summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@g5.osdl.org>2006-06-26 13:33:14 -0700
committerLinus Torvalds <torvalds@g5.osdl.org>2006-06-26 13:33:14 -0700
commitda206c9e68cb93fcab43592d46276c02889c1250 (patch)
tree21264cc26fa0322d668b398808f10bd93558d25f /Documentation
parent916d15445f4ad2a9018e5451760734f36083be77 (diff)
parent2e2d0dcc1bd7ca7c26ea5e29efb7f34bbd564f1c (diff)
downloadop-kernel-dev-da206c9e68cb93fcab43592d46276c02889c1250.zip
op-kernel-dev-da206c9e68cb93fcab43592d46276c02889c1250.tar.gz
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
* git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial: typo fixes Clean up 'inline is not at beginning' warnings for usb storage Storage class should be first i386: Trivial typo fixes ixj: make ixj_set_tone_off() static spelling fixes fix paniced->panicked typos Spelling fixes for Documentation/atomic_ops.txt move acknowledgment for Mark Adler to CREDITS remove the bouncing email address of David Campbell
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DocBook/kernel-locking.tmpl2
-rw-r--r--Documentation/atomic_ops.txt28
-rw-r--r--Documentation/driver-model/overview.txt2
-rw-r--r--Documentation/kdump/gdbmacros.txt2
-rw-r--r--Documentation/scsi/ppa.txt2
5 files changed, 17 insertions, 19 deletions
diff --git a/Documentation/DocBook/kernel-locking.tmpl b/Documentation/DocBook/kernel-locking.tmpl
index 158ffe9..644c388 100644
--- a/Documentation/DocBook/kernel-locking.tmpl
+++ b/Documentation/DocBook/kernel-locking.tmpl
@@ -1590,7 +1590,7 @@ the amount of locking which needs to be done.
<para>
Our final dilemma is this: when can we actually destroy the
removed element? Remember, a reader might be stepping through
- this element in the list right now: it we free this element and
+ this element in the list right now: if we free this element and
the <symbol>next</symbol> pointer changes, the reader will jump
off into garbage and crash. We need to wait until we know that
all the readers who were traversing the list when we deleted the
diff --git a/Documentation/atomic_ops.txt b/Documentation/atomic_ops.txt
index 23a1c24..2a63d56 100644
--- a/Documentation/atomic_ops.txt
+++ b/Documentation/atomic_ops.txt
@@ -157,13 +157,13 @@ For example, smp_mb__before_atomic_dec() can be used like so:
smp_mb__before_atomic_dec();
atomic_dec(&obj->ref_count);
-It makes sure that all memory operations preceeding the atomic_dec()
+It makes sure that all memory operations preceding the atomic_dec()
call are strongly ordered with respect to the atomic counter
-operation. In the above example, it guarentees that the assignment of
+operation. In the above example, it guarantees that the assignment of
"1" to obj->dead will be globally visible to other cpus before the
atomic counter decrement.
-Without the explicitl smp_mb__before_atomic_dec() call, the
+Without the explicit smp_mb__before_atomic_dec() call, the
implementation could legally allow the atomic counter update visible
to other cpus before the "obj->dead = 1;" assignment.
@@ -173,11 +173,11 @@ ordering with respect to memory operations after an atomic_dec() call
(smp_mb__{before,after}_atomic_inc()).
A missing memory barrier in the cases where they are required by the
-atomic_t implementation above can have disasterous results. Here is
-an example, which follows a pattern occuring frequently in the Linux
+atomic_t implementation above can have disastrous results. Here is
+an example, which follows a pattern occurring frequently in the Linux
kernel. It is the use of atomic counters to implement reference
counting, and it works such that once the counter falls to zero it can
-be guarenteed that no other entity can be accessing the object:
+be guaranteed that no other entity can be accessing the object:
static void obj_list_add(struct obj *obj)
{
@@ -291,9 +291,9 @@ to the size of an "unsigned long" C data type, and are least of that
size. The endianness of the bits within each "unsigned long" are the
native endianness of the cpu.
- void set_bit(unsigned long nr, volatils unsigned long *addr);
- void clear_bit(unsigned long nr, volatils unsigned long *addr);
- void change_bit(unsigned long nr, volatils unsigned long *addr);
+ void set_bit(unsigned long nr, volatile unsigned long *addr);
+ void clear_bit(unsigned long nr, volatile unsigned long *addr);
+ void change_bit(unsigned long nr, volatile unsigned long *addr);
These routines set, clear, and change, respectively, the bit number
indicated by "nr" on the bit mask pointed to by "ADDR".
@@ -301,9 +301,9 @@ indicated by "nr" on the bit mask pointed to by "ADDR".
They must execute atomically, yet there are no implicit memory barrier
semantics required of these interfaces.
- int test_and_set_bit(unsigned long nr, volatils unsigned long *addr);
- int test_and_clear_bit(unsigned long nr, volatils unsigned long *addr);
- int test_and_change_bit(unsigned long nr, volatils unsigned long *addr);
+ int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
+ int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
+ int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
Like the above, except that these routines return a boolean which
indicates whether the changed bit was set _BEFORE_ the atomic bit
@@ -335,7 +335,7 @@ subsequent memory operation is made visible. For example:
/* ... */;
obj->killed = 1;
-The implementation of test_and_set_bit() must guarentee that
+The implementation of test_and_set_bit() must guarantee that
"obj->dead = 1;" is visible to cpus before the atomic memory operation
done by test_and_set_bit() becomes visible. Likewise, the atomic
memory operation done by test_and_set_bit() must become visible before
@@ -474,7 +474,7 @@ Now, as far as memory barriers go, as long as spin_lock()
strictly orders all subsequent memory operations (including
the cas()) with respect to itself, things will be fine.
-Said another way, _atomic_dec_and_lock() must guarentee that
+Said another way, _atomic_dec_and_lock() must guarantee that
a counter dropping to zero is never made visible before the
spinlock being acquired.
diff --git a/Documentation/driver-model/overview.txt b/Documentation/driver-model/overview.txt
index ac4a7a7..2050c9f 100644
--- a/Documentation/driver-model/overview.txt
+++ b/Documentation/driver-model/overview.txt
@@ -18,7 +18,7 @@ Traditional driver models implemented some sort of tree-like structure
(sometimes just a list) for the devices they control. There wasn't any
uniformity across the different bus types.
-The current driver model provides a comon, uniform data model for describing
+The current driver model provides a common, uniform data model for describing
a bus and the devices that can appear under the bus. The unified bus
model includes a set of common attributes which all busses carry, and a set
of common callbacks, such as device discovery during bus probing, bus
diff --git a/Documentation/kdump/gdbmacros.txt b/Documentation/kdump/gdbmacros.txt
index dcf5580..9b9b454 100644
--- a/Documentation/kdump/gdbmacros.txt
+++ b/Documentation/kdump/gdbmacros.txt
@@ -175,7 +175,7 @@ end
document trapinfo
Run info threads and lookup pid of thread #1
'trapinfo <pid>' will tell you by which trap & possibly
- addresthe kernel paniced.
+ address the kernel panicked.
end
diff --git a/Documentation/scsi/ppa.txt b/Documentation/scsi/ppa.txt
index 0dac88d..5d9223b 100644
--- a/Documentation/scsi/ppa.txt
+++ b/Documentation/scsi/ppa.txt
@@ -12,5 +12,3 @@ http://www.torque.net/parport/
Email list for Linux Parport
linux-parport@torque.net
-Email for problems with ZIP or ZIP Plus drivers
-campbell@torque.net
OpenPOWER on IntegriCloud