RCU/stallwarn.txt @@ -92,14 +92,14 @@ If the CONFIG_RCU_CPU_STALL_INFO kernel configuration parameter is set, more information is printed with the stall-warning message, for example: INFO: rcu_preempt detected stall on CPU - 0: (63959 ticks this GP) idle=241/3fffffffffffffff/0 + 0: (63959 ticks this GP) idle=241/3fffffffffffffff/0 softirq=82/543 (t=65000 jiffies) In kernels with CONFIG_RCU_FAST_NO_HZ, even more information is printed: INFO: rcu_preempt detected stall on CPU - 0: (64628 ticks this GP) idle=dd5/3fffffffffffffff/0 drain=0 . timer not pending + 0: (64628 ticks this GP) idle=dd5/3fffffffffffffff/0 softirq=82/543 last_accelerate: a345/d342 nonlazy_posted: 25 .D (t=65000 jiffies) The "(64628 ticks this GP)" indicates that this CPU has taken more @@ -116,13 +116,28 @@ number between the two "/"s is the value of the nesting, which will be a small positive number if in the idle loop and a very large positive number (as shown above) otherwise. -For CONFIG_RCU_FAST_NO_HZ kernels, the "drain=0" indicates that the CPU is -not in the process of trying to force itself into dyntick-idle state, the -"." indicates that the CPU has not given up forcing RCU into dyntick-idle -mode (it would be "H" otherwise), and the "timer not pending" indicates -that the CPU has not recently forced RCU into dyntick-idle mode (it -would otherwise indicate the number of microseconds remaining in this -forced state). +The "softirq=" portion of the message tracks the number of RCU softirq +handlers that the stalled CPU has executed. The number before the "/" +is the number that had executed since boot at the time that this CPU +last noted the beginning of a grace period, which might be the current +(stalled) grace period, or it might be some earlier grace period (for +example, if the CPU might have been in dyntick-idle mode for an extended +time period. The number after the "/" is the number that have executed +since boot until the current time. If this latter number stays constant +across repeated stall-warning messages, it is possible that RCU's softirq +handlers are no longer able to execute on this CPU. This can happen if +the stalled CPU is spinning with interrupts are disabled, or, in -rt +kernels, if a high-priority process is starving RCU's softirq handler. + +For CONFIG_RCU_FAST_NO_HZ kernels, the "last_accelerate:" prints the +low-order 16 bits (in hex) of the jiffies counter when this CPU last +invoked rcu_try_advance_all_cbs() from rcu_needs_cpu() or last invoked +rcu_accelerate_cbs() from rcu_prepare_for_idle(). The "nonlazy_posted:" +prints the number of non-lazy callbacks posted since the last call to +rcu_needs_cpu(). Finally, an "L" indicates that there are currently +no non-lazy callbacks ("." is printed otherwise, as shown above) and +"D" indicates that dyntick-idle processing is enabled ("." is printed +otherwise, for example, if disabled via the "nohz=" kernel boot parameter). Multiple Warnings From One Stall diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt index 0cc7820..10df0b8 100644 --- a/Documentation/RCU/whatisRCU.txt +++ b/Documentation/RCU/whatisRCU.txt @@ -265,9 +265,9 @@ rcu_dereference() rcu_read_lock(); p = rcu_dereference(head.next); rcu_read_unlock(); - x = p->address; + x = p->address; /* BUG!!! */ rcu_read_lock(); - y = p->data; + y = p->data; /* BUG!!! */ rcu_read_unlock(); Holding a reference from one RCU read-side critical section diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 8ccbf27..52ecc9b 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -2484,9 +2484,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted. In kernels built with CONFIG_RCU_NOCB_CPU=y, set the specified list of CPUs to be no-callback CPUs. Invocation of these CPUs' RCU callbacks will - be offloaded to "rcuoN" kthreads created for - that purpose. This reduces OS jitter on the + be offloaded to "rcuox/N" kthreads created for + that purpose, where "x" is "b" for RCU-bh, "p" + for RCU-preempt, and "s" for