diff options
author | Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> | 2016-11-03 17:57:52 -0600 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2016-11-07 18:56:42 -0700 |
commit | 799a545bb9383c6185ad27063adca03d28ee1823 (patch) | |
tree | 99cd895961ab157bd817989f53d60f2f57a1d190 /Documentation/security/tpm | |
parent | 9e355ba76455d6d44f5cf888eee820ae9a06b3ec (diff) | |
download | op-kernel-dev-799a545bb9383c6185ad27063adca03d28ee1823.zip op-kernel-dev-799a545bb9383c6185ad27063adca03d28ee1823.tar.gz |
tpm: move documentation under Documentation/security
In order too make Documentation root directory cleaner move the tpm
directory under Documentation/security.
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/security/tpm')
-rw-r--r-- | Documentation/security/tpm/index.rst | 7 | ||||
-rw-r--r-- | Documentation/security/tpm/tpm_vtpm_proxy.rst | 50 | ||||
-rw-r--r-- | Documentation/security/tpm/xen-tpmfront.txt | 113 |
3 files changed, 170 insertions, 0 deletions
diff --git a/Documentation/security/tpm/index.rst b/Documentation/security/tpm/index.rst new file mode 100644 index 0000000..af77a7b --- /dev/null +++ b/Documentation/security/tpm/index.rst @@ -0,0 +1,7 @@ +===================================== +Trusted Platform Module documentation +===================================== + +.. toctree:: + + tpm_vtpm_proxy diff --git a/Documentation/security/tpm/tpm_vtpm_proxy.rst b/Documentation/security/tpm/tpm_vtpm_proxy.rst new file mode 100644 index 0000000..ea08e76 --- /dev/null +++ b/Documentation/security/tpm/tpm_vtpm_proxy.rst @@ -0,0 +1,50 @@ +============================================= +Virtual TPM Proxy Driver for Linux Containers +============================================= + +| Authors: +| Stefan Berger <stefanb@linux.vnet.ibm.com> + +This document describes the virtual Trusted Platform Module (vTPM) +proxy device driver for Linux containers. + +Introduction +============ + +The goal of this work is to provide TPM functionality to each Linux +container. This allows programs to interact with a TPM in a container +the same way they interact with a TPM on the physical system. Each +container gets its own unique, emulated, software TPM. + +Design +====== + +To make an emulated software TPM available to each container, the container +management stack needs to create a device pair consisting of a client TPM +character device ``/dev/tpmX`` (with X=0,1,2...) and a 'server side' file +descriptor. The former is moved into the container by creating a character +device with the appropriate major and minor numbers while the file descriptor +is passed to the TPM emulator. Software inside the container can then send +TPM commands using the character device and the emulator will receive the +commands via the file descriptor and use it for sending back responses. + +To support this, the virtual TPM proxy driver provides a device ``/dev/vtpmx`` +that is used to create device pairs using an ioctl. The ioctl takes as +an input flags for configuring the device. The flags for example indicate +whether TPM 1.2 or TPM 2 functionality is supported by the TPM emulator. +The result of the ioctl are the file descriptor for the 'server side' +as well as the major and minor numbers of the character device that was created. +Besides that the number of the TPM character device is returned. If for +example ``/dev/tpm10`` was created, the number (``dev_num``) 10 is returned. + +Once the device has been created, the driver will immediately try to talk +to the TPM. All commands from the driver can be read from the file descriptor +returned by the ioctl. The commands should be responded to immediately. + +UAPI +==== + +.. kernel-doc:: include/uapi/linux/vtpm_proxy.h + +.. kernel-doc:: drivers/char/tpm/tpm_vtpm_proxy.c + :functions: vtpmx_ioc_new_dev diff --git a/Documentation/security/tpm/xen-tpmfront.txt b/Documentation/security/tpm/xen-tpmfront.txt new file mode 100644 index 0000000..69346de --- /dev/null +++ b/Documentation/security/tpm/xen-tpmfront.txt @@ -0,0 +1,113 @@ +Virtual TPM interface for Xen + +Authors: Matthew Fioravante (JHUAPL), Daniel De Graaf (NSA) + +This document describes the virtual Trusted Platform Module (vTPM) subsystem for +Xen. The reader is assumed to have familiarity with building and installing Xen, +Linux, and a basic understanding of the TPM and vTPM concepts. + +INTRODUCTION + +The goal of this work is to provide a TPM functionality to a virtual guest +operating system (in Xen terms, a DomU). This allows programs to interact with +a TPM in a virtual system the same way they interact with a TPM on the physical +system. Each guest gets its own unique, emulated, software TPM. However, each +of the vTPM's secrets (Keys, NVRAM, etc) are managed by a vTPM Manager domain, +which seals the secrets to the Physical TPM. If the process of creating each of +these domains (manager, vTPM, and guest) is trusted, the vTPM subsystem extends +the chain of trust rooted in the hardware TPM to virtual machines in Xen. Each +major component of vTPM is implemented as a separate domain, providing secure +separation guaranteed by the hypervisor. The vTPM domains are implemented in +mini-os to reduce memory and processor overhead. + +This mini-os vTPM subsystem was built on top of the previous vTPM work done by +IBM and Intel corporation. + + +DESIGN OVERVIEW +--------------- + +The architecture of vTPM is described below: + ++------------------+ +| Linux DomU | ... +| | ^ | +| v | | +| xen-tpmfront | ++------------------+ + | ^ + v | ++------------------+ +| mini-os/tpmback | +| | ^ | +| v | | +| vtpm-stubdom | ... +| | ^ | +| v | | +| mini-os/tpmfront | ++------------------+ + | ^ + v | ++------------------+ +| mini-os/tpmback | +| | ^ | +| v | | +| vtpmmgr-stubdom | +| | ^ | +| v | | +| mini-os/tpm_tis | ++------------------+ + | ^ + v | ++------------------+ +| Hardware TPM | ++------------------+ + + * Linux DomU: The Linux based guest that wants to use a vTPM. There may be + more than one of these. + + * xen-tpmfront.ko: Linux kernel virtual TPM frontend driver. This driver + provides vTPM access to a Linux-based DomU. + + * mini-os/tpmback: Mini-os TPM backend driver. The Linux frontend driver + connects to this backend driver to facilitate communications + between the Linux DomU and its vTPM. This driver is also + used by vtpmmgr-stubdom to communicate with vtpm-stubdom. + + * vtpm-stubdom: A mini-os stub domain that implements a vTPM. There is a + one to one mapping between running vtpm-stubdom instances and + logical vtpms on the system. The vTPM Platform Configuration + Registers (PCRs) are normally all initialized to zero. + + * mini-os/tpmfront: Mini-os TPM frontend driver. The vTPM mini-os domain + vtpm-stubdom uses this driver to communicate with + vtpmmgr-stubdom. This driver is also used in mini-os + domains such as pv-grub that talk to the vTPM domain. + + * vtpmmgr-stubdom: A mini-os domain that implements the vTPM manager. There is + only one vTPM manager and it should be running during the + entire lifetime of the machine. This domain regulates + access to the physical TPM on the system and secures the + persistent state of each vTPM. + + * mini-os/tpm_tis: Mini-os TPM version 1.2 TPM Interface Specification (TIS) + driver. This driver used by vtpmmgr-stubdom to talk directly to + the hardware TPM. Communication is facilitated by mapping + hardware memory pages into vtpmmgr-stubdom. + + * Hardware TPM: The physical TPM that is soldered onto the motherboard. + + +INTEGRATION WITH XEN +-------------------- + +Support for the vTPM driver was added in Xen using the libxl toolstack in Xen +4.3. See the Xen documentation (docs/misc/vtpm.txt) for details on setting up +the vTPM and vTPM Manager stub domains. Once the stub domains are running, a +vTPM device is set up in the same manner as a disk or network device in the +domain's configuration file. + +In order to use features such as IMA that require a TPM to be loaded prior to +the initrd, the xen-tpmfront driver must be compiled in to the kernel. If not +using such features, the driver can be compiled as a module and will be loaded +as usual. |