RCU-sched, and "N" + is the CPU number. This reduces OS jitter on the offloaded CPUs, which can be useful for HPC and + real-time workloads. It can also improve energy efficiency for asymmetric multiprocessors. @@ -2510,6 +2513,17 @@ bytes respectively. Such letter suffixes can also be entirely omitted. leaf rcu_node structure. Useful for very large systems. + rcutree.jiffies_till_first_fqs= [KNL,BOOT] + Set delay from grace-period initialization to + first attempt to force quiescent states. + Units are jiffies, minimum value is zero, + and maximum value is HZ. + + rcutree.jiffies_till_next_fqs= [KNL,BOOT] + Set delay between subsequent attempts to force + quiescent states. Units are jiffies, minimum + value is one, and maximum value is HZ. + rcutree.qhimark= [KNL,BOOT] Set threshold of queued RCU callbacks over which batch limiting is disabled. @@ -2524,16 +2538,15 @@ bytes respectively. Such letter suffixes can also be entirely omitted. rcutree.rcu_cpu_stall_timeout= [KNL,BOOT] Set timeout for RCU CPU stall warning messages. - rcutree.jiffies_till_first_fqs= [KNL,BOOT] - Set delay from grace-period initialization to - first attempt to force quiescent states. - Units are jiffies, minimum value is zero, - and maximum value is HZ. + rcutree.rcu_idle_gp_delay= [KNL,BOOT] + Set wakeup interval for idle CPUs that have + RCU callbacks (RCU_FAST_NO_HZ=y). - rcutree.jiffies_till_next_fqs= [KNL,BOOT] - Set delay between subsequent attempts to force - quiescent states. Units are jiffies, minimum - value is one, and maximum value is HZ. + rcutree.rcu_idle_lazy_gp_delay= [KNL,BOOT] + Set wakeup interval for idle CPUs that have + only "lazy" RCU callbacks (RCU_FAST_NO_HZ=y). + Lazy RCU callbacks are those which RCU can + prove do nothing more than free memory. rcutorture.fqs_duration= [KNL,BOOT] Set duration of force_quiescent_state bursts. diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt new file mode 100644 index 0000000..cbf7ae41 --- /dev/null +++ b/Documentation/kernel-per-CPU-kthreads.txt @@ -0,0 +1,202 @@ +REDUCING OS JITTER DUE TO PER-CPU KTHREADS + +This document lists per-CPU kthreads in the Linux kernel and presents +options to control their OS jitter. Note that non-per-CPU kthreads are +not listed here. To reduce OS jitter from non-per-CPU kthreads, bind +them to a "housekeeping" CPU dedicated to such work. + + +REFERENCES + +o Documentation/IRQ-affinity.txt: Binding interrupts to sets of CPUs. + +o Documentation/cgroups: Using cgroups to bind tasks to sets of CPUs. + +o man taskset: Using the taskset command to bind tasks to sets + of CPUs. + +o man sched_setaffinity: Using the sched_setaffinity() system + call to bind tasks to sets of CPUs. + +o /sys/devices/system/cpu/cpuN/online: Control CPU N's hotplug state, + writing "0" to offline and "1" to online. + +o In order to locate kernel-generated OS jitter on CPU N: + + cd /sys/kernel/debug/tracing + echo 1 > max_graph_depth # Increase the "1" for more detail + echo function_graph > current_tracer + # run workload + cat per_cpu/cpuN/trace + + +KTHREADS + +Name: ehca_comp/%u +Purpose: Periodically process Infiniband-related work. +To reduce its OS jitter, do any of the following: +1. Don't use eHCA Infiniband hardware, instead choosing hardware + that does not require per-CPU kthreads. This will prevent these + kthreads from being created in the first place. (This will + work for most people, as this hardware, though important, is + relatively old and is produced in relatively low unit volumes.) +2. Do all eHCA-Infiniband-related work on other CPUs, including + interrupts. +3. Rework the eHCA driver so that its per-CPU kthreads are + provisioned only on selected CPUs. + + +Name: irq/%d-%s +Purpose: Handle threaded interrupts. +To reduce its OS jitter, do the following: +1. Use irq affinity to force the irq threads to execute on + some other CPU. + +Name: kcmtpd_ctr_%d +Purpose: Handle Bluetooth work. +To reduce its OS jitter, do one of the following: +1. Don't use Bluetooth, in which case these kthreads won't be + created in the first place. +2. Use irq affinity to force Bluetooth-related interrupts to + occur on some other CPU and furthermore initiate all + Bluetooth activity on some other CPU. + +Name: ksoftirqd/%u +Purpose: Execute softirq handlers when threaded or when under heavy load. +To reduce its OS jitter, each softirq vector must be handled +separately as follows: +TIMER_SOFTIRQ: Do all of the following: +1. To the extent possible, keep the CPU out of the kernel when it + is non-idle, for example, by avoiding system calls and by forcing + both kernel threads and interrupts to execute elsewhere. +2. Build with CONFIG_HOTPLUG_CPU=y. After boot completes, force + the CPU offline, then bring it back online. This forces + recurring timers to migrate elsewhere. If you are concerned + with multiple CPUs, force them all offline before bringing the + first one back online. Once you have onlined the CPUs in question, + do not offline any other CPUs, because doing so could force the + timer back onto one of the CPUs in question. +NET_TX_SOFTIRQ and NET_RX_SOFTIRQ: Do all of the following: +1. Force networking interrupts onto other CPUs. +2. Initiate any network I/O on other CPUs. +3. Once your application has started, prevent CPU-hotplug operations + from being initiated from tasks that might run on the CPU to + be de-jittered. (It is OK to force this CPU offline and then + bring it back online before you start your application.) +BLOCK_SOFTIRQ: Do all of the following: +1. Force block-device interrupts onto some other CPU. +2. Initiate any block I/O on other CPUs. +3. Once your application has started, prevent CPU-hotplug operations + from being initiated from tasks that might run on the CPU to + be de-jittered. (It is OK to force this CPU offline and then + bring it back online before you start your application.) +BLOCK_IOPOLL_SOFTIRQ: Do all of the following: +1. Force block-device interrupts onto some other CPU. +2. Initiate any block I/O and block-I/O polling on other CPUs. +3. Once your application has started, prevent CPU-hotplug operations + from being initiated from tasks that might run on the CPU to + be de-jittered. (It is OK to force this CPU offline and then + bring it back online before you start your application.) +TASKLET_SOFTIRQ: Do one or more of the following: +1. Avoid use of drivers that use tasklets. (Such drivers will contain + calls to things like tasklet_schedule().) +2. Convert all drivers that you must use from tasklets to workqueues. +3. Force interrupts for drivers using tasklets onto other CPUs, + and also do I/O involving these drivers on other CPUs. +SCHED_SOFTIRQ: Do all of the following: +1. Avoid sending scheduler IPIs to the CPU to be de-jittered, + for example, ensure that at most one runnable kthread is present + on that CPU. If a thread that expects to run on the de-jittered + CPU awakens, the scheduler will send an IPI that can result in + a subsequent SCHED_SOFTIRQ. +2. Build with CONFIG_RCU_NOCB_CPU=y, CONFIG_RCU_NOCB_CPU_ALL=y, + CONFIG_NO_HZ_FULL=y, and, in addition, ensure that the CPU + to be de-jittered is marked as an adaptive-ticks CPU using the + "nohz_full=" boot parameter. This reduces the number of + scheduler-clock interrupts that the de-jittered CPU receives, + minimizing its chances of being selected to do the load balancing + work that runs in SCHED_SOFTIRQ context. +3. To the extent possible, keep the CPU out of the kernel when it + is non-idle, for example, by avoiding system calls and by + forcing both kernel threads and interrupts to execute elsewhere. + This further reduces the number of scheduler-clock interrupts + received by the de-jittered CPU. +HRTIMER_SOFTIRQ: Do all of the following: +1. To the extent possible, keep the CPU out of the kernel when it + is non-idle. For example, avoid system calls and force both + kernel threads and interrupts to execute elsewhere. +2. Build with CONFIG_HOTPLUG_CPU=y. Once boot completes, force the + CPU offline, then bring it back online. This forces recurring + timers to migrate elsewhere. If you are concerned with multiple + CPUs, force them all offline before bringing the first one + back online. Once you have onlined the CPUs in question, do not + offline any other CPUs, because doing so could force the timer + back onto one of the CPUs in question. +RCU_SOFTIRQ: Do at least one of the following: +1. Offload callbacks and keep the CPU in either dyntick-idle or + adaptive-ticks state by doing all of the following: + a. Build with CONFIG_RCU_NOCB_CPU=y, CONFIG_RCU_NOCB_CPU_ALL=y, + CONFIG_NO_HZ_FULL=y, and, in addition ensure that the CPU + to be de-jittered is marked as an adaptive-ticks CPU using + the "nohz_full=" boot parameter. Bind the rcuo kthreads + to housekeeping CPUs, which can tolerate OS jitter. + b. To the extent possible, keep the CPU out of the kernel + when it is non-idle, for example, by avoiding system + calls and by forcing both kernel threads and interrupts + to execute elsewhere. +2. Enable RCU to do its processing remotely via dyntick-idle by + doing all of the following: + a. Build with CONFIG_NO_HZ=y and CONFIG_RCU_FAST_NO_HZ=y. + b. Ensure that the CPU goes idle frequently, allowing other + CPUs to detect that it has passed through an RCU quiescent + state. If the kernel is built with CONFIG_NO_HZ_FULL=y, + userspace execution also allows other CPUs to detect that + the CPU in question has passed through a quiescent state. + c. To the extent possible, keep the CPU out of the kernel + when it is non-idle, for example, by avoiding system + calls and by forcing both kernel threads and interrupts + to execute elsewhere. + +Name: rcuc/%u +Purpose: Execute RCU callbacks in CONFIG_RCU_BOOST=y kernels. +To reduce its OS jitter, do at least one of the following: +1. Build the kernel with CONFIG_PREEMPT=n. This prevents these + kthreads from being created in the first place, and also obviates + the need for RCU priority boosting. This approach is feasible + for workloads that do not require high degrees of responsiveness. +2. Build the kernel with CONFIG_RCU_BOOST=n. This prevents these + kthreads from being created in the first place. This approach + is feasible only if your workload never requires RCU priority + boosting, for example, if you ensure frequent idle time on all + CPUs that might execute within the kernel. +3. Build with CONFIG_RCU_NOCB_CPU=y and CONFIG_RCU_NOCB_CPU_ALL=y, + which offloads all RCU callbacks to kthreads that can be moved + off of CPUs susceptible to OS jitter. This approach prevents the + rcuc/%u kthreads from having any work to do, so that they are + never awakened. +4. Ensure that the CPU never enters the kernel, and, in particular, + avoid initiating any CPU hotplug operations on this CPU. This is + another way of preventing any callbacks from being queued on the + CPU, again preventing the rcuc/%u kthreads from having any work + to do. + +Name: rcuob/%d, rcuop/%d, and rcuos/%d +Purpose: Offload RCU callbacks from the corresponding CPU. +To reduce its OS jitter, do at least one of the following: +1. Use affinity, cgroups, or other mechanism to force these kthreads + to execute on some other CPU. +2. Build with CONFIG_RCU_NOCB_CPUS=n, which will prevent these + kthreads from being created in the first place. However, please + note that this will not eliminate OS jitter, but will instead + shift it to RCU_SOFTIRQ. + +Name: watchdog/%u +Purpose: Detect software lockups on each CPU. +To reduce its OS jitter, do at least one of the following: +1. Build with CONFIG_LOCKUP_DETECTOR=n, which will prevent these + kthreads from being created in the first place. +2. Echo a zero to /proc/sys/kernel/watchdog to disable the + watchdog timer. +3. Echo a large number of /proc/sys/kernel/watchdog_thresh in + order to reduce the frequency of OS jitter due to the watchdog + timer down to a level that is acceptable for your workload. |